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Abstract

Forthcoming surveys such as the Large Synoptic Survey Telescope (LSST) and Euclid necessitate automatic and
efficient identification methods of strong lensing systems. We present a strong lensing identification approach that
utilizes a feature extraction method from computer vision, the Histogram of Oriented Gradients (HOG), to capture
edge patterns of arcs. We train a supervised classifier model on the HOG of mock strong galaxy–galaxy lens
images similar to observations from the Hubble Space Telescope (HST) and LSST. We assess model performance
with the area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve. Models trained on
10,000 lens and non-lens containing images exhibit an AUC of 0.975 for an HST-like sample, 0.625 for one
exposure of LSST, and 0.809 for 10 yr mock LSST observations. Performance appears to continually improve with
the training set size. Models trained on fewer images perform better in the absence of the lens galaxy light.
However, with larger training data sets, information from the lens galaxy actually improves model performance,
indicating that HOG captures much of the morphological complexity of the arc-finding problem. We test our
classifier on data from the Sloan Lens ACS Survey and find that small-scale image features reduce the efficiency of
our trained model. However, these preliminary tests indicate that some parameterizations of HOG can compensate
for differences between observed mock data. One example best-case parameterization results in an AUC of 0.6 in
the F814 filter image, with other parameterization results equivalent to random performance.

Key words: galaxies: elliptical and lenticular, cD – gravitational lensing: strong – methods: data analysis –
methods: numerical – methods: statistical – surveys

1. Introduction

Gravitational lensing occurs when intermediate fluctuations in

the matter density field deflect light from background sources

(see Kneib & Natarajan 2011, for a review). Strong gravitational

lensing can manifest as visible giant arcs magnifying high-

redshift galaxies (Lynds & Petrosian 1986; Gladders et al. 2003),

multiply imaged quasars (Walsh et al. 1979), multiply imaged

galaxies (Sharon et al. 2005), and arclets (Bezecourt et al. 1998).

Lensing signatures probe the underlying dark matter distribution

of the lens (Warren & Dye 2003), and high-redshift galaxy

formation (Allam et al. 2007). Strong lenses also provide a

geometric test of cosmology via comparison of predicted

arc abundances with observed abundances (Kochanek 1996;

Chae 2003; Linder 2004), via time-delay between signals from

multiply imaged quasars (Suyu et al. 2014, 2017; Bonvin et al.

2017), and via distance ratios in lenses with sources at multiple

redshifts (Jullo et al. 2010; Collett et al. 2012; Collett &

Auger 2014).
The application of strong gravitational lensing to constrain

the mass distribution of strong lenses, such as early-type

galaxies (ETGs), necessitates large samples of galaxy–galaxy

strong lensing systems. Miralda-Escude & Lehar (1992) first

suggested that massive ellipticals would likely be frequent

strong lensing sources in optical surveys. These systems

contain a background source galaxy that the lens galaxy

deflects into a partial or full arc shaped Einstein ring. The
strong lensing signature directly probes the underlying matter.
The identification of such systems in upcoming surveys is the
first step in constraining the mass-to-light ratio for a large
number of objects in this mass range.
Over the last decade, infrastructure for both large scale visual

and automated image classification emerged. By nature, the
human eye is one of the best discriminators for image
classification. Visual arc identification has been effective
through the use of citizen science platforms. SpaceWarps is
an example of citizen science based image classification of
strong lensing systems in Canada–France–Hawaii Telescope
Science (CFHTLS) telescope observations (Marshall et al.
2016; More et al. 2016). These platforms are quite successful
for a data set like CFHTLS; here, 3000 candidate images were
identified in eight months, resulting in 89 final candidates.
However, future data sets like Euclid (Oguri & Marshall 2010)
and LSST expect to find hundreds of thousands of galaxy-scale
strong lenses (Collett 2015). The volume of upcoming data
challenges the scalability of a pure citizen science approach.
Recent efforts have focused on the development of

automated methods with performance comparable to or better
than humans. SpaceWarps is a part of the Zooniverse Project
(Marshall et al. 2016), which also includes Galaxy Zoo, the
citizen science-based image classification of galaxy types
(Lintott et al. 2008). Galaxy classification is an early example
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in which machine learning algorithms successfully trained
models to classify astronomical images with comparable
performance to humans (Dieleman et al. 2015).

Earlier efforts on automated, or “robot,” identification of
strong lensing systems have two distinct generalized steps. The
first enhances and extracts characteristic features, and the
second uses some form of pattern recognition in the features to
classify lens and non-lens containing systems. Among others,
selected features might include shape parameterization (see
Alard 2006; Kubo & Dell’Antonio 2008; Xu et al. 2016;
Lee 2017), colors in multi-band imaging (Gavazzi et al. 2014;
Maturi et al. 2014), light profiles (Brault & Gavazzi 2015), and
characteristics of potential lens galaxies (Marshall et al. 2009).
Pattern recognition often incorporates cutoffs in selected
parameter space distributions (Lenzen et al. 2004; Joseph
et al. 2014; Paraficz et al. 2016). A number of these have been
publicly distributed, with specific end applications. For
example, ArcFinder is one such code that finds arcs in groups
or cluster scale lens (Seidel & Bartelmann 2007), and
RingFinder is an analogous tool in searching for multiply
imaged quasars (Gavazzi et al. 2014). Codes like these have
been complementary to human identification (More et al.
2016).

Pattern recognition methods have transitioned to using
“machine learning” algorithms in place of manual cutoffs.
With machine learning, we can train a model to separate a data
set into a known set of classes, such as “lensing systems” and
“non-lensing systems.” However, many classic machine
learning algorithms do not work well in image space, i.e.,
directly using the raw pixel values of the image, but first
require a process of feature engineering. Feature engineering

uses domain expertise to extract variables that are more directly
related to the classification task at hand. An example would be
the application of an edge detector. The optimal weights and
cutoffs for these derived variables that are used to determine
the class label of an image are found automatically by the
algorithm.

Some more recent works have made use of a subset of
machine learning algorithms called neural networks to classify
images, either from derived image parameters or directly in
image space. In Estrada et al. (2007), authors used derived
shape parameters to train neural nets to identify arc candidates.
Agnello et al. (2015) used neural networks trained on data from
multi-band magnitudes, and Bom et al. (2017) used extracted
morphological parameters.

The most advanced use of neural networks for strong lensing
classification operate directly in image space. (Petrillo et al.
2017) used mock Kilo Degree Survey (KiDS) data to train
convolutional neural networks, with a training set size of six
million images. Lanusse et al. (2018) used state-of-the-art deep
residual neural networks to also work directly in the image
space with minimal image pre-processing. A major strength of
the Lanusse et al. (2018) implementation is that in comparison
to deep convolutional neural networks, deep residual neural
networks have been found to be easier to train and perform
better on simulated data (Metcalf et al. 2018).

A lens-finding challenge conducted in 2017 compared results
of various lens-finding methods from several teams (Metcalf
et al. 2018). The challenge included both ground- and space-
based data, respectively, using mock and real KiDS data, and
mock Euclid data. Using the area under the curve (AUC) of the
Receiver Operating Characteristic (ROC) curve (see Section 3.1

for more details) as a metric, the performance for ground-based-
like data was as follows. Neural networks performed best with a
top AUC=0.98 (e.g., Jacobs et al. 2017; Lanusse et al. 2018),
human inspection with an AUC=0.89, and the method we
present in this paper at AUC=0.84. AUC values closer to 1
indicate better identification of lenses. It is worth noting,
however, that the AUC worsened for all methods when
evaluated on true ground-based data alone.
To date, the most significant challenge has been in

translating lens-finding algorithms to perform well on observed
data. Jacobs et al. (2017) provided the first example of a trained
neural network successfully applied to data from the Canada–
France–Hawaii Telescope Legacy Survey. The success in
application to observations stems from the creation of training
sets that incorporate real survey galaxies and real survey
backgrounds.
While there has been a recent surge in the use of deep neural

networks applied to image classification problems in astron-
omy, it is not always easy to scale these techniques to large data
sets, nor are the necessary computational resources and
hardware, such as graphical processing units (GPUs), easily
accessible to the entire scientific community. We present a first
application of the Histogram of Oriented Gradients (HOG) as a
feature extraction method and classify strong lensing systems
with a basic Logistic Regression algorithm (LR). HOG is a fast
feature extraction procedure that quantifies edges in images,
commonly used to identify humans in security software. The
authors know of only one other use of HOG in astronomy, in
the recent context of spectral line observations to characterize
atomic and molecular gas (Soler et al. 2019). LR is a linear
classifier, making its scalability relatively straightforward with
existing open source tools. This paper also serves as both a
presentation of the mock data set. We test the methods on mock
Hubble Space Telescope (HST) and LSST data, which will also
be made publicly available. Results are reproducible on
personal computers, as both the pipeline and the data will be
publicly distributed.
We show results of the pipeline on mock galaxy–galaxy lens

systems observed by HST and LSST as respective examples of
classifier performance on optical space- and ground-based
observations. We train and test our pipeline on subsamples
from 10,000 mock observed strong lensing systems and 10,000
non-strong lensing systems, each centered on a potential lens
galaxy. We additionally assess model performance on observed
data from The Sloan Lens ACS Survey (SLACS; Bolton et al.
2008). We discuss limitations of our methods in the context of
what simulations are able to capture.
Our paper is organized as follows. In Section 2 we briefly

describe the methods to generate the mock HST and LSST data
and our overall image processing and classification pipeline.
We present our results in Section 3, and our summary and
discussions in Section 4.

