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Abstract: According to research, classifiers and detectors are less accurate when images are blurry,
have low contrast, or have other flaws which raise questions about the machine learning model’s
ability to recognize items effectively. The chest X-ray image has proven to be the preferred image
modality for medical imaging as it contains more information about a patient. Its interpretation
is quite difficult, nevertheless. The goal of this research is to construct a reliable deep-learning
model capable of producing high classification accuracy on chest x-ray images for lung diseases.
To enable a thorough study of the chest X-ray image, the suggested framework first derived richer
features using an ensemble technique, then a global second-order pooling is applied to further derive
higher global features of the images. Furthermore, the images are then separated into patches and
position embedding before analyzing the patches individually via a vision transformer approach.
The proposed model yielded 96.01% sensitivity, 96.20% precision, and 98.00% accuracy for the
COVID-19 Radiography Dataset while achieving 97.84% accuracy, 96.76% sensitivity and 96.80%
precision, for the Covid-ChestX-ray-15k dataset. The experimental findings reveal that the presented
models outperform traditional deep learning models and other state-of-the-art approaches provided
in the literature.

Keywords: lung disease; COVID-19; pneumonia; chest X-rays images; feature extraction; automatic
detection; artificial intelligence; epidemic

1. Introduction

Lung disease is widespread across the globe. Chronic disease, tuberculosis, asthma,
pneumonia, fibrosis, and other diseases fall into this category. A new coronavirus disease
(COVID-19) has now been causing major respiratory problems and breathing issues since
early December 2019. It has been claimed that about 63.2 million individuals have been
infected globally, with around 1.47 million fatalities. The World Health Organization (WHO)
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is constantly providing nations with the knowledge they need to protect themselves against
COVID-19 [1]. Infected people with COVID-19 experience medium to mild symptoms such
as shortness of breath, cough, and fever. However, several persons died as a result of severe
pneumonic diseases in their lungs [2,3]. The majority of those who died from COVID-19
had severe chest constriction (pneumonia) as a result of a considerable decrease in oxygen
levels, which also led to a catastrophic heart attack [4]. Pneumonia, on the other hand, is a
type of lung disease that causes congestion in the tiny air sacs inside the human body’s
lungs. The lungs may get clogged with a large amount of fluid, making breathing difficult.
Pneumonia can be caused by viruses (flu or COVID-19), bacterial infections or the common
cold. Because of the emergence of COVID-19 sickness, medical specialists are finding it
difficult to diagnose lung infections from chest X-ray images [5].

X-ray, magnetic resonance imaging (MRI), isotope, computed tomography (CT), and
other medical imaging [6–9] methods have long been used to diagnose lung disorders.
Radiologists and clinicians routinely utilize X-ray and CT images to diagnose lung disorders.
As a result, many doctors, particularly during the COVID-19 time, advocate a chest X-ray
for lung illness analysis [10]. Medical practitioners have employed X-ray imaging for many
decades to assess and investigate numerous anomalies in human body organs [11]. Many
studies have shown that the X-ray technique is a cost-effective tool for illness detection,
giving pathological changes as well as economic productivity and non-invasive qualities.
Lung infections have been observed in chest X-ray images as blunted costophrenic angles,
consolidations, cavitation, infiltrates and widely dispersed nodules [12]. As a result,
radiologists use X-ray images to diagnose illnesses such as pneumonia, infiltration, nodule,
fractures, pleurisy, pneumothorax, pericarditis and effusion [13].

Detecting and classifying lung disorders using chest X-ray images is a difficult task for
radiologists. As a result, researchers focused heavily on developing automated lung disease
detection tools. Many computer-aided diagnostic (CAD) systems for lung disease detection
utilizing X-ray images have been established over the last decade [14]. However, such sys-
tems fell short of the requisite effectiveness for lung disease identification and classification.
The subsequent COVID-19-aided lung diseases have made such duties extremely difficult
for such CAD systems. It is critical to notice the emergence of pneumonia in the lungs and
classify it as bacterial, viral infection or COVID-19. Digital technology has recently grown in
importance across the world. Machine learning [15–18] and deep learning [19] can be quite
useful in this endeavor. Previously, Heyat et al. used medical machine learning to detect
sleep disorders, mental stress, and female disorders based on signal and experimental
data [20–25]. Transformer models [26] have lately exhibited outstanding performance on
a wide variety of language tasks, including machine translation [27], question answering
and text categorization. With its scalability to extremely high capacity models, Trans-
former models’ enormous significance has become obvious [28]. Transformer framework
advances in the Natural Language Processing (NLP) sector have piqued the interest of
computer vision researchers in adapting these models for visual and multi-modal learning
challenges. However, because visual data has a consistent structure (e.g., temporal and
spatial coherence), unique network architectures and training strategies are required. As a
result, Transformer frameworks and modifications have been utilized effectively for object
detection, image recognition, segmentation [8], image generation, image super-resolution,
video comprehension, visual question answering, text-image synthesis, and several other
tasks. Transformer architectures are built on a self-attention technique that learns the
links between sequence parts. Even though attention models have been widely employed
in both recurrent and feed-forward networks [29], transformers are purely based on the
attention mechanism with a novel approach (i.e., multi-head attention) that is designed for
parallel computation.

