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ABSTRACT
This paper describes a new approach to automate the classification
of solid models using machine learning techniques. Existing ap-
proaches, based on group technology, fixed matching algorithms
or pre-defined feature sets, impose a priori categorization schemes
on engineering data or require significant human labeling of design
data. This paper describes a shape learning algorithm and a general
technique for “teaching” the algorithm to identify new or hidden
classifications that are relevant in many engineering applications.
In this way, the core shape learning algorithm can be used to find a
wide variety of model classifications based on user input and train-
ing data. This allows for great flexibility in search and data mining
of engineering data.

Categories and Subject Descriptors
H.3.3 [Information Storage or Retrieval]: Information Search or
Retrieval; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism; I.2.6 [Artificial Intelligence ]: Learning
; J.6 [Computer Applications]: Computer-Aided Engineering

General Terms
Experimentation

Keywords
3D Search, Shape Recognition, Shape Matching,
Solid Model Databases, Machine Learning.

1. INTRODUCTION
This paper introduces an adaptation of machine learning and

data mining techniques for identification of arbitrary geometric and
manufacturing categories in CAD database. Recent work in indus-
try [17] has explored the use of neural networks to identify parts
(fasteners) based on multiple 2D views. To our knowledge, no past
research exists on how to use machine learning techniques to train
3D shape recognition system with CAD data.
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Our approach is to use learning algorithms (decision tree learn-
ing and reinforcement learning) to develop weighted similarity func-
tions based on an underlying shape distribution-based shape model
matching algorithm.

In practice, indexing of parts and part families had been done
with group technology (GT) coding [18]. Group technology was
designed to facilitate process planning and cell-based manufactur-
ing by imposing a classification scheme on individual machined
parts. These techniques were developed prior to the advent of inex-
pensive computer technology, hence they are not rigorously defined
and are intended for human, not machine, interpretation. Some of
the early work on feature identification from solid models aimed to
find patterns in model databases or automate the GT coding pro-
cess . The common aspect of all of these techniques is that they are
all post priori; one runs their algorithm on model and it produces
the category or label for it. There are many issues with this: If my
categorization scheme changes? Do I need an entirely new algo-
rithm? It would be nice if one had an algorithm that one could train
to find arbitrary categories.

2. RELATED RESEARCH

2.1 Comparing 3D Models
There are two basic types of approaches for matching and re-

trieval of 3D CAD data: (1)feature-basedtechniques and (2)shape-
basedtechniques. The feature-based techniques [6, 16], going back
at least as far as Kyprianou’s thesis [10], extract engineering fea-
tures (machining features, form features, etc.) from a solid model
of a mechanical part for use in database storage, automated GT
coding, etc. Elinson et al. [4] used feature-based reasoning for
retrieval of solid models for use in variant process planning. Ci-
cirello and Regli [3] examined how to develop graph-based data
structures and create heuristic similarity measures among artifacts;
this work was extended in [2] to manufacturing feature-based sim-
ilarity measurement. McWherter et al. [13] have integrated these
ideas with database techniques to enable indexing and clustering of
CAD models based on shape and engineering properties.

The shape-based techniques are more recent, owing to research
contributions from computational geometry, computer vision and
computer graphics. A shape-based approach works as the rep-
resentational “lowest common denominator”: STL or VRML (or
other) polygon mesh. From the polygon mesh, measures of simi-
larity can be computed among 3D models. Thompson et al. [19]
examined reverse engineering of designs by generating surface and
machining feature information off of range data collected from ma-
chined parts. Sipe, Hilaga et al. [7] present a method for matching
3D topological models using multi-resolution Reeb graphs. The
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Figure 1: An Overview of our approach: Training with classified examples to classify query models withkNN technique.

method of Osada, Funkhouser et al [15] is a basis for the work in
this paper. Their method creates an abstraction of the 3D model as a
probability distribution of samples from a shape function acting on
the model. Their technique is generally robust under model degra-
dation, but it is a rigid technique and is a poor discriminator among
model classes because it analyzes gross model shape, rather than
the discriminatory features that are common for CAD/CAM data.
In addition, these recent published studies [7, 15] have focused ex-
clusively on a very limited set (several hundred) of heterogenous
(planes, trees, phones, etc.) and manually-classified 3D graphics,
animation and rendering models; a set that does not include any
models that are specifically engineering, solid modeling or me-
chanical CAD oriented. It should be noted that the CAD/CAM
dataset addressed in this paper is significantly more complex (i.e.,
polygon meshes are done at a very high degree of refinement) and
homogeneous (i.e., models are often very similar from a gross-
shape standpoint, hence discrimination is difficult and not always
based on pure shape). All models used in this paper are avail-
able through the National Design Repository athttp://www.
designrepository.org .

