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Abstract. Automated robust segmentation of intra-ventricular septum
(IVS) from B-mode echocardiographic images is an enabler for early
quantification of cardiac disease. Segmentation of septum from ultra-
sound images is very challenging due to variations in intensity/contrast
in and around the septum, speckle noise and non-rigid shape variations
of the septum boundary. In this work, we effectively address these chal-
lenges using an approach that merges novel computer vision ideas with
physiological markers present in cardiac scans. Specifically, we contribute
towards the following: 1) A novel 1-D active contour segmentation ap-
proach that utilizes non-local (NL) temporal cues, 2) Robust initializa-
tion of the active contour framework, based on NL-means de-noising, and
MRF based clustering that incorporates physiological cues. We validate
our claims using cardiac measurement results on ∼30 cardiac scan videos
(∼2000 ultrasound frames in total). Our method is fully automatic and
near real time ( 0.1sec/frame) implementation.

1 Introduction

In echo-cardiography, wall and chamber dimensions are used as screening param-
eters for early indication of cardiac diseases. In this work, we address the inter-
ventricular septum thickness (IVSd), which is accepted as a screening parameter
for septal hypertrophy and has also shown a correlation to 24 hour ambulatory
blood pressure. Unfortunately, the manual measurement of these parameters on
echo-cardiograms suffers from large inter and intra observer variability based
on the experience and expertise of the cardiologist. An end-to-end IVSd mea-
surement in accordance with the American Society of Echocardiography (ASE)
guidelines [1] involves segmentation of the septum, identification of mitral valve
tip, and measurement of the thickness orthogonal to septum centerline.

Automation of septum segmentation from ultrasound images faces several
challenges. First, the intensity in and around the septum region has a multi-
modal distribution, precluding simple schemes based on intensity alone. Second,

N. Ayache et al. (Eds.): MICCAI 2012, Part I, LNCS 7510, pp. 683–690, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



684 M.D. Gupta et al.

the speckle noise inherent in ultrasound images makes edge-based methods un-
reliable. These methods are sensitive to initialization and are plagued by the
near-field haze which leads to low contrast at the upper part of the septum. For
any approach to segment the septum across several frames reliably, robustness
to noise and initialization is needed.

Region based active contour approaches [2,3] typically offer robustness to ini-
tialization and noise. Due to very low contrast at the upper part of the septum,
purely region based methods are likely to get trapped in local minima leading
to the introduction of shape priors [4]. Given the large inter-patient shape vari-
ability and non rigid deformations across frames, it is infeasible to build a shape
atlas of the septum. In Subramanian et al. [5], a region based active contour ap-
proach with a width prior for the septum is proposed. Constraining the width of
the septum, makes the resulting segmentation robust to noise/inhomogeneities
induced by near field haze. However, the width constraint is suited for advancing
the profiles closer to the septum boundary and fails in cases where the septum
boundary has low contrast. Further, [5] relies on a reasonable guess for the con-
tour in the first frame, and in the absence of temporal cues, the segmentation is
most likely to drift away in cases of large non-rigid motion between frames.

Cardiac ultrasound data has rich temporal information in terms of continuity
of motion of structures which could provide reliable information on the loca-
tion of the boundary under boundary gaps and low-contrast regions. Hence, it
seems natural to model either velocity/acceleration using previous frames [6].
Consequently, we introduce temporal constraints to the segmentation cost func-
tional. We constrain acceleration of boundary points to be similar in a non-local
neighborhood around each boundary location. The non-local temporal penalty
differentiates our work from the state-of-the-art [5], and is key in robust predic-
tion of the septum location in the absence of strong contrast for the segmentation
functional. The second part of our work deals the important aspect of initial-
izing the 1D contours for the segmentation technique. We propose to mitigate
the non-trivial problem of initializing the septum boundary using physiological
cues. We propose a robust routine based on non-local (NL)-means de-noising,
and Markov Random field (MRF) based clustering.

This paper is organized as follows. In Sec. 2, we describe the details of al-
gorithms pertaining to each of the individual pieces. In Sec. 3, we present our
results on 32 patients, and our conclusions are listed in Sec. 4.

