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Abstract

Background: Plant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant

growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant

phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different

plant types. The main objective of the present research is to develop a fully automated, fast and reliable data driven

approach for plant organ segmentation.

Results: The automated segmentation of plant organs using unsupervised, clustering methods is crucial in cases

where the goal is to get fast insights into the data or no labeled data is available or costly to achieve. For this we

propose and compare data driven approaches that are easy-to-realize and make the use of standard algorithms

possible. Since normalized histograms, acquired from 3D point clouds, can be seen as samples from a probability

simplex, we propose to map the data from the simplex space into Euclidean space using Aitchisons log ratio

transformation, or into the positive quadrant of the unit sphere using square root transformation. This, in turn, paves

the way to a wide range of commonly used analysis techniques that are based on measuring the similarities between

data points using Euclidean distance. We investigate the performance of the resulting approaches in the practical

context of grouping 3D point clouds and demonstrate empirically that they lead to clustering results with high

accuracy for monocotyledonous and dicotyledonous plant species with diverse shoot architecture.

Conclusion: An automated segmentation of 3D point clouds is demonstrated in the present work. Within seconds

first insights into plant data can be deviated – even from non-labelled data. This approach is applicable to different

plant species with high accuracy. The analysis cascade can be implemented in future high-throughput phenotyping

scenarios and will support the evaluation of the performance of different plant genotypes exposed to stress or in

different environmental scenarios.

Keywords: Automatic segmentation, Clustering, 3D-laserscanning, High-throughput, Plant phenotyping

Background
Recent phenotyping platforms implement a variety of

imaging methods, such as 3D-scanning, RGB-imaging,

spectral imaging, and/or chlorophyll fluorescence imag-

ing to collect data for quantitative and qualitative stud-

ies on plant genotypes in different stress scenarios

[1, 2]. The advantage of optical sensor methods in high-

throughput screenings is, that a high number of plants
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can be investigated in time course experiments; and –

due to the non-destructive nature of the sensors – the

same individual can be observed over time (in contrast to

analytical and destructive approaches). Furthermore these

sensor methods eliminate the human bias which always

occurs when plants are rated visually or manually [3, 4].

Although the current state of the art in sensing plants

is far from fully recapitulating entire plant systems, opti-

cal sensing systems come close to this ambitious aim.

The step towards bridging the ’phenotyping bottleneck’ by

technical in plant breeding demands sophisticated sensing

approaches and adequate data analysis methods [5–7].
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Common methods to assess characteristic and func-

tional parameters of plants from their architecture and

geometry by optical sensors are 3D-laserscanning or pho-

togrammetric techniques [8, 9]. Laserscanning has the

advantage of a high resolution, combined with a high

accuracy, including direct access to the 3D point cloud.

These highly resolved 3D point clouds allow an accurate

description of the geometry of plant organs and of subtle

changes due to abiotic or biotic stress [10]. Plant attributes

of relevance which can be deduced from 3D point clouds

are plant biomass, growth curves, size and number of rele-

vant plant organs, proportions among single plant organs

(i.e. leave, stem and ears of cereals), or shape parameters

(product quality).

The segmentation of plant organs is an important

task in data analysis. In literature different approaches

were proposed. One strategy is the use of a prepro-

cessed mesh representation, and a manual partition of

the mesh into morphologic regions [9]. This step has

recently been automated [11], but still requires the pre-

processed mesh representation of the 3D measurements.

Other works aiming at the classification of laser scanned

data are used in robotics, e.g. for object or scene recog-

nition/interpretation. For instance, methods that can be

subordinated under collective classification approaches

take the surrounding information of a point into account.

However, they often rely on complex algorithms, are time

consuming, and much research has gone into the direc-

tion making themmore efficient (see [12] and references).

One way for identification and segmentation of plant

organs without time and labor intensive preprocessing are

surface feature histograms. As it has been shown before

in Paulus et al. [8], they are an innovative and suitable

method for plant organ parametrization from 3D data.