2.2 Mining and Knowledge Discovery
Knowledge Discovery is the overall process of extracting non-

trivial relations from large amounts of data. In [1], Agrawal out-
lined the three most important issues of many database-mining sys-
tems: classification, association, andsequencing. Fayyad et. al.
Perhaps most well-studied problem among all these is the cluster-
ing problem, the main goal of which is to generate a compact de-
scription for subsets of data. A popular method of partition cluster-
ing is calledk-clustering [5]. While the general problem is known
to be NP-Hard, many effective heuristics have been developed, in-
cluding thek-means algorithm [11] and thek-medoid [9] method.

Nearest Neighbor Machine Learning.Thek nearest neigh-
bor learning algorithm [14] (kNN) learns classifications by storing
training examples and classifies query instances according to ex-
amples that are closest to the query instances. This algorithm is an
instance based, unsupervised machine learning algorithm, typically
used for pattern recognition, learning complex functions and data
mining. ThekNN algorithm requires:

• A set of example instances, to be used as the model answers
for classifying query instances.

• A distance metricreturning a numerical value describing the
dissimilarity between two data instances.

• k example instances to be inspected to determine the classi-
fication of a query instance.

• A locally weighting functionfor combining thek local points
into the result.

Data instances are described byn attributes, projected into ann-
dimensional data space as a vector< a1,a2, · · · ,an > and then

given as input tokNN. Similar data instances are expected to fall
into the same categories and distribute close to one another in the
data space, forming clusters of parts that represent different cate-
gories.kNN learning works off this assumption and classifies query
instance according to the classification of thek nearest example in-
stance of the query instance. Hence, given a set of example in-
stances and their corresponding classifications, thekNN learning
algorithm proceeds as follows:

1. Store{s1,s2 · · ·sn} and{c1,c2 · · ·cm};
2. Accept an unclassified query instance,sq;
3. Calculate the distances betweensq and{s1,s2 · · ·sn};
4. Return the classification ofsq given by the locally weighted

function and classifications of thek nearest example instances.

3. PROBLEM FORMULATION
Given a set of solid models and corresponding categories, our

work attempts to extract the related attributes, features or patterns
to automatically construct a model classifier, as illustrated in Figure
1. Our approach integrates learning with 3D model matching so
that, using a small subset of example models as training data,kNN
can tune the matcher to perform classifications based on the input
examples. In this way, the matching algorithm can learn arbitrary
classification schemes.

Using kNN to Classify Solid Models.Let S be a set of
solid models{s1,s2 · · ·sl}which is to be classified intomcategories
{c1,c2 · · ·cm}. In order to applykNN, we need (1) a subset ofS
to use for training examples; (2) a numberk; (3) and a function
to serve as a distance metric among models inS. Distance metrics
measure the dissimilarity between models, and a number have been
developed in previous research [8, 12, 15].

Tuning Parameters for Comparisons.Next, one needs to
adjust the parameters of the model comparison algorithm based on
the specified classification, i.e., to return short distances if, for ex-
ample,s2 ands7 are both in the same class,c5; and larger distances
if models are not in the same class. Hence, given solid models
{s1,s2,s3}, a categoryc1 and the distance metricD(s1,s2), kNN
requiress1,s2 ∈ c1∧s3 6∈ c1 ⇒ D(s1,s2) < D(s1,s3).

We develop a general method for adjusting the distances returned
by D(s1,s2) to satisfy this condition. We take advantage of the fact
most model distance functions are based on measuring the distance
betweenn comparable attributes, usually represented as a vector
< a1,a2, · · · ,an >. We assess the discriminatory power of each
attribute and assign weights to each attribute in order to maximize
the ability of the classifier to discriminate among the classes given
in the training set. Hence, the distance in between a pair of models
is a weighted distance amongn attributes:

D(s1,s2) =
n

∑
i=1

wi ·D(s1i
,s2i

) (1)
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D(s1i
,s2 j

) represents the distance between attributei of modelss1

ands2, wi represents the weight of the attribute. The trick of how
to calculate thewi ’s is discussed in Section4.2.

