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Automated Labeling of Movement-
Related Cortical Potentials Using

Segmented Regression
Usman Rashid , Imran Khan Niazi , Mads Jochumsen , Laurens R. Krol ,

Nada Signal , and Denise Taylor

Abstract— The movement-related cortical potential
(MRCP) is a brain signal related to planning and execution
of motor tasks. From an MRCP, three notable features can
be identified: the early Bereitschaftspotential (BP1), the late
Bereitschaftspotential (BP2), and the negative peak (PN).
These features have been used in past studies to quantify
neurophysiological changes in response to motor training.
Currently, either manual labeling or a priori specification
of time points is used to extract these features. The
limitation of these methods is the inability to fully model the
features. This paper proposes the segmented regression
along with a local peak method for automated labeling of
the features. The proposed method derives the onsets,
amplitudes at onsets, and slopes of BP1 and BP2 along
with time and amplitude of the PN in a typical average
MRCP. To choose the most suitable regression technique
a bounded segmented regression method, a change point
method and multivariate adaptive regression splines
were evaluated using the root-mean-square error on a
dataset of 6000 simulated MRCPs. The best-performing
regression technique combined with the local peak
method was then applied to a smaller set of 123 simulated
MRCPs. Error in onsets of BP1 and BP2 and time of PN
were compared with the errors in manual labeling by an
expert. The performance of the proposed method was
also evaluated on an experimental dataset of MRCPs
derived from electroencephalography (EEG) recorded
across two sessions from 22 healthy participants during
a lower limb task. The Bland–Altman plots were used to
evaluate the absolute reliability of the proposed method.
On experimental data, the proposed method was also
compared with manual labeling by an expert. Bounded
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segmented regression produced the smallest error on the
simulation data. For the experimental data, our proposed
method did not exhibit statistically significant bias in any
of the modeled features. Furthermore, its performance was
comparable to manual labeling by experts. We conclude
that the proposed method can be used to automatically
obtain robust estimates for the MRCP features with known
measurement error.

Index Terms— Electroencephalography (EEG),
bereitschaftspotential (BP), early BP (BP1), late BP (BP2),
movement-related cortical potential (MRCP), automatic
detection, segmented regression.

I. INTRODUCTION

M
OVEMENT-RELATED cortical potentials (MRCPs)

represent the cortical activity related to motor prepa-

ration and execution [1]–[3]. From an MRCP, three notable

features can be identified: the early Bereitschaftspotential

(BP1), the late Bereitschaftspotential (BP2), and the nega-

tive peak (PN). The Bereitschaftspotential (BP) starts around

2.0 seconds before the movement onset. Around 0.4 seconds

before the onset, its slope abruptly steepens. These two slopes

are characterized with reference to the baseline electroen-

cephalography (EEG) activity as BP1 and BP2 [4]. These

components of the MRCP have been studied across many

different populations [5]–[7], notably in the context of motor

training [8]–[12]. One motivation to use EEG data is to provide

a low cost and simple method to quantify motor training

compared to other approaches such as functional magnetic

resonance imaging, magnetoencephalography, and transcranial

magnetic stimulation [13]. For EEG data based quantification,

measures of BP1, BP2, and PN play an important role.

A. Problem Statement

A range of methods have been employed to obtain BP1,

BP2, and PN. In some of the past studies, onsets of BP1 and

BP2 were specified a priori from previous research and

their amplitudes were obtained for evaluation [8], [12], [14].

Whereas in other studies, BP1, BP2 and PN were identified

from the MRCP with visual inspection by single or multiple

experts [15], [16] who applied their knowledge of MRCPs to

label points of interest on the signals. The limitation of the first

method is that it limits the analysis to amplitudes as onsets are

pre-specified. The limitation of the second method is that it

cannot be applied automatically.
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Another limitation of these methods is that after specify-

ing or labeling the onsets of BP1 and BP2, their amplitudes

were obtained by taking an average over a range of the

signal [11], [16]. Averaging over a range reduces the vari-

ability due to the local noise present in the signal. However,

it discounts the negative slopes of BP1 and BP2 [4], as the

mean statistic can only partially model a linear trend which has

both a non-zero slope and a non-zero intercept. In yet another

approach, the difference in amplitudes at two time points was

used [15], which partially captures the change over time aspect

of the slopes but the amplitudes taken at single time points

from the signal are susceptible to local noise. Thus, there is

a need for an automated method of identifying the MRCP

features, which fully captures the underlying signal and is not

susceptible to local noise.

B. Related Work

In the context of Lateralized Readiness Potential (LRP)

which is another movement-related potential, there has been

an effort to propose an automatic detector for its onset.