These histograms have been developed to recognize geo-

metric primitives in 3D point clouds, where e.g. planes,

cylinders and spheres show specific and easy to distin-

guish histograms. The reason why plants organs lead to

specific feature histograms and provide a good separation

is that leaf and stem very well correspond to primitives

like plane or cylinders, for example. It has been previously

shown, that this method is independent to the point to

point distance and applicable to multiple plants. There-

fore, the surface feature histograms provide an interpreta-

tion based on the geometry of the surface and can be used

as input for machine learning algorithms like Support

Vector Machines (SVM) [13]. As the histogram repre-

sentation is influenced by the points neighborhood, it

makes the application of algorithms such as SVM’s also

possible in general. However, for classification a crucial

amount of prior knowledge is important. Until now these

approaches require a manual supervision of the model

after the data is measured. A fully automated data analy-

sis cascade is missing but highly desirable, to save the time

and cost for manual labelling the training data by skilled

operators.

Triggered by this, we tackle the challenge of how to

efficiently analyze this huge amount of data. In particu-

lar, we investigated the question "Can machines help to

facilitate the segmentation of plant organs if no labeled

data is given?" and show that this is indeed the case.

Specifically, we group the surface feature histograms,

acquired from 3D point clouds, using unsupervised clus-

tering approaches. The benefit of unsupervised methods

is that they can be used for exploratory data analysis

and do not require labeled data, such as class infor-

mation. A common and widely used method for this

is k-means clustering using the Euclidean distance, for

which good approaximation guarantees are known. How-

ever, since our data consists of normalized histograms,

using solely the Euclidean distance may be not appro-

priate. Consequently, we propose a data driven approx-

imation approach that is based on mapping the data

into a different space in a preprocessing step. More

precisely, since the histograms can be seen as points

on a probability simplex, we propose to map the data

from the simplex into Euclidean space using Aitchison

geometry [14–16] or into the positive quadrant of the

unit sphere [17]. This, in turn, makes it possible to

employ the Euclidean distance to measure the similarities

between normalized histograms in the space mapped to.

Actually, since we change the way we represent the data,

any standard methods devised for the Euclidean space

can be used. For instance, matrix factorization meth-

ods [18, 19] become applicable, where k-means is sub-

ordinated. Additionally, based on distance computations

we can compute an hierarchical decomposition of the

data [20], which can also be used in context of spectral

clustering [21]. Furthermore, the proposed approach can

also be beneficial for supervised learning, such as SVM’s

using RBF-kernel, where a common choice is the squared

Euclidean distance.

Overall, in the present paper we introduce the first fully

automated and data driven approach for segmentation

and identification of plant organs from 3D point clouds, as

summarized in Fig. 1. The developed data mining cascade

demonstrates their robustness and applicability on mono-

cotyledonous and dicotyledonous crop plants with diverse

shoot architecture.

Methods
The work flow of the current paper is illustrated in Fig. 1.

After data acquisition with a 3D laser scanner, histograms

were calculated on the point cloud data. These histograms

were used for clustering the data. In a final step the

evaluation of the result regarding accuracy, speed and

applicability was conducted.
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Fig. 1 An automated approach for plant organ segmentation of 3D laserscanned point clouds. After data acquisition with a 3D laser scanner,

histograms were calculated on the point clouds. These histograms were used for clustering the data by k-means. In a final step the evaluation of the

result regarding accuracy, speed and applicability was conducted

Notation: We denote vectors by lower case letters (�x);
a real-valued vector of size m is written as �x ∈ R

m;

subscripted lower case italic (xj) refer to the components

of a vector; matrices are written as bold upper case letters

(X); a real-valuedm × nmatrix is written as X ∈ R
m×n or

using the shorthandXXXm×n.

Histogram calculation

Histogram based surface representations have been

proven to enable the identification of geometrical prim-

itives in low-resolution point clouds acquired on robotic

carrier systems [22]. Coming from robotics, point fea-

ture histograms were originally used for the detection

of basic geometric shapes in low-resolution laser scans

[22, 23] and for a registration of different laser scan

viewpoints [24]. Surface feature histograms, a histogram

advancement, recently showed their applicability for the

segmentation of organs on grapevine and wheat [8], as

well as in barley for an organ based parametrization in

time course experiments [25]. These histograms encode

the information of the surface as e.g. curvature using the

neighbourhood of a point and the surface normals. This

curvature is characteristic for the surface of e.g. plant

leaves and stems and can be used as an input for machine

learning methods like SVM to classify these organs auto-

matically. Different geometrical features were calculated

and their value domain is subdivided into 5 subregions.