Wheels Sockets Housings

Mazewheel Socket1 Part03

Unter2 SipeSocket SimpleBoeing

Figure 2: Training examples.

4. APPROACH
To illustrate the approach, we use distance metrics based on shape

distribution functions [8, 15] in conjunction with an example dataset
consisting of six mechanical parts from three distinct categories:
Sockets, WheelsandHousings. All six example parts and their re-
spective categories are shown in Figure2. We briefly review the
underlying technique, based on [8], for comparing solid models
then show how it can be a basis for training automated classifiers.

4.1 Enhanced Shape Distribution Matching
A mesh representation of a solid model is stochastically sampled

by placing random point-pairs on its surface and generating the the
probability distribution of distances between these points. As re-
ported in [8], the techniques of [15] can be significantly enhanced
to discriminate among globally homogeneous (both locally diverse)
models by classification of these point-pair distances as:

• IN distances: The line connecting the two points lies com-
pletely insidethe model.

• OUTdistances: The line connecting the two points lies com-
pletelyoutsidethe model.

• MIXED distances: The line connecting the two points passes
both inside and outsideof the model.

With the statistics of the classification of points and their Euclidean
distances, we construct normalizedprobability vs. distancehis-
tograms for each distinctIN, OUT, andMIXED. The accumulated
distributions of classifications are also recorded as percentage ra-
tios of point pairs falling intoIN, OUT, andMIXED categories for
the sampled model (IN% + OUT% + MIXED% = 100%) These are
used to assess the significance ofIN, OUT, andMIXED distribution
histograms, i.e., big differences in theIN% for two models would
diminish the significance if a close measurement between theIN
histograms, etc.

Distribution Example.Point pairs are sampled and classified
to construct histograms as shown in Figure3. Shape distributions
histograms are compared to produce dissimilarity measures.IN,
OUT andMIXED histograms of the models are mapped to a three
attribute vector< hIN ,hOUT,hMIXED >. The dissimilarity in be-
tween models is represented by a per binL1 norm Minkowski dis-
tance in between their corresponding shape distribution histograms,
computed using across each of thej histogram bins as:

L1(h1,h2) =
∑n

i=0 |h1i
−h2i

|
j

This is done for each of theIN, OUT, andMIXED histograms. The
differencesIN%, OUT%, andMIXED% are used to scaleL1 norm
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Figure 3: Shape distributions for the example models.

histogram distances to reflect the significance of correlations based
on the differences in the sample sizes in each category ofIN, OUT,
andMIXED.

Matching Example.Averaged and scaled distances across all
pairs of example parts in the earlier example are shown relative to
the Mazewheel part in Table1:

Part IN OUT MIXED Average Scaled
Unter2 15.7 72.2 31.8 39.9 122.9
Socket1 57.9 58.9 78.1 65.2 232.5

SipeSocket 56.0 68.7 77.0 67.2 232.5
Part03 16.2 32.1 39.1 29.2 97.63

SimpleBoeing 19.7 49.6 33.9 34.4 110.44

Table 1: Distances in between Mazewheel part and other train-
ing examples.

Note that the Mazewheel part could easily be mis-classified in
this simple example if one uses just average distance or scaled dis-
tances. Since the closest, in average and scaled distances, part to
Mazewheel is Part03, instead of Unter2, which is supposed to be
the only part shares theWheelscategory with Mazewheel. This il-
lustrates the shortcoming of untrained shape matching algorithms
as well as the deficiencies of simple naive combinations of mea-
sures. Neither average or scaled distance measure produced the
categorical grouping correctly.

4.2 Learning Categories
Classifying models withkNN can easily be done based on the

measures between the histograms and the sampling percentages.
The problem is that these distance metrics are composed of in-
formation from just the two models that are being compared. To
perform classification, one needs to learn a set of attribute weights
to enhance the discrimination acrossall models in the dataset and
acrossall classes. Using theIN, OUT andMIXED histograms, and
the IN%, OUT% andMIXED% sampling data, our approach is to
derive a set of weights to combine these measures into a distance
metric that maximize discrimination among model classes.