Schwarzenau and Falkenstein proposed a novel method

based on segmented regression for estimating the onset of

LRPs [17]. Their method fitted two straight line segments

to the LRP and labeled the LRP onset at the intersection

of the two fitted lines. Alternatively, Miller, Patterson and

Ulrich proposed the use of a set voltage threshold for the

onset detection of the LRP from the group grand average

followed by a jack-knifing procedure to obtain a standard

error for the estimated onset [18]. Later, their jack-knifing

method was further improved by Smulders [19]. A detailed

investigation of these methods for detection of the LRP

onset was conducted by Mordkoff and Gianaros [20]. They

suggested that regression based methods should be used

and the best performing method was the one which only

allowed the slope of the second line to vary [20]. The obvious

disadvantage of using the jack-knifing approach is that the

onset and its standard error is computed for the entire group

and an arbitrary threshold voltage has to be specified a priori.

As these methods were proposed and applied to label a single

onset of LRP, these methods can not be directly applied to

label the two distinct onsets of BP1 and BP2 in a MRCP.

C. Novel Contributions

The aim of this research was to propose an automated

method for the identification of BP1, BP2, and PN from a

MRCP. To achieve this aim, we propose a local peak method

for labeling of PN, and segmented regression for labeling of

BP1, BP2. To choose the most suitable regression technique,

we present a novel bounded segmented regression method

which uses particle swarm optimization and evaluate it against

a change point method and multivariate regression splines.

To evaluate these techniques, we also propose a method to

simulate MRCPs.

The simulation provides datasets of MRCPs in which the

onsets and amplitudes of BP1, BP2 and PN are known.

The simulation results are used to select the most suitable

regression method for labeling of BP1 and BP2. The selected

regression method combined with the local peak method are

Fig. 1. An example MRCP obtained from averaging of EEG activity
over fifty right foot ballistic dorsiflexions performed by a healthy person.
‘0’ seconds represents time of the movement onset detected from two
sEMG electrodes placed on the right Tibialis Anterior (TA) muscle.

proposed for the identification of BP1, BP2, and PN from

a MRCP. The performance of the proposed method was then

evaluated both on simulated and experimental MRCP data and

compared to manual labeling by experts. We also validated the

simulated MRCPs against experimental MRCPs.

II. METHODS

Based on the comprehensive discussion of MRCPs found

in “What is the Bereitschaftspotential?” by Shibasaki and

Hallet [4], we make the following assumptions about

the MRCP. Refer to Figure 1 for an example signal.

1) BP1 and BP2 can be modeled by two straight lines with

non-zero slopes and intercepts.

2) PN can be modeled as a negative peak and is in close

vicinity to the movement onset.

3) EEG activity before the onset of BP1 can be modeled as

a straight line with a zero slope but a non-zero intercept.

A. Methods for Labeling MRCPs

In order to label the PN in an MRCP, we used the local peak

method (LPM), which in addition to finding the minimum

value, also ensures that the adjacent samples are at higher

values [21]. LPM finds the PN in the vicinity of the movement

onset. We defined this vicinity as a 1 second window before

and after the movement onset to cater to the large variation

across MRCPs. findpeaks function from MATLAB 2017b

(MathWorks, Inc., Natick, MA, USA) was used to apply this

method.

1) Labeling of BP1 and BP2: In order to label the onsets of

BP1 and BP2, we used the MRCP signal from 3.0 seconds

before the movement onset up to PN, represented by y(n).

To this signal, we fitted three line segments. The first segment

corresponds to the baseline activity, the second to BP1 and the

third to BP2, as given below.

ŷ(n) =

⎧

⎨

⎨

⎨

⎩

b1 n ≤ n1

m2n + b2 n1 < n ≤ n2

m3n + b3 otherwi se

(1)
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where n is the sample number, ŷ(n) is the fitted value of the

MRCP signal at sample number n, [m2, m3] and [b1, b2, b3]

are the slopes and the intercepts of the three segments respec-

tively; and n1 and n2 are the onsets of BP1 and BP2. The

first segment has only an intercept term as it represents the

baseline EEG which is assumed as such. For known n1 and n2,

the coefficients of this model were obtained with least squares

linear regression. To find n1 and n2, we evaluated the following

three methods.

a) Bounded Segmented Regression (BSR): To fit the model

defined by Equation 1, we set up the following optimization

problem.

min
n1,n2

n1
�

n=1

|b1 − y(n)|

+

n2
�

n=n1+1

|m2n + b2 − y(n)|

+

L
�

n=n2+1

|m3n + b3 − y(n)|

nl
1 ≤ n1 ≤ nu

1

nl
2 ≤ n2 ≤ nu

2 (2)

This problem finds n1 and n2 corresponding to BP1 and

BP2 within the provided bounds for the three straight line seg-

ments fitted to the recorded signal y(n) which has L number of

samples. Given a set of n1, n2, it also computes the coefficients

(b1, m2, b2, m3, b3) of the three line segments. Thus, this

problem encompasses two optimization problems. (i) Finding

n1 and n2. (ii) Nested inside (i), the second problem is finding

the best fit line segments on intervals defined by n1 and n2.