2. Methodology

2.1. Mock Images

To train and test our model, we create mock observations
using two different codes. We generate mock Hubble
Space Telescope10 (HST) with PICS (Pipeline for Images of
Cosmological Strong lensing) (Li et al. 2016). From PICS, we

10
https://www.spacetelescope.org/
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also have simulated strong lenses without PSF and noise, on
which we then apply LensPop (Collett 2015) to the PICS
generated images to perform mock Large Synoptic Survey
Telescope

11
(LSST) observations. Note that both codes are

used because the mock observing module in PICS does not
include LSST. We specifically use LensPop to implement the
mock observing for LSST based on the simulated images
created by PICS.

There are 10,000 lens containing mock observations and
10,000 non-lens containing mock observations for running our
parameter search. We keep a holdout set of 1000 lens
containing mock observations and 1000 non-lens containing
mock observations on which we evaluate the final trained
model.

Mock observations of lensing systems include the lens
galaxy, lensed images of the source galaxy, and galaxies along
the line of sight. Mock observations of non-lensing systems
include all but the images of a lensed source galaxy. We
convolve each of the 2×10,000 train/test images and
2×1000 holdout images to produce three separate sets of
mock “observations.” These each have equal numbers of lens
and non-lens containing systems: (1) HST-like observations,
(2) best single exposure LSST-like observations, and (3) LSST-
like observations over the span of 10 years. We respectively
label these observations as HST, LSST-best, and LSST10.

2.1.1. Modeling the Mass Distribution of Lens Galaxies

To produce simulated lensed galaxies, we first model the
mass of lens galaxies as a Singular Isothermal Ellipsoid (SIE).
This model is both analytically tractable and is consistent with
models of individual lenses and lens statistics on the length
scales relevant for strong lensing (e.g., Koopmans et al. 2006;
Gavazzi et al. 2007; Dye et al. 2008; Li & Chen 2009).

The normalized convergence map of the SIE model is
defined as:
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Here, c is the speed of light, σv is the velocity dispersion of the

lens galaxy, Dls and Ds are respectively the angular diameter

distances from the source plane to the lens plane and from the

source plane to the observer.
To rotate the lenses with random orientation angle f, we

adopt the transformation below:
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From Equations (1)–(3), there are five independent para-
meters from which we can derive the lensing map: velocity
dispersion σv, axis ratio or ellipticity q, orientation angle f,
redshift of the lens zl, and redshift of the source zs.

We choose σv, q, and f randomly (flat prior) from typical
ranges of observed galaxies: 200, 320 km sv

1s Î -[ ] , q ä [0.5,
1.0], and f ä [0, 360]. While a flat prior is not realistic, we use
this as a starting point to test our pipeline (see Section 4 for
more details on future work). We obtain the redshift of the lens
galaxy by matching the velocity dispersion drawn to generate
the simulations to the corresponding redshift from the catalog
of elliptical galaxies in the COSMOS survey12 from Zahid et al.
(2015). This catalog contains both the redshift and velocity
dispersion measurements from BOSS spectra13 for massive
ETGs in COSMOS that are analogs to our lens galaxies. This
results in lens galaxy redshifts in the range, z 0.2, 0.7l Î [ ].
Note that the distribution of COSMOS galaxies leads to a
selection of brighter and larger objects at higher redshifts.

2.1.2. Modeling Images of the Lens Galaxies

We model the light distributions of the lens galaxies with an
elliptical Sérsic profile
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where R x q x q R,1
2

2
2

eff= + is the effective radius in units

of arcseconds, Ieff is the intensity at the effective radius, n is the

index of the Sérsic profile, and q is the ellipticity of the lens

galaxy. We perform a similar transformation as Equation (3) to

orient the source galaxies and assume that the distribution of

light follows that of mass. The ellipticity and orientation are

therefore the same as in the SIE model.
To create images of the lens galaxies, we also utilize the

catalog to match the velocity dispersion with an assigned
effective radius and effective luminosity to the light profile. As
described in Section 2.1.1, the catalog consists of both
COSMOS imaging and BOSS spectroscopy for velocity
dispersion measurements of massive early-type galaxies,
providing sufficient information to construct a fundamental
plane of relations between all relevant quantities. We explicitly
use the fundamental plane from these observations to relate σv
in the lensing map with Reff and Ieff in Equation (4).
To create images of the lens galaxies, we use the COSMOS

morphological catalog (Zahid et al. 2015) to match the velocity
dispersion with an assigned effective radius, effective lumin-
osity, and index to the light profile. This catalog uses SDSS/
BOSS selection criteria. Note that we explicitly use the
fundamental plane from these observations to relate σv in the
lensing map with R I,eff eff , and n in Equation (4).
While the galaxy distributions of the COSMOS data at

higher redshifts are biased toward larger galaxies and the
highest surface brightness galaxies for fixed size, this selection
should mimic those in surveys such as the SLACS sample
described in Section 3.4.3. We next assume the light center is
on top of the mass center and create noiseless images of lens
galaxies.
We construct galaxies along the line of sight by cutting light-

cones from the Hubble Ultra Deep Field.14 We create a
composite of these images with the lens galaxy image and the

11
https://www.lsst.org

12
http://cosmos.astro.caltech.edu/

13
http://www.sdss3.org/surveys/boss.php

14
http://www.spacetelescope.org/science/deep_fields/
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lensed source galaxy, calibrating the magnitude of all three
components.

2.1.3. Modeling Images of the Source Galaxies

The background source galaxies come from a set of detailed
images of low-redshift bright galaxies (z∼0.45) that have
been extracted from mosaics produced by the CANDELS team
(Grogin et al. 2011; Koekemoer et al. 2011) and selected from
the CANDELS UDS catalog (Galametz et al. 2013). For these
source images, we use the F606W band, which is the closest
filter available in CANDELS data to the g-band of LSST. We
rescale these background source galaxies to artificially redshift
the sources to zs=2, and select source positions near caustics
of the lensing system. The rescaling involves a correction to
both the size and magnitude corresponding to the change in
cosmological distances with zs=2. The rescaling did not
involve a color adjustment, as our mock data is achromatic.

We add the caveat that the selection function of our galaxies
is biased as this sample is not complete. Here, we select bright

large objects with apparent magnitude <20, and effective

radius above 3 arcsec. We define an effective radius as the

radius enclosing pixels with values above 3σ of the background

noise. While this leaves us with only 31 such sources, we leave

a full exploration of the statistical bias of source galaxy

distribution in training sets to future work. A thumbnail panel

of 30 of these images is in Figure 1, each annotated with the

physical size of the galaxy at zs=2.0. The physical sizes range
from 1.3 to 3.93 kpc/h.
The selected positions are within a 2 2 ´  square box

centered on the lens galaxy center of mass. We then fix the

projected position of the lens galaxy at the center of the field of

view for each image.
Next, we perform ray-tracing simulations using the modeled

galaxy images and parameters. The lens galaxy, source galaxy,

and parameters of the image simulations (i.e., 300×300 pixels2

with 0.03 arcsec/pixel for an HST-like image) are inputs to the

simulation that produce ideal lensed images with the appropriate

resolution.

Figure 1. Images of our source galaxies from the CANDELS catalog. We annotate the physical size of each galaxy when redshifted to zs=2 in the top left corner of
each thumbnail image. At the source redshift, each thumbnail is 0.96 arcsec across; the resolution of each is 128pixels2 at 0.0075arcsec/pixel.
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2.1.4. Mock Observing

The final part is to perform the mock observation from the
ideal images produced in the previous step. Both our HST- and
LSST-like observations are monochromatic. The HST-like
sample is in the F606W band and the LSST-like sample is in
the g-band. We note that the use of a single band limits the
potential performance of our models. We refer the reader to
Metcalf et al. (2018) for an example of our model trained on
multi-band data where we concatenated the feature vector from
each band.

