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Abstract. Strategic knowledge is used by an agent to decide what action to perform next, where actions have 
consequences external to the agent. This article presents a computer-mediated method for acquiring strategic 
knowledge. The general knowledge acquisition problem and the special difficulties of acquiring strategic knowledge 
are analyzed in terms of representation mismatch: the difference between the form in which knowledge is available 
from the world and the form required for knowledge systems. ASK is an interactive knowledge acquisition tool 
that elicits strategic knowledge from people in the form of justifications for action choices and generates strategy 

rules that operationalize and generalize the expert's advice. The basic approach is demonstrated with a human- 
computer dialog in which ASK acquires strategic knowledge for medical diagnosis and treatment. The rationale 
for and consequences of specific design decisions in ASK are analyzed, and the scope of applicability and limita- 
tions of the approach are assessed. The paper concludes by discussing the contribution of knowledge representation 
to automated knowledge acquisition. 
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1. Introduct ion 

Knowledge acquisition is the transfer and transformation of knowledge from the forms in 

which it is available in the world into forms that can be used by a knowledge system (adapted 

from [Buchanan, et al. 1983]). In the context of this article, knowledge in the world comes 

from people and knowledge in the system is implemented with formal symbol structures-- 

knowledge representations. Knowledge acquisition is a multifaceted problem that encom- 

passes many of the technical problems of knowledge engineering, the enterprise of building 

knowledge systems. Deciding what knowledge can be brought to bear for a problem, how 

the knowledge can be used by a program, how to represent it, and then eliciting it from 

people and encoding it in a knowledge base are all aspects of the knowledge acquisition 

problem. The inherent difficulty of these tasks makes knowledge acquisition a fundamental 

obstacle to the widespread use of knowledge system technology. 

The research reported here addresses the problem of acquiring strategic knowledge from 

people. In particular, the article presents an approach by which an interactive computer 

program assists with the knowledge acquisition process. The general term automated knowl- 

edge acquisition refers to computer-mediated elicitation and encoding of knowledge from 

people. 

The first section of this article provides a theoretical analysis of  the general knowledge 

acquisition problem and introduces the problem of acquiring strategic knowledge. Section 

2 reviews the techniques of automated knowledge acquisition in terms of the theoretical 
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framework developed in the first section and motivates the present work. Section 3 describes 

the automated knowledge acquisition tool called ASK. Section 4 demonstrates the program 

with a human-computer dialog. Sections 5, 6, and 7 provide an analysis of the scope of 

applicability, assumptions, and limitations of the system, and a discussion of key design 

decisions. A concluding section summarizes the contribution of the design of knowledge 

representations to the development of knowledge acquisition tools. 

1.1. The Knowledge Acquisition Problem as Representation Mismatch 

Most knowledge systems are built by knowledge engineers rather than by the domain experts 

who provide the knowledge. A long-standing goal of a course of knowledge acquisition 

research has been to replace the knowledge engineer with a program that assists in the 

direct "transfer of expertise" from experts to knowledge bases [Davis 1976]. Yet the problem 

has eluded a general solution; no existing knowledge acquisition program can build a knowl- 

edge system directly from experts' descriptions of what they do. 

Why is knowledge acquisition difficult to automate? It seems that the "transfer" metaphor 

is misleading. Clearly, the form in which knowledge is available from people (e.g., descrip- 

tions in natural language) is different from the form in which knowledge is represented 

in knowledge systems. The difference between the two forms of knowledge, called represen- 

tation mismatch [Buchanan, et al. 1983], is central to the problem of knowledge acquisition. 

Because of representation mismatch, one cannot merely transfer knowledge from human 

to machine. The knowledge acquisition tool must actively elicit knowledge in a form that 

can be obtained from domain experts and map elicited knowledge into the executable repre- 

sentations of the knowledge system. The mapping is difficult to automate because the require- 

ments for building a working system (e.g., operationality, consistency) differ from the re- 

quirements for a human expert describing a procedure to another person. In order to automate 

knowledge acquisition, one must provide a method for overcoming representation mismatch. 

The following discussion introduces three aspects of representation mismatch--modeling, 

operationaiization, and generalization--as an explanatory framework with which to under- 

stand the problem of knowledge acquisition. The general issues and the specific problems 

of acquiring strategic knowledge are described within this framework. 

1.1.1. Dimensions of Representation Mismatch The modeling or formalization problem 

is a fundamental kind of representation mismatch. A knowledge system can be thought 

of as a qualitative model of systems in the world, including systems of intelligent activity 

[Clancey 1989]. While the model embodied by a knowledge system is informed by the be- 

havior of human experts, it is not designed as a model of the experts' knowledge or their 

cognitive processes [Winograd and Flores 1986]. From this point of view, knowledge acqui- 

sition is a creative rather than imitative activity, resulting in a computational model that 

makes distinctions and abstractions not present in the initial language of the expert. Because 

of the difference between descriptions of behavior and computational models of action, 

the task of knowledge acquisition requires a model-building effort beyond that of rendering 

the expert's utterances in formal notation. Morik [1988] illustrates the modeling problem 

with the example of building a natural language-understanding system. The builder of such 
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a system does not interview experts in natural language understanding (native speakers) 

but experts in modeling the formal structure and mechanisms of language (linguists). Fur- 

thermore, the system-builder must adapt the expert's concepts (a theory of syntax) to the 

needs of a computational model (a parser) and sometimes invent new concepts (semantic 

networks). 

The operationalization aspect of representation mismatch refers to the difference between 

descriptions of what the system should accomplish, given by domain experts, and the opera- 

tional methods for achieving those objectives required by a computer program. Two senses 

of operationalization have been identified in the machine learning literature: making advice 

executable [Mostow 1983] or more useful [Keller 1988].1 Knowledge acquisition involves 

both kinds of operationalization in the service of performance goals such as recommending 

an effective drug therapy or designing an efficient electric motor. To make a therapy recom- 

mendation executable, a knowledge engineer might build an interface that justifies a recom- 

mendation and requests the results. To make the advice "minimize cost, maximize speed" 

more useful, the engineer might decide to use a redesign algorithm and elicit more knowledge 

from the expert about ways to cut costs and fine tune performance by modifying existing 

designs. The methods in which expert-suppfied specifications are operationalized may require 

concepts and terminology unfamiliar to the domain expert. 

A third dimension of representation mismatch is generalization: the difference between 

a set of specific examples of desired input/output performance and a more concise represen- 

tation that will enable a system to perform correctly on a larger class of input situations. 

It is frequently observed that it is much easier to elicit examples of expert problem solving 

than general rules or procedures that cover the examples. The available form of knowledge 

(classified examples) needs to be mapped into a more useful representation (general class 

descriptions). 

Problems of modeling, operationalization, and generalization are ubiquitous in knowledge 

acquisition. We will now see how they are manifest in the case of a particular kind of knowl- 

edge, strategic knowledge. 

1.2. The Problem of Acquiring Strategic Knowledge 

L2.L Strategic Knowledge. Strategic knowledge is knowledge used by an agent to decide 

what action to perform next, where actions can have consequences external to the agent. 

The more general term control knowledge refers to knowledge used to decide what to do 

next. What constitutes an action and its consequences depends on how one characterizes 

what the agent can do. For knowledge systems that make recommendations to people (e.g., 

"increase dosage of drug D") or control physical systems (e.g., "close valve V"), actions 

have consequences that are observable in the world outside of the agent. For problem-solving 

programs based on state-space search, an action may be the firing of a rule or an operator. 

For such an agent, search-control knowledge is used to choose internal actions that increase 

the likelihood of reaching a solution state and improve the speed of computation. The re- 

search reported here distinguishes knowledge for deciding among actions with consequences 

in the external world because the goal is to acquire strategic knowledge from domain experts 

without reference to the symbol-level organization of the knowledge system. 
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For descriptive purposes, strategic knowledge is also distinguished from the substantive 
knowledge of a domain, knowledge about what is believed to be true in the world. Both 

substantive and strategic knowledge underlie expertise in many domains. For example, a 

robot uses substantive knowledge to recognize and interpret situations in the world (e.g., 

an obstacle in its path) and strategic knowledge to decide what to do (to go around or over 

it). A lawyer uses substantive knowledge to identify the relevant features of cases and strategic 

knowledge to decide which case to cite in defense of an argument. A diagnostician uses 

substantive knowledge to evaluate evidence pro and con hypotheses and uses strategic knowl- 

edge to decide among therapeutic actions. In general, substantive knowledge is used to 

identify relevant states of the world, and strategic knowledge is used to evaluate the utility 

of possible actions given a state. 

1.2.2. Representation Mismatch for Strategic Knowledge Although progress has been 

made in automating the acquisition of substantive knowledge used in classification [e.g., 

Bareiss 1989; Boose and Bradshaw 1987; Eshelman 1988], strategic knowledge is typically 

imparted to systems by knowledge engineers using implementation-level mechanisms. The 

difficulty of acquiring strategic knowledge directly from experts can be seen within the 

framework of the three aspects of representation mismatch introduced earlier. 

First, strategic knowledge presents serious modeling problems. While substantive knowl- 

edge might be acquired in a perspicuous form, such as rules mapping evidence to hypotheses, 

strategic knowledge about choosing actions is often represented with programming con- 

structs, such as procedures or agenda mechanisms. At least in principle, rules that encode 

substantive knowledge can be written in a process-independent context; experts can specify 

how to classify situations in the world without worrying about the mechanism by which 

the specifications are interpreted. However, specifying knowledge that affects the order 

and choice of actions involves building a computational model of a process. 

Consider the problem of modeling the strategy of a medical workup: the process of gather- 

ing data, assessing the results, and planning treatment for an individual patient. Although 

medical diagnosis is often described as a static classification problem (i.e., to classify given 
data), in medical practice evidence for a diagnosis is gathered over time, and the actions 

that produce evidence are chosen strategically. In modeling the workup, requests for patient 

data, laboratory tests, diagnostic procedures, and options for trial therapy are treated as 

actions. Substantive knowledge is used for the classification task, identifying likely causes 

for a given set of findings. In addition, strategic knowledge is used to decide what action 

to take next when the data are not all in. 

In the MYCIN system, much of the knowledge that determined question ordering and 

decisions about laboratory tests was represented with screening clauses, clause ordering, 

and "certainty factor engineering'--implementation-level manipulations of the rules to 

achieve the intended strategic behavior [Clancey 1983a]. This knowledge could not be ac- 

quired easily with the available rule editors and debugging support tools [Buchanan and 

Shortliffe 1984] because the strategy was implicit in the engineering tricks rather than the 

content of the rules. Since MYCIN, more explicit representations of strategic knowledge 

have been devised, such as the control blocks of S.1 [Erman, Scott, and London 1984] 

and the high-level control languages of BB1 [Hayes-Roth, et al. 1987]. Because these advances 

are general-purpose languages for control, rendering strategic knowledge in a computational 

model remains a programming task. 
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The acquisition of strategic knowledge also highlights the operationalization aspect of 

representation mismatch. At the knowledge level [Newell 1982], the strategic knowledge 

of an agent may be specified as a set of behavioral goals that the agent should attempt 

to achieve. While it is possible to elicit specifications of desired behavior at the knowledge 

level from experts, it is far more difficult for experts (and knowledge engineers) to specify 

how a knowledge system should achieve these goals. 

For example, during conventional knowledge acquisition for a knowledge system called 

MUM [Cohen, et al. 1987], knowledge engineers interviewed a practicing physician for 

the purpose of modeling his diagnostic strategy for patients reporting chest and abdominal 

pain. MUM's task was to generate workups for chest pain patients, choosing one action 

at a time, waiting for the outcome of previous action. When asked to describe how to choose 

diagnostic tests, the expert would mention goals such as "do the cheap, quick tests first" 

and "protect the patient against a dangerous disease." This is nonoperational advice. To 

make it operational requires specifying how actions achieve goals (e.g., the diagnostic and 

therapeutic effect of actions), how to determine the currently relevant goals (e.g., when 

is a dangerous disease suspected), and how to balance competing objectives (e.g., cost, 

timeliness, diagnostic power, therapeutic value). 