The first problem is defined as minimizing the sum of L1

norms of errors over the three segments. L1 norm was chosen

over the L2 norm as the first segment which represents the

baseline activity is modeled only with an intercept (b1) and

zero slope. As L2 norm squares the errors, it would give more

weight to the first segment which has only one degree of

freedom. This formulation for finding n1, n2 does not allow

guaranteed global optimum. Therefore, to increase the chances

of finding the global or a near-global optimal solution, we used

particle swarm optimization algorithm (PSO) which is a global

approach to optimization [22]. PSO has been found to produce

better results compared to traditional approaches in solving

similar non-linear regression problems [23]–[25]. Furthermore,

the optimization was run twice starting at randomly chosen

n1, n2, and the solution with the smaller cost was selected

to increase the chances of finding the global optimal or a

near-global optimal solution. particleswarm function from

MATLAB 2017b (MathWorks, Inc., Natick, MA, USA) was

used for this purpose. Swarm size was set to 6. The lower and

upper bounds for n1 were set at sample numbers corresponding

to -2.5 seconds and -1.0 seconds with respect to the movement

onset respectively. The bounds for n2 were set at -1.0 seconds

to the time of PN with respect to the movement onset. These

are reasonably large bounds keeping in mind the variations

across MRCPs.

The second problem is finding three best fit line segments

on intervals defined by n1 and n2. These three problems were

solved by using least squares regression. This minimizes the

L2 norm of the errors and it is a convex optimization problem

with a guaranteed global optimum. mldivide function from

MATLAB 2017b (MathWorks, Inc., Natick, MA, USA) was

used for this purpose.

b) Change Point Method (CPM): This method was selected

from the change point literature. It uses an exhaustive

algorithm based on dynamic programming to find n1 and

n2 while minimizing a linear function for the underlying

segments [26], [27]. The advantage of this method is that

it is exhaustive while providing fast convergence. It has two

disadvantages. First, it is unbounded and thus can find n1 and

n2 at any point in y(n). Second, it does not fully satisfy the

third assumption which is that the baseline has a zero slope.

Rather, it fits a line which has a non-zero slope to the baseline.

To run this method, findchangepts function from MATLAB

2017b (MathWorks, Inc., Natick, MA, USA) was used with

linear statistic and maximum number of change points set to 2.

c) Multivariate Adaptive Regression Splines (MRS): Multivari-

ate adaptive regression splines with two knots corresponding

to the onsets of BP1 and BP2 was also evaluated. This method

fits a piece-wise linear function with three segments to y(n).

Traditionally the fitted model is stated in the following form.

ŷ(n) = a0 + a1max(0, n − n1) + a2max(0, n − n2) (3)

where [a0, a1, a2] are the coefficients of the fitted model.

Although it satisfies the third assumption, like the change

point method it is also unbounded. To determine n1 and n2,

ARESLab: Adaptive Regression Splines toolbox

version 1.13.0 was used [28], [29].

B. Proposed Method for Simulation of MRCPs

For appraisal of the above methods, we set up the

simulation of MRCPs in SEREEGA [30]. It is a MATLAB

(MathWorks, Inc., Natick, MA, USA) based open-source

toolbox dedicated to the generation of simulated epochs of

event-related EEG data.

We simulated a typical average MRCP by summing together

two separate event-related potentials (ERPs) modeled using

a Gaussian function. The peak latency, peak amplitude, and

total width of the first ERP was set at -0.5 seconds, -2.5 uV

and 3.0 seconds respectively. The second ERP was added

at 0 seconds, with a peak amplitude of -10 uV and total

width of 1.0 seconds. Summed together, these resulted in

an MRCP with BP1 onset at -1.5 seconds, BP2 onset at -

0.5 seconds, and PN at 0 seconds, as shown in Figure 2. The

parameters of the simulation were based on the variability

reported in the past research. Shibasaki and Hallet reported

that BP1 starts around 2.0 seconds before the movement

onset, followed by BP2 which starts around 0.4 seconds

before the movement onset [4]. Wright et. al. in a study on

motor planning reported that BP1 started around -1.79 ± SD

0.28 seconds and BP2 started around -0.72 ± SD 0.21 seconds

in a group of non-musicians [16]. In the past, means and

standard deviations for different features were not always

stated explicitly. Thus, the values for these parameters were
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Fig. 2. On the left, a simulated MRCP obtained with SEREEGA/MATLAB (MathWorks, Inc., Natick, MA, USA) by adding two ERPs and white
noise (6 dB). On the right, the simulated ERPs derived by applying the 41 variations.

derived from the figures in these articles [4], [7], [11], [13],

[15], [16]. Following 41 random variations were added to the

simulation. These variations are also shown in Figure 2. Only

one variation was applied to each simulated MRCP.

1) BP1 onset. The onset of BP1 was varied from -1.5 to

-2.0 seconds with a step of 0.1 seconds. This variation

was applied by changing the width of the first ERP in

the simulation.