X-ray of chest Pneumonia detection has long been recognized as a challenge by
academics [30]. In their network backbone, Albahli et al. [30] advocated employing Residual
Blocks and dilated convolution in place of conventional convolution blocks, attaining
a Recall rate of 96.7% and an F1_score of 92.7%. Elshennawy et al. [31] assessed the
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performance of four models, two of which were pre-trained models (MobileNetV2 and
ResNet152V2), a CNN model built from scratch, and an LSTM model. The models were
assessed with different parameters using standard classification assessment measures.
Wang et al. [32] emphasized the need for early detection of pneumonia sickness. They used
transfer learning and model adaptation methodologies to forecast the illness using the
VGG-16 and Xception models, reaching detection accuracy of 87% and 82%, respectively,
for the VGG-16 Xception models. Talo et al. [33] used the transfer learning approach to
diagnose pneumonia illness using the ResNet152 model. Without any preprocessing or
feature extraction, it identified 97.4% of the collection. Varshni et al. [34] investigated the
diagnosis of Pneumonia using numerous models based on a convolutional neural network
(CNN), which they used for extracting features via transfer learning and several classifiers
as predictors. Their findings show that pre-trained CNN models mixed with supervised
classifier models can aid in the evaluation of chest x-ray images, notably in the detection of
Pneumonia. The authors also observed that using DenseNet-169 for feature extraction and
SVM (Support Vector Machines) as the predictor produced the best results. In contrast to
transfer learning-based efforts, Stephen et al. [35] employed data augmentation to construct
a trained CNN for pneumonia diagnosis. The model’s effectiveness was tested with various
image dimensions, with a 200 by 200 RGB image yielding the best results (93.73%). To
classify chest X-ray pictures as normal, bacterial, or viral pneumonia. Hammoudi et al. [36]
used numerous deep learning models (ResNet50, ResNet34, VGG-19, DenseNet169, and
Inception ResNetV2—RNN). Sirazitdinov et al. [37] used RetinaNet and Mask R-CNN to
detect lung pneumonia using a Chest X-ray image database, with a recall of 79.3%. Liang
and Zheng [38] presented a transfer learning strategy for diagnosing pediatric pneumonia
with a recall rate of 96.7% and an F1_score of 92.7%. The author also used the CNN and
VGG16 models, achieving 90.5% accuracy, 89.1% precision, 96.7% recall, and 92.7% F1_score
for the CNN model, respectively. Chouhan et al. [39] employed Guangzhou Women’s and
Children’s Medical Center using a transfer learning algorithm with a 96.4% success rate.
Siddiqi et al. [40] employed a sequential 18-layer CNN to identify pneumonia and achieved
an accuracy of 93.75%, whereas Jain et al. [41] achieved 95.62% accuracy, 95% recall, and
96% precision for pneumonia diagnosis from chest X-ray images.

The authors of [42] investigated ResNet-50, ResNet34, MobileNet V2, GoogleNet,
Inception V3 VGG16, SqueezeNet, and AlexNet models for early COVID-19 infection
detection using CXr pictures. For the best model selection, parameters such as learning
rate, number of epochs, and batch size were considered. The assessment findings revealed
that the ResNet34 model outperformed all other assessed models, with an accuracy of
98.33 percent. Ozturk et al. [43] employed X-ray images to diagnose COVID-19 using CNN-
based transfer learning (TL). The photos were put directly into the Inception-V3 model,
which achieved 96% accuracy. Reference [44] authors produced a COVID-19 test model
(VGG-16 and ResNet-50) based on the COVID-19 radiography dataset, with three classes:
normal, COVID-19, and other pneumonia infection. The VGG-16 model fared the best, with
a 97.67% accuracy. Furthermore, Das et al. [45] indicated that they improved COVID-19
detection performance utilizing CXR pictures by adjusting data augmentation and CNN
model parameters. The VGG-19 and ResNet-50 models performed better as a result of this
strategy. However, a suggested model called CovidXrayNet, which is built on EfficientNet-
B0 and optimization, was presented, resulting in an of 95.82% when tested with data
from two independent databases. Rajpal et al. [46] investigated the COVID-19 detection
problem as a three-class classification problem: normal, COVID-19, and pneumonia. The
proposed building was divided into three parts. ResNet-50 with TL was used in the first
stage to generate 2048 parameters. The second portion employed Principle Component
Analysis (PCA) to choose 64 characteristics from a total of 252. In the third module, the
attributes obtained in the previous two parts were combined and classified, yielding a
classification accuracy of 0.98%. SARS-Net was proposed by Kumar et al. [47] for COVID-19
identification using CXr. In that analysis, the open COVIDx database including CXr data
was used. According to quantitative research, the proposed design has a higher accuracy
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of 97.60%. The authors of Reference [48] train and test a ResNet50 architecture with a
small database of 50 COVID-19 examples from the Cohen et al. source and 50 normal
cases from Kaggle, attaining 98% accuracy using re-sampling and five-fold cross-validation.
In [49], TL was used to offer a novel framework called COVID-Net. The authors created a
dataset comprising 8066 normal samples, 183 COVID-19 samples, and 5538 Pneumonia
samples, while the test set included 100 pneumonia and normal samples, respectively, and
31 COVID-19 samples, yielding a 92% accuracy. The authors of [50] studied the COVID-19
variants using the transfer learning approach to tackle the New Stringency Indicators. We
summarized our literature review in Table 1.

Table 1. Summary of the related works covering the author, the proposed architecture, the type of
lung disease they tackled and the achieved results.

Ref. Architecture Type Result

[34] Residual Blocks and Dilated Convolution

Pneumonia detection

Recall = 96.7%
F1_score = 92.7%

[32] Transfer Learning Via VGG-16 And
Xception Models

Accuracy = 87%(VGG) and 82%
(Xception)

[33] Transfer Learning Via Resnet152 Model Accuracy = 97.4%
[35] Convolutional Neural Network (CNN) Accuracy = 93.73%.
[37] RetinaNet And Mask R-CNN Accuracy = 79.3%

[38]
Transfer Learning Recall Rate = 96.7% F1_score = 92.7%.

VGG16 Accuracy = 90.5%, Precision = 89.1%,
Recall = 96.7%, and F1_score = 92.7%

[39] Transfer Learning Accuracy = 96.4%
[40] 18-Layer CNN Accuracy = 93.75%

[41] CNN-Based Transfer Learning Accuracy = 95.62%, Recall = 95%, and
Precision = 96%

[42] Resnet34

COVID-19

Accuracy = 98.33%
[43] CNN-Based Transfer Learning Accuracy = 96%
[44] VGG-16 Accuracy = 97.67%
[45] COVIDXrayNet Accuracy = 95.82%
[46] Resnet-50 With TL+ PCA + Ensemble Accuracy = 98%
[47] SARS-Net Accuracy = 97.60%
[48] ResNet50 Accuracy = 98%
[49] COVID-Net Accuracy = 92%