Third, the generalization aspect of representation mismatch is exhibited by the problem 

of acquiring strategic knowledge. By definition, experts are good at what they do; it does 

not follow that they are good at generalizing what they do. In particular, it is much easier 

to elicit cases of strategic decisions--choices among actions in specific situations--than 

to elicit general strategies. 

For example, in the MUM domain of chest pain workups, the physician makes a series 

of decisions about actions. He typically starts with a set of questions about patient history, 

then performs a physical examination (in a knowledge system, steps in the examination 

are also implemented as requests for data), and then plans and executes a series of diagnostic 

tests and trial therapeutic actions, until sufficient evidence for a conclusive diagnosis or 

recommended therapy has been found. For MUM it was feasible to elicit example workups 

corresponding to actual patients. These workups can be viewed as very specific plans. Each 

step in the workup, each choice of what to ask to try next, is the result of a strategic deci- 

sion. However, generalizations about classes of strategic decisions were not present in the 

original workup descriptions but developed by retrospective analysis of the cases and follow- 

up consultation with the expert. Within a single workup there may be several actions chosen 

for the same reasons (e.g., "do the cheap, quick tests first"), and there may be common 

reasons across workups (e.g., "gather enough evidence to recommend therapy"). 

Although cases of specific workups can be acquired in the form of directed graphs, they 

are not general enough for a knowledge system. First, they are specific to individual patients, 

and workups differ over individuals. Second, these plan-like procedures are extremely brittle; 

if any action cannot be taken (e.g., because the results of a test are not available), then 

the procedures fail. Third, because they only record the results of strategic decisions, workup 

graphs fail to capture the underlying reasons for selecting actions in the prescribed order. 

This third problem reveals a subtle form of representation mismatch: although it is possible 

to elicit reasons for past strategic decisions, these reasons alone do not constitute a generative 

strategy. A generative strategy plans new workups based on the strategic knowledge that 

gave rise to existing workups. 

51 



298 T. GRUBER 

The work reported in this article is motivated by the problem of acquiring knowledge 

that underlies strategic decisions and putting it in operational, general form. The next sec- 

tion lays out some of the techiques for addressing the problem. 

2. Techniques for Overcoming Representation Mismatch 

Interactive tools can assist with knowledge acquisition by overcoming representation mis- 

match. This section reviews the techniques used by existing knowledge acquisition tools 

and motivates the approach taken in ASK. The techniques are presented in the context 

of the three aspects of representation mismatch. 

2.1. Incorporating Models into Knowledge Acquisition Tools 

Conventionally, the modeling problem for knowledge acquisition is handled by the knowledge 

engineer, who is responsible for building the knowledge system. The engineer analyzes 

the performance task (the problem to be solved by the knowledge system) and designs a 

program for applying knowledge to perform the task. A performance task is defined in 

terms of the input and output requirements of the system and the knowledge that is available. 

Tasks can be described at multiple levels of abstraction, from the functional specifications 

for a single application to input/output requirements for a general class of tasks. A problem 

solving method is the technique by which a knowledge system brings specific knowledge 

to bear on the task. When the computational requirements and methods for a class of tasks 

are well understood, a domain-independent problem-solving method can be designed, such 

as heuristic classification [Chandrasekaran 1983; Clancey 1985]. 

A task-level architecture consists of a knowledge representation language (a set of represen- 

tational primitives) and a procedure implementing the problem-solving method designed 

to support knowledge systems for a class of performance tasks [Chandrasekaran 1986; Gruber 

and Cohen 1987]. The procedure, which in this article is called the method for short, is 

a mechanism by which knowledge stated in the architecture's knowledge representation 

is applied to perform one of the tasks in the abstract class of tasks for which the architec- 

ture is designed. The representation and the method of a task-level architecture are tightly 

coupled. Each method defines roles for knowledge: ways in which knowledge is applied 

by the method [McDermott 1988]. The algorithm that implements the method in a program 

operates on statements in the associated representation language. The primitive terms in 

the representation correspond to the roles of knowledge. For example, Chandrasekaran [1987] 

and his colleagues have built architectures for generic tasks such as hierarchical classification 

and routine design. Each generic task is described in terms of the function to be performed 

(an abstract description of the performance task), a knowledge representation language (the 

set of primitive terms), and a control strategy (the procedure that implements the method). 

Chandrasekaran uses the term generic task problem solvers to refer to task-level architectures. 

Task-level architectures can facilitate knowledge acquisition. Like a virtual machine, the 

architecture supports a set of method-specific representation primitives for building a knowl- 

edge system. Much of the model-building effort can be put into the design of the architecture, 
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and the representational primitives can hide the implementation details. As a consequence, 

the architecture can reduce representation mismatch by presenting a task-level representation 

language comprehensible to the domain expert [Bylander and Chandrasekaran 1987; Gruber 

and Cohen 1987; Musen 1989]. 

Interactive knowledge acquisition tools can help overcome representation mismatch by 

employing special techniques for eliciting and analyzing knowledge in architecture-supported 

representations. Some tools help analyze the task requirements to choose among existing 

methods and instantiate an architecutre with domain terminology. For example, ROGET 

[Bennett 1985] offers help in choosing among a small set of particular heuristic classifica- 

tion methods and elicits domain-specific instantiations of the input, output, and intermediate 

concepts for the selected method. 

Other tools specialize in elicifing the knowledge for the roles required by the problem- 

solving method. For example MOLE [Eshelman 1988] uses an instantiation of the heuristic 

classification method called cover-and-differentiate. The knowledge acquisition tool special- 

izes in the elicitation of knowledge for roles such as "covering knowledge" and "differentiat- 

ing knowledge." Similarly, SALT [Marcus 1988] is based on the propose-and-revise method 

for constructive problem solving, and elicits knowledge for proposing design extensions, 

identifying constraints, and backtracking from violated constraints. 

Tools of another category specialize in a particular formulation of knowledge, independent 

of how the knowledge will be applied to particular tasks. For example, repertory grid tools 

elicit knowledge in the form of a two-dimensional matrix of weighted associations between 

"elements" and "traits" [Boose and Bradshaw 1987; Shaw and Gaines 1987]. These tools 

use a task-independent elicitation technique to help the user identify traits and elements 

and the strengths of associations among them and provides detailed analyses of the informa- 

tion. The user interprets the feedback in terms of a particular task, such as a procurement 

decision or an evaluation of policy alternatives. 

On the other end of the spectrum are elicitafion tools that are customized to the problem- 

solving method and a specific task in a domain. An example is OPAL, which acquires 

protocols used in the domain of cancer therapy [Musen, Fagan, Combs, and Shortliffe 1987]. 

The problem-solving method is a kind of skeletal-plan refinement, and the performance 

task is to manage cancer-therapy protocols modeled as skeletal plans. OPAL elicits knowledge 

from experts entirely in domain-specific terms and in forms that correspond to paper and 

pencil representations familiar to the experts. Because the tool has almost completely elim- 

inated the representation mismatch due to modeling, it has been used successfully by physi- 

cians with little experience with computation [Musen 1989]. 

The acquisition of strategic knowledge, as it has been defined, is not supported by con- 

ventional task-level architectures. In fact, all of the built-in methods of the architectures 

mentioned above are implemented with procedures that themselves encode a control strategy. 

To the extent that the strategy is implemented by the method, it cannot be acquired by 

tools that assume the method is fixed. 

However, it is possible to design an architecture for a restricted class of tasks that require 

domain-specific strategic knowledge. The method for such an architecture should define 

roles for strategic knowledge, just as MOLE's method defines roles for substantive knowl- 

edge, such as knowledge for proposing explanations that cover an abnormal symptom. As 

will be described in Section 3, ASK was designed with an architecture that represents 
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strategic knowledge as rules that map situations to desired actions. In this architecture, 

strategic knowledge is limited to three roles for associating features in the agent's current 

model of the world with classes of appropriate actions. As will be discussed in Section 6, 

the restricted roles for strategic knowledge reduce the scope of what needs to be acquired 

and simplify how elicited knowledge is operationalized and generalized. They also limit 

the class of strategies that can be acquired. 

2.2. Eliciting Knowledge in Operational Terms 

Automated knowledge acquisition tools can address the operationalization aspect of represen- 

tation mismatch by limiting what is elicited from the user to representations of knowledge 

that are already machine-executable--that is, to elicit knowledge in the form in which it 

will be used for performance or in some form that can be compiled into the runtime represen- 

tation. An alternative approach is to provide a nonoperational "mediating representation" 

for eliciting the conceptual structure of a domain and then manually building a system that 

operationalizes the specifications ]Johnson and Tomlinson 1988]. A rule editor is a simple 

example of a tool that elicits knowledge in a form that can be directly executed. 

The technique of eliciting knowledge directly in executable form is reminiscent of the 

single representation trick [Dietterich, et al. 1982] in which the learning agent is given 

training data in the same representation as the language used for describing learned concepts. 

Using this technique in a knowledge acquisition tool replaces the problem of making the 

elicited input executable (operationalization) with the assumption that the elicitation language 

is representationally adequate. A language is representationally adequate if all of the rele- 

vant domain knowledge can be stated in the representation. 

The success of tools employing this technique depends in part on whether the elicitation 

interface can make the operational semantics of the representation comprehensible to the 

user. For example, although TEIRESIAS paraphrases rules into English, the user needs 

to know more than English to understand them. TEIRESIAS depends on the assumption 

that the user can understand the backward-chaining model [Davis 1976]. 

Well-designed user interface techniques can help make the computational model of the 

architecture comprehensible to the user. For example, the OPAL tool facilitates the acquisi- 

tion of cancer treatment protocols with a form-filling interface, emulating paper-and-pencil 

forms familiar to its users [Musen, et al. 1987]. Similarly, spreadsheet applications are 

made comprehensible by presenting a familiar metaphor. The interface design goal is to 

minimize the conceptual distance between the user's understanding of the system's mecha- 

nism and the system's presentation of the options afforded by the computational model 

[Hutchins, Hollan, and Norman 1986]. 

A tool that acquires knowledge in an executable representation can also offer intelligent 

assistance by analyzing the consequences of applying the knowledge. For example, SALT 

elicits fine-grained rules for repairing local constraint violations in a design task. One of 

the consequences of using backtracking from local constraint violations is that the user 

can unintentionally define cycles in the dependency network, in which repairing one con- 

straint violation introduces another. SALT can analyze the elicited knowledge, identify cycles, 

and offer assistance to the user in specifying different routes for backtracking [Marcus 1987]. 
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It is difficult to acquire strategic knowledge in executable form without forcing the expert 

to understand symbol-level mechanisms such as procedures and priority schemes. There 

is a tension between the requirement to provide the user with a language that is comprehen- 

sible and yet sufficiently powerful to implement the strategy. There are some techniques 

that help elicit specifications of control, such as visual programming interfaces for building 

transition networks [Musen, Fagan, and Shortliffe 1986] and graph-drawing tools for specify- 

ing decision trees [Hannan and Politakis 1986]. However, the strategic knowledge that can 

generate decisions among actions is implicit in transition networks and decision trees. 

ASK's representation of strategic knowledge was designed to correspond to the form in 

which experts can describe their strategic knowledge: justifications for specific actions in 

specific situations. As will be explained in Section 3, ASK elicits justifications for choices 

among actions in terms of features of strategic situations and actions. ASK's design ensures 

that the features mentioned in justifications are operational; the features are well-defined 

functions and relations that hold over objects in a knowledge base representing the current 

state of problem solving. 

Like all tools that elicit knowledge in executable form, ASK is based on the assumption 

of representational adequacy discussed above. There are two ways this assumption can fail: 

the computational model is inadequate for describing the desired strategy, or the set of 

terms in the existing knowledge representation is incomplete. The former problem is a 

function of the architecture, as discussed above. The problem of incomplete terms can be 

handled in an interactive tool if the user is given the chance to define new terms with the 

representational primitives provided by the architecture. 

Since defining terms for a knowledge system is an operationalization task, it is a challenge 

to provide automated assistance. A promising approach is exemplified by PROTt~GI~, a 

tool that helps the knowledge engineer defme domain-sp~ific instantiations of architecture- 

level representational primitives [Musen 1989]. PROTEGE generates OPAL-class elicitation 

tools meant for the domain expert in which the vocabulary is fixed. ASK provides a means 

for defining new features in the context of eliciting justifications, as demonstrated in Section 

4.6. By design, ASK integrates the acquisition of new features and the acquisition of knowl- 

edge that uses the features. 