Each combination of these subregions corresponds to one

histogram bin. By this, a representation of the geometrical

neighborhood of one point in the 3D space by a histogram

including 125 (histogram) bins is possible.

To calculate the histograms we used the algorithm, as

given in [8]. The radius for the normal- (rN ) and radius

for the histogram-calculation (rH ) (where the rN has to be

smaller than the rH ) are the two parameters which have

to be adapted for every plant type. Before determining the

histograms, for each point �zi ∈ R
3 in the point cloud the

normal �ξi is computed by considering all point in the range

rN . The normal can be determined using the principal

component analysis and corresponds to the eigenvector

with the smallest eigenvalue. Then, the angular variations

between the point �zi and each point �zj in the range of rH
are determined using [22, 26]

τ0 = 〈�v, �ξj〉, (1)

τ1 = 〈�u, �zj − �zi〉
d(�zj, �zi)

, (2)

τ2 = arctan
(

〈�w, �ξj〉, 〈�u, �ξj〉
)

, (3)

where �u = �ξi, �v = (�zj − �zi) × �u, �w = �u × �v, 〈�x, �y〉 is the
scalar product and d(�x, �y) denote the Euclidean distance

between the points (see next section). Given the features

one can build single point histograms �xspi , where the index
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idx of the histogram bin in which the points �zi and �zj falls
is computed using

idx =
∑2

s=0

[

τsb

τsmax − τsmin

]

bs. (4)

Here, b represents a division factor defining the size

of the histogram. Then, to better capture the complex

structures, such as stems or leaves, we build weighted his-

tograms �xβ out of the neighbors single point histograms

�xsp in the range rH for the point �zi using

�xβi =
∑

d(�zj ,�zi)≤rH

βj�xspj + (1 − βj)�xspi , (5)

where β is a weight function βj = 1 −
(

0, 5 + d(�zi,�zj)
rH

0.5
)

.

The use of the weights β for the calculation of the final his-

tograms ensures that histograms of points near the limit

of the radius rH have lower impact than those closer tho

the point �zi. For a detailed description we refer to Paulus

et al. [8].

Metrics for measuring histogram similarity

A major part of the present work consists of provid-

ing metrics for comparison of histograms obtained from

3D laser point clouds, and using them for unsuper-

vised learning for automated classification or clustering of

plant organs. A common and widely used measure is the

Euclidean distance, which is defined as

d(�x, �y) =

√

√

√

√

m
∑

i

(xi − yi)2, (6)

for two vectors �x, �y ∈ R
m. For instance, for clustering

objects one can use the k-means algorithm, where the

task is to minimize the squared Euclidean distance of data

points to its nearest cluster representatives (see [27] for

a description), for which good approximations guarantees

are known. Thus, for a given dataset containing n obser-

vations X = {�x1, . . . , �xn} with �xi ∈ R
m the goal in k-means

is to minimize

E =
n

∑

i

k
∑

j

ζijd(�xi, �μj)
2. (7)

Here, �μj denotes the cluster representative, ζij is binary,

that is ζij ∈ {0, 1}, describing the cluster membership of a

data point xi to cluster j.

However, using the Euclidean distance directly for ana-

lyzing surface feature histograms is not a sensible idea,

as it is known to be sensitive to noise and does not gen-

eralize well [28]. Therefore, we propose a data driven

approach by looking at the properties of the data itself.

Since the histograms represent proportions that sum to

one, they can be considered to be samples from a probabil-

ity simplex. In other words, we are interested in clustering

normalized histograms on the simplex. For doing this,

we consider two different approaches that are based on

simple data transformation as preprocessing. The pre-

sented approaches are not only easy-to-realize but still

employ the Euclidean distance for measuring histogram

similarities. In turn standard algorithms for clustering

or classification of normalized data, for example, can be

used.

In the following we will focus on k-means, as it is a

simple and widely used method for clustering objects and

a number of efficient implementations exists for paral-

lel and streaming settings [29]. Since we use it here for

clustering normalized histograms, we will discuss and

motivate two approaches for measuring the histogram

similarity.