Nevertheless, even for professional and competent doctors, X-ray-based lung disease
identification remains a mammoth task because X-ray images offer identical region informa-
tion for various disorders such as pneumonia, COVID-19, and so on. As a result, traditional
techniques of detecting lung disorders are time-consuming and energy-intensive, and it
is difficult to employ a consistent methodology to establish which sort of lung disease a
patient has. Many scholars have sought to improve CNN’s performance and have seen
significant improvements over time. The CNN model, on the other hand, merely examines
the connection between spatially nearby pixels in the receptive region defined by the filter
size. As a result, identifying associations with distant pixels is challenging. As a result,
this study proposed a Chest X-ray Image Based Feature Extraction Framework for accurate
and fast lung disease identification. First, using fused fine-tuned pre-trained deep learning
models, increased contour and correlations of lung disease-specific X-ray characteristics
are retrieved. On the same hand, a global second-order pooling was applied for enhancing
non-linear capabilities and taking advantage of comprehensive visual information across
the fused pre-trained deep learning models. Furthermore, the Chest X-ray images are split
into patches and positional embedding before passing them to the multi-head attention
mechanism for robust global feature extraction. We utilized the Globalaverage2d layer, a
Batch normalization layer, a dense layer with GeLu activation, another Batch normalization
layer, and a dense layer with SoftMax’s activation for the classification Block. However,
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before selecting the suggested feature extractor models, this article first investigated nu-
merous deep learning models using transfer learning. Furthermore, a thorough evaluation
of the proposed model was conducted utilizing multiple datasets with multi-class classi-
fication (Normal, COVID-19, Pneumonia), and (Normal, COVID-19, Pneumonia, Lungs
Opacity). The main contribution of this paper is summarized as follows:

• This research offers a refined Chest X-ray Image Based Feature Extraction Frame-
work for Lung Disease identification that is significantly discriminative in identifying
Pneumonia, COVID-19, and Lung Cancer Diseases.

• We offer explainability-driven, medically explainable visuals that emphasize the
crucial regions relevant to the model’s prediction of the input image.

• We established a novel technique for improving ensemble models by using the inte-
gration of global second-order pooling and multi-head self-attention.

• This work examined many pre-trained deep learning models, providing a unique
ensemble deep learning model that acts as the suggested model backbone, tackling
the problem of the requirement for large-scale data.

• We reported a well robust deep learning method in Accuracy, Specificity, Sensitivity,
Precision, F1 Score, Confusion matrix, and AUC using receiver operating character-
istics (ROC) for detecting Pneumonia, COVID-19, and Lung Cancer Diseases based
on a detailed experimental evaluation of the proposed model and comparison with
state-of-the-art results.

This paper is structured as follows; Section 1 talks about the introduction and literature
review of the study. Section 2 describes the material (Dataset) used while the methodology
and model architecture are presented in Section 3. The attended result is presented in
Section 4 alongside the experimental setup and result analysis. Section 5 presents the result
discussion, ablation studies and result comparison with the state-of-the-art models.

2. Materials and Methods

This study implemented its idea in a vision transformer implementation style. Vision
transformer [51] is an encoder-only based type of attention-based transformer [26] widely
deployed in the Natural language processing (NLP) domain that has made it simpler for
visual and pattern recognition domain in image data. In the absence of pre-image analysis
tasks, such as image classification, the input image x ∈ RH×W×C, is divided into N image
patches, x(i)p ∈ RH×W×C, where i ∈ {1, · · ·N} and each patch has the form P × P in 2-D,
C specifies the number of channels and N = H×W

P×P The image patches are then employed
successfully as a succession to the transformer’s input images. Patch embeddings are
generated by flattening the input patches and then mapping them to a D dimensional latent
vector using a learnable linear projection. In the series of patch embeddings (Z0

0 = xclass),
a trainable embedding is embedded. The class token’s last transformer layer state Z0

L
contains the classification information that the model can obtain from the image in a concise
way (y). During both pre-training and fine-tuning, the classification head is connected to
Z0

L. Standard learnable 1D position embeddings are added to the patch embeddings to
maintain critical positional information. The encoder receives the final result sequence as
input. The encoder is made up of alternating layers of multiheaded self-attention (MSA)
and MLP blocks. Before each block, the layer norm (LN) is applied, followed by residual
or skip connections. Additionally, we introduced a global second-order pooling [52] for
utilizing comprehensive image information across a network in order to implement in an
effective manner a higher-order interpretation of the output layers of the fused models for
enhancing the non-linear function of the fused model before passing the features to the
encoder. The global second-order pooling technique is utilized to create a transformation
matrix from a 3D vector generated by the fused layer as an input, which is then used for
vector multiplication along the entire continuum and spatial context.
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2.1. Dataset

Some existing works use proprietary datasets to evaluate their approaches, while
others mix data from many publicly available sources. Two huge publicly available datasets
were used in this work, as stated below:

2.1.1. Data_A

This dataset comprises medical CXr images for four distinct classes: Normal, Pneu-
monia, Lung Opacity, and COVID-19, which were gathered by researchers from Qatar
University Doha Qatar, University of Dhaka, Bangladesh, as well as medical professionals
and researchers from Pakistan and Malaysia. The COVID-19 Radiography Dataset [53] is
titled. 3616 COVID-19 samples, 10,192 Normal samples, 6012 Lung Opacity samples, and
1345 Pneumonia samples make up the four classes. The images are in the png (Portable
Network Graphics) file type and have a resolution of 299 × 299 pixels. Only 3000 images
per class were sampled for training, 300 samples for validation, and 300 samples for testing
in this paper. We executed a data augmentation using the Python Augmentor pipeline to
obtain the number of samples needed for the experiment because the Pneumonia samples
were fewer than 3000.

2.1.2. Data_B

Badawi et al. [54] obtained the ChestX-ray-15k dataset from eleven distinct sources.
With 3500 and 1500 images, respectively, this dataset has a balanced number of Chest X-ray
images for training/validation and testing. Normal, COVID-19, and Pneumonia are the
three distinct chest X-ray grades. All the images in this category are in portable network
graphics (.png) format, albeit with varying spatial resolutions. The validation set was made
up of 500 images from each class of the test set.

These datasets are used to solve the multi-class scarcity problem and conduct a multi-
class prediction job for lung diseases. Bilinear interpolation was used to scale all the
CXr images to 224 by 224 pixels. Meanwhile, the following data transformations were
performed to increase the number of images per class: zoom range = 0.2, rotation range = 1,
and horizontal flip = True. Figure 1 shows several examples of visual perspectives for each
of the classes. Table 2 displays the distribution splits of the dataset by class. The training
set, validation set, and testing set are all randomly selected from the dataset for each class.
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Table 2. Dataset distribution of the proposed method.