4.2.1 Training Process
A small subset of models, including representatives from each

category, is used to learn the weights appropriate for the catego-
rization. Shape distribution histograms of all training examples are
computed and compared to determine the frequencies ofIN, OUT
or MIXED distance to serve as the representative distance between
the classes. The training of weights on the distances ofIN, OUTor
MIXED histograms is done as follows:

1. Build IN, OUT andMIXED histograms of training models;
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2. Compute distances between all pairs of training models;
3. Select, using the categories, anIN, OUT or MIXED distance

for each pair of training models as the representative dis-
tance;

4. Normalize the frequencies ofIN, OUT or MIXED distances
to be the weights.

Three distances,IN, OUT andMIXED, are calculated for each pair
of models. From each triplet of distances, only one suitable repre-
sentative distance is selected for computing weights:

• If two models fall into the same category, select the shortest
distance amongIN, OUT andMIXED;

• Otherwise, select the longest fromIN, OUT andMIXED.

The sampling frequencies ofIN, OUTandMIXED reflects the chance
of the respectiveIN, OUT, andMIXED histogramL1 distance be-
ing appropriate for use in an aggregate distance computation. The
weight triplet< wIN ,wOUT,wMIXED > is derived as:

wi =
#i

#IN +#OUT +#MIXED
, i ∈ {IN,OUT,MIXED}

Hence, different weight triplets are produced for each category.
When computing the distance in between a query model and a
training model, the weight triplets that correspond to the training
model’s category is used to scale the distance betweenIN, OUT
andMIXED histograms.

Category Part #IN #OUT #MIXED
Wheel Mazewheel 1 1 3

Unter2 1 0 4
Sockets Socket1 0 0 5

SipeSocket 0 0 5
Housing Part03 1 0 4

SimpleBoeing 1 1 3

Table 2: Frequencies ofIN , OUT and MIXED being selected as
the appropriate distances.

Category wIN wOUT wMIXED
Wheel 0.2 0.1 0.7
Sockets 0 0 1.0
Housing 0.2 0.1 0.7

Table 3: Weights of IN , OUT and MIXED for example dataset.

Example.The frequencies and weights of a set of mechanical
parts for “Wheels”, “Sockets” and “Housings” categories are shown
in Table2 and Table3. Recall that both average and scaled distance
functions returned parts fromHousinggroup as the nearest to the
Mazewheel part which, instead, belongs to theWheelgroup. The
weight triplet < wIN ,wOUT,wMIXED > revises distance between
Mazewheel and Part03 to be 39.1 and distance between Mazewheel
and Unter2 reduces to 33.9. Distances of other parts are shown in
Table4. Using < wIN ,wOUT,wMIXED > favors theMIXED dis-
tance and decreases the influence ofOUT distance which scale up
the largest differenceMIXED between Mazewheel part and Part03
yet suppresses the largest difference,OUT for Unter2.

Part Average Scaled Revised
Unter2 39.9 122.9 33.9
Socket1 65.2 232.5 78.1

SipeSocket 67.2 232.5 77
Part03 29.2 97.63 39.1

SimpleBoeing 34.4 110.44 37.1

Table 4: Revised distances in between Mazewheel part and
other example models.

4.3 kNN Classification
Given the set of training models and the set of weight triplets,

one can accept and classify new query instances,sq:

1. Sample and construct shape distribution histograms fromsq;
2. Compute theIN, OUT andMIXED distances in between the

query model and all training models;
3. Compute the distance in between example models and query

model by scalingIN,OUT andMIXED distances with distri-
bution differences and weights triplet< wIN ,wOUT,wMIXED >;

4. Select the nearestk examples for classification.

Example.The Socket2 part is a minor variation on Socket1, shown
in Figure4. Shape distribution histograms are constructed for Socket2
and compared to histograms of the training models. Representative
distances are compute with weights< wIN ,wOUT,wMIXED >, as
shown in Table5. Query model Socket2 is considered to be closest
to example query models Socket1 and SipeSocket in this dataset.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70

"socket2A.dat"

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

"socket2B.dat"

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

"socket2C.dat"

21.7% 5.6% 72.6%

Figure 4: Socket2 with shape distribution histograms.

Category Part Distance
Wheel Mazewheel 90.05

Unter2 39.1
Sockets Socket1 4.58

SipeSocket 6.99
Housing Part03 73.9

SimpleBoeing 60.48

Table 5: Distances between Socket2 and example models.