We create a composite image of the lens galaxy, source
image, and galaxies along the line of sight. While we adjust the
source size and magnitude to correspond to the change Ds

when placed at zs, we do not adjust colors. The distribution of
lens properties is not realistic with a constant zs, but provides a
sufficient start in covering the feature space to test supervised
classification methods. Incorporating the lens, source image,
line of sight galaxies, and noise are particularly crucial in
methods that use edge features.

For HST-like observations, we do the following for each
component. The component that mimics along the line of sight
galaxies is a cutout from the HUDF. The inclusion of this
cutout results in an image where noise and the point-spread
function (PSF) for HST is in the field of view. The lens galaxies
have been convolved with the HST PSF, but their angular
extent is significantly larger than the PSF of 0. 03~  .
Convolution of the lens galaxy component will not noticeably
alter its appearance. The source images are from a ray traced
CANDELS galaxy observed with HST PSF. This procedure
does not capture the true clumpiness of these sources. We then
create a composite image and magnitude calibrate all
components to produce the final HST-like images, which are
300×300 pix2 with 0.03 arcsec per pixel.

Note that we do not convolve the lensed image with the HST
PSF in a final step after rescaling and ray-tracing. The original
source image is a real HST galaxy that already has the HST
PSF. We then magnify the source galaxy via the lensing
procedure. It does not then make sense to perform an additional
final convolution that would erase the clumpiness potentially
captured in HST lensed arcs. Note that the observation of a true
lensing effect would have a better PSF providing finer details
than in the unlensed HST images that we have used.

For LSST-like observations, we use the LensPop software
(Collett 2015). We resample images to match the detector pixel
scale and convolve the resampled image with a circularly
symmetric Gaussian PSF discretized at the same pixel scale. To
generate a noisy realization of the image, we assume a Poisson
model based on the sky plus signal, and an additional Gaussian
read-out noise. Parameters for these simulations follow Collett
(2015) and are based on the LSST observation simulator
(Connolly et al. 2010).

To account for variations in seeing and sky-brightness over
the course of the survey, we draw each simulated exposure
from a stochastic distribution of these parameters. We then
consider two different strategies to use the simulated exposures.
First, we build one single-epoch image for each field (hereafter
labeled as LSST-best) by keeping only the best seeing
exposure. Second, we build another “worst-case” stacked
image by degrading all individual exposures, 10 per filter per
year, to match the one with the worst seeing and co-add all
exposures to a single image (hereafter labeled as LSST10).
These two sets of images will allow us to investigate the

trade-off between resolution and signal-to-noise for our
automated lens search.
Figure 2 illustrates sample mock observations with a strong

lensing signature from each telescope. The leftmost column
corresponds to a mock HST lensing system with a highly
magnified source galaxy (top) and a less visible image of the
source galaxy (bottom). For the HST-like data set, many arcs
are visually obvious due to the exquisite spatial resolution and
quality of space-based imaging.
The middle column corresponds to the same simulated

systems for LSST10. The right-most column corresponds to the
simulated systems of LSST-best. These images have resolution
45×45 pixels2 with 0.18 arcsec/pixel. LSST10 images
visually exhibit the improved signal-to-noise ratio, recovering
the arc feature, albeit at a much lower resolution than with the
HST-like image or the LSST-best image. The top images of
LSST10 and LSST-best show a visible lensed source galaxy
image. The bottom images are washed out in the bottom row,
where the magnification of the source galaxy is not as large.
The ground-based noise, PSF, and limited resolution of the
LSST-best make visual giant arc identification difficult, except
in systems with the most magnified source galaxies.
Our mock observations also include non-lens containing

images. The procedure is similar to mock lensed images but we
do not perform ray-tracing, so these images do not have lensed
source galaxies.
Furthermore, we investigate the influence of light from the

lens galaxies on the performance of our lens identification
pipeline. We generate another set of each HST, LSST-best, and
LSST10 images without the lens galaxy. We respectively label
these nHST, nLSST-best, and nLSST10.
The final data set is then comprised of 6×10,000 lens

containing images, and 6×10,000 non-lens containing
images. We also keep a holdout set of 6×1000 lens
containing images, and 6×1000 non-lens containing images.

2.2. Strong Arc Lensing Identification Pipeline

To perform our analysis, we have used tools from Scikit-
learn (Pedregosa et al. 2012) to identify galaxy–galaxy strong
lensing systems through supervised classification. Supervised
classification is a class of machine learning where the class
labels in the training set are known. In our case, the labels are
“lens” and “non-lens” containing images.
The first step of our pipeline consists of a feature extraction

stage, where our feature vector is a HOG (Dalal & Triggs 2005)
that quantifies edges in the image. We describe the method and
parameter search in Section 2.2.1. We then use LR, a machine
learning algorithm described in Section 2.2.3, to train a
classifier model on a subset of our images. LR requires a
parameter search over the regression coefficient, CLogReg,
which we explore in Section 3.2. We briefly comment that our
initial tests with a Support Vector Machine (SVM) using radial
basis functions as an alternative machine learning algorithm
yielded negligible performance improvement, and significantly
increased computation cost. This indicated that the features of
lens and non-lens images are relatively well separated by
hyperplanes in feature space. For these reasons, we do not
include SVM in our final analysis and comparisons and
continue all discussions with a linear classifier.
Both the feature extractor, HOG, and the linear classifier,

LR, contain parameters that must be tested and optimized
for peak model performance. We use GridSearchCV from

5
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Scikit-learn to select cross-validated parameters, and discuss
this step of our methodology in Section 2.2.2.

The second step of our analysis is to test our trained model
on an independent subset of the images to assess the model
performance. Here, we evaluate the model on each test image,
predicting a likelihood (“score”) between 0 and 1 that image
contains a lensing system. This “holdout set” is not used in any
of our parameter searches to keep our test metric independent
of tuning.

2.2.1. Feature Extractor: Histogram Oriented Gradients

Originally created for human detection in computer vision,
HOG is a feature extraction method that computes centered
horizontal and vertical gradients. HOG is relatively robust to
noise in the image, and is a fairly fast transform that describes
edges. Details can be found in Dalal & Triggs (2005), but we
describe the procedure here. The end result of HOG is a one-
dimensional histogram computed as follows.

HOG first divides the image into blocks of 50% overlap.
Each block contains m×m cells-per-block that each contain
n npix pix´ pixels-per-cell. The computed gradient orientation
is quantized into Norient bins. Each gradient is computed using a
[−1,0,1] and [−1,0,1]T filter kernel to provide the x and y
components of the gradient.

The orientation gradient of all pixels within each cell are
binned into the quantized orientations, providing a net gradient
description within that cell. As an example, for Norient=3, our
bins are centered at θ=0, 2π/3, 4π/3 in radians. If a cell only
has a gradient in the θ=π/2 direction, it will contribute 75%
of its magnitude to the θ=2π/3 bin, and 25% of its magnitude
to the θ=0 bin. The bins in all cells are then concatenated to
make a larger feature vector that is Norient×Ncells.
The last step is a normalization procedure to control for

illumination effects. Here, the sub-histograms of each cell
within the same block are normalized with respect to one
another before the transformation returns the final feature
vector. The division of the image and the quantization of
orientations are thus controlled by three parameters in HOG:
Norient, cells-per-block, and pixels-per-cell. We discuss how we
select parameters using cross-validation in Section 2.2.2.

2.2.2. Optimized Pipeline Parameters with a Grid Search

We run a grid search across parameters that should
reasonably sample the arc edges in either the HST- or LSST-
like mock observations, and illustrate the results in Table 1.
The grid search procedure uses a three-fold cross-validation to
help choose the best parameters for the different simulated data
sets. Here, the three-fold cross-validation consists of splitting

Figure 2. Left to right show example mock HST, LSST 10 year, and LSST-best images. The top row corresponds to a lensing system with a very visible arc signature,
and the bottom row to a lensing system that is less obvious. Example mock HST images have npix×npix=300×300. Example mock LSST images have
npix×npix=45×45. The resolution and noise of a ground-based telescope is noticeably worse. Visual identification of giant arcs in the LSST images in the bottom
row is very difficult.
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the data into three parts; we train on two of the three parts and
test on the third to get a score (accuracy), and rotate which two
are trained versus tested. This is how we derived an errorbar on
the grid search results in Table 1, the score (or the accuracy,
which is the fraction of examples correctly classified) with
threshold for classification of 0.5.