2.3. Integrating Mechanical Generalization with Interactive Knowledge Elicitation 

Machine learning techniques are an obvious answer to the generalization aspect of representa- 

tion mismatch. There are many well-established techniques for generalization from examples 

[Dietterich and Michalski 1983]. Because inductive generalization is inherently undercon- 

strained, these techniques all depend on some kind of bias to direct the learner toward 

useful or relevant generalizations [Mitchell 1982; Utgoff 1986]. Bias can be provided to 

a learner by supplying a highly constrained generalization space, defined by the language 

for representing learned concepts, such as LEX's pattern-matching language [Mitchell, 

Utgoff, and Banerji 1983]. Bias can also come from the choice of features in the training 

examples, as in the feature vectors used by decision tree algorithms [Quinlan 1986]. 

A knowledge acquisition tool can capitalize on existing techniques if they are augmented 

with the appropriate bias. One approach would be to build the necessary bias into the tool. 
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If the bias is itself important domain knowledge, however, this approach limits the usefulness 

of automating the knowledge acquisition process, since the tool would have to be modified 

for each domain. Instead, a knowledge acquisition tool can provide means for the u s e r  

to contribute bias--to guide the generalization toward useful concepts. The user can contrib- 

ute bias by carefully selecting training examples [Winston 1985], by identifying their relevant 

features, and by evaluating machine-generated generalizations. While the human provides 

pedagogical input and evaluation of results, the tool can apply syntactic generalization oper- 

ators and check for consistency with a database of training cases. The resulting human- 

machine synergy is a more powerful acquisition technique than either manual knowledge 

engineering or traditional inductive learning. 

Knowledge-based learning techniques such as explanation-based learning [DeJong and 

Mooney 1986; Mitchell, Keller, and Kedar-Cabelli 1986] are strongly biased by the domain 

theory provided by the system builder. Inserting a human in the learning loop can help 

overcome the dependence of the learning technique on the quality of the built-in knowledge. 

For example, in an experiment with SOAR in the domain of algebraic simplification, a 

human intercedes during problem solving to help the system leam search-control knowledge 

[Golding, Rosenbloom, and Laird 1987]. When the system needs to choose among algebraic 

simplification operators for a specific equation, the human recommends an operator to 

apply or provides a simpler equation to solve. The system uses a domain theory of algebraic 

simplification to find useful chunks that generalize the situation (the class of equations) 

in which the recommended operator should be applied. In the absence of a complete domain 

theory, one can imagine the human pointing out relevant parts of the equation to chunk. 

To integrate generalization techniques into a knowledge acquisition tool, the knowledge 

to be acquired must be represented in such a way that syntactic generalizations of statements 

in the representation correspond to semantic generalizations in the knowledge [see Lenat 

and Brown 1984]. For strategic knowledge, this means formulating the selection of actions 

in terms of classification. For example, a common technique for programs that learn search- 

control knowledge is to formulate the knowledge for selecting actions as pattern-matching 

expressions that identify situations in which operators would be usefully applied [Benjamin 

1987; Laird, Newell, and Rosenbloom 1987; Minton and Carbonell 1987; Mitchell, Utgoff, 

and Banerji 1983; Silver 1986]. Because of this formulation, syntactic generalizations of 

the expressions to which an operator had been applied during training correspond to classes 

of situations where the operator might be useful in the future. 

ASK's representation of strategic knowledge is designed to exploit syntactic generalization 

operators. Knowledge about what action to do next is formulated as predicates that describe 

situations in which equivalence classes of actions are useful. In the absence of a theory 

to infer the utility of actions, ASK acquires strategic knowledge from people. 

3. The ASK Knowledge Acquisition Assistant 

ASK is an interactive knowledge acquisition assistant. It acquires strategic knowledge from 

the user of a knowledge system, called the performance system. The strategic knowledge 

acquired by ASK is used by the performance system to decide what action to perform on 

each iteration of a control cycle. With additional strategic knowledge, the performance system 

should be able to make better decisions about what to do in various situations. 
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The basic approach is to elicit strategic knowledge from the user in the form of justifica- 

tions for specific choices among actions, and then operationalize and generalize the justified 

choices in the form of strategy rules that associate situations with classes of appropriate 

actions. 

This section presents an overview of the knowledge acquisition procedure, and then covers 

in more detail the strategy-rule representation and the knowledge system architecture that 

supports it. Section 4 demonstrates ASK with examples from a knowledge system for plan- 

ning workups of chest pain. 

3.1. The Knowledge Acquisition Dialog 

ASK orchestrates a mixed-initiative dialog with the user. The basic steps in the knowledge 

acquisition dialog are shown in Figure 1. 

ASK is invoked by the user of the performance system. At run time, the performance 

system executes a simple control loop. On each iteration the system selects a set of recom- 

mended actions, the user picks one, and then the system executes it. The results of the 

actions are recorded, and then the system continues by selecting the next set of recommended 

actions. If the user disagrees with the system's recommended actions on any iteration, she 

can interrupt the control loop and initiate a knowledge acquisition dialog. 

The first step of the knowledge acquisition dialog is to elicit a critique from the user. 

A critique is a labeling of what the system did wrong in terms of choosing actions. The system 

recommends a set of actions at each iteration of the control cycle because they are all equally 

appropriate in the current situation, according to the existing strategic knowledge. The user 

From control cycle 

To control cycle ~ y o  

Chosen actions Q Elicit critique 1 
from expert 

I 
Training examples 

redit assignment) Execute strategy rules [ 
Learning objective 

~lioit j u s t i f i c a t i ~  

Justified ! x a m p ~  
New strategy rules 

(Formulate rules • 1 
~, and generatize J 

[ 

Figure 2. The ASK knowledge acquisition dialog. 
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critiques the system's choices by selecting an action that the system should have chosen 

(the positive example) and one that the system should not have chosen (the negative exam- 

pie). The positive and negative examples do not have to be in the set of the system's initial 

choices (which may be empty). The user also characterizes the system's error in recommend- 

ing actions, indicating, for instance, whether the positive example is merely preferred to 

the negative example or whether the negative example should not have been considered at all. 

Next, ASK performs credit assignment analysis by examining how the current set of strat- 

egy rules matched the positive and negative examples. The output of this analysis is a learn- 

ing objective that specifies what a new strategy rule would have to match and not match 

and what it should recommend in order to accommodate the user's critique and be consis- 

tent with existing strategy rules. 

Then ASK elicits justifications from the user. From the user's perspective, justifications 

are explanations or reasons why an action should or should not be recommended, in terms 

of relevant features of the current situation. From ASK's perspective, justifications are facts 

about the state of knowledge base objects in the current working memory of the performance 

system; the set of justifications corresponds to the set of features that should be mentioned 

in matching strategy rules. ASK suggests an initial seed set of justifications, based on how 

existing strategy rules fired. The user adds justifications by clicking on features of objects 

displayed in windows on the screen. The justification interface allows the user to browse 

through the knowledge base for relevant objects. If the set of existing features is inadequate, 

the user can define new features within the justification interface. 

When the user indicates that she is finished and has specified a set of justifications that 

are sufficient to distinguish the positive and negative examples, ASK generates a new strategy 

rule from the justifications. The new strategy rule is generalized by syntactic induction 

operators to apply to a range of situations and an equivalence class of actions. For example, 

where a specific action appears in a justification, ASK puts a variable in the corresponding 

clause of a strategy rule. Similarly, if a justification mentions a specific value for a feature, 

ASK may build a strategy-rule clause that matches a range of values for that feature. 

Finally the new nile is paraphrased and the operational effects of the new rule are presented 

to the user for approval. If the user agrees that the new rule improves the system's choices 

of actions, the rule is added to the strategic knowledge base of the performance system, 

and the control cycle is continued. 

Details of the knowledge acquisition dialog are demonstrated with examples in Section 4. 

First some background on the performance system architecture and the representation for 

strategic knowledge is required. 

3.2. The MU Architecture 

ASK is integrated with an architecture for knowledge systems called MU [Cohen, Greenberg, 

and Delisio 1987; Gruber and Cohen 1987]. As depicted in Figure 2, a performance system 

built in MU consists of a substantive knowledge base, typically for heuristic classification, 

and a strategic knowledge base for controlling actions? This division of knowledge is typical 

of architectures that support control knowledge, such as BB1 [Hayes-Roth 1985]. MU or- 

ganizes the substantive knowledge as a symbolic inference network, where inferences are 
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Figure 2. The MU architecture with strategy rules. 

propagated from evidence to hypotheses by local combination functions. The inference net- 

work serves as the working memory of the system at runtime. The state of the network 

is abstracted by control features, which are functions, attributes, and relations over knowledge 

base objects? The strategic knowledge is organized in a separate component, which examines 

the state of working memory via control features and selects actions to execute. MU was 

designed to support a variety of experiments in strategic reasoning, so the architecture does 

not include a built-in problem solving method or control strategy. The strategy-rule represen- 

tation was developed for the study of knowledge acquisition in ASK. 

3.3. Strategy Rules 

Strategic knowledge acquired by ASK is represented in the form of strategy rules, inspired 

by the metarules that represent diagnostic strategy in NEOMYCIN and HERACLES [Clancey 

1988; Clancey and Bock 1988]. Strategy rules map strategic situations to sets of recom- 

mended actions. Strategic situations are states of the working memory of a performance 

system. In the MU architecture, strategic situations are states of the inference network. 

The strategy-rule control cycle, shown in Figure 3, specifies how strategy rules are applied 

in a performance system to decide among actions. At each iteration of the control cycle, 

strategy rules recommend the actions that are appropriate to perform next. There are three 

types of recommendations, corresponding to three categories of strategy rules. Focus rules 

propose a set of possible actions at each iteration. Filter rules prune actions that violate 

constraints. Selection rules pick out subsets of the proposed and unpruned actions that are 

most desirable in the current situation to form the final set of recommended actions. One 

of the actions in the recommended set is chosen by the user and executed. The effects of 

executing the action are then propagated through working memory. 
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Figure 3. The strategy rule control cycle. 

The strategy-rule control cycle corresponds to the method of task-level architectures de- 

scribed in Section 2.1. It specifies how strategic knowledge is brought to bear in the deci- 

sion about what action to do next. The propose-filter-select algorithm defines three roles 

for strategic knowledge: specifying the conditions under which actions might be applicable, 

inappropriate, and preferable. Its design stipulates that actions are chosen iteratively, waiting 

for the effects of the execution of the previous action before making the current decision. 

The algorithm also assumes that the context of the decision, the strategic situtation, is defined 

in terms of currently available features of the state of the performance system. Thus, strategy 

rules are not general-purpose control rules, useful for writing arbitrary programs. Rather, 

the strategy-rule control cycle supports a style of reasoning that has been called reactive 

planning [Agre and Chapman 1987; Chapman and Agre 1987; Firby 1987; Kaelbling 1987]. 

The form of strategic knowledge is restricted to facilitate automated knowledge acquisition. 

The consequences of this design are made explicit in later sections. 

The left-hand side (If part) of a strategy rule is a conjunctive expression, with variables, 

that specifies a strategic situation and the set of recommended actions for that situation. 

The left-hand side expression matches against the values of control features that reflect 

the properties and dynamic state of objects in working memory, including objects that repre- 

sent actions. The right-hand side (Then part) of a strategy rule indicates whether the match- 

ing actions should be proposed, filtered, or selected in the matching situation. 
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3.4. Examples from the Chest Pain Domain 

Here are some examples of strategy rules and control  features f rom a system for p lanning  

workups for chest pa in  that will be  used to demonstrate  AS K in Section 4. 

The following focus rule proposes actions that are general  quest ions (e.g., age, sex, etc.) 

when  the set of  active hypotheses, called the differential,  is empty. 