2) BP2 onset. The onset of BP2 was varied from -0.3 to

-0.7 seconds with a step of 0.05 seconds. It was applied

by changing the latency of the first ERP. An equal

change was also applied to the width of both ERPs to

keep the remaining potentials at the same latencies.

3) PN time. The time of PN was varied from -0.2 to 0.2

seconds with a step of 0.05 seconds. It was applied

by changing the latency of the second ERP. An equal

change was also applied to the width of the second ERP

to keep the remaining potentials at the same latencies.

4) BP2 amplitude. To produce variation in the amplitude

of BP2, the peak amplitude of the first ERP was varied

from −2.5 to −5 uV with a step of 0.5 uV.

5) PN amplitude. To produce variation in the amplitude

of PN, the peak amplitude of the second ERP was varied

from −10 to −15 uV with a step of 0.5 uV.

The latencies of BP1, BP2 and PN, and the amplitudes of

BP1, BP2, PN obtained from the sum of the two ERPs at the

latencies of BP1, BP2, time of PN provided the ground-truth

data. A white noise was added to the sum of ERPs to produce

simulated MRCPs under 3 signal to noise ratios (SNR) (6 dB,

3 dB, 0 dB) [31]. The signal to noise ratio was set by changing

the root mean square value of the white noise with respect to

the peak amplitude of the second ERP which corresponds to

amplitude of PN. The simulated MRCPs were filtered with a

low pass, 2nd order, zero-phase Butterworth filter with cut-off

at 5 Hz. These filtered MRCPs were used for further analysis.

Thus, in the subsequent text, a simulated MRCP refers to

the simulated MRCP obtained at the end of the filtering

process.

C. Simulated MRCPs

Three sets of MRCPs were simulated. Set I contained

2000 MRCPs for each SNR condition with random variations.

Set II contained 41 MRCPs for each SNR condition with one

MRCP corresponding to each variation. Set III was simulated

in order to evaluate the validity of the simulated MRCPs.

This set consisted of 42 simulated MRCPs, whose BP1,

BP2 and PN latencies and amplitudes were copied from expert

labels of experimental MRCPs (discussed next). To account

for potential MRCPs with non-zero baselines, without having

an explicit measure of baseline amplitude, BP1 amplitude

was first subtracted from BP2 and PN amplitudes before

simulation, and BP1 amplitude was subsequently added to the

entire simulated MRCP after lowpass filtering. The simula-

tion procedure was otherwise identical. This set allowed us

to investigate the extent to which simulated MRCPs match

experimental ones, as described in section II-F.3.

D. Experimental MRCPs

The experimental MRCPs used in this research were

recorded from 22 healthy participants (Average age:

36 ± 6 years, 10 female) who were recruited through pro-

fessional networks and local advertising [31]. Participants

were excluded if they had a history of any neurological

disorders or epilepsy. All the participants signed a written

consent form before data collection. Ethical approval for

the study (17/CEN/133) was obtained from Central Health

and Disability Ethics Committee (HDEC), New Zealand in

accordance with the Declaration of Helsinki.

The participants performed 50 self-paced ballistic dorsi-

flexions in two data collection sessions over two days. The

laboratory setup is illustrated in Figure 3. The data was

bifurcated into session I and II across the two recording days.

Thus, session I corresponds to recording on the first day and

session II corresponds to recording on the second day.

Movement onsets were obtained from two surface elec-

tromyography (sEMG) electrodes placed on the right Tib-

ialis Anterior (TA) muscle. EEG data was cleaned with
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Fig. 3. An illustration of the laboratory setup for recording of EEG
and sEMG data from a participant performing self-paced ballistic
dorsiflexions.

filtering, channel interpolation, manual and automatic epoch

rejection, and independent component analysis (ICA) in

EEGLAB/MATLAB (MathWorks, Inc., Natick, MA, USA).

47.1 ± 10.6 and 48.8 ± 1.5 epochs were retained after rejec-

tion at 125 uVpp threshold for session I and II respectively.

Whilst the standard deviation of the rejection rate appears

higher in session I, this can be explained by the rejection of all

the epochs for one of the participants whose sEMG data was

lost. During the ICA analysis, components corresponding to

eye blinks, or limited to only one electrode and a few epochs,

were removed. runica algorithm was used and 3 components

were removed on average. MRCPs were obtained from FC3,

FCz, FC4, C3, Cz, C4, CP3, CPz, CP4 channels by applying

a small laplacian filter with center at Cz, followed by a 2nd

order, zero phase, Butterworth filter with a low pass cut-off

at 5 Hz, and averaging across epochs. SNR for the MRCPs

in session I and II was 6.00 ± 2.39 dB and 5.70 ± 2.40 dB,

respectively.