Recall, the HST-like images are 300×300 pixels per image,
while the LSST-like mock observations are 45×45 pixels per
image.

We first estimate the size of a cell that will contain a coherent
arc feature. To first order approximation, subdivisions of cells
that are 1/100 the area of the entire image should contain
coherent arc edges that span an elongated shape within arc-
containing cells. Therefore, we sample the pixels per cell
parameter from (8, 8) to (32, 32) for the HST-like images, and
(3, 3) to (7, 7) for the LSST-like images in our grid search.

Next, the cells-per-block parameter determines the normal-
ization of each cell with respect to the neighboring cell. In
general, this will downweight arc-like edges in cells that
neighbor very bright cells, such as cells that cover the central

lens galaxy. We therefore vary the cells-per-block parameter
between (2, 2) and (4, 4) for the LSST-like images and between
(1, 1) and (4, 4) for the HST-like images.
The number of orientations will determine the sampling of

rounded edges. For example, if we only have two orientations,
an arc-like feature in a cell directly north of the lensing galaxy
will appear in our HOG visualization as a strong horizontal line
(e.g., see top left in Figure 3), and an arc-like feature northeast
of the lensing galaxy will appear as an L-shape. However,
contributions from a cluster or LOS galaxy in the same cell will
tend to contribute edges in all orientations of the histogram
(e.g., bottom right in Figure 3).
Finally, the resolution of the overall image will also limit the

additional information that an increase in Norient will provide.
From the grid search, the best-case number of orientations
for each data set is Norient, HST=9, N 3orient,LSST10 = , and
N 5orient,LSST best =‐ .
The image resolution affects the length of the HOG feature

vector, which has a monotonically increasing relationship with
the time required to train the model. Additionally, for fixed
memory restrictions, there is a trade-off between the length of
the feature vector and the size of the training set. We will
discuss how the training set size affects the train time for each
data set in Section 3.3.1.

2.2.3. Machine Learning Algorithm: LR

The problem of detecting gravitational lenses in images falls
under the general category of classification in machine
learning. In general, the task is to find a function that assigns
data points x to one of two or more classes, denoted by the class
label y. This is equivalent to specifying a decision boundary, or
decision boundaries between the classes in the space of the data
points. (Compare this to regression in which the task is to find
a function y=f (x), where y is a continuous, rather than
discrete, variable.) In our case, we have two classes: lens and
non-lens containing images, and the data points x are the HOG
feature vectors extracted from the images. In this paper we use
the Logisitic Regression (LR) algorithm, for which the decision
boundary is a hyperplane. (The equivalent in the regression
setting would be linear regression.) In LR we determine the
optimal hyperplane by minimizing the objective function

L A b y A x b, log 1 exp , 5
i

i iå= + - +( ) [ ( ( · ))] ( )

where xi is a data point (HOG feature vector), yi is the known

label for that data point (1 for a lens containing image, −1 for a

non-lens containing), and A and b are the parameters of the

hyperplane. Equation (5) is to be minimized with respect to A

and b. Other more complicated machine learning algorithms

exist that do not necessarily produce a linear decision

boundary, such as SVMs, Random Forests, and Neural

Networks (Hastie et al. 2009).
The HOG feature vectors in this paper can be very high-

dimensional. When dealing with high-dimensional data, where
the number of dimensions becomes comparable to the number
of data points, overfitting can become an issue. (An example of
an extreme case of overfitting is fitting a degree n polynomial
to n points. The polynomial would simply wiggle so that it goes
through every point, and would have no predictive power if
you tried to interpolate or extrapolate.) In machine learning,
overfitting is avoided using different regularization techniques.
A common choice for LR is to add a penalty term to

Table 1

Grid Search of Pipeline Parameters

Norient Pixels/Cell

Cells/

Block Nfeat CLogReg Score

(a) HST-like data

9 (8, 8) (4, 4) 166464 10 0.8764±0.0064

9 (16, 16) (4, 4) 32400 10 0.9014±0.0066
9 (24, 24) (4, 4) 11664 10 0.8939±0.0084

9 (32, 32) (3, 3) 3969 50 0.8764±0.0105

5 (16, 16) (4, 4) 18000 10 0.8945±0.0084

7 (16, 16) (4, 4) 25200 10 0.9003±0.0096
5 (8, 8) (1, 1) 6845 50 0.8456±0.0080

5 (16, 16) (1, 1) 1620 50 0.8381±0.0113

5 (24, 24) (1, 1) 720 50 0.8594±0.0094
5 (32, 32) (1, 1) 405 50 0.8581±0.0111

5 (16, 16) (1, 1) 1620 50 0.8381±0.0113

7 (16, 16) (1, 1) 2268 50 0.8488±0.0092

9 (8, 8) (1, 1) 12321 50 0.8539±0.0084

(b) LSST-like data (LSST10)

4 (3, 3) (3, 3) 6084 50 0.6155±0.0049

3 (4, 4) (3, 3) 2187 100 0.6680±0.0089

4 (5, 5) (3, 3) 1764 50 0.6472±0.0039
4 (7, 7) (3, 3) 576 100 0.6512±0.0127

4 (4, 4) (3, 3) 2916 100 0.6583±0.0031

6 (4, 4) (3, 3) 4374 50 0.6506±0.0150
9 (7, 7) (3, 3) 1296 100 0.6405±0.0065

9 (3, 3) (1, 1) 2025 100 0.5400±0.0074

4 (4, 4) (1, 1) 484 100 0.5867±0.0175

4 (5, 5) (1, 1) 324 50 0.5800±0.0044
6 (7, 7) (1, 1) 216 100 0.5936±0.0097

3 (4, 4) (2, 2) 1200 500 0.6567±0.0082

4 (2, 2) (1, 1) 1936 50 0.5597±0.0045

6 (3, 3) (1, 1) 1350 50 0.5525±0.0032

Note. Panel (a) shows a subsample of the results of a grid search for HST

across a range of HOG parameters, feature vector length, and regularization

parameter for Logistic Regression, CLogReg, from Equation (6). Panel (b) shows

a subsample of the results of a grid search for LSST10. Each use a data set of

size 2×8000 for cross-validation to get the average scores and standard

deviation. We explore different HOG parameters in each data set due to

resolution and image size differences. We highlight the best performance from

the grid search in bold.
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Equation (5)

L A b C L A b
C

A, , ,
1

2
, 6Reg LogReg

LogReg

= +  ( ) ( ) ( )

where the norm A  is typically taken as either the sum of

squares of the coefficients (L2 norm) or the sum of absolute

values of the coefficients (L1 norm). In this paper we use the

former.
The amount of regularization is controlled by the parameter

CLogReg: larger values of CLogReg correspond to increasing
model complexity. If CLogReg is too large then the model will

overfit, and if it is too small the model will underfit. To

determine whether a model is overfit or underfit, the model is

trained, (i.e., Equation (6) is minimized), on a subset of the data
called the training set and its performance (goodness of fit) is

evaluated both on the training set and a separate test set that

was not used in constructing the model. Figure 6 shows the

performance of a model with selected HOG parameters as a
function of the regularization parameter, CLogReg, for both the

training and the test set. (The performance can be measured by

the accuracy, i.e., percent of images correctly classified, or by

some other metric, such as the area under the ROC curve
described in Section 3.1.)

When CLogReg is small, the performance of the model
improves with increasing CLogReg on both the training and test
set, meaning that CLogReg is still in the underfitting regime.
Eventually the performance on the test set reaches a maximum
and starts to decrease, even while the performance on the
training set continues to increase. This means that the model is
no longer generalizing well and is starting to overfit. The
optimal CLogReg occurs when the performance of the test set is
at its maximum; this is the value of CLogReg that should be used
in the final model.
In practice, there is something of a trade-off between

accuracy and computational resources because a larger value of
CLogReg will also increase the training time, since a larger
CLogReg corresponds to a less constrained parameter space
being searched. We discuss the performance and training time
dependence on CLogReg in Section 3.2.

3. Results

We show results of the HOG and LR generated models using
our mock HST and LSST data sets. For each of these, we also
explore the performance of our models trained on mock data in
absence of the lens galaxy as an idealized test of perfectly
modeling out the lens. The data with removed lens are labeled
as nHST, nLSST-best, and nLSST-10. In the final subsection of

Figure 3. Left to right: example image transforms of mock images from Figure 2 with a visualized histogram of oriented gradients. The image transform picks up edge
features, with arc features showing up as edges across radial orientations. Each of the oriented gradients within a cell is color-coded by magnitude, and represented as a
line in the direction perpendicular to that gradient. The actual extracted features fill a one-dimensional feature vector comprised of the magnitudes of each of the
oriented edges within the visualized cells.