Rule A s k - i n t a k e - q u e s t i o n s  a focus  r u l e  

' ' A s k  g e n e r a l  q u e s t i o n s  when at  a l o s s . ' '  

f :  ( IS  ( d i f f e r e n t i a l )  :EMPTY) 

( IN ?ACTION (members -o f  g e n e r a l - q u e s t i o n s ) )  

Then:  (PROPOSE ? a c t i o n  h i s t o r y - a n d - e x a m )  

The strategic situation in this rule is specified by the condi t ion that the value of the d i f - 

f e r e n t i a I object  is empty. The set of  r ecommended  actions is generated by the relat ion 

membe r s -  e f applied to the object g e n e r a l -q u e s t ion  s,  which is a class of actions. The 

right-hand side operator PROPOSE specifies that the values bound  to the variable ?ACT I ON 

should be proposed under  these conditions, and that the goal h i s  t o r y -  a n d-  e x am should 

be posted. 

The expression (d i f f e r e n t i a I ) refers to the set of hypotheses on the differential. It 

is a control feature defined in the M U  inference network as: 

VALUE o f  DIFFERENTIAL a c o n t r o l  f e a t u r e  

' ' T h e  se t  o f  a c t i v e  h y p o t h e s e s ' '  

SET-OF ? H y p o t h e s i s  IN h y p o t h e s e s  SUCH-THAT 

t r i g g e r - l e v e l  OF ? H y p o t h e s i s  S t r i g g e r e d  AND 

l e v e l - o f - s u p p o r t  OF ?Hypothes s IS-NOT d i s c o n f i r m e d  

OR 

l e v e l - o f - s u p p o r t  OF ?Hypothes s IS-AT-LEAST s u p p o r t e d  

Another  focus rule, shown below, is complementary  to A s k - i n t a k e - q u e s t i o n s .  It 

proposes actions that potential ly provide diagnostic evidence when  the differential is not 

empty, and labels this state with the goal g a t h e r - e v i d e n c e - f o r - d i f f e r e n t i a I. 

Propose-d iagnost ic -ev idence a focus  r u l e  

' ' G a t h e r  e v i d e n c e  f o r  c u r r e n t  h y p o t h e s e s . ' '  

I f :  IS ( d i f f e r e n t i a l )  :NONEMPTY) 

IN ?ACTION ( p o t e n t i a l - e v i d e n c e  d i f f e r e n t i a l ) )  

Then (PROPOSE ?ACTION g a t h e r - e v i d e n c e - f o r - d i f f e r e n t i a l )  

The expression ( p o t e n t  i a I - e v i d e n c e  d i f f e r e n t  i a l  ) refers to a control  feature that 

returns the set of  actions that are potential ly diagnostic for hypotheses on  the differential. 

This set is computed dynamica l ly  by a funct ion that calls a M U  service for analyzing the 

inference network [Cohen,  Greenberg  and Delis io 1987]. 
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A very simple filter rule prevents actions from being recommended if they have already 

been executed. In some domains actions may be executed repeatedly. That is why the don't- 

repeat policy is encoded in the following rule instead of built in to the basic control loop. 

F i l t e r - e x e c u t e d - a c t i o n s  

' 'Do not repeat a c t i o n s ' '  

I f :  ( IS (executed? ?ACTION) yes) 

Then: (FILTER ?ACTION) 

a f i l t e r  ru le 

The following selection rule is enabled under the goal history-and-exam. It recom- 

mends those actions that are cheap to perform and that can potentially produce data that 

would trigger new hypotheses. 

Select -cheap- t r igger ing-data  a se lec t i on  ru le  

' ' P r e f e r  cheap ac t ions  that  might t r i g g e r  hypo theses . ' '  

I f :  (IN h is tory-and-exam ( c u r r e n t - g o a l s ) )  

(IS ( p o t e n t i a l l y - t r i g g e r e d - b y  ?ACTION) :NONEMPTY) 

(~ (cost ?ACTION) cheap) 

Then: (SELECT ?ACTION) 

Shadows: S e l e c t - t r i g g e r i n g - d a t a ,  s e l e c t - f r e e - e v i d e n c e ,  

se lec t -cheap-ev idence 

The terms cur  r en t  - g o a l s ,  p o t e n t  a I l y - t  r igge  r ed -by ,  and c o s t  refer to control 

features. The set of actions recommended by this rule are those with some hypotheses on 

their p o t e n t  i al l y - t  r i g g e r e d - b y  feature and whose c o s t  feature is not more than 

cheap.  The feature p o t e n t  i a I l y - t  r i g g e r e d - b y  is computed from the definitions of 

triggering conditions for hypotheses, stated in a rule-like form. For example, the hypothesis 

classic-angina is triggered when "the chief-complaint is pain or pressure and pain-quality 

is vise-like and the chief-complaint-location is substernal." This rule will recommend the 

action of asking for the chief-complaint-location because it potentially triggers a hypothesis 

and it is cheap. 

3.5. The Shadowing Relation Among Strategy Rules 

Within each strategy-rule category (focus, filter, selection), rules are matched in an order 

specified by a precedence relation called shadows, which is a partial order based on the 

generality of left-hand sides. If  a rule succeeds (matches some objects), then the more general 

rules that it shadows are pruned (prevented from being fired). Generality is defined in terms 

of the features mentioned in a rule and the range of values specified for each feature. For 

example, the selection rule shown above, S e I e c t - c h e a p - t r i g g e r i n g- d a t a, shadows 

(takes precedence over) more general rules mentioning the same features. It shadows the 

more general rule Sel e c t - c h e a p - e v  i dence,  which recommends any action that is cheap. 

In turn, Se I e c t  - c h e a p - e v  i dence  shadows the rule Se I e c t  - f r e e -  e v i d e n c e  because 

the former matches actions with costs of cheap  or f r e e .  The global effect of a family of 

62 



ACQUISITION OF STRATEGIC KNOWLEDGE 309 

selection rules in which the more specific rules shadow the more general is to choose those 

actions judged to be acceptable by the most constraining criteria. The shadows relation 

is a symbolic alternative to a numeric function for combining the recommendations of each 

rule into a single measure of utility. Further details can be found in [Gruber 1989]. 

4. A Knowledge Acquisition Dialog with ASK 

In this section, ASK will be demonstrated in the context of a performance system that gen- 

erates diagnostic workups for patients reporting chest and abdominal pain. The performance 

system is a reimplementation of the MUM knowledge system [Cohen, et al. 1987]. MUM's 

task is called prospective diagnosis, which is to choose diagnostic actions as a physician 

would, asking questions in an intelligent order and balancing the potential costs of diagnostic 

tests and trial therapy with the evidential and therapeutic benefits. 

4.1. What the Performance System Already Knows 

In experiments with ASK, the performance system is given MUM's substantive knowledge 

about the diagnosis of chest pain, implemented in the MU architecture in an inference net- 

work. The inference network contains hypotheses, data-gathering actions, intermediate con- 

clusions, and combination functions that represent inferential relations such as the evidential 

support for hypotheses given patient data. MUM's original strategy was written by knowledge 

engineers in Lisp. In the ASK experiments, the strategic knowledge is represented in strategy 

rules. 

In the dialog shown here, the performance system starts with a small but incomplete 

set of strategy rules, and the user extends them to improve strategic performance. ASK 

can also be used without any existing strategy rules. In a separate experiment reported 

in [Gruber 1989], ASK was used to acquire a set of strategy rules that replicates the original 

MUM strategy. However, since ASK makes use of existing strategy rules and control features 

in acquiring new strategic knowledge, it can be more helpful in specializing an existing 

strategy than in building a strategy from scratch. Thus the dialog in this section will show 

ASK being used to extend an existing set of rules that represent a general strategy for pro- 

spective diagnosis. 

4. 2. Running the Performance System 

A MU performance system runs the basic control loop that was introduced in Section 3.3. 

At each iteration, strategy rules recommend some set of actions as candidates. From the 

system's point of view, these recommended actions are equivalent. Given the current strategic 

knowledge, the system could select among them arbitrarily. The user of a MU system is 

given the choice to "break the tie" and pick one action to execute. In the chest pain appli- 

cation, executing an action typically causes a request for data (e.g., symptoms or test results). 

That data is entered into the inference network, where it may change the evidential support 

for active hypotheses and trigger new hypotheses. 
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We begin the knowledge acquisition dialog at a point at which the user has already run 

the performance system through the first several actions in a case (namely, the cheap and 

easy questions about the history and the physical examination data). At this point, the system 

has run out of  cheap actions and the P repose -d i  agnos t  i c - e v i d e n c e  rule (Section 3.4) 

recommends a set of diagnostic actions. The user has the option to pick one of the recom- 

mended actions for execution or to teach the system to refine its strategy. 

The following menu shows the system offering a set of recommended actions during an 

iteration of the control cycle of the performance system. Instead of choosing an action, 

the user initiates the dialog with ASK to "teach the system to improve its choices." (An 

item with a box drawn around it signifies that the user has selected it with the mouse.) 

The user sets up this diagnostic situation because it demonstrates a weakness in the system's 

strategy. The system needs to be more selective in choosing among diagnostic tests and 

trial therapeutic actions such as the seven offered in the menu. 

.=ase choose something to ask or perform 

BARIUM-SWALLOW 
EKG 

GASTROSCOPY-WlTH-BIOPSY 
NITROGLYCERINE-TX 

STRESS-TEST 
UPPER-GI-SERIES 
VASODILATOR-TX 

I Teach the system to improve its choices. ]1/ 
Explain why these actions were chosen. 

Help 

4. 3. Eliciting the User's Critique 

ASK elicits a critique from the user by presenting the list of the system's chosen actions 

and asking what should have been done differently. It first asks for the general category 

of error, to help determine whether the problem is with focus, filter, or selection rules: 

.=ase explain why you disagree with the system's choices 

BARIUM-SWALLOW 
EKG 

GASTROSCOPY-WlTH-BIOPSY 
NITROGLYCERIN E-TX 

STRESS-TEST 
UPPER-GI-SERIES 
VASODILATOR-TX 

I One or more of these actions are PREFERRED to the others-~.~ ¢ 
One or more of these actions should NO T have been suggested. 

Some action NOT MENTIONED HERE should have been suggested. 
Help 

Then it asks for a positive example, an action that should have been recommended, and 

a negative example, an action that should not have been recommended. It is assumed that 

the user will choose a positive example that is representative of  a class of actions that should 
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be recommended in this situation, and a negative example that represents a class of actions 

to distinguish in this situation. In the interaction shown below, the user indicates that the 

action EKG should have been distinguished from the action Upper-GI-series, which is a 

reasonable alternative (i.e., a near miss). 

lich action would you have chosen' 

BARIUM-SWALLOW 

GASTROSCOPY-WITH-BIOPSY 
NITROGLYCERIN E-TX 

STRESS-TEST 
UPPER-GI-SERIES 
VASODILATOR-TX 

an action not shown here 
Help 

hich Of the system-selected actions would 'ou NOT have chosen' 

BARIUM-SWALLOW 
GASTROSCOPY-WITH-BIOPSY 

NITROGLYCERINE-TX 
STRESS-TEST 

[UPPER-GI-SERIES 1/  
VASODILATOR-TX 

They are all as appropriate as STRESS-TEST, 
Help 

4.4. Credit Assignment Analysis 

Using the information provided by the user, ASK performs a credit assignment analysis. 

The credit assignment algorithm examines how existing strategy rules matched in this situa- 

tion and determines the requirements for a new rule that would account for the critique. 

The algorithm makes strong use of the distinction between focus, filter, and selection rules 

and the way they are applied in the strategy-rule control cycle. For example, if the positive 

example was not proposed by any focus rules, the algorithm prescribes learning a focus 

rule that proposes it. Alternatively, if both the positive and negative examples are recom- 

mended by selection rules, then the algorithm prescribes learning a selection rule that 

matches the positive example, fails to match the negative example, and shadows the selec- 

tion rules that recommended the negative example. In the sample session, ASK determines 

that it needs to acquire a selection nde, specializing the P r o p o s e - d  i a g n o s t  i c - e v i d e n c e  

rule, such that the new rule matches EKG and does not match Upper-GI-series. The com- 

plete credit assignment algorithm can be found in [Gruber 1989]. 

4.5. Eliciting Justifications 

In the next stage of the dialog, the user provides justifications for choosing the positive 

example over the negative example. Justifications are specified as features of the current 

strategic situation and features of actions. In the example session, the strategic situation is 
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characterized by the state of hypotheses on the differential. A feature shared by the actions 

recommended by the system (including the positive and negative examples) is that they 

potentially provide evidence for hypotheses on the differential. In the current example, 

the user must provide additional justifications that distinguish the positive example EKG 

from the negative example Upper-GI-series. 