4.3.1 Classifying Query Models
The classification of the query modelsq is the ultimate goal. The

k closest example models are used to increase the robustness of the
classification and reduce the effect of possible outliers or noise in
the example model. Based on the categories of thek nearest exam-
ple models, the query modelsq is classified by a locally weighted
function provided tokNN learning algorithm, in our work either
Majority andGaussian Kernel Regression.

TheMajority method returns the majority of categories ofk near-
est training examples neighbors as the classification. Allk example
neighbors “vote” for their classification and the classification with
the highest votes will be returned as the classification ofsq. Gaus-
sian Kernel Regressionassigns weights to thek nearest example
neighbors,si , according to a Gaussian kernel function.D(ki ,sq) is
the distance between example modelsi and query modelsq, with a
standard deviationσ is:

1√
2πσ

e−
D(si ,sq)2

2σ

The category with the highest accumulated weight is returned as
the classification ofsq.

Example.Fork= 3, the categories of the 3 closest example mod-
els to Socket2 were considered to the classification of Socket2. The
standard deviation of models, 28.5, was used as the standard devi-
ation in the Gaussian function. From Table6 both Majority and
Kernel Regression classifications returned Sockets to be the cate-
gory of query model Socket2, which is obviously correct.

5. EXPERIMENTAL RESULTS
This method has been implemented in Java/Perl and executed on

Solaris platforms. Experiments were conducted using mechanical
part data from the National Design Repository (http://www.
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Category Example Vote G(x)
Wheel Unter2 1 0.007
Total 1 0.007
Sockets Socket1 1 0.123

SipeSocket 1 0.129
Total 2 0.0252

Table 6: Classifying Socket2

designrepository.org ). Specifically, we illustrate how one
can create classifiers using two different sets of mechanical CAD
models under two different classification schemes:

• Classify models based on appearance or functionality;
• Classify models based on general manufacturing properties.

Both datasets were initially classified by hand and training exam-
ples were randomly selected based on this classification. The objec-
tive was to see if the system could learn weights from the training
examples and then classify the non-training examples in a manner
consistent with the human classification. All test models are avail-
able athttp://www.designrepository.org/SM03 .

Shape and Functionality Classification.85 CAD models
were first manually classified into 12 categories according to the
general properties of shape or function for the models. ThekNN
classifier was trained using a subset of the models and then used
to classify the remaining ones. The number of training examples
per class was chosen proportional to the size of the class. The clas-
sifier performed extremely well at classifying Linkagearms from
the variable radius Spectrometer assembly from the National Insti-
tute of Standards and Technology (NIST). As shown in Table7(a),
more than 70% ofkNN classifications were correct in our experi-
ments: i.e., given a model, over 70% of the time the classifier gave
it the correct class label as the top choice. ThekNN classification
of CAD models along with their categories is shown in Figure5.

Process Classification.56 CAD models were hand classified
into 4 categories according to general properties of the manufactur-
ing processes that would be used to create them: rotational parts,
injection molded parts, cast-then-machined parts, and rotational-
machined parts. ThekNN classifier performed similarly in all cat-
egories in our selected example. Even though the average correct-
ness of thekNN classifier on this example, as shown in Table7(b),
was not as strong as theShape and Functionalityexample, both
examples’ best performances were nearly equal. Indicating that
if particular sets of example models were provided, our approach
could perform equally well on both example classifications. The
kNN classification of our test models is shown in Figure6

Shape Correctness
Highest 80.70%
Lowest 64.91%
Average 72.30%
Std-dev 4 %

(a) Shape

Process Correctness
Highest 79.70%
Lowest 59.11%
Average 66.71%
Std-dev 8 %

(b) Process

Table 7: kNN classifications statistics.

6. CONCLUSIONS
This paper described a new approach to classification of solid

models using machine learning techniques, enabling the automatic
categorization of models, archived components or brand-new parts,
using a classification schema based on training data. It showed how
weight learning with training examples andkNN can be used for
pattern recognition and data mining in the challenging new domain
of CAD databases. As part of our work, these techniques have

been applied to a large, heterogeneous CAD model database—The
National Design Repository—to learn and adapt it to various cate-
gorization and browsing schemes.