Hellinger distance

To arrive at an automated clustering approach for his-

tograms, we propose to transform the data before com-

puting similarites/differences between feature point his-

tograms. For instance, it has been shown that using

Kullbalk-Leibler (KL) divergence can achieve superior

results when measuring the similarity between his-

tograms [28]. To get a clustering with respect to KL-

divergence one may use an approximation based on the

Hellinger distance, which was also shown to be more sen-

sitive to the differences in smaller bins [30]. The Hellinger

distance for two histograms �x and �y is given by

dH(�x, �y) =
m

∑

i

(√
xi −

√
yi

)2
. (8)

This, in turn, is equivalent to the square of the Euclidean

distance, as given by Eq. (6), between the square root of

two data points �x and �y. Thus, clustering of data using

square root transformations and k-means should lead to

a good clustering in terms of minimizing Hellinger dis-

tance between each object and its nearest cluster center. It

can be shown that this yields anO(log n) approximation of

clustering based onminimizing KL-divergence [17]. How-

ever, KL-divergence do not satisfy the metric properties,

i.e. it is is not symmetric and do not satisfy the triangle

inequality. The latter point holds also for its symmetric

alternatives, such as Jeffrey’s Divergence [31].

To cluster with respect to Hellinger distance, we there-

fore consider a data driven procedure. Our strategy is to

apply square root transformation (SQr) before clustering.

That is, we set

�y = SQr(�x) =
√

�x =
(√

x1, . . . ,
√
xm

)

, (9)

i.e. transform the data from simplex space into positive

quadrant of the unit sphere [17]. The resulting repre-

sentation, in turn, can be used to find a clustering of

histograms, as considered in the paper, using standard

implementations of k-means. Since the cluster centers



Wahabzada et al. BMC Bioinformatics  (2015) 16:248 Page 5 of 11

for the mapped data do not lie on the unit sphere, we

recompute them using the original histograms and cluster

assignments. This make sure that the cluster centers lie on

the simplex.

Aitchison distance

As an alternative we can follow [14] using the so called

log ratio transformations. Here, the idea is to map the

data from the probability simplex onto Euclidean space,

which makes statistical analysis applicable to the trans-

formed data. For instance, additive log ratio can be used

for the modeling, but has some drawbacks if using it to

measure the difference between two proportions [16]. To

measure differences between two histograms one can use

the Aitchison distance [15, 16], which can be written as

dA(�x, �y) =

√

√

√

√

m
∑

i

(

ln
xi

g(�x) − ln
yi

g(�y)

)2

, (10)

where g(�x) = (
∏m

i xi)
1/m = m

√
x1 · · · xm denote the

geometric mean. It can be easily seen that Eq. 10 is equiv-

alent to Euclidean distance on the transformed data using

centered log-ratio (clr) transformation, which is given by

�y = clr(�x) =
(

ln(x1/g(�x)), . . . , ln(xm/g(�x))
)

, (11)

and its inverse clr−1(�y) =
(

exp (y1)/
∑

j exp (yj), . . . ,

exp (ym)/
∑

j exp (yj)
)

. Thus, we can use clr transformed

histograms with Euclidean distance within k-means clus-

tering. Note, other transformations, such as isometric

logratio transformation [32], may be used as well. It solves

the clr problem that leads to singular covariance matrix,

by preserving its properties like isometry between the

simplex and the real space.

However, since the histograms, considered in this work,

also consist of empty or zero bins, hence, this leads to

numerical problems when computing clr(�x) due to the

logarithm and as also the geometric mean in the denom-

inator is g(�x) = 0 if any xj = 0 for j = 1, . . . ,m. Finding

a good choice for replacing them is essential when using

log ratio transformations (see [33] and references), e.g.

for missing or rounded values. For the histogram anal-

ysis, Wahl et al. [28] suggested to replace the zero bins

by a small common value, which is lower as the smallest

non-zero value. For the experiments in the current work

we used a simple procedure by adding a small value ǫ to

all data points. It has shown that using this approach will

lead to a better clustering using clr approach, compared

to replacing only zero bins across different datasets. Note,

by contrast, for the SQr-approach we do not need to care

about the zero bins.