E. Manual Labeling of MRCPs

For comparison of the proposed method against experts,

simulated MRCPs from set II (n = 123) and the experimen-

tal MRCPs were manually labeled. Experts with 3-8 years

experience working with MRCPs, manually labeled both the

simulated and the experimental MRCPs using a custom MAT-

LAB 2017b (MathWorks, Inc., Natick, MA, USA) graphical

user interface tool. This tool presented a MRCP as a 6 second

epoch centered at the movement onset, with 3 seconds of data

before and after the movement onset as shown in Figure 1.

The experts labeled the onsets of BP1, BP2 and the PN using

the mouse pointer. BP1 onset was labeled at the beginning of

the negative slope, BP2 onset was labeled at the time when

the slope increased abruptly, and PN was labeled at the time

of the most negative amplitude. Amplitudes at the onsets of

BP1, BP2 and the time of PN were obtained from the labeled

time points. The slopes of BP1 and BP2 were mathematically

computed from these time points and amplitudes.

F. Statistical Analysis

The analysis was performed in MATLAB 2017b (Math-

Works, Inc., Natick, MA, USA). We used root-mean-square

error (RMSE) to compare errors incurred by different methods

on both the simulated and experimental datasets. RMSE was

interpreted as the accuracy of the method with the ideal value

being zero [20], [32]. RMSE was used instead of sample

mean as RMSE incorporates both the central tendency and

the variability of the data. Pair-wise permutation test was

used to evaluate statistical differences in RMSE across dif-

ferent methods [33]. Beside the validity of the measure under

consideration, a permutation test requires that the assumption

of exchangeability is satisfied [34]. As in our case errors

were obtained by different methods from the same data,

the assumption of exchangeability required that the errors from

the same pair be randomly permuted [35]. Significance level

was set at 0.05.

1) Evaluation on Simulated MRCPs: For evaluation of LPM,

CPM, MRS and BSR techniques set I of the simulated MRCPs

was used (n = 6000). Failure rate, RMSE for the onsets of BP1,

BP2 and time of PN were obtained for comparison. RMSEs

were also obtained for the amplitudes of MRCPs at the onsets

of BP1, BP2 and time of PN both from the simulated signals

and the fitted models. From the fitted models, the amplitudes

at the onsets of BP1, BP2 and time of PN were obtained

from Equation 1 as b1, m2n2 +b2 and m3 L +b3, respectively.

This comparison was performed based on the hypothesis that

the amplitudes obtained at single points from the simulated

MRCPs would have larger error compared to the amplitudes

obtained at single points from the fitted models. Essentially,

this allowed us to see how much closer the model came to the

ground-truth (pre-noise MRCP), compared to the simulated

signal (noise added filtered MRCP). Using the results from

these analyses, better performing techniques were combined

to formulate our proposed method for automated labeling of

the MRCPs.

From set II of the simulated MRCPs (n = 123), onsets of

BP1, BP2 and time of PN were obtained using the proposed

method and compared against those labeled by an expert.

The error for the time points was obtained by subtracting

the ground-truth from the labeled time. RMSE was used for

comparison.

2) Evaluation on Experimental MRCPs: Onsets, amplitudes

at onset and slopes of BP1, BP2, and time and ampli-

tude of PN were obtained for the experimental MRCPs

(n = 22 × 2) using the proposed method. Absolute reliability of

the proposed method to identify these features across the two

sessions was evaluated using Bland-Altman plots [36]. Bias, t-

test for bias equal to zero, and coefficient of repeatability (CR)

were reported. Bias was calculated as the mean of differences

across the two sessions and interpreted as the systematic

difference in the feature across the two sessions. Significance

level for the t-test was set at 0.05. CR was calculated as

1.96 times the standard deviation of differences and interpreted

as the measurement error below which the absolute differences

between two sessions would lie with 0.95 probability [36].

The proposed method was compared to manual labeling by

an expert in terms of the error across sessions in the onsets,

amplitudes at onsets and slopes of BP1, BP2 along with time

and amplitude of PN. This comparison was performed based

on the hypothesis that the automated method would result

in smaller error as compared to the manual labeling method.

RMSEs was obtained for this comparison.
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TABLE I

RMSES IN SECONDS FOR ONSETS OF BP1, BP2 AND TIME OF PN WITH RESPECT TO THE MOVEMENT ONSET UNDER DIFFERENT

SNR CONDITIONS IN SIMULATED MRCPS. SIM. VAR. AND SIM. STEP STAND FOR THE SIMULATED

VARIABILITY AND THE SIMULATED STEP. H� STANDS FOR NULL HYPOTHESIS

3) Validation of Simulated MRCPs: To evaluate the validity

of the simulated MRCPs, the experimental MRCPs were

compared to their simulated copies in Set III. Cosine similarity

between the experimental MRCPs and their simulated versions

up to the negative peak was obtained as follows [37].

r =
u.v

kuk × kvk
(4)

where u, v represent the two MRCPs as vectors. ‘.’ represents

the dot product between the two vectors, and k.k represents

the L2 norm of a vector.