Partition Normal Pneumonia COVID-19 Lung
Opacity Total Total

Data_A
Training 3000 3000 3000 3000 12,000

14,400Validation 300 300 300 300 1200
Testing 300 300 300 300 1200

Data_B
Training 3500 3500 3500 10,500

Validation 500 500 500 1500 1500
Testing 1000 1000 1000 3000

2.2. Model Architecture

As shown in Figure 2, we present a patch-based Chest X-ray Image Feature Extraction
Framework for Lung Disease Detection that is accurate and dependable. The captured
features from the network backbone after passing through global second-order pooling
were implemented in the encoder in two distinct layer configurations: a multi-head self-
attention layer and an MLP layer. The shortcut connection and the normalizing layer are
used to build each layer.
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Figure 2. The proposed model organizational structure. The DenseNet201 (shown with 1), VGG16
(shown with 2), and GoogleNet architecture (shown with 3) serve as the network backbone to help in
feature extraction. The fused features are passed via a global second-order pooling before being split
into N patches and linear projection is employed to embed them. After adding position embedding,
the sequence is supplied to an encoder, which then passes it to the classification/detection layer
for prediction.

The output is as follows:

xi+1 = fLN(xi + f (xi)), (1)
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where xi symbolizes the layer i input and layer i − 1 output, f LN symbolizes the normaliza-
tion layer, f (·) symbolizes either the multi-head attention f ATT(·) or MLP f FFN(·).

The multi-head self-attention layer, which is based on scaled dot-product attention
as illustrated in Figure 3A, is utilized to capture the interdependence among input tokens.
The Scaled dot-product attention algorithm aims to find important information from the
source sequence for the target sequence. We infer the output of the scaled dot-product
attention as shown in Equation (2). where n represents the length of the source and target
sequences, m denotes the hidden dimension, and the target sequence is represented as
Q ∈ Rn×m, while the source sequence is represented as K ∈ Rn×m and V ∈ Rn×m.

fScaled Dot−Product Attention(Q, K, V) = so f tmax
(

QKT
√

m

)
V (2)

where the row-wise SoftMax is represented softmax(·). Because the output of SoftMax
often has one dimension much bigger than the other dimensions in each row, one scaled
dot-product attention attends just one place in each row (for each target token). Multi-head
attention was used to attend to several places using multiple scaled dot-product attention
simultaneously, as seen in Figure 3B and mathematically described as

fATT(Q, K, V) = [head1, · · · , headh]W(O), (3)

where headi = fScaled Dot−Product Attention(QW(Q)
i , KW(K)

i , VW(V)
i ), h depicts the number of

attention heads, W(·) represent the learnable entities. The MLP layer configuration is of two
MLP Block as seen in Equation (4);

fFFN(x) = (xW(1))W(2), (4)

where the non-linear function is depicted as Ø(·) and W(·) depicts parameters. After a
Global Average Pooling 1D, the GeLU activation function was employed at the first layer,
while the SoftMax activation function was utilized after Batch Normalization at the second
layer, as shown in Figure 3C. Batch Normalization is the layer of a neural network that
allows the following layers of the model to adjust more independently [55]. It’s used
to scale the activations of the input layer and make the output of the preceding layers
more realistic. Training becomes more successful when batch normalization is utilized,
and it may also be used as a regularization to reduce model overfitting. The Gaussian
Error Linear Unit (GeLu) activation is the initial Dense layer activation. Because of its
deterministic nonlinearity, which includes a stochastic regularization effect that leads to
a large performance boost in most models with intricate structures, the GeLu was used
in this study. The fundamental function of the SoftMax layer is to transform the output
information from the encoding layer into a probability interval (0, 1). In this work, the
detection was treated as a multi-classification challenge. Following that, the input samples
are passed to the encoding network, which then transfers their outputs into the probability
interval (0, n) through the SoftMax layer, as seen below:

li = P( ti|Si ) =
1

1 + e−(Wcu+bc)
ε(0, n), (5)

where the weight matrix and the bias term are denoted as Wc and bc respectively. Adam
optimizers are used in this research. To compute the loss between the ground truth and
the identified item, this study used a modified loss function categorical smooth loss and
a categorically cross-entropy loss. The addition of smoothing the labels function to the
cross-entropy loss function, as shown below, is known as categorical smooth loss;

L(θ) = − 1
N

N

∑
i=1

(yT
i log (ŷt) + (1− yt)

T log (1− ŷt) + labelsmoothing = n). (6)
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Figure 3. Illustrations of the implemented encoder. (A) Illustrates the Scaled dot-product attention
(B) Multi-head Self-Attention network showing the several attention layers (Q, K, and V) running in
parallel where (C) shows the implemented MLP block.

The extracted feature i from the backbone model is portrayed as xi, in Equation (1),
and the attention layer configuration generates outputs as described in Equation (7) and
the MLP layer configuration as given in Equation (8).

x2i+1 = fLN(x2i + fATT(x2i, x2i, x2i)) (7)

x2i+2 = fLN (x2i+1 + fFFN (x2i+1)). (8)

The attention layer uses Equation (2) to establish Q, K, and V values = x2i, capturing
the reliance between tokens within the same sequence, also known as self-attention.

2.3. Feature Extraction

As illustrated in Figure 4, this work combines deep features collected from
DenseNet [56,57], VGG16 [58], and GoogleNet [59] using Ensembling algorithms [60,61].
DenseNet [41] architecture is a classification model that involves connecting layers in a
feed-forward manner (with identical feature-map size), this design ensures knowledge
transfer across network tiers. The output of the previous layer and the output of the follow-
ing layer is concatenated (.). VGG16 [42], a deep learning architecture first preprocess its
input data before being input into a tiered convolutional layer with three susceptible filters
and a constant stride of one. Spatial pooling is then carried out using five max-pooling
convolutional layers with a 2 × 2 filter and stride of 2. Two fully connected layers (FC) and
SoftMax activations at the end of the design make up the model structure. GoogleNet [59]
uses inception modules, which enable the model to select between several convolutional
hyperparameters per block and are intended for image classification and identification. It
consists of 22-layers. By using an inception module as the first layer, which is then piled
upon itself, GoogleNet seeks to increase the computational complexity of basic CNN by
applying parallel filtering on the input from the previous layer.
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Figure 4. Mode of Feature extraction of the proposed study. From the network backbone up to the
global second-order pooling layer.

Ensembling is the process of combining different learning algorithms to improve the
overall performance of current models by combining many models into a single trustworthy
model. The fusion is calculated as follows:

FPre−trained =
{

fDenseNet, fVGG16, fGoogleNet · · · , f1 x n

}
, (9)

where n is the number of pre-trained models that have been chosen. The features are then
concatenated into a single vector, as shown below:

FEnsemble =
3

∑
i=1
{ fPre−trained}. (10)

FEnsemble is then run through a 2D convolutional layer with a kernel size of 1,
padding = ‘same’, and activation = “ReLU.” Immediately comes the Global second-order
pooling which is intended to use the comprehensive image information across the network
for an effective higher-order interpretation of the output layers of the fused models thus en-
hancing the non-linear function of the fused model. Zeropadding2D was used to zero-pad
the output of the new layer (padding = ((0, 5), (0, 5)).