Histogram clustering algorithm

The overall procedure for clustering the normalized his-

tograms acquired from 3D point clouds is summarized

in Algorithm 1. We start by transforming the data using

either SQr or the clr approach [lines 1–4]. Then, on the

new representation of the data, we run k-means clustering

in [lines 5–14], which can be done using an EM-algorithm

by iteratively optimizing the cluster memberships which

are stored in a matrixZZZ [lines 8–10] (E-step) and comput-

ing the cluster representatives in matrix MMM [lines 11–13]

(M-step). Finally we determine the cluster representatives

on the simplex M̃̃M̃M using the inverse centered log ratio

transformation for the clr approach. For the SQr approach

we use the cluster assignments inZZZ and the original inputs

XXX to get the final cluster centers.

Algorithm 1 Histogram Clustering (HC)

Require: Matrix XXX ∈ R
m×n with XXX = {�x1, . . . , �xn},

integer k, function f

/* Perform data transformation using the function f */

1: Initialize an empty matrix YYYm×n

2: for i = 1,. . . ,n do

3: �yi = f (�xi)
4: end for

/*Clustering the columns inYYY , which contains the

transformed data fromXXX */

5: Initialize matrixMMMm×k

6: Initialize an empty matrix ZZZk×n

7: repeat

/* E-step, assign each data point to the cluster

with the closest mean */

8: for i = 1,. . . ,n do

9: ζij =
{

1, ifj = argminad(�yi, �μa)
2

0, otherwise.

10: end for

/*M-step, determine the cluster representatives */

11: for j = 1,. . . ,k do

12: �μj = ∑n
i ζij�yi/

∑n
i ζij

13: end for

14: until convergence

Ensure: MatrixMMM ∈ R
m×k , binary matrix ZZZ ∈ R

k×n

However, as we transform our data before clustering

and do not change the underlying algorithms, the time

complexity remains the same. For the transformations we

need only one pass over the entire dataset. This, in turn,

can be easily parallelized or can also be done sequen-

tially, to overcomememory issues. Using k-means as given

by Algorithm 1 [lines 5–14] enables to find a local opti-

mum, whereas finding of a global optimum is an NP-hard

problem [34], even for k = 2.
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Data acquisition

The data was acquired with the 3D measuring combina-

tion of an articulated measuring arm (Romer Infinite 2.0

(1.4 m), Hexagon Metrology Services Ltd., London UK)

and laser triangulation sensor (Perceptron Scan Works

V5, Perceptron Inc., Plymouth, MI, USA). This combi-

nation has been proven regarding applicability for plant

measuring and accuracy for the scanning of grapevine,

wheat and barley [8, 10]. It provides an accuracy of about

45 μm for points within the 2D-scanning field. The sin-

gle 2D-scan lines were combined automatically by the

articulated measuring arm to a 3D point cloud. The mea-

suring arm enables imaging an almost occlusion free point

cloud by using many different points of view. The point

cloud was processed using Geomagic Studio 12 (Raindrop

Geomagic Inc, Morrisville, NC, USA).

The preprocessing of the point cloud is limited to the

cutting of scanned objects that do not belong to the

focussed object. Furthermore the point cloud density is

reduced to an uniform grid of 0.5 mm point to point dis-

tance, this is necessary due to the scanning method that

produces an inhomogeneous point resolution all over the

point cloud according to the speed that sensor is moved

over the object.

Datasets

In our experiments we used different datasets of plants

including grapevine, wheat, and barley, as shown in

Additional file 1. Each dataset was processed as explained

above to get a histogram representation:

• Grapevine (stem, leaves): The grapevine plants (Vitis
vinifera ssp. vinifera, variety Mueller Thurgau) were
grown in commercial substrate in plastic pots

(∅170mm) under greenhouse conditions. The plants

were watered and fertilized on demand.