The user interface for asserting justifications consists of two windows containing mouse- 

sensitive text. The "relevant objects window" displays the values of features of a set of 

objects from the knowledge base. The "justifications window" contains a list of justifica- 

tions in the form of natural language sentences. Each justification is a description of the 

value of a feature of some relevant object. 

ASK initializes the relevant objects window with a set of knowledge base objects that 

might be relevant to the current control decision. An object is considered relevant if it 

is one of the positive or negative examples (actions), a current goal, an instance of a class 

representing some aspect of the global state of the inference network, or if it is mentioned 

in a strategy rule matching the positive or negative examples. The user is provided with 

tools for browsing the knowledge base to find additional relevant objects. 

ASK also initializes the list of statements in the justification window with seed justifica- 

tions which represent the system's reasons for selecting the current actions. Seed justifica- 

tions are derived from the clauses of strategy rules matching the positive and negative 

examples. In the windows shown below, objects and justifications have been seeded by ASK. 

)bjects Relevant to the Control Decisio 

CRITICAL-HYPOTHESES 
Value: classic-angina, unstable-angina 

CURRENT-GOALS 
Value: gather-evidence-for-differential 

DIFFERENTIAL 
Potential-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, nitroglycerine-tx, 
Potentially-conclusive-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, str 
Value: classic-angina, esophagitie, esophageal-reflux, pericarditis, unstable-angina, 

"KG 
Applicability: APPLICABLE 
Classes: diagnostic-tests. 
Cost: LOW 
Executed?: NO 
Potentially-confirms: classic-angina, prinzmetal-angina, unstable-angina, variant-an 

more below 

The user asserts a justification by selecting a feature of one of the objects presented in 

the relevant objects window. When a justification is selected, ASK paraphrases the fact 

in the justifications window. In the following interaction, the user indicates that EKG should 

have been chosen because it has low cost. Using the mouse, the user selects the statement 

"Cost: low" from the relevant objects window, and the statement "The COST of EKG 

is low" shows up in the justification window, as depicted below. 
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)bjects Relevant to the Control Decisio 

CRITICAL-HYPOTHESES 
Value: classic-angina, unstable-angina 

CURRENT-GOALS 
Value: gather-evidence-for-differential 

DIFFERENTIAL 
Potential-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, nitroglycerine-tx, 
Potentially-conclusive-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, str 
Value: classic-angina, esophagitis, esophageal-reflux, pericarditis, unstable-angina, 

EKG 
Applicability: APPLICABLE 
Classes: diagnostic4ests. 

Executed?: NO 
Potentially-confirms: classic-angina, prinzmetal-angina, unstable-angina, variant-an 

more be/ow 

At this point the user could tell ASK that she was finished. If the set of  justifications 

satisfied the learning objective, ASK would then turn the justifications into a new strategy 

rule. In this session, however, the user wishes to add more justifications. In particular, 

the user wants to say that EKG is appropriate in this situation not only because it has low 

cost, but also because it takes little time to perform. To be able to say this in the language 

of  justifications, the user needs to define a new feature. 

4.6. Acquiring a New Feature 

To define a new feature is to implement an attribute, function, or relation over some set 

of objects in the knowledge base. ASK can help the user define a new feature. Playing the 

role of a knowledge engineer, ASK elicits the information needed to implement the feature 

in the MU architecture. The interaction below shows the user defining a new feature called 

"time required." The user starts by clicking on the EKG object in the relevant objects win- 

dow, bringing up the following menu: 

;K( 

Display unit 
Remove Object 

Apply an existing feature 

I Define a new feature~ J" 

After obtaining a name for the feature, ASK needs to determine its general type. The 

type of a feature is a symbol-level property, dependent on the knowledge-base architecture. 

MU supports several varieties of control features, many of which are best implemented by 
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knowledge engineers (e.g., dynamic relations written in Lisp). ASK knows about how fea- 

tures are implemented in MU and makes it possible to acquire some of the more simple 

features, such as static attributes, interactively. To help make architecture-dependent terms 

such as "inferential value" concrete to the user, ASK offers instances of features types 

from the current knowledge base as exemplars. In the menu below, the user indicates that 

the time-required feature is an attribute of actions, analogous to the cost feature. 

[an attribute of actions (like COST)I• 
a class of actions (like DIAGNOSTIC-TESTS) 

an object (like DIFFERENTIAL) 
an inferential value computed by rules (like LEVEL-OF-SUPPORT) 

a dynamic relation (like POTENTIALLY-CONFIRMS) 
Help 

To complete the definition of a static attribute, ASK elicits information about the domain, 

data type, possible values, order, cardinality, and default value for the feature, and con- 

strains the user's choices whenever possible. 

which of these parent classes of EKG will Time-required apply' 

Acti°ns ~ Data ~ I D i a g n ° s t i c t e s t s ~ l ~  EKG 

Yes or No (like EXECUTED? of EKG) 
I one of a list of words (like COST of EKG)IJ' 

a member of a KB class (like CURRENT-GOALS) 
a number (like VALUE of AGE) 

a duration of time (like VALUE of EPISODE-DURATION) 
Help 

Help 

n there be more than one Time-required 

Yes 
[Nz 
Help 
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uired 

immediate 
few-minutes 

an-hour 
few-hours 

a-day 
few-days 

weeks 
months 

[ No default is applicable] 
Help 

Once the intentional properties of the feature are acquired, the values of the feature applied 

to the elements of its domain are elicited. For static attributes, ASK presents a table of 

the objects to which it applies, and the user specifies the value of the feature for each ob- 

ject. In the current example, the user enters the value of the time-required feature for all 

diagnostic tests, including the training examples EKG and Upper-GI-series. The table below 

shows the value of time-required for EKG, after it was entered by the user. 

he.required of Diagnostic-test~ 

Angiogram unknown 
Barium-swallow unknown 
Cardiac-enzyme unknown 
Chest-xray few-hours 
Cholesterol-level unknown 
Echo-cardiogram unknown 

EKG ~ ~ '  

Flat-plate-of-the-abdomen unknown 
Gall-bladder-series unknown 

More below 

4. 7. Using the New Feature in Justifications 

When the expert has finished defining time-required, the system can use it as any other 

feature and ASK can offer it as a possible justification. The dialog now returns to the justifica- 

tion interface, where the user selects the time-required as a justification for choosing EKG 

over Upper-GI-series: 

~bjects Relevant to the Control Decisior 

CRITICAL-HYPOTHESES 
Value: classic-angina, unstable-angina 

CURRENT-GOALS 
Value: gather-evidence-for-differential 

DIFFERENTIAL 
Potential-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, nitroglycerine-tx, 
Potentially-conclusive-evidence: barium-swallow, ekg, gastroscopy-with-biopsy, str 
Value: classic-angina, esophagitis, esophageal-reflux, pericarditis, unstable-angina, 

EKG 
Applicability: APPLICABLE 
Classes: diagnostic-tests. 
Cost: LOW 
Executed?: NO 
Potentially-confirms: classic-angina, prinzmetal-angina, unstable-angina, variant-an 
Potentially4riggered: None. 

I Time-required: FEW-MtN UTES Iw#" 

Value: unknown 
more below 
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At this point in the dialog, the user has indicated that the cost and time required of actions 

are factors to consider when choosing actions. The first three justifications represent the 

factors that the system would consider and were suggested by ASK. The user could have 

removed some of these seed justifications but did not in this case. From the combined set 

of justifications, ASK can generate a new strategy rule. 

4.8. Generating and Generalizing a Strategy Rule 

Given the user's justifications, ASK formulates a new strategy rule that accounts for the 

expert's critique of the system's performance. The new rule causes the expert's preferred 

action to be selected on the next iteration. 

The left-hand side of the new rule is constructed by transforming the list of justifications 

into left-hand-side clauses. The transformation from justifications to rule clauses is fairly 

straightforward. The internal representation of justifications is very similar to the clause 

form of strategy rules. The right-hand-side recommendation (in this case, SELECT) was 

decided by the credit assignment analysis. In the current example, ASK forms the follow- 

ing rule: 

IF (IN ga ther -ev idence- fo r -d i f fe ren t ia l  (current-goals))  

(IN ?ACTION (potent ia l-evidence d i f f e r e n t i a l ) )  

(~ (cost ?ACTION) low) 

(= (t ime-required ?ACTION) few-minutes) 

THEN (SELECT ?ACTION) 

In the process of forming rule clauses from justifications, ASK applies generalization 

operators. One operator is called turning constants into variables. In the strategy rule above, 

references to EKG have been replaced with the free variable ?ACTION, which is bound 

at runtime by the strategy-rule interpreter to each action that has been proposed and has 

not been filtered. The result is that the rule recommends the class of actions sharing the 

features of EKG in the justifications: the cost and time required. 

Another generalization operator is extending the reference of a feature from a test of 

equality to a test over some range or set of permissible values. In the example strategy 

rule, the < operator specifies that the third clause will succeed when the action has any 

value of cost equal to or less than Iow. ASK used a heuristic for applying this generaliza- 

tion; it found another selection rule that used < for the cost feature. 

In this example, however, ASK has no a priori information to help in extending the refer- 

ence of the new feature, time-required. It asks the user for guidance by posing hypothetical 
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variants on the current case to obtain boundary conditions on the acceptable range for the 

time-required clause in this rule. Since ASK lacks common sense, it has to ask whether 

the user would still accept the EKG if  it takes no time at all: 

Then ASK offers near-miss cases: 

Given this in~rmation,  ASK replaces the clause 

(= ( t ime-requ red ?ACTION) few-minutes) 

with the clause 

(~ ( t ime-requ red ?ACTION) few-hours). 

4.9 Verifying a Rule 

To evaluate the face validity of the generated rule, ASK presents a paraphrased translation 

to the user for verification. It also shows the operational consequences of the rule. 
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inowledge Acquisition Dialc 

I would paraphrase your advice as: 
Select an action when 

a current goal is gather-evidence-for-d~erential, and 
the action is in the potential-evidence of differential, and 
the cost of the action is less than or equal to low, and 
the time-required of the action less than or equal to few-hours. 

Considering this advice, the system would choose this action only: 
EKG 

Is this an improvement? 

~ase verify this advice. It is based on your justification. = 

[I agree with this rule. I /  

I would like to change the justifications. 
Let me look at it again. 

He/p 

This completes one session of the knowledge acquisition dialog. With the new strategy 

rule, the performance system now recommends only the positive example, EKG, when the 

goal is to gather evidence and the actions are potentially diagnostic. The new selection 

rule fails to match the negative example and the other proposed actions, and it shadows 

the more general rule that formerly matched all seven actions. 

The next subsection demonstrates how ASK can be used to acquire tradeoffs in a utility 

space. It is not essential to understanding the basic approach. 

4.10. Acquiring Tradeoffs 

The strategy rule just acquired is one of a family of rules that together constitute a strategy 

for selecting diagnostic actions. Selection rules can be viewed as tradeoffs among features, 

and a family of selection rules represents a set of acceptable tradeoffs. The new rule specifies 

that a moderate amount of time is acceptable if the cost is low and the diagnosticity is 

moderate. 

In terms of utility theory, the new rule occupies a region in a space with dimensions 

defined by the features measuring diagnosticity, cost, and timeliness. Points in this space 

can be interpreted as the values of a multiattribute utility function [Keeney and Raiffa 1976]. 

The dimensions are attributes and the regions represent values of equivalent utility. The 

shadows relation among rules corresponds to a partial order over values of utility; some 

regions have higher utility than others in the same attribute space. For example, because 

of the shadows relation, the new rule takes precedence over selection rules that mention 

only cost or time-required. The region corresponding to the new rule can be interpreted 

as having higher utility. In other words, actions selected by the new rule are preferred over 

actions that would have been selected by shadowed rules. 

To illustrate how ASK can be used to acquire other tradeoffs in the same space, this 

subsection sketches a second session where the user finds an exception to an existing rule. 