Backbone = FEnsemble + 2DConv.Layer + Global second− order pool + Zeropadding. (11)

2.4. Evaluation Metrics

The robustness of the suggested model was assessed using a variety of evaluation
indicators. Accuracy, precision, specificity, F1_score, sensitivity, and area under a receiver
operating characteristic curve are among the measurements [62–68]. TP stands for True
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Positive, FP for False Positive, TN for True Negative, and FN for False Negative. The
following are the metrics we used:

Accuracy =
TP + TN

(TP + TN) + (FP + FN)
∗ 100. (12)

Precision =
TP

TP + FP
∗ 100. (13)

Speci f icity =
TN
N
∗ 100 =

TN
TN + FP

∗ 100. (14)

Sensitivity =
TP
P
∗ 100 =

TP
TP + FN

∗ 100. (15)

F1 score = (
SEN−1 + PRC−1

2
)
−1

=
2 ∗ TP

2 ∗ TP + FP + FN
(16)

The AUC measures a classifier’s performance, while the probability curve gotten from
plotting at different threshold settings, the FP rate is referred to as the ROC (Receiver
Operating Characteristic). The AUC indicates how well the model distinguishes between
the different lung disease instances. The higher the AUC, the better.

3. Results

The many experiments carried out in this study are explained in this section. First, the
experiment was carried out with pre-trained models, which include dual learning rates
and loss functions.

3.1. Experimental Setup

All experiments have been performed on a Desktop Computer with 64.0GB RAM and
an NVIDIA GEFORCE RTX-3080 Ti 10 GB graphics processing unit with an Intel(R) Core
(TM) i9-10850K CPU running at 3.60 GHz (GPU). For the implementation, this research
used the open-source Keras framework and TensorFlow. During the training phase, the
suggested deep learning models were fine-tuned and assisted using the same training
and testing settings and methodologies. The es callback early-stopping approach with
the patience of 10 was also evaluated. An es callback is a component that may perform
operations at different stages of learning, such as at different batch intervals, epoch intervals,
and so forth. The Adam optimizer is used for hyper-parameter optimization, with a clip
value of 0.2 and an epoch of 100. The encoder uses eight heads with a patch size of 2 and a
drop rate of 0.01 for all layers. Meanwhile, the shift size is calculated using embed dim of
64 (embed dim indicates the dimension by which high-dimensional vectors are converted
to low-dimensional vectors without loss), num_MLP of 256 (this indicates the number of
multi-linear perceptron’s), a window size of 2, and global average pooling (GAP). The
hyperparameters utilized in the studies are listed in Table 3.

Table 3. Experiment hyperparameters optimization and settings.

Loss Function Categorical Smooth Loss, Categorical Cross-Entropy

Optimizers Adam
Learning rate 0.0001/0.001

Batch size 8
Reduce Learning Rate 0.2

Epsilon 0.001
Patience 10
Verbose 1

Es-Callback (Patience) 10
Clip Value 0.2

Epoch 100
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Table 3. Cont.

Loss Function Categorical Smooth Loss, Categorical Cross-Entropy

Patch Size (2, 2)
Drop Rate 0.01

Number of Heads 8
Embed_dim 64
Num_MLP 256

Window Size Window Size//2
Input Size (224 × 224)

3.2. Classification Results

The classification findings of the various methodologies used in this work are dis-
cussed in this section. Because the backbone is made up of unified deep learning models,
we’ll start with their findings, which we’ll show using the loss functions and learning rate
we used.

3.2.1. Backbone Model Selection

Six pre-trained deep learning models were identified during the selection of the
implemented backbone, namely DenseNet201, VGG16, GoogleNet, InceptionResNetV2,
Xception, and EfficientNet network architecture. Table 4 shows the outcomes of the pre-
trained deep learning models that were used, as shown visually in Figure 5. During the
backbone model selection experiment, Data_A was employed.

In terms of the assessment measures employed in this study, the DenseNet model
achieved the best result. It outperforms the other models in terms of employed learning
rates. The InceptionResNetv2 architecture comes after the DenseNet architecture, before
the GoogleNet and VGG16 models. The Sensitivity, Specificity, F1 score, and AUC score
were the most important metrics to consider while choosing feature extractors. The more
precise the model’s categorization and prediction are, the better the outcomes of the chosen
assessment metrics. With a learning rate of 10−4, the DenseNet achieved 0.91981% sensi-
tivity, 0.97325% specificity, 0.92088% F1_score, and 0.94651% AUC. The recorded results
for the InceptionResNetV2, GoogleNet, and VGG16 architectures are: 0.89385% sensitivity,
0.96434% specificity, 0.89398% F1_score, 0.9291% AUC score, 0.86024% sensitivity, 0.95322%
specificity, 0.86188% F1_score, 0.90673% AUC score, 0.81988% sensitivity, 0.93985% speci-
ficity, 0.82008%. The pre-trained models outperformed Adam optimizers with a learning
rate of 10−4 when compared to Adam optimizers with a learning rate of 10−3.

Table 4. Selection classification results of the Backbone model using Data_A.

Models Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%) F1 Score AUC

Learning Rate: 10−4

DenseNet201 0.9600 0.91981 0.97325 0.92453 0.92088 0.94651
EfficientNetB7 0.87333 0.74787 0.91542 0.83094 0.73639 0.83164

GoogleNet 0.9300 0.86024 0.95322 0.86795 0.86188 0.90673
InceptResNetV2 0.94667 0.89385 0.96434 0.90298 0.89398 0.9291

VGG16 0.9100 0.81988 0.93985 0.87301 0.82008 0.87986
Xception 0.9000 0.80032 0.93315 0.83420 0.80144 0.86674

Learning Rate: 10−3

DenseNet201 0.92333 0.84691 0.94880 0.86073 0.84883 0.8976
EfficientNetB7 0.85667 0.71337 0.90408 0.77687 0.72241 0.80872

GoogleNet 0.89000 0.78094 0.92666 0.80353 0.78311 0.8538
InceptResNetV2 0.92667 0.85331 0.95097 0.86683 0.85618 0.90214