8

The Astrophysical Journal, 877:58 (19pp), 2019 May 20 Avestruz et al.



our results, we also examine the performance of models trained
on mock HST data, and tested on real observed data from the
SLACS (Bolton et al. 2008).

3.1. Receiver Operating Characteristic

In this section, we discuss the ROC curve (see Figure 4),
which shows the true positive rate (tpr) as a function of false
positive rate (fpr) for a given model and test set. The tpr is
defined as the number of lenses correctly identified as positive
divided by the total number of real lenses. The fpr is defined as
the number of non-lenses incorrectly identified as positive
divided by the total number of non-lenses. The ROC curve
illustrates the performance of our trained model as we vary the
discrimination threshold.

The classifier model assigns a score to each test image, which
is a probability that the image is a strong lensing system. To
construct the ROC curve, we rank the test images by probability,
and calculate the tpr and fpr for decreasing discrimination
threshold.

Higher discrimination thresholds correspond to higher tprs,
but will have more false negatives (bottom left region of the
ROC). For a very low discrimination threshold, we have fewer
false negatives but more false positives (top right region of the
ROC). The ideal model would have an ROC curve with data
points that go from x y, 0, 0=( ) ( ) to (x, y)=(0, 1) to
(x, y)=(1, 1).

In the context of strong lensing systems, we wish to maximize
the tpr so we have a representative count of the fraction of strong
lensing systems in an observed volume of the universe. We also
want to minimize the fpr. Positively identified strong lensing
systems will require expensive spectroscopic follow-up for
validation. The steepness of the ROC curve indicates how well
the model will optimize the two. One way to characterize the
performance of a model is with the AUC. The ideal model
would have an AUC of 1. We show the ROC curves of our best
performing models in each data set.

Figure 4 shows the ROC curves for models trained using the
entire 10,000 training sample, with best-case HOG and

regularization parameters. The models have been evaluated
on a holdout set of 1000 images that were not used in the
parameter search. We show the mock HST, LSST-best, and
LSST10 results respectively in red, blue, and green. Solid lines
correspond to a model trained and tested on images with the
lensing galaxy. Dashed lines correspond to a model trained and
tested on images where the lensing galaxy is excluded from the
mock observation, simulating an ideal modeling and subtrac-
tion of the lensing galaxy, which has been one proposed
method to improve the identification of strong lensing systems.
The corresponding AUC is listed in the legend.
The model performance for the mock HST data is AUC=

0.975 for images with the lens galaxy, and AUC=0.98 for
images without the lens galaxy (red solid and dashed). On the
other hand, the model for our LSST-like data set for one year
has an AUC=0.625 with the lens galaxy and AUC=0.579
without the lens galaxy (blue solid and dashed), and the model
for our LSST-like data set for 10 yr has an AUC=0.809 with
the lens galaxy and AUC=0.792 without the lens galaxy
(green solid and dashed). Removal of the lens galaxy does not
systematically perform better, and is actually dependent on the
size of the training set. We discuss relative model performance
and complexity for images with and without the lens galaxy in
Section 3.3.1.
While the ROC curve is a standard metric for supervised

classification in the machine learning community, we note that
it does not fully capture the practicality of an algorithm since it
is measured for a data set with equal lenses and non-lenses.
This is not the true ratio between the two classes in the
classification. To complement the ROC curve, we also discuss
the Precision–Recall (PR) curve. The recall axis is the same as
the tpr axis in the ROC curve (number of positively identified
lenses divided by the number of real lenses), also called the
completeness of a sample. Precision is the number of lenses
correctly identified as positive divided by the total number of
positive identifications, also known as the purity of a sample.
Figure 5 shows the PR curve for our models. Each point in the

figure is calculated with a varying threshold for identification.
Since our sample has a class balance of 50–50 between lens and
non-lens, the most lenient threshold that classifies all objects as

Figure 4. Red, blue, green: ROC curves for models trained on our whole
10,000 training set and tested on our holdout set of 1000. These respectively
correspond to the HST, LSST 1 yr, and LSST 10 yr data. The solid lines are for
data that include the lensing central galaxy, and the dashed lines for the data
where there is no lensing galaxy, mimicking an ideal removal of the lens.
Model performance can be summarized by the area under the curve (AUC),
labeled in the legend. AUC=1 is a perfect model, and AUC=0.5 is a useless
model.

Figure 5. Red, blue, green: precision-recall (PR) curves for models trained on
our whole 10,000 training set and tested on our holdout set of 1000. These
respectively correspond to the same models and data shown in Figure 4. An
ideal model would reach both a precision (purity) and recall (completeness)
that equal 1. Note that this performance describes a data set with a 50–50 split
between lens and non-lens containing images.
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positive would yield a precision of 0.5 at a recall of 1.0. It is
important to note that this figure changes as the class balance
changes; if we had 90% non-lenses and 10% lenses, the most
lenient threshold would yield a precision of 1/9 at a recall of 1.

In full application to real data, the precision quantity is what
determines the efficiency of follow-up by spectroscopic measure-
ments or human inspection, and we expect the number of lenses to
non-lenses to be 1–1000. For approximate comparison, a 30%
recall (completeness) for our mock HST data set has a 0.9967
precision in the 50–50 class balance, which then corresponds to a
23% precision in the realistic class balance of 1–1000. However,
for LSST10, a 30% recall corresponds has a 0.89 precision in the
50–50 balance, which then corresponds to 1% in precision in
1–1000. The precision in our HST data is relatively idealized, so
we expect the purity to be an absolute upper limit estimate for
how well the HOG/LR methods might be able to do in real
observations. For comparison, the precision-recall values quoted
in other simulation-based tests are 94%–100% in precision with
96%–100% recall in Jacobs et al. (2017) using convolutional
neural networks, where the lens to non-lens ratio is approximately
1:1. As another example, in Gavazzi et al. (2014), the values are
29% in precision and 42% in recall using RingFinder in their
sample. But these values are only directly comparable to tests
where the ratio of lens to non-lens is the same.

3.2. Effects of Regularization on Model Performance

As described in Section 2.2.3, LR trains a model with
complexity determined by the regularization parameter coeffi-
cient, CLogReg. Larger values of CLogReg are less regularized and
allow for increased model complexity. The highest values of
CLogReg will better describe features in the training set.
However, an overly complex model will overfit the training
set at the expense of its performance on any independent test
set. The regularization parameter ultimately defines the model
performance, and we must perform a parameter search to
identify the optimal value for CLogReg.

Figure 6 shows the model performance as a function of
regularization parameter for each data set HST, LSST-best, and
LSST10. The solid and dotted blue lines respectively
correspond to the model performance on the test and training
set, with the AUC as a metric for performance. In red, we show
the train time as a function of CLogReg.

As expected, the training set AUC increases and asymptotes
with CLogReg. With increasing model complexity, the model
better fits the training data set. This is analogous to fitting a

seventh order polynomial to seven data points, where the fitting
function will go through every point but will not likely predict
additional points. With increasing model complexity, we are
better able to capture features that are generally characteristic
of strong lensing systems with arcs. However, past a certain
CLogReg, the model performance on the test set decreases or
asymptotes, as it has overfit the training set. We use the scaling
of AUC with CLogReg when training 8000 out of our full 10,000
training data set to determine the best value for CLogReg.
However, the optimal parameter is also dependent on the size
of the training set (see Section 3.3.1), so this choice is not
generalizable.
For fixed training set size, the log of the train time roughly

scales linearly with the log of CLogReg. Since lower values of
CLogReg correspond to a more regularized model, there is a
smaller volume in hyperparameter space to search for the best
fit coefficients. The solution, on average, will converge more
quickly, for more regularized models. The scaling is not purely
monotonic because the fitting still has some randomness
associated with the path it takes to convergence.