In this second scenario, the user runs the performance system on a case where initial 

data provides evidence that the patient could have a very serious condition which requires 
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immediate diagnosis. In this situation, the system suggests a set of actions that are potential 

evidence for hypotheses on the differential and have low cost. However, the user indicates 

that the system should ignore cost and concentrate on evidence that is potentially conclusive 

for hypotheses that are critical. The relevant objects and justification windows appear as 

follows: 

)1 

CRITICAL-HYPOTHESES 
Value: classic-angina, unstable-angina. 

CURRENT-GOALS 
Value: gather-evidence-for-differentiaL 

DIFFERENTIAL 
Potential-evidence: gastroscopy-w~th-biopsy, nitroglycerin-tx, stress-test, upper~ji-seri 
Potentially-conclusive-evidence: gastroscepy-with-biopsy, stress-test, upper-gi-series 
Value: classic-angina, esophagitis, esophageal-reflux, esophageal-spasm, unstable- 

STRESS-TEST 
Applicability: applicable 
Classes: diagnostic-tests. 
Cost: medium 

more be low 

isio 

GATHER-EVIDENCE-FOR-DIFFERENTIAL is in the CURRENT-GOALS. 
NITROGLYCERINE-TX is in the POTENTIAL-EVIDENCE of DIFFERENTIAL. 
STRESS-TEST is in the POTENTIAL-EVIDENCE of DIFFERENTIAL. 
]'he COST of NITROGLYCERINE-'IX is low. 
]-he COST of STRESS-TEST is medium. 

The positive example is Stress-test, which was not selected by the system because its cost 

was more than low. The negative example is Nitroglycerine-tx, which was selected by the 

system. The justifications in the window shown above were seeded by ASK; they correspond 

to the clauses of the strategy rules that picked Nitroglycerine-tx and not Stress-test. 

In the justification session, the user tells ASK to consider conclusive evidence for critical 

hypotheses. The set of critical hypotheses is already represented by a knowledge-base object. 

Critical-hypotheses is defined as a set of hypotheses that are active (and therefore on the 

differential) and time-critical (a feature of hypotheses). The relationship between conclusive 

evidence and critical hypotheses is not currently represented by a feature. The relationship 

is currently defined for the set of hypotheses on the differential. Since the set of critical 

hypotheses and the differential share the same domain, the feature implementing the 

potentially-conclusive-evidence relationship can be applied to the critical-hypotheses ob- 

ject. The user accomplishes this by clicking on the critical-hypothesis object and perform- 

ing the operations shown in the following windows. 
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~lembers of the class FEATURE. ¢ 

ACTIVE-P 
APPLICABILITY 

CLASSES 
COST 

CRITICALITY 
DIAGNOSTIC-DATA 

EXECUTED? 
EXPECTED-COST 

GENERALITY 
LEVEL-OF-SUPPORT 

NETWORK-DEPENDENTS 
POTENTIAL-EVIDENCE 

I POTENTIALLY-CONCLUSIVE-EVIDENCE ]• 

POTENTIALLY-RULES-OUT 
POTENTIALLY-TRIGGERED 

TIME-CRITICALITY 
TRIGGER-LEVEL 

VALUE 

The feature potentially-conclusive-evidence was conveniently defined to work for any 

set of hypotheses, and critical-hypotheses is a set of hypotheses. As a result, when the 

user applies the feature to critical-hypotheses, the set of potentially conclusive evidence 

for critical hypotheses is immediately computed. The newly-applied feature is displayed 

in the relevant objects window and becomes available as a justification. The updated rele- 

vant objects window shows the value of the feature as the singleton set containing the action 

Stress-test. In the window shown below the user selects this fact as a justification for choosing 

the stress test. 

)bjects Relevant to the Control Decisiol 

CRITICAL-HYPOTHESES 

[ Potentially-conclusive-evidence: STRESS-TEST,] J 

Value: classic-angina, unstable-angina. 
CURRENT-GOALS 

Value: gat her-evidence-for-differentiak 
DIFFERENTIAL 

Potential-evidence: gastroscopy-with-biopsy, nitroglycerin-Ix, stress-test, upper-gi-seri 
Potentially-conclusive-evidence: gastroscopy-with-biopsy, stress-test, upper-gi-series 
Value: classic-angina, esophagitis, esophageal-reflux, esophageal-spasm, unstable- 

STRESS-TEST 
Applicability: applicable 
Classes: diagnostic-tests. 
Cost: medium 

more below 

GATHER-EVIDENCE-FOR-DIFFERENTIAL is in the CURRENT-GOALS, 
NITROGLYCERINE-TX is in the POTENTIAL-EVIDENCE of DIFFERENTIAL. 
STRESS-TEST is in the POTENTIAL-EVIDENCE of DIFFERENTIAL. 
The COST of NITROGLYCERINE-TX is low. 
The COST of STRESS-TEST is medium. 
STRESS-TEST is in the POTENTIALLY-CONCLUSIVE-EVIDENCE of CRITICAL- 
HYPOTHESES, 

With this set of justifications, ASK generates the rule paraphrased to the user as follows: 
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Select an action when 
a current goal is gather-evidence-for-differential, and 
the action is in the potential-evidence of differential, and 
the action is in the potentially-confirming-evidence of critical-hypotheses, and 
the cost of the action is ignored. 

The final clause of the rule is a positive form of the dropping conditions generalization 

operator. It specifies explicitly that the cost criterion, which was mentioned in the system's 

existing rule, should be overridden by this new rule. The ignore clauses are used in deter- 

mining the shadowing relationship among strategy rules (Section 3.5). This new rule will 

shadow the existing rule. The operational effect is that the actions that are potentially con- 

clusive for critical hypotheses will be selected regardless of cost, if there are any such 

actions and hypotheses; otherwise, actions that provide evidence for any active hypotheses 

and have low cost will be selected. 

5. Experience Using ASK 

This section reports briefly on some test sessions performed to evaluate ASK. More detailed 

analysis of these experiments and the positive and negative results may be found in [Gruber 

1989]. 

ASK has been tested for the prospective diagnosis task [Cohen, Greenberg, and Delisio 

1987] in the domain of chest pain, which is the problem addressed by the MUM system 

and used as an example performance system in this article. The original MUM strategy, 

the strategic phase planner described in [Cohen, et al. 1987], was written by a knowledge 

engineer as a set of knowledge sources implemented in Lisp. ASK was used by its designer 

to (re)acquire MUM's strategic knowledge from scratch in the form of strategy rules. 

ASK was also tested with the physician who served as the domain expert for MUM. He 

was able to add domain-specific strategic knowledge to an existing general strategy in dialogs 

like those demonstrated in Section 4. In one session, the original domain expert taught a 

colleague how to use ASK. In general, this experience suggested that the following conditions 

are important for success at helping the domain expert teach a diagnostic strategy to ASK: 

• The relevant control features are defined in advance (e.g., potentially-conclusive-evidence 

relation of Section 4.10) or are analogous to existing features (e.g., the definition of time- 

required, which is analogous to cost, can be elicited by example as shown in Section 4.6). 

When new features have no analog, then it may require knowledge engineering skills 

to define them. The problem of defining features is discussed in Section 6.3. 

. The user understands the opportunistic control model that underlies the strategy-rule 

representation. If the user does not understand how the strategic knowledge is used, he 

or she may not give ASK useful information upon which to build strategy rules. For 

example, when the second physician used ASK for the first time, he tried to get it to 

follow a procedure-like plan: e.g., ask all the history and examination questions before 

proposing any diagnostic tests. This caused ASK to construct an overly general strategy 

rule, as described in Section 6.3. 
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Some representational limitations of the strategy-rule approach to control were revealed 

in another experiment in which ASK was used to reimplement NEOMYCIN's diagnostic 

strategy. One difference between ASK's strategy rules and NEOMYCIN's tasks and metarules 

[Clancey 1988; Clancey and Bock 1988] is the way in which the problem-solving state is 

represented. In NEOMYCIN, metarules are invoked by tasks, and tasks are invoked like 

subroutines with arguments. Some of the problem-solving state is represented by the calling 

stack for task invocation. In addition, metarules access and set global variables. These com- 

putational properties make certain kinds of strategic knowledge easier to represent. The 

task structure serves as a natural representation for goal-directed control, and the global 

variables and task arguments encourage a strategy with a persistent focus on the "current 

hypothesis" and "current finding." In contrast, ASK's strategy rules have no hierarchical 

calling structure and cannot set global variables. As a consequence, it is difficult to imple- 

ment a goal-directed (top-down) strategy or to manipulate the differential as a data struc- 

ture. ASK's representation and the corresponding elicitation metaphor is more suited to 

acquiring an opportunistic strategy. 

In principle, one can completely reproduce the observable behavior of the NEOMYCIN 

strategy using ASK, because the strategy-rule language together with MU's control features 

are Turing complete. In practice, knowledge engineering skills were required to coerce 

the desired behavior from strategy rules, mainly by defining control features. For example, 

the engineer using ASK had to define special control features to correspond to NEOMYCIN's 

"current hypothesis" and "pursued hypothesis" which were stated more naturally with meta- 

rules and variables in the NEOMYCIN language. The engineering effort went into defining 

sophisticated features. ASK is more helpful for building up associations between existing 

features and actions in strategic decisions. 

6. Analysis: Scope of Applicability, Assumptions, and Limitations 

Although the approach taken with ASK is independent of any domain, it necessarily sacri- 

fices generality for power. The ASK approach commits to a method of applying strategic 

knowledge that iteratively chooses among individual actions, employs strategy rules for 

the representation, and bases new knowledge on justifications of choices of actions. As 

a consequence, ASK has limited scope and requires some strong assumptions. This section 

will characterize the scope of applicability of ASK in terms of properties of a class of per- 

formances tasks and will explicate the critical assumptions and limitations that are inherent 

in the approach. 

61. Characteristics of Tasks to Which ASK Applies 

The problems to which ASK can be applied are those for which expert strategy is essential 

to the performance task and for which the strategy-rule knowledge representation and MU 

architecture are adequate. This is not a circular definition; it states that the applicability 

of the acquisition tool depends largely on the adequacy of the performance representation. 

Representational adequacy is judged with respect to the class of performance tasks and 
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the problem-solving method for which a representation is designed (see Section 2.1). So, 

ASK's applicability will be characterized in terms of tasks for which the strategy-rule rep- 

resentation and the strategy-rule control cycle are appropriate. 

The major characteristics of tasks to which ASK would apply are as follows: 

Actions can be selected one at a time (as opposed to sequences of  action). A task for 

which this characteristic often holds is reactive planning for robots, where uncertainty about 

the world and real-time constraints necessitate acting without projection. Robots controlled 

by reactive planners select actions on the basis of immediate features of the environment, 

without projecting the consequences of several possible sequences of actions and picking 

the best sequence. 

A task for which selecting actions one at a time is not appropriate is planning a set of 

drugs to cover an infection. MYCIN's therapy algorithm, for example, selects a collection 

of drugs to cover a set of infectious organisms using an algorithm written in Lisp [Clancey 

1984]. This task necessitates reasoning about the collective properties of groups of drugs 

and organisms. Since the utility of individual actions depends strongly on the other actions 

to be selected at the same time, the strategy-rule representation could not capture the desired 

drug-selection expertise. (If every possible collection of drugs was represented as a "superac- 

tion," then strategy rules could represent drug-selection criteria. However, this is not feasible 

for large numbers of drugs, and it reduces all strategic reasoning to a single decision.) 

Actions can be related directly to the situations in which they should be chosen. A positive 

example of a task with this property is selecting legal cases for argument, where cases 

are treated as actions. The merits of each case can be represented with features that describe 

its individual properties and its relationships to other cases and the current fact situation 

(e.g., Ashley's [1989] dimensions). A case-selection strategy might be modeled by relating 

the relevant features of legal situations to the features of cases that may be cited in the 

specified situations. For instance, in a trade secrets situation one might cite cases that make 

a claim about whether and how secrets were disclosed. 