VGG16 0.89667 0.79374 0.93100 0.81953 0.79527 0.86237
Xception 0.88667 0.77400 0.92428 0.80688 0.77546 0.84914
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Figure 5. Classification performance result of the pre-trained models for the backbone selection using
the Data_A. (A) Pre-trained model selection using a learning rate of 10−4 and (B) Pre-trained model
selection using a learning rate of 10−3. DNet stands for DenseNet201, ENet stands for EfficientNetB7,
GNet stands for GoogleNet, IRNet stands for InceptionResNetV2, VNet stands for VGG16 and XNet
stands for Xception, respectively.
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Table 5 shows the ROC while Table 6 shows the PR curve performance of the network
backbone selection. The objective of this is to see how well the models do in their respective
classes. The DenseNet design had the greatest COVID-19 ROC class performance, with an
area of 0.95583 percent, followed by the GoogleNet architecture with an area of 0.90296%.
The Xception and the EfficientNet are followed by the InceptionResNetV2 with an area of
0.86819%, VGG16 with an area of 0.85526%, and finally the InceptionResNetV2 with an
area of 0.86819%. While compared to the GoogleNet architecture, the InceptionResNetV2
COVID-19 class had a superior area when utilizing the Adam optimizer with a learning
rate of 10−3. We also analyzed the computational cost of all six models, i.e., the amount
of trainable and untrainable parameters of the architecture, to complete our backbone
network choices. As a result, we concluded that the feature extractors should be fused
using DenseNet, GoogleNet, and VGG16.

Table 5. ROC and precision-recall curve of the backbone model using Data_A.

ROC (Area) Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia

Learning Rate: 10−4

DenseNet201 0.95 0.95 0.95583 0.95061 0.93374 0.94595
EfficientNetB7 0.78 0.78 0.69737 0.93339 0.84445 0.85135

GoogleNet 0.91 0.91 0.90296 0.93734 0.86772 0.91892
InceptResNetV2 0.93 0.93 0.86819 0.97321 0.92904 0.94595

VGG16 0.88 0.88 0.85526 0.97345 0.87993 0.81081
Xception 0.87 0.87 0.78477 0.90588 0.8844 0.89189

Learning Rate: 10−3

DenseNet201 0.90 0.90 0.86372 0.91497 0.8938 0.91892
EfficientNetB7 0.81 0.81 0.73167 0.87862 0.80028 0.82432

GoogleNet 0.85 0.85 0.80663 0.87515 0.82801 0.90541
InceptResNetV2 0.90 0.90 0.89427 0.92825 0.88064 0.90541

VGG16 0.86 0.86 0.81978 0.91521 0.84962 0.86486
Xception 0.85 0.85 0.78031 0.91964 0.83177 0.86486

Table 6. Precision-recall curve of the backbone model using Data_A.

Precision-Recall (AP) Micro-Average COVID-19 Lung Opacity Normal Pneumonia

Learning Rate: 10−4

DenseNet201 0.87 0.87 0.89 0.81 0.92
EfficientNetB7 0.62 0.55 0.74 0.55 0.78

GoogleNet 0.77 0.75 0.82 0.68 0.88
InceptResNetV2 0.82 0.75 0.90 0.75 0.92

VGG16 0.72 0.78 0.86 0.61 0.71
Xception 0.69 0.62 0.76 0.62 0.84

Learning Rate: 10−3

DenseNet201 0.76 0.73 0.76 0.69 0.88
EfficientNetB7 0.58 0.49 0.76 0.49 0.74

GoogleNet 0.66 0.63 0.63 0.60 0.86
InceptResNetV2 0.76 0.75 0.82 0.67 0.86

VGG16 0.68 0.65 0.73 0.60 0.80
Xception 0.65 0.60 0.75 0.56 0.80
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3.2.2. Classification Results Using Data_A

Table 7 shows the classification performance of the proposed model and the back-
bone network. Two distinct learning rates and loss functions were used in the studies.
In both implemented loss functions, the results obtained with a learning rate of 10−3 sur-
pass those obtained with a learning rate of 10−4. Despite this, the model had a lower
performance when using the learning rate of 10−3 and categorical smooth loss, with an
accuracy of 0.96667%, Sensitivity of 0.93314%, Specificity of 0.97772%, Precision of 0.93895%,
F1_score of 0.93391%, and AUC area of 0.95543 percent compared to using the categorical
cross-entropy loss, which had an accuracy of 0.98%, Sensitivity of 0.94965%, Specificity
of 0.98992%, Precision of 0.95508%, F1_score of 0.95216% and AUC area of 0.96976%.
The Adam optimizer is favored in all other situations with a learning rate of 10−3 and
categorical cross-entropy.

Table 7. Classification results of the backbone vs. proposed model using Data_A.

Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC

Learning Rate: 10−4, Loss Function: categorical_smooth_loss

Backbone 0.95333 0.90701 0.96891 0.91419 0.90736 0.93796
Proposed Method 0.96000 0.91945 0.97325 0.92783 0.91934 0.94635

Learning Rate: 10−3, Loss Function: categorical_smooth_loss

Backbone 0.94000 0.87909 0.95986 0.89431 0.88056 0.91948
Proposed Method 0.96667 0.93314 0.97772 0.93895 0.93391 0.95543

Learning Rate: 10−4, Loss Function: categorical cross-entropy

Backbone 0.96333 0.92656 0.97551 0.93172 0.92677 0.95104
Proposed Method 0.98000 0.96017 0.98665 0.96209 0.9603 0.97341

Learning Rate: 10−3, Loss Function: categorical cross-entropy

Backbone 0.83667 0.67372 0.89098 0.78304 0.65383 0.78235
Proposed Method 0.98000 0.94965 0.98992 0.95508 0.95216 0.96976

Table 8 explain how the Receiver Operating Characteristic (ROC) and Table 9; Precision-
Recall (PR) are used to confirm these findings. To evaluate the precise prediction rate of
the classes Normal, COVID-19, Pneumonia, and Lung Opacity, the ROC and PR curves
are employed. However, the hyperparameters had a significant impact on the accurate
prediction rate of the models, as the learning rate of 10−4 with categorical cross-entropy
surpassing the learning rate of 10−3 with categorical smooth loss. Table 6 shows that the
Adam ROC class performance was 0.95606% for COVID-19, 0.98206% for Lung Opacity,
0.95559% for Normal, 0.92801% for Pneumonia, and 0.92% for AP, 0.95% for Lung Opacity,
0.83% for Normal, 0.87% for Pneumonia. When comparing the four classes, the COVID-19
class outperformed the lung opacity class in the majority of the optimum settings in terms
of ROC and AP regions.