Environmental parameters were kept constant at

23/20 °C (day/night), 60% relative humidity and a

photoperiod of 16 h. The measurement was done at

growth stage 19 (according to BBCH, [35]). We had a

total number of n = 55635 calculated histograms,

each with a length ofm = 125. For our evaluation we

could make use of label information (stem and leaf),

which were set manually by a human annotator.
• Grapevine (berry, rachis): The second grapevine

datasets (Vitis vinifera ssp. vinifera, variety Mueller
Thurgau) included the berries and the rachis. It was

grown on a vineyard at Geilweilerhof, Sindelfingen,

Germany in Summer of 2012. This point cloud

consisted of a total number of n = 57989 histograms.

For this dataset no label information was given,

because the segmentation is even manually very hard.
• Wheat: The wheat plants (Triticum aestivum, variety

Taifun) were grown in plastic pots (∅200mm) under

similar conditions as the grapevine plant. The

measurement was done at growth stage BBCH 85.

The dataset consisted of n = 215090 histograms. For

this dataset manually determined labels for

histograms on the ear, stem and leaves were provided.
• Barley: Additionally we used three barley datasets

(Hordeum vulgare L, CV. Barke). They were grown in

plastic pots (∅16 cm) in a green house under similar

conditions as the grapevine plant. The measurements

followed the same plant at different developing stages

(19, 26, 31 days after sowing). They consisted of a total

number of n = 15064 (plant 1, BBCH 12), n = 41167

(plant 2, BBCH 21) and n = 139465 (plant 3, BBCH

23) histograms. For each histogram the labels (leaf or

stem) were provided and used for the evaluation.

All histogram calculations used fixed radii for the

normal- and histogram calculation rN = 2.5 and rH =
12.5 according to [8].

Results and discussion
The main goal was the comparison of data-driven

approaches for clustering feature histograms of grapevine,

wheat and barley plants using the following settings:

• KM: histogram clustering using using k-means and

Euclidean distance on normalized histograms directly.
• HC-1: histogram clustering where we transformed

the data using Eq. (9) before processing.
• HC-2: histogram clustering, where the data was

transformed using clr approach as given by Eq. (11),

before processing.

In this work we used a simple procedure for replac-

ing the zero bins by adding a small value ǫ = 1
m to all

data points, wherem denotes the number of bins used for

histogram computation, and normalized the data before

computing the clr transformation. This led to similar or

better clusterings compared to other settings in the range

10−16 ≤ ǫ ≤ 10−1. Note, the zero bins were replaced only

for computing the HC-2, whereas for HC-1 we used the

original inputs directly.

With respect to application within plant phenotyping,

the needed amount of clusters is often known or given

before/or during the experiment, as one is looking for spe-

cific plant organs. As long as it is aimed to separate leaves

and stems, it is recommended to use two clusters, one for

each organ. Using more clusters enables the recognition

of further classes like inlaying berries or leaf border points

which have not been focused before. However, in such

cases determining the number of clusters automatically

may be crucial; we left this questions for the further work.

For the sake of better visualization we show for the quali-

tative results in the following only clusterings learned for a

small number of clusters. All experiments were conducted
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on a standard computer with 3.2 GHz Intel Core i7-3930K

and 16 GB main memory.

Quantitative comparison of histogram clustering

approaches

For a quantitative comparison we used the results of an

automated segmentation with labels. The labels themself

were the outcomes of a manual annotation by a human

annotator. For evaluating the clustering, we consider two

commonly used measures. First we consider F-measure,

which can be seen as the harmonic mean of the preci-

sion and recall that are known from information retrieval

[36, 37]. It can be computed for a clustering as follows

F =
∑

i

ni

n
max F(i, j) with F(i, j) = 2

P(i, j)R(i, j)

P(i, j) + R(i, j)
,

(12)

where ni is the number of histograms with a particular

label i, R(i, j) denotes the recall and P(i, j) the precision

of a class i for a cluster j. A good clustering should have

a higher F-measure value. However, the F-measure does

penalize also the number of clusters, since each class is

judged by the cluster with the highest number of his-

tograms with that label. In order to consider the distribu-

tions of labels within each cluster we additionally use the

entropymeasure [38]. It can be determined using

entropy =
∑

j

nj

n
E(j) with E(j) = −

∑

i

nij

nj
ln

nij

nj
,

(13)

where nij denote the number of histograms with label i in

cluster j and nj the total number of objects in cluster j.