A negative example is the management of cancer treatment plans, the domain of the per- 

formance system ONCOCIN [Tu, et al. 1989]. The strategy for cancer treatment in ON- 

COCIN is represented with protocols: skeletal plans that are instantiated with therapeutic 

actions for particular patients. In attempting to model the individual treatment steps as 

actions in ASK, we found that the justifications for choosing the next action in cancer pro- 

tocols were often statements of the form "because drug V is a member of the drug combi- 

nation VAM, which is the next chemotherapy to be administered to this patient according 

to protocol 20-83-1" rather than "VAM is useful for small cell lung cancer because this 

combination can help prevent the tumor becoming resistant." The justifications also did 

not include a description of the context in which drugs V, A, and M are competing with 

other possible drugs. The knowledge underlying the recommendation of the VAM drug 

combination is compiled into the skeletal plan for a protocol. In this domain it is unrealistic 

to expect the experts to justify treatment plans with underlying reasons for their use, because 

by their very nature protocols are experiments designed to test the effectiveness of treat- 

ment strategies. 
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In general, the opportunistic style of control afforded by ASK's representation generates 

plans based on underlying reasons for taking plan steps (actions), when they are available. 

A memory-based planner unfolds and instantiates stored plans, in which individual actions 

need no independent justification. Applications requiring domain-specific strategic knowl- 

edge often do both styles of reasoning about action. Within an ONCOCIN protocol, for 

example, actions may be modified or dropped for reasons relating to the dynamic situation 

(e.g., the condition of the patient). Strategic knowledge for modifying steps within a plan 

could be formulated in strategy rules and acquired with ASK if the position of an action 

in a plan were abstracted as a control feature. In ONCOCIN this knowledge is, in fact, 

represented with rules that are indexed by protocols? 

Local action-selection criteria can avoid global pitfalls. Computer players of adversarial 

games often are based on static evaluation of position. Their strategy for selecting a next 

move is to choose the action that scores best on the evaluation function. If the evaluation 

function can be structured as a conjunctive expression over features, ASK could be used 

to acquire it. For example, ASK can acquire the kind of strategy learned by Waterman's 

poker player: mappings from descriptions of the board and the opponent to betting actions 

[Waterman 1970]. A game-playing strategy based on mappings from features of game situa- 

tions to classes of moves will succeed if the features are usefully predictive--if what looks 

good locally does not lead to global pitfalls. 

A borderline negative example is chess, where strategy is often played out over several 

moves, and evaluation functions are prone to horizon effects. If the right features can be 

found, strategy rules can map them to actions and ASK can acquire them. If the features 

invented by the user lead to pitfalls, then acquiring rules that use these features will not 

produce a globally optimal strategy. 

In general, strategy rules support the reactive style of reasoning, where features are imme- 

diately available. In contrast, search-based planning can explore the outcomes of actions 

into the simulated future and back up the evaluation of the utility of the results. Therefore, 

ASK can be useful for tasks in which the effects of actions cannot be accurately predicted. 

The features acquired by ASK combine predictions of effects and the expected utility of 

effects. 

An optimal decision among actions is not required or possible for every choice of actions. 

The chest pain application is both a positive and negative example. Most of the evidence- 

gathering questions, tests, and therapies are chosen with relatively simple measures of utility, 

such as qualitative measures of diagnosticity, efficacy, and cost. In practice, the data and 

necessity to elicit probabilities and numeric estimates of utility for every possible combination 

of actions is not present. However, a negative example in the same domain is the last strategic 

decision that is typically made (or avoided): deciding whether to perform angiography and 

consequently open heart surgery. This decision has been successfully modeled using the 

techniques of decision analysis [Pauker and Kassirer 1981]. 

There is no reason in principle why ASK's model of selecting actions cannot be described 

in terms of expected utility, nor is there any fundamental reason why a Bayesian utility 

function could not be used as a feature in strategy rules. The practical difference is in how 

a utility model is constructed. A set of strategy rules form a qualitative model of the utility 
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of actions, where the union of actions recommended by rules are treated as equivalent. 

A multiattribute decision model [Keeney and Raiffa 1976] makes finer-grained, numeric 

estimates of the relative utility of each attribute, and combines them to rank the recom- 

mended actions. 

6.2. Critical Assumptions 

ASK makes progress in automating the acquisition of strategic knowledge, but many aspects 

of this difficult problem are not solved. What is left for further work is revealed by the 

assumptions that the ASK approach makes about the available knowledge and the people 

that can provide it. Some key assumptions are discussed here, and a more complete list 

is supplied in [Gruber 1989]. 

Requirements on the substantive knowledge. The ASK approach assumes that substantive 

knowledge of the performance system: 1) is already acquired or can be acquired, 2) is cor- 

rect, and 3) is sufficient for making the distinctions necessary for the strategic knowledge. 

The control features used by ASK depend on existing substantive knowledge in the infer- 

ence network of a MU performance system. For example, in diagnostic tasks, much of 

the important substantive knowledge is found in combination functions which specify how 

evidential support values and other inferential values are propagated through the inference 

network. In the MU environment, combination functions are acquired with a symbol-level 

interface--editors that present and elicit knowledge in the same form as it is used (i.e., 

rules, slot values, etc.). ASK assumes that the MU interface is adequate for acquiring sub- 

stantive knowledge. 

A more serious problem is the assumption that the substantive knowledge is correct. 

ASK's credit assignment algorithm determines what type of rule to acquire and which objects 

the rule must match and not match. The algorithm is based on the assumption that the 

features mentioned in existing strategy rules are correct. To account for the discrepancy 

between system and user actions, a new rule must match different features or different 

values of features than the existing strategy rules. If the features return incorrect values 

for some actions, this algorithm cannot correctly attribute the blame. 

Finally, ASK assumes that the features that are already defined or are easily defined 

within the existing knowledge base are sufficient for representing the desired strategy. The 

experiment in reimplemenfing NEOMYCIN described in Section 5 was an opportunity to 

test this assumption. NEOMYCIN's strategy makes heavy use of the subsumption relation 

among hypotheses. For example, one metarule specifies that, "If the hypothesis being focused 

upon has a child that has not been pursued, then pursue that child." The CH I LD metarela- 

tion assumed by this rule is a subsumption relation among hypotheses that was not present 

in the MUM knowledge base used in our experiment. It was simply not possible to acquire 

this strategic knowledge without reorganizing the substantive knowledge base (i.e., identify- 

ing abstract categories of diseases and relating them in a hierarchy to the existing diseases). 

In general, the overall effectiveness of ASK in acquiring strategic knowledge is bounded 

by the difficulty of representing the relevant control features for the domain. 
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Validity of experts'justifications for acquiring strategy. It was argued in Section 1 that 

the acquisition of strategic knowledge is difficult because domain experts do not normally 

express their strategy in a form that is generative, operational, and general (i.e., because 

of representation mismatch). However, it is observed that experts can give justifications 

for specific strategic decisions. The approach taken in ASK requires a strong assumption: 

that experts' justifications form a valid basis for acquiring the strategic knowledge of systems. 

There are several ways that this assumption might be wrong. 

One way is the problem of tacit knowledge--that the knowledge we wish to acquire from 

experts is not explicitly present in what they tell us. An influential theory in cognitive science 

argues that the knowledge underlying expertise is often tacit due to the process of knowledge 
compilation [Anderson 1986]. As experts learn problem-solving strategies from experience 

in a domain, they internalize the useful associations between situations and actions and 

become unaware of the inferential steps that they may have made as novices. For example, 

physicians in an educational setting may teach diagnostic strategy one way and practice 

it another way. In experimental settings, when people are asked to account for their decisions 

retrospectively they often refer to causal theories or judgments of plausibility rather than 

the pertinent stimuli and their responses [Nisbett and Wilson 1977]. And some writers argue 

that the difference between being able to act and being able to talk about action is funda- 

mental-that computer models of action are essentially incapable of capturing the real basis 

for action [Winograd and Flores 1986]. 

If experts cannot account for their strategic decisions, ASK cannot acquire the strategic 

expertise in a program. There is a difference, however, between assuming that experts can 

describe their own cognitive processes and assuming that they can justify their behavior. 

ASK only depends on the latter assumption. The assumptions that experts can provide valid 

justifications may be reformulated as the requirement that experts be good teachers. Remem- 

ber that ASK is designed to acquire knowledge for choosing actions that are observable 

and, therefore, objectively justifiable. The fact that medical school professors may not prac- 

tice what they preach does not mean that the justifications are invalid. On the contrary, 

good teachers can account for behavior in a principled way and in objective terms, even 

though their compiled expertise may not follow from their explanations. 

A second problem with the reliance on expert-supplied justifications is the assumption 

that domain experts can invent useful abstractions of the domain--the right control features. 

In the same way that an autonomous machine-learning program is limited by the description 

language provided by the program author, a knowledge acquisition system such as ASK 

is dependent on the abstraction skills of the user. 4 ASK relies on the user to invent features 

that not only are sufficient to distinguish actions in specific cases, but also lay out a space 

of relevant generalizations. This assumption would be unfounded if the expert defined a 

unique feature for every training case; the resulting strategy--a lookup table of special cases-- 

would be brittle. It is also possible that an expert can describe useful features in natural 

language but cannot implement them. 

The validity of an assumption about the skill level of users is an empirical question, 

and the answers will depend on the subjects and the tasks. ASK helps frame the research 

question by distinguishing between the ability to invent the necessary features, which is 

structured by the elicitation of justifications, and the implementation of features, which 
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is partially supported by a symbol-level interface for defining features. If an ASK user cannot 

implement a feature but knows what it should represent, she calls the knowledge engineer. 

The acquisition of features (new terms) is an interesting area for further study. 

6.3. Major Limitations 

Two of the fundamental limitations to the approach taken in ASK are discussed in this 

section. A more complete analysis is given in [Gruber 1989]. 

6.3.L Reliance on Knowledge Engineering Skills It should be clear from the preceding 

discussion that ASK depends on the ability of the user to define and implement control 

features. The fact that many features are not easy to implement means that ASK is still 

limited by the operationalization aspect of representation mismatch. The problem of opera- 

tionalizing terms is relevant to any learning system whose description language can be ex- 

tended by the user. Although ASK provides a helpful interface for defining new features, 

some new features require programming to implement. The problem is not a matter of 

learning the notation; one needs to know a lot more than the syntax of Lisp to be able 

to implement control features that capture sophisticated assessments of the state of problem 

solving. To implement a feature such as the potentially conclusive-evidence relation, one 

needs to understand the workings of the MU architecture at the symbol level. That is the 

expertise of knowledge engineers, not domain experts. 

There is a way in which ASK's elicitation technique can actually aggravate the problem 

of representation mismatch. ASK is designed to present the "user illusion" [Kay 1984] 

of an interface that accepts explanations for strategic decisions. In contrast, a symbol-level 

acquisition tool such as TEIRESIAS [Davis 1976] supports a straightforward interface to 

rules without disguising them as anything else. The problem with a system such as ASK 

that presents a knowledge-level interface to the user but internally makes symbol-level distinc- 

tions is that the user's model of how the system works can differ significantly from how 

the system actually functions. If the user's model is inaccurate, she cannot predict what 

the system will do with what is elicited. The result is a breakdown in communication and 

a failure in the knowledge acquisition process. 

One of the experiments in which ASK was used by physicians illustrates a case in which 

the user's ignorance of the operational semantics of strategy rules resulted in an unintended 

strategy. The expert wanted to teach the system to ask all applicable questions of one class 

before asking any applicable questions of another. He answered ASK's prompts in such 

a way that the credit assignment algorithm determined that it needed to acquire a filter 

rule, when in fact a selection rule was needed. When the expert explained (with justifica- 

tions) that questions of one type should not be selected, ASK generated a filter rule that 

prohibited questions of that type from ever being selected, which is a gross overgeneraliza- 

tion. The error was not apparent until the actions from the first class were exhausted and 

the system could not suggest any more actions to perform. To have avoided this problem, 

the user would have had to understand the operational difference between filter and selec- 

tion rules and the correspondence between his answers to ASK's prompts and the type of 

rule being acquired. 
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6.3.2. Overgeneralization Due to the Lack of a Training Set Although ASK uses generali- 

zation operators, it differs from most inductive learning techniques in that it does not learn 

from a large training set of examples. The user is responsible for choosing training examples 

that will produce useful generalizations. Unfortunately, the lack of a large training set limits 

the extent to which ASK can help with the generalization problem. 