III. RESULTS

A. Evaluation on Simulated MRCPs

1) Failure Rate: The evaluated techniques did not always

succeed in fitting a model. LPM was successful in finding PN

in all cases under the three SNR conditions. Similarly, BSR

was also successful in all cases under all the SNR conditions.

The failure rate for CPM was 0%, 2.2% and 11.3% for 6 dB,

3 dB and 0 dB, respectively. For MRS, the failure rate was

0.35%, 1.25% and 1.95% for SNR at 6 dB, 3 dB and 0 dB,

respectively. Thus, the bounded segmented regression method

for finding onsets of BP1 and BP2 is clearly superior with

respect to failure rate.

2) RMSEs for BP1, BP2 Onsets and Time of PN: The root

mean square errors for the onsets of BP1 and BP2 and the

time of PN are given in Table I. The error corresponding to

each technique was calculated from successful cases only. The

root mean square error for PN time was smallest, followed by

BP2 and BP1 respectively. MRS performed poorly under all

SNR conditions for both BP1 and BP2 onsets, thus, it was

excluded from further analysis.

For BP1 onset, BSR produced smaller error under all three

SNR conditions compared to CPM and these differences were

also statistically significant ( p < 0.05). Compared to simulated

variation, BSR produced smaller error for BP1 onset at 6 dB,

and larger error at 3 dB and 0 dB.

For BP2 onset, CPM produced smaller error at 6 dB and

3 dB compared to BSR. However, these differences were

smaller than 0.001 seconds and also did not achieve statistical

significance ( p > 0.05). Whereas, at 0 dB, BSR had smaller

(p < 0.05) error compared to CPM. Compared to simulated

variation, both BSR and CPM produced smaller error under all

Fig. 4. RMSEs for amplitudes at onsets of BP1, BP2 and time of PN
taken from the simulated MRCP and the fitted models using BSR and
LPM under three signal to noise ratios (6 dB, 3dB, 0 dB). ‘***’ denote
p < 0.001 for the null hypothesis that the two RMSEs are equal.

SNR conditions. These results suggest that BSR is superior in

case of BP1 onset and both BSR and CPM detect very similar

BP2 onsets. Thus, CPM was dropped from further analysis at

this stage.

3) Model Prediction: Using the BP1, BP2 onsets and time

of PN, the amplitudes at these time points were obtained from

both the fitted model as given by Equation 1 and the simulated

MRCP signals. The errors are shown in Figure 4 for BSR and

LPM. The error for the fitted model was smaller for BP1 and

BP2 across all three SNR conditions compared to amplitudes

taken from the simulated MRCP signals. Whereas, the error for

PN was smaller for the signal amplitudes across all three SNR

conditions. All these differences were statistically significant

(p < 0.05).

4) Comparison With an Expert on Simulated MRCPs: Based

on results from the previous sections, BSR was selected

for identification of BP1 and BP2 onsets while LPM was

selected for identification of the time of PN. These techniques

were applied to the simulated data to fit models as given

in Equation 1. The amplitudes for BP1, BP2 onsets were

computed from the fitted model. The amplitude for PN was

calculated from the MRCP signal. The slopes were taken
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Fig. 5. Distribution of errors for onsets of BP1, BP2 and time of PN for
manual and automatic labeling of the simulated MRCPs.

from the fitted model. The combination of these techniques

is referred to as the proposed method in the text.

From simulated dataset II, the errors in the onsets of BP1,

BP2, and time of PN identified by the proposed method are

plotted against the error in labeling of these time points by an

expert in Figure 5. This plot indicates that the errors from both

the manual labeling and automated labeling were normally

distributed.

The RMSE for onset of BP1 was 0.356 seconds for the

expert and 0.478 seconds for the proposed method, respec-

tively. Similarly, the RMSE for BP2 onset was 0.195 seconds

and 0.163 seconds for the expert and the proposed method,

respectively. In case of PN, the RMSE for the expert and

the proposed method was 0.096 seconds and 0.036 seconds,

respectively. The p-values for null hypotheses corresponding

to RMSE in onsets of BP1, BP2 and time of PN were 0.001,

0.010 and <0.001 respectively. These results suggest that the

proposed method incurred smaller error in identifying the

onset of BP2 and the time of PN compared to the expert.

Whereas, the proposed method had larger error in identifying

the onset of BP1 compared to the expert.

B. Evaluation on Experimental MRCPs

The proposed method was applied to the experimental data.

The results for two of the MRCPs are shown in Figure 6. The

proposed method successfully found all the features in all the

cases.

1) Absolute Reliability With Bland-Altman Plots: The Bland-

Altman plots for the features obtained for the MRCPs from

two sessions are given in Figure 7. The Bland-Altman plots

do not exhibit any systematic trends, except in case of onset

of BP1 and time of PN where the error variability appears to

be non-uniform.

Furthermore, there was insufficient evidence to reject the

null hypothesis that there was zero bias in any of the features.