There are several issues for discussion and future research. Clearly,
the performance ofkNN classifier depends on the quality of train-
ing examples. This paper simply uses random selection—with more
experience, we hope to identify how to select training data to max-
imize discrimination abilities. Additionally, while our initial suc-
cess rates of 70%-80% and above seem low, they are in line with
expected results for use ofkNN in this context and certainly consid-
erably higher in information content than just random assignment.
Our subsequent experiments suggest that success rates can be im-
proved above 85%-90% using this technique. With refinement, we
hope that eventually users will be totrain a retrieval system to rec-
ognize arbitrary categories.

Acknowledgments.This work was supported in part by NSF
CAREER Award CISE/IIS-9733545, ONR Grant N00014-01-1-
0618, Honeywell FM&T and Lockheed Martin. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the NSF or the other supporting organizations.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. In
Proceedings of the 1993 ACM SIGMOD Conference, pages
1–10. ACM, May 1993.

[2] V. Cicirello and W. Regli. Machining feature-based
comparisons of mechanical parts. InInternational
Conference on Shape Modeling and Applications, pages
176–187. ACM SIGGRAPH, the Computer Graphics
Society and EUROGRAPHICS, IEEE Computer Society
Press, Genova, Italy, May 7-11 2001.

[3] V. Cicirello and W. C. Regli. Resolving non-uniqueness in
design feature histories. In D. Anderson and W. Bronsvoort,
editors,Fifth Symposium on Solid Modeling and
Applications, New York, NY, USA, June 8-11 1999. ACM,
ACM Press. Ann Arbor, MI.

[4] A. Elinson, D. S. Nau, and W. C. Regli. Feature-based
similarity assessment of solid models. In C. Hoffman and
W. Bronsvoort, editors,Fourth Symposium on Solid
Modeling and Applications, pages 297–310, New York, NY,
USA, May 14-16 1997. ACM, ACM Press. Atlanta, GA.

[5] D. Fasulo. An analysis of recent work on clustering
algorithms. Technical Report 01-03-02, Department of
Computer Science and Engineering, University of
Washington, Seattle, WA 98195, April 1999.

[6] J.-H. Han, W. C. Regli, and M. J. Pratt. Algorithms for
feature recognition from solid models: A status report.IEEE
Transactions on Robotics and Automation, 16(6):782–796,
December 2000.

[7] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii.
Topology matching for fully automatic similarity estimation
of 3d shapes. InSIGGRAPH, pages 203 – 212, New York,
NY, USA, August 2001. ACM, ACM Press.

[8] C. Y. Ip, D. Lapadat, L. Sieger, and W. C. Regli. Using shape
distributions to compare solid models. InSeventh ACM
Symposium on Solid Modeling and Applications. ACM
SIGGRAPH, ACM Press, Jun 17-23 2002.

[9] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data:
An Introduction to Cluster Analysis. John Wiley & Sons,

326

http://www.designrepository.org
http://www.designrepository.org
http://www.designrepository.org/SM03


Cylinders

C
om

pl
et

eP
ar

t_
46

.s
at

C
om

pl
et

eP
ar

t_
76

.s
at

C
om

pl
et

eP
ar

t_
21

.s
at

sw
iv

el
2-

S
to

ck
_1

.s
at

P
ar

t1
_1

.s
at

C
ad

dy
02

_8
9.

sa
t

ra
di

o_
2.

sa
t

Spacers

sp
ac

er
_6

7_
1.

sa
t

sp
ac

er
_6

7_
fr

on
t_

1.
sa

t

C
om

pl
et

eP
ar

t_
79

.s
at

sp
ac

er
1_

66
_1

.s
at

sp
ac

er
_6

6_
1.

sa
t

sp
ac

er
_6

6_
ba

ck
_1

.s
at

sp
ac

er
1_

67
_1

.s
at

sp
ac

er
_6

7_
ba

ck
_1

.s
at

sp
ac

er
_6

6_
fr

on
t_

1.
sa

t

P
ar

t2
_9

.s
at

be
nd

ix
1_

1.
sa

t

Goodparts

si
m

pl
e_

br
ac

ke
t2

_1
.s

at

go
od

pa
rt

3_
1.

sa
t

sw
iv

el
1-

P
ar

t_
1.

sa
t

ba
dp

ar
t_

1.
sa

t

si
m

pl
e-

br
ac

ke
t_

ex
_1

.s
at

sw
iv

el
2-

P
ar

t_
1.