The ROC curve and the AP Curve, as mentioned in Table 7, are graphically shown
in Figure 6. The HIT Rate data were utilized to further assess the model, as illustrated in
Figure 6. When the adjustments are done, the “Hit Rate” is calculated by dividing the full
sequence number (obtained by removing the number of Targets plus Mistakes); the “Miss
Rate” is 1 minus the “Hit Rate.” COVID-19 had a 38 percent hit rate. As the Normal class
hit rate recorded 38 versus the 10−3 learning rate and categorical smooth loss function,
the performance of the 10−4 learning rate and categorical cross-entropy loss function
are chosen.



Bioengineering 2022, 9, 709 16 of 27

Bioengineering 2022, 9, x FOR PEER REVIEW 17 of 28 
 

 

  

(A) (B) 

 

(C) 

Figure 6. The optimized setting results include (A) ROC and (B) PR curve of the 10−4 learning rate 

and categorical cross-entropy loss function, and (C) Hit rate diagram, based on Data_A. 

Table 8. Classification results of the backbone vs. proposed model based on ROC and PR curve 

using Data_A. 

ROC (Area) Macro-Average  Micro-Average COVID-19 Lung Opacity Normal Pneumonia 

Optimizer: Adaptive Moment Estimation, Learning Rate: 10−4, Loss Function: categorical_smooth_loss 

Backbone 0.94 0.94 0.94737 0.96903 0.90742 0.92801 

Proposed Method 0.95 0.95 0.99107 0.97764 0.92481 0.89189 

Learning Rate: 10−3, Loss Function: categorical_smooth_loss 

Backbone 0.92 0.92 0.94690 0.89656 0.92904 0.90541 

Proposed Method 0.96 0.96 0.95606 0.98206 0.95559 0.92801 

Learning Rate: 10−4, Loss Function: categorical cross-entropy 

C
o

v
id

-1
9
 

38 0 0 0 

L
u

n
g

  

O
p

a
ci

ty
 

36 1 0 0 

N
o

r
m

a
l 

38 0 0 0 

  
P

n
eu

m
o

n
ia

 

13 0 0 24 

 Covid-19 
Lung 

Opacity 
Normal Pneumonia 

 

Figure 6. The optimized setting results include (A) ROC and (B) PR curve of the 10−4 learning rate
and categorical cross-entropy loss function, and (C) Hit rate diagram, based on Data_A.

Table 8. Classification results of the backbone vs. proposed model based on ROC and PR curve
using Data_A.

ROC (Area) Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia

Optimizer: Adaptive Moment Estimation, Learning Rate: 10−4, Loss Function: categorical_smooth_loss

Backbone 0.94 0.94 0.94737 0.96903 0.90742 0.92801
Proposed Method 0.95 0.95 0.99107 0.97764 0.92481 0.89189

Learning Rate: 10−3, Loss Function: categorical_smooth_loss

Backbone 0.92 0.92 0.94690 0.89656 0.92904 0.90541
Proposed Method 0.96 0.96 0.95606 0.98206 0.95559 0.92801
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Table 8. Cont.

ROC (Area) Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia

Learning Rate: 10−4, Loss Function: categorical cross-entropy

Backbone 0.95 0.95 0.95606 0.99115 0.94243 0.91449
Proposed Method 0.97 0.97 0.96053 0.99558 0.96898 0.96855

Learning Rate: 10−3, Loss Function: categorical cross-entropy

Backbone 0.78 0.78 0.67975 0.89333 0.8266 0.72973
Proposed Method 0.94 0.94 0.90158 0.97534 0.94884 0.94354

Table 9. Classification results of the backbone vs. proposed model based on PR curve using Data_A.

Precision-Recall (AP) Micro-Average COVID-19 Lung Opacity Normal Pneumonia

Learning Rate: 10−4, Loss Function: categorical_smooth_loss

Backbone 0.85 0.92 0.84 0.77 0.87
Proposed Method 0.87 0.95 0.93 0.77 0.84

Learning Rate: 10−3, Loss Function: categorical_smooth_loss

Backbone 0.80 0.83 0.81 0.75 0.86
Proposed Method 0.89 0.92 0.95 0.83 0.87

Learning Rate: 10−4, Loss Function: categorical cross-entropy

Backbone 0.88 0.92 0.95 0.81 0.85
Proposed Method 0.93 0.94 0.97 0.89 0. 93

Learning Rate: 10−3, Loss Function: categorical cross-entropy

Backbone 0.54 0.50 0.64 0.52 0.59
Proposed Method 0.90 0.97 0.95 0.80 0.87

3.2.3. Classification Results Using Data_B

The proposed model’s classification results on data B are shown in this section. Unlike
the experimental analysis using data A, this paper only employed the Learning rate of 10−4

and the categorical smooth loss function in this article.
Table 10 shows the obtained result in terms of the assessment measures used. Table 8

shows that the suggested model performed significantly better in classification, with overall
accuracies of 98.19 percent, sensitivity of 97.29%, specificity of 98.64%, precision of 97.29%,
F1_score of 97.29%, and AUC of 98.10%. This demonstrates how the backbone model
performs better when combined with the proposed model. The qualitative evaluation
results in terms of ROC and PR curves, on the other hand, showed similar results. The
COVID-19 samples were predicted more accurately than the other two classes in terms of
the ROC and precision-recall curves, with the pneumonia class recording an AUC of 98.42%
and the AP being more significant than the viral pneumonia class with an average of 96.0%.
COVID-19 had an AP of 97.96%, while Pneumonia had an AP of 97.85%. The evaluation
results in the normal class were attained with a little lower AUC and even PR rates of
97% and 96.06%, respectively. This was owing to the well-known random deep-learning
procedure for fine-tuning the trainable parameters.
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Table 10. Classification results of the backbone vs. proposed model using Data_B.