Fig. 2 Quantative results showing the F-measure and entropy values as a function of number of clusters. The F-measure results (top row) show a

better performance for Algorithm 1 using data mappings (HC) than those for k-means (KM) clustering on normalized histograms directly. This is also

captured by the entropy values (middle row), as it considers the distributions of different labels within the clusters. The lower value, the more the

clusters are dominated by histograms of a particular label, and therefore the better the clustering. For all methods the algorithm required only few

minutes per run and the number of cluster (bottom row)
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A lower entropy value stands for a better clustering, indi-

cating that clusters contain mostly objects with similar

labels.

Figure 2 summarizes the results for the grapevine, wheat

and barley datasets where manual annotations were given.

For the grapevine dataset consisting of stem and leaves, as

well as the wheat dataset with leaves, stem and ears, we

computed separately the clusters, whereas for clustering

the barley data containing of leaves and stems, we consid-

ered the histograms of all three datasets together. Since

k-means is based on random initialization, which conse-

quently can lead to different clusterings, each experiments

was repeated five times to provide reliable results. We

report averaged values of all runs as a function of number

of clusters.

The F-measure in Fig. 2 (top row) clearly show that

histogram clustering using data transformations outper-

forms the naive method on all datasets. The best results

are achieved if the number of clusters is equal to the

number of different labels, which is k = 2 for grapevine

and barley dataset, and k = 3 for wheat dataset. Addi-

tionally, the middle row in Fig. 2 shows the entropy

results. A lower value indicates that the clusters contain

mostly histograms with a particular label. Here, using his-

togram clustering, as given by Algorithm 1, outperforms

the direct application of k-means clustering for grapevine

and wheat dataset. For the barley data set it is compara-

ble or better than k-means. The lower value for the larger

number of classes indicates a better separation between

leaves and stems for all methods. For grapevine and wheat

dataset the differences are small, which indicates that we

are already good even for lower number of cluster. For all

datasets the algorithm required only few minutes per run

and number of clusters (k = 2, . . . , 8) to get the clustering,

as shown in Fig. 2 (bottom row).

Automated identification of plant organs

In addition to the quantitative analysis, we report qualita-

tive results achieved from all datasets. For that we addi-

tionally consider the clustering on the second grapevine

Fig. 3 Example for clusterings of the grapevine dataset (berry and rachis) using Algorithm 1 and with different data mappings (k = 3). For each

cluster a subset of points are illustrated, containing the most histograms located on the rachis and parts containing the berry surface and the inner

parts of the fruit
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dataset consisting of berry and rachis for which nomanual

annotations were available. The clusters achieved by using

all three methods are illustrated in Fig. 3 for the grapevine

dataset and in Fig. 4 for the barley dataset.

In the results for the grapevine dataset it was possible to

distinguish between rachis and parts containing the berry

using histogram clustering approaches HC-1 and HC-2

(Fig. 3). More interestingly, the clusterings can distinguish

between the berry surface, where individual grapes are

well captured by the 3D laserscans, and parts belonging

to the inner parts of the fruit. However, using k-means

directly does not capture this well, as shown in Fig. 3 first

column. It needed one more cluster (k = 4) to separate

berry and rachis parts, but also required one more clus-

ter to describe the parts on the fruit, compared to other

methods. Interestingly, the clusters achieved for the barley

dataset show a more accurate differentiation of different

parts and are more coherent if using Algorithm 1 and

data mappings (HC), compared to running k-means (KM)

directly. This is illustrated in Fig. 4 first column, where

also big parts on the leaves are assigned to the cluster

containing the histograms from stem. By contrast, using

HC-(1,2) lead to more clearly distinguished clusters, that

also can facilitate further labeling of the data. However,

in cases when very large datasets and varying dimension-

alities need to be analyzed, finding a good choice for ǫ

to replace zero bins can be time consuming and tricky

if using HC-2 (clr approach). Therefore, the use of HC-1

(SQr approach) may be an option, as it also led to results

of similar quality compared to those found by HC-2. The

results for the remaining datasets are shown in Additional

files 2 and 3 and can be thought of as another justifi-

cation of quantitative results, discussed in the previous

subsection.