3.3. Data Set Size Dependence

3.3.1. Effects of Training Set Size on Performance and Train Time

In this section, we show the effects of training set size on
model performance on the holdout test set of 1000 images. We
also compare the improvement between images that include the
lens galaxy and images with no lens galaxy.
Figure 7 shows how the AUC depends on the log of the size

of the training set for both the LSST10 (LSST-best) data in the
solid blue (red) line, and the nLSST10 (nLSST-best) data in
the dashed blue (red) line. The AUC for models trained on
the LSST10 data improves almost linearly with the log of the
training set size, increasing from AUC=0.705 to AUC=
0.788 when the train size is increased from 2×500 lens/
non-lens images to 2×8000 lens/non-lens images. However,
for the nLSST10 data, where the lens galaxy has been removed
from the images, the improvement is less dramatic. With the
same increase in training size, the AUC for nLSST10 changes
from just below 0.77 to just below 0.78.
In the LSST10 case, the trained model can incorporate the

additional information of the edges from the lens galaxy, which
is correlated with the lensing cross-section and likelihood of the
image being a lensing system. The nLSST10 images do not
contain this information, but provide cleaner signals of the
lensed image for lensed images that occur close to the lens

Figure 6. AUC of the model with varying LR regularization coefficient parameter, CLogReg, used when training the model classifier. We use a subset of the 10,000
training images to search over the LR CLogReg parameter, training on 8000 and testing on 1000. Each panel corresponds to a different mock observation. From left to
right: HST, LSST for one year, and LSST for 10 yr. The solid blue lines correspond to the AUC of the test set, and the dotted blue lines to the AUC of the training set.
To avoid overfitting, we choose the smallest parameter for which the AUC of the test set is maximal: 5000, 10, and 5000, respectively. In thin red solid lines, we show
the train time of the model, which roughly increases in a log–log scaling with logistic regression coefficient parameter. The train time tick marks are on the right side
of each figure in units of seconds.
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galaxy. The cleaner signal in nLSST10 allows for better model
performance for smaller training data set sizes (Ntrain∼5,000).
However, models trained on LSST10 improve more rapidly
with train size, since the additional information from the lens
galaxy better describes the lens containing images. For
Ntrain5,000, the models trained on LSST10 outperform
those trained on nLSST10.

In red, we see an analogous improvement for LSST-best and
nLSST-best. Here, the crossover happens at train size of
2×1000, where an increase in larger training data set size does
not help improve the AUC for nLSST-best.

Since the models that contain information from the lens
galaxy edges in LSST10 are more complex, the models require
a larger training set size for a better fit. While model
performance for LSST10 appears to steadily increase, this
comes at the cost of increased train time, which is two-fold.
The train time will increase due to both an increase in data to

fit, and also an increase in optimal CLogReg where the volume of
hyperparameter space for allowed solutions is larger (see red
lines in Figure 6).
We illustrate the dependence of train time on both the size of

the training set and model complexity in Figures 8 and 9. In
red, Figure 8 shows that the optimal values for CLogReg. For
LSST10, CLogReg roughly scales logarithmically with the log of
the train size, with an exception of the data point corresponding
to train size of 2000. Generally, a larger training set allows for
an increase in model complexity without reducing its ability to
generalize. This is also true for the optimal CLogReg dependence
on the number of training images in the nLSST10 data. But, the
required complexity is systematically less than for the LSST10
images.
In blue, Figure 8 also shows the train time for LSST10 and

nLSST10 as a function of the size of the training set for the
optimal regularization parameter for that subset of the training
data. Each model uses features extracted with the same HOG
parameterization from the grid search and the optimal
regularization parameter for that subset of the training data.
The train time of a given model generally increases for
increasing regularization parameter. For the subset of train size
Ntrain=2000 in LSST10, the optimal regularization parameter
happened to be CLogReg=100, whereas it was CLogReg=500
for the subset of train size 1000, and C 1000LogReg = for the
subset of train size 4000. This makes the train time increase at
train size Ntrain=2000 for LSST10 less dramatic than the
average log–log slope of approximately 2.
Since nLSST10 does not contain the lens galaxies, fewer of

the extracted features describe the lens system, requiring
decreased model complexity. The increase in train time for
nLSST10 as a function of train size is mostly due to only
having more data to fit in the regression, leading to a steady and
slow increase of train time with number of training images with
log–log slope of approximately 1.
For LSST-best, Figure 9 shows the same relationships

between train time and train size in blue, and the optimal
regularization parameter (or model complexity) in red.
Contrary to what we found when comparing LSST10 to
nLSST10, nLSST-best requires more model complexity than
LSST-best. Recall that LSST-best and nLSST-best correspond
to single epoch simulated exposures with the best seeing; these
images exhibit better resolution but worse signal-to-noise. The

Figure 7. Solid (dotted) blue line: AUC for models with varying size of the
training set for LSST10 (nLSST10). Solid (dotted) red line: same for LSST-
best. The improvement of AUC scales roughly linearly with the log of the
training set size. However, LSST10 and LSST-best have a steeper improve-
ment with data training size. The performance of nLSST10 and nLSST-best
models trained on smaller training data sets is better than the respective
LSST10 and LSST-best models trained on the same size data, but the LSST10
and LSST-best models outperform with larger size training data set.

Figure 8. Solid (dotted) blue line: train time for models with varying size of the
training set for LSST10 (nLSST10). Train time roughly scales logarithmically
with the train size, but the train time is also affected by model complexity.
Solid (dotted) red line: best regularization parameter as a function of train size.
Note that LSST10 requires more model complexity to exceed the performance
of nLSST10 (see blue solid and dotted lines in Figure 7), and therefore requires
more training time for continual increase in performance.

Figure 9. Same as Figure 8, but for LSST-best. Here, nLSST-best requires
more model complexity than LSST-best. Note that LSST-best and nLSST-best
have better seeing but reduced overall signal-to-noise than LSST10 and
nLSST10. This corresponds to better resolution, and therefore sharper edge
features that prominently correspond to arcs.
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switch in required model complexity corresponds to a trade-off
between features from the lens galaxy providing additional
information or swamping the signal from a strong lensing arc.

3.3.2. Effects of Rotation on AUC

To augment our training set, we rotated each image in the set
by multiples of 90o. Since our feature extraction method of
HOG is not rotationally invariant, augmenting our data by a
factor of four naturally optimizes the use of available training
data. This has an equivalent improvement to the study
illustrated in Figure 7.

We also tested the effects of evaluating our model on all four
rotations of the test set, and using the average score of each test
image to calculate the AUC. In Figure 10, we show the AUC
for different orientations of the data sets. The x-axis
corresponds to each of our three data sets, with and without
the lens galaxy. The y-axis shows the AUC. The filled blue
circles correspond to the four AUCs calculated when the model
evaluated images at each of the four rotations. The filled red
stars correspond to the AUC calculated from the average of all
four test scores, which are systematically higher than any one
rotation. The average score across all rotations for each image
is likely to be less noisy for the whole test sample, giving an
improved AUC.

Figure 10 also summarizes the best-case results of our
models trained on our entire 10,000 training sets, and tested on
our holdout 1000 test set. Recall, however, that we expect
model performance on images containing the lens galaxy to
improve further with larger training sets (see Figure 7).

3.4. Image Classification Performance

3.4.1. Populating the ROC Curve

In this section, we discuss the different image types that our
model is most and least able to successfully classify. We have
six paradigms of model performance on the mock images based

on the score an image receives when evaluated by the trained
model, and its true label. From highest scoring to lowest
scoring: true Positives (tp), False Positives (fp), Borderline
Positives (bp), Borderline Negatives (bn), False Negatives (fn),
and True Negatives (tn).
Figure 11 illustrates four images from each paradigm for the

holdout test set of LSST10. The trained model used the entire
10,000 image training set. The left two columns show lens
systems, and the right two columns show non-lens systems.
The annotation in the top left corner of each images shows the
score.
In general, the true positives (the highest scoring lens

systems) have lensed images with large magnification. The true
negatives (the lowest scoring non-lens systems) have small lens
galaxies with galaxies along the line of sight that are rounded.
The successful classification of these two paradigms are least
sensitive to the threshold. On the other hand the failed
classification of the false positives (the highest scoring non-lens
systems) and the false negatives (the lowest scoring lens
systems) are also least sensitive to the threshold. False
negatives are typically lens systems with lensed images of
smaller magnification and minor distortions that mimic along
the line of sight galaxies that the model has learned to ignore.
False positives are often non-lens systems with elongated,
elliptical, or “fuzzy,” galaxies along the line of sight whose
signal blends with the lens galaxy contributing to the fpr even
for conservative thresholds. Visually, these false positives are
virtually indistinguishable from true arcs, and would require
spectroscopic follow-up.
The middle two rows of Figure 11 illustrate the borderline

positives and borderline negatives. The successful classification
of the borderline positives and negatives are most sensitive to
the threshold, and would be the first candidates for alternative
classification methods, such as visual follow-up. Thresholds set
around these scores yield a tpr and fpr of tpr≈0.8 and
fpr≈0.25, respectively.