2 Methods

In a typical echocardiography scan, usually 3 cardiac loops are captured, where
one loop is defined as end-diastolic frame to the next end-diastolic frame. Based
on the frame rate of the scanner usually about 100 frames are captured in this
loop. In this work we look at the parasternal long axis (PLAX) view. The mitral
valve tip detection is handled identical to the method proposed by Subramanian
et al. [5].
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2.1 1D Active Contour Formulation Using Non-local Temporal
Priors

Similar to [5], we propose an energy based formulation with a search space of
pairs of smooth 1D profiles (representing the top and bottom boundaries of the
septum). This representation enables easy access to regional statistics in and
around the septum, and model interactions between the top and bottom septum
boundaries. Further, the simplified representation makes the approach faster
than 2D active contour approaches, making it feasible for real time tracking.
The main contribution of this work is to incorporate temporal cues into the
above framework to improve robustness to noise, gaps, and large motion.

For image I : Ω → R, Ω = [a, b]× [c, d], we look for two smooth 1D functions
g, f : [a, b] → [c, d], whose profiles represent the top and bottom parts of the
septum. We denote the septum region between the 1D profiles of f and g, as
Rs. We denote the neighborhood region above the septum as Rup, i.e. between
profiles of g and g + Δ, where Δ is some pre-defined interval. Similarly, the
neighborhood below the septum is Rdn, between profiles of f − Δ and f . We
make a piece wise constant assumption of intensity in and around a neighborhood
of the septum. Consequently, we divide (a, b) =

⋃K
i=1(ai, bi) into K disjoint

intervals and seek for f, g that give homogeneous distributions in regions Rup
i =

Rup∩([ai, bi]× [c, d]), Rdn
i = Rdn∩([ai, bi]× [c, d]) and Rs

i = Rs∩([ai, bi]× [c, d]).
The following energy is minimized over the space of smooth 1D functions

f, g : [a, b] → [c, d] and mean statistics μup, μs, μdn:
Efrm(f, g, μup, μs, μdn) =

K∑

i=1

[
∫

Rs
i

(I − μs
i )

2dydx+

∫

Rup
i

(I − μup
i )2dydx+

∫

Rdn
i

(I − μdn
i )2dydx

]

+λwidth

∫ b

a

(f + w − g)
2
dx+ λsmooth

∫ b

a

(√
1 + (f ′)2 +

√
1 + (g′)2

)
dx (1)

The data term drives f, g to take piece wise constant values in each of Rs
i , R

up
i ,

Rdn
i . The smoothness terms for f and g are governed by parameter λsmooth(0.08).

The width term constrains the width of Rs to be close to the expected septum
width (w) and is balanced by λwidth(∼1.0cm). In most cases, because of strong
contrast between the septum and blood pool, the bottom boundary f of the
septum is reliably segmented and the width term drives the top boundary g out
of local minima closer to the actual boundary. From here, contrast close to the
septum boundary takes over and drives the segmentation. In low contrast cases,
one would expect the evolution to be dominated by the smoothness and width
terms and be drawn to arbitrary minima.

We now augment the above energy with temporal priors computed from pre-
vious frames. The septum being an elastic structure exhibits motion that is
correlated across different locations, which can be captured through temporal
priors resulting in robust prediction of the septum in the absence of strong con-
trast. Given the large shape variations and complex non-rigid motion of the
septum, it seems natural to model either velocity/acceleration using previous
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frames similar to [6]. If fn−2, fn−1, fn are the profiles at frames n− 2, n− 1, n,