Additionally, we qualitatively compared the results of

HC-2 to classification using SVM (as presented in [8])

for the grapevine dataset consisting of stem and leaves.

The results are shown in Fig. 5. Minor misclassified

regions appeared at the transition between the organs

and at leaf edge points using both methods. The k-means

results were computed without using any label informa-

tion, whereas for the classification using SVM training

data was required. It was provided through manual, time

consuming labeling. However, the classification task is of

great importance for organ differentiation, here we could

make use of histogram transformation before learning the

classifier or additionally incorporate clustering into active

learning [39]. This, in turn, will lower themanual efforts in

cases where no training data, which are required in super-

vised settings, is available. We left this question for the

further work.

In general, the results show that the time consuming and

costly work of manual labelling can be automated in high

precision. Furthermore, the clustering with an undefined

Fig. 4 Example for clusterings the three dataset consisting of a barley plant at different developing stages (BBCH 12, 21 and 23) using Algorithm 1

with different data transformations (k = 2). For each cluster a subset of points are illustrated, containing the most histograms located on the stems

(cluster 1) and leaves (cluster 2)
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Fig. 5 Automated clustering of a grapevine point cloud using

Algorithm 1 provides a clear separation of the plant organs leaf and

stem. Minor misclassified regions appear at the transition between

the organs and at leaf edge points. For the comparison we show the

SVM classification results of the same dataset as determined in the

study presented in [8]

amount of clusters for regions of points with similar sur-

face structure become visible. This helps to get a deeper

knowledge of the plants/organs structure as it is now

possible e.g. to access transition regions between single

organs. Moreover, by using unlabeled data we could show

that our clustering enables an organ segmentation even

when manual labelling is very hard or almost impossible.

Interestingly, the clustering of the grapevine fruit enabled

the segmentation of the inner skeleton which is hard to

access by the human eye.

Conclusions
Modern plant phenotyping with diverse sensors and

exhaustive time series measurements of multiple repli-

cates arose an increasing demand for task orientated data

analysis solutions. The present paper provided data driven

approaches for plant organ segmentation that make the

use of standard algorithms, such as k-means with the

Euclidean distance, possible. Actually any data analysis

method that build on similarities or distance computa-

tions between surface feature histograms, acquired from

3D point clouds, is applicable. We achieved an automa-

tion of the data analysis pipeline and a reduction of prior

knowledge for the interpretation of plant surfaces. By

clustering the histogram representation, different classes

of the input point cloud could be identified and sepa-

rated. Our approach shows that manual labeling can be

automated. This approach can especially be used when

manual labeling becomes extremely hard due to occlu-

sion or in case that is only possible by viewing from a

specific direction. Automated labeling allows the segmen-

tation of un-intuitive surface regions, which enables a

more objective way for surface segmentation of plants.

Besides getting fast insights on the data one may addition-

ally use the result of automated clustering to subsequently

support active learning approaches. Current state-of-the-

art research in developing descriptors for 3D surfaces [40]

suggests that our method can easily be transferred to

various 3D descriptors like Spin Images, Shape Context

or Local Surface Patches. The presented data analysis

pipeline will speed up the assessment of geometrical fea-

tures in high-throughput plant phenotyping.

Additional files

Additional file 1: 3D point clouds for the datasets considered in this

work.We used data from grapevine point clouds (top row, left), consisting

of leaf and stem at growth stage BBCH 19, and a second grapevine dataset

including the berry and its rachis. Additionally we measured wheat plants

(top row, right) at grown stage BBCH 85 and point clouds of a barley plant

(bottom row) taken at different developing stages (BBHC 12, 21 and 23).

Additional file 2: Clusterings for the grapevine dataset consisting of

stem and leaves. Example for clusterings of a grapevine using Algorithm 1

with different data transformations (k = 2). For each cluster a subset of

points are illustrated, containing the most histograms located on the

leaves (top row) and stem (bottom row).

Additional file 3: Clusterings for wheat dataset consisting of leaves,

stems and ears. Example for clusterings of a dataset consisting of wheat

using Algorithm 1 with different data transformations (k = 3). For each

cluster a subset of points are illustrated, containing the most histograms

located on the leaves (top row), ears (middle row) and stems (bottom row).
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