3.4.2. Dependence on Lens–Model Parameters

Here, we examine lens-model parameters that affect how
well our pipeline can classify the system. The lens-model
parameters we examined are the redshift, ellipticity, orientation
angle, and velocity dispersion of the lensing galaxy, and also
the magnification of the lensed image compared with its
original size. We found that the magnification of the lensed
image is the most correlated lens-model parameter with our
trained model performance, with a secondary and related
correlation with lens galaxy velocity dispersion that is
encapsulated in the Einstein radius. The more strongly lensed
an image is, the larger its magnification, and the easier it is for
our trained model to classify.
In Figure 12, we show the classification score as a function

of Einstein radius and image magnification of the source galaxy
in each of our samples. In an HST- or LSST10-like observation,
lensing systems with images that have magnification 7 will
likely be classified as positive with threshold scores above
0.5. These systems are also those that are most easily
classified by eye. However, our trained model has varying
performance for systems with lower magnifications.
Highly magnified systems typically have lenses that are at

higher redshifts of and/or lens galaxies with velocity
dispersions larger than σv230 km s−1. Lensing galaxies
with smaller velocity dispersions are less massive and therefore

Figure 10. Our summary figure: the AUCs of models trained on the full 10,000
and tested on the holdout 1000. Blue circles: AUC calculated from scores of
images at a given rotation (e.g., 0°, 90°, 180°, and 270°). Red stars: AUC
calculated from the average score of all rotations of each image. The average
score produces an improved AUC in all data sets. We expect the AUC to
further improve with increased train size.
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Figure 11. LSST 10 yr mock images. Left two columns: lens containing images, annotated with the image score assigned by our trained classifier. Right two columns:
non-lens containing images, annotated with the image score. The top two rows show characteristic images that will be accepted with a high threshold for classification,
contributing to the bottom left of the ROC curve in Figure 4. The middle two rows show characteristic images that will be accepted with a moderate threshold,
contributing to the knee of the ROC curve, with true positive rates and false positive rates of tpr≈0.8 and fpr≈0.25, respectively. The bottom two rows show
characteristic images that will only be accepted with an extremely lenient threshold, contributing to the top right area of the ROC curve.
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have a smaller efficiency of lensing cross-section. The smaller
efficiency means that a background galaxy is less likely to be
strongly lensed with high magnification. Also, due to
hierarchical structure formation, galaxies are less massive at
higher redshifts, so the trends of model performance with these
three parameters are somewhat degenerate with one another.

The relationship between our model performance and lens
parameters indicates that the magnification of lensed images is
the most relevant, and the distribution of image magnification
in a data set will impact trained model performance. We did not
find strong correlations in model performance with other lens
parameters. It is also useful to keep in mind that lensed galaxy
images with magnification 5 are often visually indistinguish-
able from edge-on disk galaxies along the line of sight, which
can lead to false positives. Since the latter can lead to false
positives, the model has learned to downweight the related
features. Note that the model would be more sensitive to
systems with lower magnification without galaxies along the
line of sight.

In a forthcoming paper, we will discuss how class imbalance,
or differences between the lens-model parameter distributions in
the training and test sets affect model performance and will
explore a method to correct for this.

3.4.3. Methods Applied to Real Data

We examine the performance of the HOG/LR methodology
on data from SLACS, real space-based HST observations
Bolton et al. (2008). The main conclusion from our tests is that
HOG is a feature extraction method where parameters can be
varied to compensate for imperfections and details that the
mock training data does not capture. However, the HOG
parameterization that best captures the geometric features of an
arc and lens galaxy will vary depending on the quality of the

image. This subsection also examines how potential further
steps in using HOG might mitigate differences between
simulated and real data with a focus on HST images. For
shorthand, we provide the HOG parameterization of n npix pix´
pixels-per-cell and m×m cells-per-block as ppc-npix-cpb-m.
We note that a test of our model on real ground-based data is

plotted in Figure 8 of Metcalf et al. (2018). Consistent with
other methods explored in Metcalf et al. (2018), the
performance of our method decreases when evaluated only
on the subset of real data. We do not explore how HOG
parameterizations impact the performance on the real data
evaluated in Metcalf et al. (2018). Instead, we focus on SLACS
data, which is most similar to our mock HST data set that we
have for model training and testing.
The SLACS data set is comprised of images selected for

high-redshift emission lines and a lower redshift continuum in a
single spectrum from the Sloan Digital Sky Survey. In the data
set we examined, there are 64 clear lensing systems, and 27
non-lensing systems as classified by the authors through visual
examination in the direct images and model-subtracted residual
images. We do not use ambiguously classified systems from
their sample in our test. Each system has an image in at least
one of three filters: F814W, F555W, and F435W. For 34 of
these systems, there is another exposure at the same filter.
The model trained on mock HST images using the best grid

search output parameterization, ppc-16-cpb-1, does not uni-
formly perform well on all images from the SLACS sample.
For example, the evaluated score for SLACS J0956+5100
imaged in the F814W filter increased from 0.436 to 0.959 with
ppc-12-cpb-3. From left to right, the top row of Figure 13
shows the image, HOG visualization for ppc-16-cpb-1, HOG
visualization for ppc-12-cpb-3, histogram for ppc-16-cpb-1,
and histogram for ppc-12-cpb-3. As a counter-example, the
bottom row of Figure 13 shows SLACS J1420+6019 imaged

Figure 12. Left to right: image classification score on HST, LSST10, and LSST-best mock observed lensing images as a function of Einstein radius (top) and
magnification (bottom). The top panels are color-coded by magnification, and the bottom by Einstein radius to visualize the combined effects. Magnification is the
strongest indicator of how likely a lensing system will be successfully classified. The Einstein radius has a weaker correlation with how easily a lensing system might
be classified, since it contains information on both the velocity dispersion of the lens and the redshifts of the lens and source galaxies. High velocity dispersion lens
galaxies are likely to produce high magnification images of the source galaxies.
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in F555W filter and its transition went from a score of 0.974 to
0.488 in ppc-12-cpb-3.

The image graininess present in real data can impact how
well a given HOG parameterization can capture the morpho-
logical features of an arc. In Figure 14, SLACS J1205+4910 is
an example of a visibly clear lens that is highly scored for its
image in the F814W and F555W filters, but has a significantly
lower score in the F435W filter. We also show the feature
vector and the visualization of the HOG in the middle and right
panels. The grainy features correspond to a higher normal-
ization in additional bins of oriented edges, swamping the
signal from the lens edge.

To assess the variations in how well a given HOG
parameterization can capture lens parameters, we trained
models on only 1000 lensed and non-lensed mock HST images
in eight different sets of HOG parameterizations in the spirit of
a grid search: ppc-6-cpb3, ppc-8-cpb-2, ppc-8-cpb3, ppc-8-
cpb-4, ppc-8-cpb-10, ppc-12-cpb-3, ppc-16-cpb-1, and ppc-16-
cpb-3. We tested each of these models on a separate 1000
lensed and non-lensed mock images, deriving an AUC on the
mock data set to assess the robustness of these models within
the simulated data. We then measured the AUC of each model
when evaluated on the SLACS data divided into bands. The
results of our test are summarized in Table 2. Note that the
AUCs of the mock test data are not as high as the results quoted
in Figure 10 because of the difference in training set size.

First, we should note that our overall sample to test on is
relatively small, so the uncertainty of the AUC values for the
SLACS data set is rather large. To quantify this, we compute
the bootstrap average and standard deviation, which are shown
in the parenthesis of the table column for the AUCs. Note,
when subselecting on individual bands, the standard deviation
can be almost 25%.

Next, of the HOG parameterizations we tested, ppc-12-cpb3
performed the best on all of the SLACS data, and in particular
on images from the F814W filter. Finally, the main point we
would like to emphasize is that the models that were trained on
mock HST data do not contain the same artifacts or variations
in graininess as the real observations in the SLACS sample.
But, for a given image, a HOG parameterization can be selected

that ignores grainy features and keeps features that correspond
to arcs. The current problem is that the SLACS sample is too
small to run a robust systematic search. In absence of a single
ideal HOG parameterization for a SLACS-like sample, we
could identify a handful of HOG parameterizations that
describe subsets of the data and concatenate the vectors from
each HOG parameterization for the feature vector. Feature
vector concatenation is how we leveraged multi-band data from
the ground-based sample in Metcalf et al. (2018). Another
alternative would be to quantify the quality of an image by a
metric that correlates best with HOG parameterization.