one could penalize velocity V n = fn−fn−1 using
∫ b

a
(dV

n

dx )2dx, or penalize accel-

eration An = fn−2−2fn−1+fn using
∫ b

a (
dAn

dx )2dx. Here, we look at a non-local

penalty for acceleration defined by
∫ b

a

∫ b

a
w(x, y)(An(x)−An(y))2dxdy, where w

is a weight function for the pair (x, y). The choice of non-local priors is physically
intuitive in that velocity interactions between pixels extend beyond local neigh-
borhoods and modeling these non-local interactions might give better robustness
to noise/boundary gaps. The Euler Lagrange equations of the above acceleration
penalty is An−w∗An = 0 or in terms of velocity V n−w∗V n = V n−1−w∗V n−1.
Thus velocity at each point on the profile f is updated using relative velocities
learnt in the previous frame and velocities of non-local neighboring points. As for
the choice of w, for simplicity we use w(x, y) = Gσ(|x−y|), thus the above equa-
tions involve only convolutions and would be fast to compute. Alternatively, one
could consider intensity/contrast dependent terms for w to down-select points
to learn relative velocities. Note that in the work proposed by Snare et al. [7],
the motion prior is local wherein, motion models at neighboring control points
do not interact with each other. Thus if a control point falls in a poor con-
trast/signal dropout location, for a couple of frames, the segmentation will drift
away. We modify Eq. 1 to include the temporal term. For each frame n, denote
An = fn−2 − 2fn−1 + fn and Bn = gn−2 − 2gn−1 + gn. We minimize:

En
temp = Efrm + λT

∫ b

a

∫ b

a

w(x, y)((An(x)−An(y))2 + (Bn(x)−Bn(y))2)dxdy

(2)

Given profiles from previous time points f j, gj , j = n− 2, n− 1, Efrm is mini-
mized, using descent on the Euler Lagrange equations for Eq. 2, using an explicit
finite difference scheme. The following synthetic results show the robustness of
the temporal prior. In Fig. 1, the goal is to segment the current frame (III) from
two clean previous frames shown in (I), (II). In these experiments, segmentation
results are shown in Red, and the ground truth is in Green.

In the noisy (white noise) experiment shown in Fig. 1 (top row), (a) is the
noisy frame, (b) is the result without temporal information, (c) is the result
using non-local temporal priors (proposed approach). In (d), even for really high
levels of noise, a reasonable segmentation is computed. In the second experiment
Fig. 1 (bottom row), on segmenting in the presence of gaps, (e), (f) show results
without temporal priors. The kink in the lower and upper boundaries is lost, and
the missing pieces are completed with straight lines because of the smoothness
term. In (g)-(i) using our approach, for increasing size of the gap, the kink is
seen to be preserved. The reasoning is that at a location with poor contrast, gap
or high noise, a non-local neighbor where the contrast is possibly good, directly
contributes to the update at the location using relative velocities learnt from
previous frames.
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Fig. 1. Synthetic Experiments: (I) Frame n-2 (II) Frame n-1 (III) Current Frame n. Top
Row: Noise Robustness: (a) Noisy image with initialization (b) Result w/o temporal
prior (c) Result using temporal approach. Bottom Row: Robustness to Gaps: (d)-(e)
Results w/o temporal prior (f)-(h) Results using temporal approach. Groundtruth is
in green and the algorithm output is shown in red.

2.2 Active Contour Initialization Using Blood Pool Detection

One of the primary drawbacks of active contour based methods [5] for segmen-
tation is the inherent need for correct initialization. The initial contour needs
positioned reasonably close to the final contour to guarantee convergence. For
completely automated system required to work for large patient populations,
initialization has to be driven by physiological cues such that patient variability
can be properly captured [8]. The LV blood pool is an “anechoic” region (no
oscillating sources in it) and hence it appears completely dark under ultrasound.
Based on this key observation, we propose to detect the LV blood pool to infer
an estimate for the lower boundary of the septum and initialize the curves. The
first step in our approach is a denoising algorithm using Non-Local means, and
the second is an MRF based clustering technique to find the maximum width of
the blood pool. Once the blood pool is identified, the septum is its immediate
neighbor towards the ultrasound probe position. This knowledge can now be
used to initialize an active contour method for segmentation.

Neighborhood Based Non-local Smoothing. The key intuition for non-
local (NL) means based filtering, as proposed by Buades et al. [9] is that the
denoised value at location x is a mean of the values of all points within the
image domain whose Gaussian neighborhood is similar to the neighborhood of
x. Given a discrete noisy image v = {v(i)|i ∈ I}, the estimated value NL(v)(i)
is computed as a weighted average of all the pixels in the image I, given by
NL(v)(i) =

∑
j∈I w(i, j)v(j), where the weights w(i, j) quantify the similarity

between the pixels i and j and satisfy the conditions 0 ≤ w(i, j) ≤ 1 and
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∑
j w(i, j) = 1. To decouple the similarity term from the spatial distance term,

[9] propose the weighting function to be w(i, j) = 1
Zi
e−

sim(i,j)

h2 , where Zi is
a normalization term such that the weights sum to one and the parameter h
controls the spatial decay of the exponential function. Defining a window around
pixel i as Ni, the similarity between pixel i and j is defined as the Gaussian
weighted similarity of the windows centered at i and j respectively, given by

sim(i, j) =
∑

k e
− (Ni(k)−Nj (k))2

σ2 .