It is easy to generate strategy rules with ASK that are overly general, because of the 

elicitation technique. Adding justifications specializes the resulting strategy rule; doing 

nothing leaves it general. Consider two strategic situations in the medical workup. In the 

early phase, actions are selected for their low cost and minimal diagnosticity. In later phases, 

actions that offer a potentially significant diagnostic or therapeutic value are selected at 

higher cost, even if lower-cost actions are available. If the selection rules for the first phase 

were acquired without any clauses identifying the strategic situation (i.e., features of the 

early phase), then the rules acquired for the early phase would also match when the later 

phase arose. There is no knowledge-free way for ASK to anticipate the missing clauses 

that specify the context in which a rule should apply. 

In practice, overgeneralizations of this type are discouraged by starting with an initial set 

of strategy rules that specify the basic strategic situations to distinguish. These rules serve 

as the basis for seed justifications (Section 4.5) upon which the user builds a set of justifica- 

tions for a specific case. The knowledge engineer can provide a set of very general strategy 

rules, anticipating some of the situations in which domain-specific tradeoffs will arise. Then 

the major role of the user is to specialize the general strategy with application-specific 

strategic knowledge. Overgeneralizations are still likely, however, when the user fails to 

elaborate the features of a novel context in which a selection is made among specific actions. 

If ASK kept a library of training cases, it might be able to check newly formed rules 

for inconsistency with past training and prevent excessive overgeneralization. Each case 

in a library would need the values of all relevant features of the positive and negative exam- 

pies and the features specifying the strategic situation. When a new rule is proposed, it 

could be tested against the objects in the case. If the new rule recommended a different out- 

come than the stored case, and did not shadow the rule associated with the case, then the 

two rules would be inconsistent. Unfortunately, keeping a library of cases is not trivial 

because the space of features can grow with experience. If a new rule mentions a new 

feature, it is incomparable with previous cases that did not mention the feature, unless 

the feature is static (i.e., its value does not change during the execution of the performance 

system). A general solution is to store a snapshot of the entire working memory with each 

case, so that all possible relevant features could be derived. This solution could be expen- 

sive. The whole issue of how to store experience for future learning is an intriguing avenue 

for research. Some promising approaches have been developed for case-based learning 

systems [e.g., Bareiss 1989; Hammond 1989]. 

7. Discussion: Key Design Decisions 

Design decisions are often hidden sources of power in AI systems. This section discusses 

a few characteristics of ASK's design as they relate to its function as an automated knowledge 

acquisition tool. 
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The strategy-rule representation supported by ASK is neither a novel way of formulating 

strategy nor an ad hoe design. For the purpose of implementing strategic knowledge, a 

procedural representation such as a Lisp function or an augmented transition network would 

have been more flexible. The goals in designing a representation for ASK are to be able 

to capture strategic knowledge in an executable form and to be able to elicit it from experts. 

Strategy rules were designed to represent mappings between states of the inference net- 

work and equivalence classes of actions, for each of three operations: propose, filter, and 

select. The declarative clausal form of strategy rules allows for execution by conventional 

unification-style matching and corresponds to the structure of justifications. Limiting the 

operational effects of rules to propose, filter, and select operations simplifies credit assign- 

ment and conflict resolution. The result is a representation in which strategic knowledge 

can be acquired. 

Two of the design decisions that led to this representation are critical to ASK's techniques 

for automated knowledge acquisition. First, strategic knowledge has been formulated as 

classification knowledge. Second, a global strategy is represented as a family of strategy 

rules with fine-grained effects. The rationale for each decision is given below. 

7.1. Formulating Strategic Knowledge as Classification Knowledge 

Strategy rules structure knowledge about what to do next as knowledge for classification: 

associations between strategic situations and classes of actions. The following capabilities 

follow from this design. 

The ability to use conventional machine learning techniques. ASK can use simple syn- 

tactic induction operators for generalization (turning constants into variables, dropping con- 

ditions, and extending reference). Whereas the problem of learning sequences and procedures 

with internal states is very hard [Dietterich and Michalski 1986], the problem of learning 

classification rules is well understood [Dietterich and Michalski 1983]. If mappings from 

states to actions define the classes of state descriptions in which actions are appropriate, 

a learner can generalize control knowledge by generalizing class descriptions. 

The ability to elicit machine-understandable information at the knowledge level. ASK 

can elicit applicability conditions for control decisions in machine-understandable terms, 

because the justifications from the user's point of view correspond to clauses in the rule 

representation. The list of justifications can be elicited in any order, since they are used 

as conjuncts in the class descriptions. 

The ability to use simple explanations for input and output. ASK can use simple template- 

based natural language generation to provide explanations. ASK's explanations are just lists 

of facts relevant to the current control decision paraphrased in English; they are essentially 

the same as justifications. ASK can get away with this simple explanation technique because 

every control decision is a fiat match of situations and associated actions. Because there 

is no implicit state, such as there is in an evolving control plan, the context of the decision 

to choose an action is fully explained by the clauses of matching strategy rules. The English 
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explanation--paraphrases of instantiated clauses--corresponds to what is happening at the 

symbol level? 

The use of explicit, abstract control knowledge for explanation was developed in the work 

of Swartout, et al. [Swartout 1983; Neches, Swartout, and Moore 1985] and Clancey 

[Clancey 1983a, 1983b]. ASK follows the principle arising from their work that an explana- 

tion of surface behavior should correspond to the structure of the system's strategy. However, 

in contrast to serious attempts at knowledge-system explanation, ASK's explanations do 

not describe the goal structure and focusing behavior of the system because the performance 

architecture does not support the corresponding control mechanisms (e.g., goal stacks, 

tasks, etc.). 

The inability to acquire goal-directed plans. As a consequence of formulating strategy 

as simple classification, it is awkward to acquire goal-directed strategy with ASK. To capture 

the knowledge for reasoning about action at different abstraction levels, the strategy-rule 

representation would have to be extended to support hierarchical planning in the sense of 

ABSTRIPS [Sacerdoti 1974]. Currently, all strategy rules within each category (propose, 

filter, select) are matched in parallel at each iteration. In one extension proposed in [Gruber 

1989], the rules would be partitioned into abstraction levels; at each level, rules would choose 

the subgoals for the lower abstraction level until the subgoals at the lowest level are grounded 

in individual actions. It is not clear whether the added structure would compromise the 

comprehensibility of the elicitation technique; this is a question for future research. 

7.2. Formulating Strategy as Fine-Grained Reactions 

Recall the third aspect of representation mismatch: domain experts have more difficulty 

devising a general procedure that accounts for their strategic expertise than describing what 

they actually do in specific cases. ASK shows that strategic knowledge can be acquired 

from experts if it is elicited in the context of specific choices among actions and then gen- 

eralized. This is possible because strategy rules model local decisions about actions that 

can be generalized to classes of situations and actions. In theory, what appears to be a 

global strategy can emerge from a series of local strategic decisions. For example, Chapman 

and Agre [1986] propose that complex, coherent behavior arises from the continued activa- 

tion of situation-action structures without top-down control. 

There is empirical support for the notion that globally coherent plans can be acquired 

by eliciting the knowledge for local decisions. For example, SALT succeeds at acquiring 

knowledge about how to construct globally satisfactory solutions to a class of design prob- 

lems [Marcus 1987, 1988]. SALT elicits from designers knowledge about constraints among 

individual parts--information that is relatively easy to specify--and offers help for putting 

the pieces together. SALT's results are relevant to ASK because constructing a solution 

requires managing the process by which parts are assembled under constraints; this is similar 

to managing the selection of actions. SALT can acquire the requisite knowledge from experts 

because it decomposes the larger task of assembling a solution into small decisions about 

what part to add, how to (immediately) check it for constraints, and how to recover from 

those violated constraints. 
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One can view SALT's design task and ASK's action-selection task as varieties of planning, 

where configured parts and diagnostic actions correspond to plan steps. This view reveals 

an important difference between the two architectures. SALT's planning method provides 

for a backtracking search, whereas ASK's planning method is purely reactive, with no pro- 

jection (lookahead) and no possibility to undo actions, This may prove to be an important 

variable in the question of whether knowledge of local decisions can add up to a global 

strategy. 

8. Conclusion 

The immediate outcome of this research is a method for partially automating the acquisition 

of strategic knowledge from experts. The issues that are raised, however, are more signifi- 

cant than the ASK program itself. Strategic knowledge was chosen for the study of knowledge 

acquisition because it illuminates the problems of representation mismatch. Furthermore, 

an extreme solution was selected--a declarative representation of reactive control knowl- 

edge-to test conjectures about sources of power for knowledge acquisition. The results 

have been analyzed in the preceding discussions of the scope of applicability, assumptions, 

limitations, and design decisions. This section concludes with a more general point brought 

out by this work and the future research it suggests. 

If representation mismatch describes the problem of knowledge acquisition, then solutions 

should offer some way to bridge the representational gap between the domain expert and 

the implementation. This suggests that the design of knowledge representations is central 

to addressing the knowledge acquisition problem. This article has emphasized the motiva- 

tions for and implications of ASK's representation of strategic knowledge in an eflbrt to 

elucidate principles of design for acquisition: how to design knowledge systems to facilitate 

the acquisition of the knowledge they need. 

Earlier reports [Bylander and Chandrasekaran 1987; Gruber and Cohen 1987] describe 

how knowledge representations and methods for task-level architectures can facilitate manual 

knowledge acquisition (i.e., mediated by tools that are passive). The design of representations 

can reduce representation mismatch from the implementation side by providing (generic) 

task-level primitives which enable experts to work directly with the knowledge base. 

The ASK research illustrates how automated knowledge acquisition can help overcome 

representation mismatch by eliciting knowledge in a form that is available from experts 

and yet is very close to an operational, generalizable representation. Again, the design 

of representations plays a central role in the success of the knowledge acquisition process. 

The major contributions of ASK to the process--active elicitafion of justifications, credit 

assignment, and syntactic generalization--are enabled by the declarative, role-restricted 

rule representation. At the same time, the kind of strategic knowledge that can be acquired-- 

opportunistic and reactive rather than goal-directed and plan-driven--is a function of what 

can be naturally represented in strategy rules. 

A similar power/generality tradeoff can be found in most knowledge acquisition tools. 

At the power end of the continuum lie OPAL-class elicitation tools [Freiling and Alexander 

1984; Gale 1987; Musen, et al. 1987], which acquire knowledge in representations customized 

to a problem-solving method and a particular domain. OPAL employs elicitation techniques 
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that are customized for both the skeletal-plan refinement method used in ONCOCIN and 

the domain of cancer therapy. As a result, OPAL can be used by domain experts. At the 

generality end lie TEIRESIAS-class tools [Davis 1976; Boose and Bradshaw 1987; Shachter 

and Heckerman 1987], which acquire knowledge at the symbol-level for formalisms that 

are not committed to particular tasks or domains. TEIRESIAS makes it easy to enter and 

modify rules but requires the user to bridge the representational gap from the domain- 

and problem-specific description to the backward-chaining architecture. Somewhere in the 

middle are the MOLE-class tools [Eshelman 1988; Klinker 1988; Marcus 1988], which 

acquire knowledge in representations that are method-specific and domain-independent. 

This article has shown several ways in which the design of ASK trades the generality of 

a representation useful for knowledge engineering for the power of a restricted representa- 

tion suitable for automated knowledge acquisition. 

Further research is needed to investigate how knowledge representations and reasoning 

methods can be designed to make the task of knowledge acquisition more amenable to 

computer-assisted techniques for elicitation and learning. 
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Notes 

1. Dietterich and Bennett [1988] refer to "making goals achievable" and "making goals more useful" 

2. Control features correspond to the metarelations in Clancey's tasks-and-metarules representation [Clancey and 

Bock 1988]. 

3. Thanks to Lawrence Fagan, Mark Musen, and Samson Tu for their help with this analysis. 

4. Getting the right primitive features has always been essential to getting a machine learning program to find 

useful generalizations. For example, Quinlan [1983] reports having spent three months devising a good set 

of attributes (board position features for chess) so that the learning program ID3 could produce a decision 

tree in seconds. 

5. This is an oversimplification. In actuality, the shadowing relations among strategy rules are not reflected in 

the explanation. Not surprisingly, they are a source of confusion for users, possibly because they do not fit 

the simple conceptual model of situation-action. 
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