4. Summary and Discussions

We have presented a supervised classification pipeline to
automatically identify galaxy–galaxy strong lensing systems
using a HOG as a feature extractor, and LR as a machine
learning algorithm. Our pipeline can easily be extended to
identify other strong lensing features, such as multiply imaged
quasars, and to test alternative features and/or machine
learning algorithms.
We have also made use of a new sophisticated set of mock

observations, which will be made publicly available. The
lensing systems have lens galaxies generated with a realistic
redshift distribution and along the line of sight galaxies drawn
from Hubble Ultra-Deep field observations. We have explored
results from mock HST, 1 year LSST, and 10 year LSST
observations.
We summarize key points below:

1. We have designed our pipeline to easily select and add
image pre-processing and feature extraction methods, and
to select a machine learning algorithm for classification.
Additionally, the user can easily perform parameter
searches to train a model with the best parameters for a
given problem.

2. We have tested and run parameter tests for a HOG as an
efficient and effective feature extractor for galaxy–galaxy
strong lensing systems in both a space-based (HST-like)
and ground-based (LSST-like) observation. We have also

Figure 13. Top row: from left to right, the image of SLACS J0956+5100 in the F814W filter, its HOG visualization for ppc-16-cpb-1, for ppc-12-cpb-3, the histogram
for ppc-16-cpb-1, and the histogram for ppc-12-cpb-3. The asymmetric arc features are better captured in the latter HOG parameterization. Bottom row: from left to
right, the image of SLACS J1420+6019 in the F555W filter and the analogous HOG visualizations and histograms. For this image, the arc features are better captured
in the former HOG parameterization, where arc features contribute to the right side of the histogram.
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tested and run parameter tests for LR as a scalable, cheap,
and effective machine learning algorithm.

3. We find AUC values of ROC curves of optimized
classifier models to yield AUC=0.975 for the HST-like
data, AUC=0.809 for the stacked LSST-like data.
Model performance exhibits continual increase with the
training size.

4. While removal of the lens galaxy improves model
performance for smaller size training samples, features
from the lens galaxy improve model performance for
larger training data sets.

5. Images that were easiest for our model to classify
typically were lens systems that had high lensed image
magnification and a lens galaxy with large velocity
dispersion or non-lens systems with lens galaxies with
smaller velocity dispersion and non-elongated along the
line of sight galaxies.

6. We have explored the potential of HOG/LR in mitigating
the problem where simulations are not able to capture

imperfections and details in real data from the SLACS
sample. The results indicate that different HOG para-
meterizations can be robust to different amounts of noise/
defects that are not captured by our simulations.
However, no single HOG parameterization is able to
maximally perform on the ensemble of SLACS images.
With a larger data set, a systematic study that couples
image quality to the best HOG parameterizations would
be possible.

We emphasize that simple linear classifiers, such as LR, are
scalable and relatively easy to parallelize with open source
tools such as Apache Spark.15 Our work indicates that HOG
feature extraction plus a linear classifier captures much of the
morphological complexity in the arc finding problem. We have
also tested how HOG feature extraction can be parameterized
to be less sensitive to real image quality variations that are not

Figure 14. Top row: image of SLACS J1205+4910 in the F435W, F555W, and F814W filters. Middle row: corresponding visualization of the HOG of each image
with ppc-12-cpb3. Bottom row: the histogrammed edges. Grainy features in F435W increases the histogram values in every direction, swamping the edge signatures in
the left side of the histogram and lowering the score.

15
http://spark.apache.org/
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Table 2

Effects of HOG Parameterization on Model Evaluation

PPC CPB AUCmock AUCSL AUC814 AUC435 Pmock Rmock PSL RSL P814 R814 P435 R435

(6, 6) (3, 3) 0.901 0.469 (0.470±0.052) 0.470 (0.471±0.066) 0.311 (0.312±0.099) 0.713 0.916 0.741 0.496 0.758 0.588 0.333 0.125

(8, 8) (2, 2) 0.889 0.540 (0.541±0.053) 0.543 (0.543±0.066) 0.417 (0.417±0.108) 0.670 0.936 0.781 0.678 0.789 0.750 0.563 0.375

(8, 8) (3, 3) 0.920 0.566 (0.566±0.053) 0.573 (0.573±0.066) 0.426 (0.426±0.113) 0.712 0.954 0.777 0.603 0.779 0.663 0.538 0.292

(8, 8) (4, 4) 0.934 0.574 (0.575±0.052) 0.578 (0.579±0.064) 0.423 (0.422±0.117) 0.731 0.955 0.795 0.545 0.800 0.650 0.333 0.083

(10, 10) (3, 3) 0.925 0.567 (0.566±0.053) 0.548 (0.548±0.068) 0.433 (0.432±0.111) 0.729 0.924 0.787 0.612 0.500 0.208 0.787 0.738

(12, 12) (3, 3) 0.932 0.612 (0.611±0.052) 0.607 (0.607±0.065) 0.503 (0.505±0.107) 0.724 0.943 0.817 0.554 0.809 0.688 0.333 0.042

(16, 16) (1, 1) 0.820 0.509 (0.509±0.056) 0.481 (0.481±0.067) 0.474 (0.475±0.108) 0.581 0.933 0.782 0.711 0.769 0.750 0.667 0.500

(16, 16) (3, 3) 0.942 0.580 (0.580±0.052) 0.576 (0.574±0.063) 0.439 (0.437±0.116) 0.698 0.963 0.797 0.620 0.787 0.738 0.400 0.083

Note. A table summary of a grid-search-like test to check if a given HOG parameterization might best capture arc morphology in the varying levels of graininess in observed data. The columns correspond to the pixels-

per-cell HOG parameterization, cells-per-block, the AUC of the ROC curve of mock test data, the AUC of the ROC curve of all of the SLACS data (SL), the subselection of F814W filter images (814), and the

subselection of F435W filter images 435 in addition to the respective precision and recall values at a threshold of 0.5. We do not provide AUC values in the F555W filter because there are no non-lens images in the filter.

The AUC columns for the SLACS data include the average and standard deviation of the AUC from bootstrapping. We also include precision and recall values at the 0.5 threshold.
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captured by simulations, but further tests on a larger sample of
data will be necessary. The methods also scale to large data sets
on a computing cluster, if needed.

One major caveat to our results is the fact that our mock data
does not describe the full distribution of lens and non-lens
images that will be observed, a shortcoming to be addressed in
future mock data work. For example, the galaxies along the line
of sight in our training and test images all come from the
Hubble Ultra Deep field, sampling a smaller range of potential
contaminants that are not associated with a lensed image. A
limitation of the CANDELS sources is that the sources are
observed with HST PSF, and would not resolve the clumpiness
within a true HST arc. Also, the redshift of the source galaxies
have been fixed to zs=2. Varying the source redshifts affects
the relative brightness between the lens and the source. Note
that in our lens-classification method, the HOG image
processing step normalizes the contrast of local histograms
within blocks of the image, providing an option to enable
results that are more invariant to changes in brightness across
the image.

Finally, we must take the class balance, or relative number of
lens to non-lens systems, into account when assessing a metric.
The Precision–Recall (purity-completeness) metric is sensitive
to the ratio of lens and non-lens systems in the data. Both of our
training and test data sets have 50% lensed and 50% unlensed
images, which is not expected in observations. Again, the
precision of a method is what would enable efficient spectro-
scopic or human-based follow-up.

For images selected for a massive elliptical, the number of
non-lenses will outnumber lenses by at least 1000 to 1.
Therefore, a sample that is 50% pure requires a classifier with
an fpr of 0.001. Looking at the solid green line in Figure 5, we
can set a high classification threshold and obtain a sample with
close to 100% purity and up to ∼10% recall of all of our lenses,
before contamination from non-lenses leaks into the selection.
While information from other bands will certainly improve the
model performance, a maximally large and pure sample from
our method would likely require further filtering, e.g., by
citizen science, or modification to how the HOG features are
used by machine learning classifiers. However, neural networks
have the current best performance in application to the strong
lens finding problem and are the best single approach to the
pure lens-finding problem (Metcalf et al. 2018).

The ROC curve metric is insensitive to the ratio, but is
sensitive to the sampling. Given alternative lens and non-lens
sample splittings, our true positive and fprs in the ROC curves
would stay the same, making the ROC curve a more standard
metric in the literature. On the other hand, the ROC curves
show a representative rate for lens and source distributions that
are evenly sampled. We do not expect this sampling to be
representative of what we might expect from an observational
survey. We leave these additional challenges to future work.
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