MRFBased Clustering. Markov Random Fields (MRF’s) have gained tremen-
dous importance since the seminal paper by Geman and Geman [10] that intro-
duced the idea of denoising as a labeling problem and used an MRF model for
denoising. We adopt an MRF based clustering technique to project the scanned
pixels into a finite label space {L : |L| � 255} which is the maximum pixel
range for 8 bit image data. The observation field Y is fixed and is assumed to
be non-interacting. The label field X is evolved with iterations minimizing the
following cost function

E(L) =
∑

p∈X
Dp(Lp) +

∑

q∈Np

Vp,q(Lp, Lq) (3)

where Np represents the neighborhood for a particular node p. The MRF model
balances the two cost terms in Eq. 3 to generate the possible label for the target
node. The first term constrains the label to be close to the observation. If the
cluster center intensities are pre-specified, then this term can be simply evaluated
as I(p)− Ci over all labels i = {1, 2, . . . , L}, where I(p) is the pixel intensity at
location p. For our experiments we typically set |L| = 5.

Lateral Cluster Projection. The NL-means filtering and clustering, leaves
us with an image where the blood pool is certain to be one of darkest clusters
(Fig. 2 (left panel)) in the label map. We compute the radial histogram of the
pixels with bins centred at the probe location as our feature. This essentially
leads to counting pixels radially for each label class and results in an 1D curve
with as many points as the image depth for each bin. To identify the LV blood
pool, the two darkest clusters (red and pink colors in Fig. 2 right panel) are
considered. The initialization estimate is then, a radial curve at the maximal
bin index corresponding to the blood pool cluster.

Fig. 2. Left to right: MRF based pixel clusters, label histogram, histogram for individ-
ual label classes
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Fig. 3. Comparative Results. Red curve: proposed method. Blue curve: Subramanian
et al. [5]. The red dot shows the mitral valve tip.

Fig. 4. Quantitative comparisons. Quantitative comparison of automated vs expert
measurements on 32 cases. The height of the bar denotes the error in measurement
(one end ground truth and the other end algorithm output). Red markers denote the
algorithm output. Inset images correspond to the two failure cases with poor image
quality.

3 Results

We evaluated our method on B-mode PLAX recordings, representing a total of 32
different patients with has ≈3 cycles/recording. The subjects with varied clin-
ical background, normal chamber dimensions and systolic function underwent
routine echocardiography (commercially available Vivid 7, GE) with ECG gat-
ing. The patient data used in our validation included normal and hypertrophic
patients. We present comparative visual results against the method proposed
in [5] for cardiac segmentation and tracking in Fig. 3. Our method runs in near
real-time, with an average computation time of 0.1 sec/frame on a 2.6GHZ PC
with 2GB RAM.

The performance of the method was quantitatively evaluated by comparing
the thickness measurement, as generated by the segmentation, with the cardiol-
ogist’s measurement. Fig. 4 shows the measurement error for each dataset. We
observe that the method performs favorably, with the exception of two cases
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rated as having poor image quality. In these cases, both the segmentation and
mitral valve estimation fail (Fig. 4). Discarding these two cases, which are ex-
tremely poor quality, we report a mean error = 1.8949mm, variance = 3.609mm,
maximum error bound = [-1.173mm, 6.0042mm] for our proposed method.

4 Conclusions

We have developed an automatic approach for cardiac segmentation that is ro-
bust to the image noise, haze and cardiac motion typical in ultrasound. 1D curve
evolutions based on regional statistics and constrained by temporal priors are
shown to be well suited for segmentation of rapidly moving cardiac structures.
Additionally, the non-trivial step of robust initialization to enhance convergence
of active contours is addressed. Our framework was validated on 32 B-mode
PLAX recordings and compared favourably with the true boundary on an av-
erage of 93% of the cases, making it attractive for clinical application. In the
future, we would like to evaluate the performance of the framework to segment
and track other cardiac structures, such as, the posterior wall and LV cavity.
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