The coefficient of repeatability was smallest for the time of

PN (0.279 seconds), followed by BP2 (0.571 seconds) and

BP1 (1.279) respectively. On the other hand, for amplitudes

an opposite trend in the size of CR was observed. CR was

Fig. 6. Experimental MRCPs from two different participants labeled by
the proposed method. The top MRCP had the lowest RMSE from the
fitted model. Whereas, the bottom MRCP had the highest RMSE from
the fitted model.

TABLE II

RMSES FOR ONSETS OF BP1, BP2, TIME OF PN, AMPLITUDES AT

THESE TIME POINTS, AND SLOPES FOR BP1, BP2. THESE

ERRORS WERE OBTAINED FROM BOTH THE MANUAL

AND AUTOMATED LABELING OF EXPERIMENTAL

MRCPS FROM TWO SESSIONS

smallest for amplitude at onset of BP1 (1.988 uV), followed

by amplitude at onset of BP2 (2.867 uV) and amplitude of

PN (5.032 uV) respectively. Similarly, CR for slope of BP1

(3.016 uV/s) was smaller than that for BP2 (9.305 uV/s).

2) Comparison with an Expert on Experimental MRCPs: The

comparison of RMSE from the proposed method and manual

labeling for onsets of BP1, BP2, time of PN, amplitudes

at these time points, and slopes for BP1, BP2 is given in

Table II. There was not enough evidence (p > 0.05) to

reject the null hypothesis that the two methods incurred same

errors. Nonetheless, there were some notable differences in

magnitude of the error across the two methods. The proposed

method incurred larger RMSE in onset of BP1. Also, the pro-

posed method achieved smaller error for the slopes of both

BP1 and BP2.

C. Validation of Simulated MRCPs

Two experimental MRCPs along with their simulated coun-

terparts in Set III, and the cosine similarity between the

experimental MRCPs and their simulated versions is shown

in Figure 8. The mean and standard deviation of the similarity

index was 0.918 ± 0.078. These results suggest an excellent

agreement between the experimental MRCPs and their simu-

lated versions in majority of the cases.
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Fig. 7. Bland-Altman plot for onset of BP1 (a), onset of BP2 (b), time of PN (c), amplitude at onset of BP1 (d), amplitude at onset of BP2
(e), amplitude of PN (f), slope of BP1 (g), and slope of BP2 (h) for experimental MRCPs identified by the proposed method in session I and II.

Fig. 8. (a), (b) Examples of experimental MRCPs along with their
simulated counterparts. (a) corresponds to the case with highest cosine
similarity of 0.985. (b) corresponds to the case with lowest cosine similar-
ity of 0.646. (c) The cosine similarity between the experimental MRCPs
and their simulated versions. MRCPs at no. 33 and 34 correspond to the
participant whose sEMG data was lost during recording.

IV. DISCUSSION

We have proposed and validated a method for automated

labeling of movement-related cortical potentials. This method

provides robust estimates of the MRCP features. On simulated

MRCPs, BSR outperformed MSR and CPM in terms of

failure rate, RMSEs in onsets of BP1, BP2, and time of PN.

Also, simulation results showed that amplitudes obtained from

fitted models result in smaller error compared to amplitudes

directly taken from MRCP signals, except in the case of PN.

Based on these results, BSR was selected for identification

of BP1 and BP2 while LPM was selected for identifica-

tion of PN. When compared against labeling of onsets of

BP1, BP2, and time of PN on simulated MRCPs by an

expert; the proposed method had larger ( p < 0.05) error

in the onset of BP1 while it had a smaller (p < 0.05)

error in the onset of BP2 and time of PN. On the experimental

MRCPs, the proposed method did not show any systematic

trends in Bland-Altman plots of the features with minor

exceptions discussed in the following paragraphs. There was

insufficient evidence (p > 0.05) to suggest the presence of

bias in features across the two recording sessions. Compared

to manual labeling of MRCPs, the proposed method had larger

RMSE in onset of BP1 and smaller RMSEs in slopes of both

BP1 and BP2. However, these differences did not achieve

statistical significance.

A. Evaluation on Simulated MRCPs

In terms of RMSE for onset of BP1 the BSR performed

better than the other two methods, whereas its performance for

BP2 onset was comparable to that of CPM. We also evaluated

the failure rate. For CPM it was generally higher compared to

BSR and considerably higher (approx. 11%) under 0 dB SNR.

The MSR method consistently performed poorly in terms of

both the failure rate and RMSE. Thus, MSR and CPM were

excluded from further analysis.

The RMSEs of the amplitudes predicted from the fitted

models at BP1 and BP2 onsets were smaller compared to

amplitudes derived directly from signals. This difference can

be explained by the fact that the fitted model smooths local
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variability in the data. These results suggest that the MRCP

amplitudes should not be measured directly from the signal

at single time points. Rather, if necessary, the amplitudes

predicted by the model should be used to reduce error due

to local variability which can be a result of signal noise.