sa
t

go
od

pa
rt

1_
1.

sa
t

go
od

pa
rt

2_
1.

sa
t

Linkage arms

lin
ka

ge
_a

rm
_4

3_
1.

sa
t

C
ad

dy
02

_1
01

.s
at

lin
ka

ge
_a

rm
_s

ho
rt

_4
6_

lin
k1

_4
2_

1.
sa

t

be
ar

in
g_

nu
t_

su
pp

or
t_

pl
at

e_
31

_1
.s

at

lin
ka

ge
_a

rm
_4

2_
1.

sa
t

lin
ka

ge
_a

rm
_s

ho
rt

_4
6_

lin
k1

_4
3_

1.
sa

t

lin
ka

ge
_a

rm
1_

42
_1

.s
at

lin
ka

ge
_a

rm
_s

ho
rt

_4
6_

1.
sa

t

m
ai

n_
lin

ka
ge

_a
rm

_6
a_

sc
al

ed
_u

np
os

iti
on

ed
_b

ac
k_

1.
sa

t

lin
ka

ge
_a

rm
1_

43
_1

.s
at

m
ai

n_
lin

ka
ge

_a
rm

_6
a_

sc
al

ed
_u

np
os

iti
on

ed
_f

ro
nt

_1
.s

at

LE
IS

T
E

_1
.s

at

m
ai

n_
lin

ka
ge

_a
rm

_6
_1

.s
at

Wheels

la
nd

in
gg

ea
r_

7.
sa

t

sh
-r

44
37

2-
00

0-
u_

1.
sa

t

un
te

r2
_1

.s
at

m
az

ew
he

el
_1

.s
at

C
om

pl
et

eP
ar

t_
75

.s
at

pw
1_

1.
sa

t

Racks
se

ek
er

_t
oo

l_
ra

ck
_1

.s
at

pa
rt

_r
ac

k1
06

_1
.s

at

to
ol

_r
ac

k_
1.

sa
t

se
ek

er
_p

ar
t_

ra
ck

_1
.s

at

ne
w

_s
ee

ke
r_

pa
rt

_r
ac

k_
1.

sa
t

Brackets

br
ac

ke
t1

-P
ar

t_
1.

sa
t

A
E

S
94

-d
ie

_1
.s

at

go
od

-b
ra

ck
et

_1
.s

at

ba
d-

br
ac

ke
t1

_1
.s

at

A
E

S
94

_1
.s

at

ba
d-

br
ac

ke
t_

1.
sa

t

br
ac

ke
t2

-P
ar

t_
1.

sa
t

ge
ar

_1
.s

at

28
27

05
6_

1.
sa

t

C
om

pl
et

eP
ar

t_
63

.s
at

Sockets

si
pe

_s
oc

ke
t_

1.
sa

t

so
ck

et
1-

P
ar

t_
1.

sa
t

so
ck

et
2-

P
ar

t_
1.

sa
t

so
ck

et
_1

.s
at

go
od

-c
ou

pl
in

g_
1.

sa
t

la
nd

in
gg

ea
r_

4.
sa

t

Gears

pi
ni

on
_1

.s
at

G
E

A
R

_1
.s

at

as
sy

_3
.s

at

as
sy

_2
.s

at

w
he

el
_n

ew
_1

.s
at

ex
1_

1.
sa

t

bo
ei

ng
_p

ar
t_

1.
sa

t

si
m

pl
e_

bo
ei

ng
_p

ar
t_

1.
sa

t

Housings

tr
an

sm
itt

er
_1

.s
at

pa
rt

03
_1

.s
at

C
om

pl
et

eP
ar

t_
81

.s
at

Flanges

fla
ng

e_
pt

20
2_

16
_r

ig
ht

_1
.s

at

fla
ng

e_
pt

20
1_

11
_1

.s
at

fla
ng

e_
pt

20
2_

16
_1

.s
at

fla
ng

e_
pt

20
2_

16
_l

ef
t_

1.
sa

t

Springs

C
om

pl
et

eP
ar

t_
16

.s
at

re
du

ce
r_

2.
sa

t

C
om

pl
et

eP
ar

t_
74

.s
at

C
ad

dy
08

_1
9.

sa
t

Training Example Correct Classification Incorrect Classification

Figure 5: kNN shape or functionality classifications.
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Figure 6: kNN manufacturing process classifications.
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