However, for PN, opposite results were found. The error for

the amplitude obtained from signal was smaller than that of

the predicted amplitude. This can be explained by the fact

that near PN, the MRCP signal violates the assumption that

it can be modeled as a straight line. PN is a peak which

deviates away from the fitted straight line. Thus, in case of

PN, the amplitude should be calculated from the signal itself.

These results have implications for researchers interested in

amplitudes at single time points or differences in amplitudes

measured at multiple single time points from MRCPs [15].

Furthermore, as highlighted in the introduction, amplitudes at

single time points or differences across multiple time points

do not fully capture the linear trends of BP1 and BP2, thus,

we suggest the use of fitted slopes.

In comparison to manual labeling by an expert, the pro-

posed method had smaller RMSEs in identifying the onset

of BP2 and time of PN. However, it had larger errors in

identifying the onset of BP1. One plausible explanation for

this finding is that it is due to the break down of assumption 1

and 3 (refer to Section II) at the onset of BP1. Under current

assumptions, the onset is assumed to be an intersection point

between two lines. Perhaps, the actual transition from baseline

to BP1 is radically smoother than an edge and can only be

correctly modeled by a spline. We suggest it is investigated in

future research.

B. Evaluation on Experimental MRCPs

The Bland-Altman plots did not show any systematic trends

except in case of the onset of BP1 and time of PN where

the error variability was not uniform. The implication of this

trend is that the CR obtained under the assumption of normally

distributed errors are not true representations of the agreement

limits [36]. The coefficient of repeatability was also reported

for each feature which can be used to interpret pre and post

intervention scores in a future study involving MRCPs [36].

For example, for an individual participant any change greater

than 9.305 uV/s in the slope of BP2 from pre to post can be

interpreted as a real difference with 95% confidence.

In comparison to manual labeling by an expert, the pro-

posed method had larger error for onset of BP1. This can

again be explained by the spline hypothesis suggested by

the results of the comparison between the expert and the

proposed method in simulated MRCPs. The proposed method

consistently achieved smaller measurement error in slopes of

BP1 and BP2. These differences, however, did not achieve

statistical significance and need further investigation in a larger

sample.

C. Validation of Simulated MRCPs

The similarity between the experimental MRCPs and their

simulated versions suggested an excellent agreement between

the two in majority of the cases. Thus, the simulation method

provided large test sets of valid MRCPs for which the ground

truth was known. Additionally, simulated MRCPs gave us the

ability to evaluate our proposed methods under large variations

in time, amplitude and signal to noise ratio. Evaluation on

experimental MRCPs under these variations would have not

been possible without recording EEG data from a large number

of participants from different populations.

The proposed simulation was based on findings of the

past research. However, further work is required to adapt this

simulation method to generate MRCPs at a single epoch level

and demonstrate its validity.

D. Limitations

The findings of this research should be considered in light

of a number of limitations. First, the MRCPs were labeled

by a single expert. In some of the past studies, two experts

labeled the MRCPs and the third expert selected the labeling

of one of the experts. The reliability of these methods (single

and multiple experts) has not yet been demonstrated. Second,

the experimental MRCPs were recorded from 22 healthy

participants. Thus, the estimates of measurement error and bias

can not be applied across other populations without question.

In future research, using large samples gathered from multiple

populations, a full comparative analysis of the reliability of the

proposed method and the different manual methods is needed.

E. Recommendations

1) The proposed method fully captures the two linear

trends of BP1 and BP2 in the MRCP. Thus, we suggest

that in future research, the slopes fitted by the pro-

posed method be considered for studying the differences

across conditions. Following our proposed method, one

may automatically model MRCP parameters to quantify

changes induced with an intervention or motor training

paradigms [13], [38].

2) In studies where determining the onset of BP1 is of par-

ticular interest, we suggest the use of manual labeling.

However, for the onset of BP2 and determining the time

of PN; the use of the proposed method is suggested.

3) As the proposed method is fully automatic, a real-time

implementation of particle swarm algorithm [39] can

enable online neuroadaptive paradigms to support motor

training [40].

F. Software Availability

The MATLAB (MathWorks, Inc., Natick, MA, USA) based

implementation of the proposed method, the graphical user

interface tool for visual labeling of MRCPs and tools for

Bland-Altman analysis have been made available online1.

These tools can be used to automatically obtain features from

MRCPs using the proposed method or manually label the

MRCPs for calculating the features discussed in this research.

V. CONCLUSION

We have proposed a method for automated labeling of

features in movement-related cortical potentials. The proposed

1Available on Github at: https://github.com/GallVp/visualEEG.
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method was formulated and validated using a large set of sim-

ulated MRCPs. Its absolute reliability was also evaluated on

a set of experimental MRCPs. We conclude that the proposed

method be used to automatically obtain robust estimates for

the MRCP features with known measurement error in future

studies involving MRCPs.
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