Models Accuracy
(%) Sensitivity (%) Specificity (%) Precision (%) F1_score AUC

Learning Rate: 10−4, Loss Function: categorical_smooth_loss

Proposed Model 0.9819 0.9729 0.9864 0.9729 0.9729 0.9810
Backbone 0.9720 0.9580 0.9790 0.9583 0.9580 0.9686

ROC Macro-Average Area Micro-Average Area Class 0 Area Class 1 Area Class 2 Area

Proposed Model 0.98 0.98 0.9842 0.9700 0.9848
Backbone 0.97 0.97 0.9771 0.9541 0.9741

Average
Precision Micro-Average Precision-Recall Class 0 AP Class 1 AP Class 2 AP

Proposed Model 0.96 0.9796 0.9606 0.9785
Backbone 0.93 0.9461 0.9077 0.9574

The Diagrammatic representation of the ROC curve and the AP Curve recorded in
Tables 8 and 9 for the Data_B experiment is shown in Figure 7A,B. To further elaborate
on the performance of the proposed model on Data_B, we used the confusion metric
instead of the Hit Rate as used in Data_A since the testing set of Data_B is much bigger
in terms of the number of samples. Figure 7C shows the confusion metrics score of
Data_B. From the diagram, the proposed model predicted 1491 samples of COVID-19 Class
correctly, while misclassifying 9 samples to be Normal class. 1483 Normal class samples
were predicted correctly while 15 samples were misclassified as COVID-19 samples and
2 samples as Pneumonia samples. For the Pneumonia Class, 1489 samples were correct
while misclassifying 11 samples were Normal samples.

Bioengineering 2022, 9, x FOR PEER REVIEW 19 of 28 
 

Table 10. Classification results of the backbone vs. proposed model using Data_B. 

Models Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1_score AUC 

Learning Rate: 10−4, Loss Function: categorical_smooth_loss 

Proposed Model  0.9819 0.9729 0.9864 0.9729 0.9729 0.9810 

Backbone 0.9720 0.9580 0.9790 0.9583 0.9580 0.9686 

ROC 
Macro-Average 

Area 

Micro-Average 

Area 
Class 0 Area Class 1 Area Class 2 Area 

Proposed Model  0.98 0.98 0.9842 0.9700 0.9848 

Backbone 0.97 0.97 0.9771 0.9541 0.9741 

Average Precision 
Micro-Average 

Precision-Recall 
Class 0 AP Class 1 AP Class 2 AP 

Proposed Model  0.96 0.9796 0.9606 0.9785 

Backbone 0.93 0.9461 0.9077 0.9574 

 

 
 

(A) (B) 

Figure 7. Cont.



Bioengineering 2022, 9, 709 19 of 27Bioengineering 2022, 9, x FOR PEER REVIEW 20 of 28 
 

 
(C) 

Figure 7. The experimental results include (A) ROC and (B) PR curve, and (C) Confusion Metrics, 

based on Data_B. 

4. Discussion 

The results of this experiment show that the proposed model for lung disease 

diagnosis is quite accurate. The results are described using the hyperparameters that were 

used in this investigation. We look at how the specified loss function affects categorical 

cross-entropy loss and the advantage of the 10−4 learning rate over the 10−3 learning 

rate. When using a learning rate of 10−3 and a categorical cross-entropy Loss Function as 

an assessment criterion, the Adam optimizer performs significantly better. The categorical 

cross-entropy yielded a better result than the categorical smooth loss in most cases. 

However, as compared to other loss functions, label smoothing appears to aid the model 

in detecting the damaged area, according to various papers. The proposed model in this 

paper makes use of patches and positional embedding, allowing the model to focus on all 

the damaged areas in patches while keeping the potions in mind for rebuilding. The 

model’s performance was boosted by the feature extraction strategy, which paid special 

attention to global features. According to the Data_B, using soft targets that are a weighted 

average of the hard targets and uniform distribution over labels, the label smoothing loss 

function technique aids in the generalization and learning speed of a multi-class neural 

network being regularly and significantly enhanced. This label smoothing stops the 

network from being overconfident. However, we can see that the learning rate has an 

impact on the effect of label smoothing, as the suggested model label smoothing with a 

learning rate of 10−3 exceeds the learning rate of 10−4 in Data_A result. Before adding 

more complicated architectures to the networks, this study emphasizes the relevance of 

deep learning model feature extraction and hyperparameter adjustment in processing 

new data. The outcomes of this work could be useful for quickly deploying accessible AI 

models for the rapid, accurate, and cost-effective detection of COVID-19 infection. 

4.1. Ablation Studies of the Proposed Model 

The heat maps that describe the deep learning outcomes are presented in this section. 

In this study, the attention approach aids the model in highlighting the relevant features 

of the Chest X-ray images, resulting in the suggested model’s prediction capacity. The 

internal working structure of the Proposed model starts with the input image being 

divided into patches before adding the positional embedding. By merging the pixel layers 

in a patch and then stretching it to the proper input dimension, each patch is compressed 

into a vector representation. positional embedding demonstrates how the model 

interprets distance within the input image in terms of position embedding comparability, 

Figure 7. The experimental results include (A) ROC and (B) PR curve, and (C) Confusion Metrics,
based on Data_B.

4. Discussion

The results of this experiment show that the proposed model for lung disease diagnosis
is quite accurate. The results are described using the hyperparameters that were used in this
investigation. We look at how the specified loss function affects categorical cross-entropy
loss and the advantage of the 10−4 learning rate over the 10−3 learning rate. When using
a learning rate of 10−3 and a categorical cross-entropy Loss Function as an assessment
criterion, the Adam optimizer performs significantly better. The categorical cross-entropy
yielded a better result than the categorical smooth loss in most cases. However, as compared
to other loss functions, label smoothing appears to aid the model in detecting the damaged
area, according to various papers. The proposed model in this paper makes use of patches
and positional embedding, allowing the model to focus on all the damaged areas in
patches while keeping the potions in mind for rebuilding. The model’s performance
was boosted by the feature extraction strategy, which paid special attention to global
features. According to the Data_B, using soft targets that are a weighted average of
the hard targets and uniform distribution over labels, the label smoothing loss function
technique aids in the generalization and learning speed of a multi-class neural network
being regularly and significantly enhanced. This label smoothing stops the network from
being overconfident. However, we can see that the learning rate has an impact on the
effect of label smoothing, as the suggested model label smoothing with a learning rate of
10−3 exceeds the learning rate of 10−4 in Data_A result. Before adding more complicated
architectures to the networks, this study emphasizes the relevance of deep learning model
feature extraction and hyperparameter adjustment in processing new data. The outcomes
of this work could be useful for quickly deploying accessible AI models for the rapid,
accurate, and cost-effective detection of COVID-19 infection.

4.1. Ablation Studies of the Proposed Model

The heat maps that describe the deep learning outcomes are presented in this section.
In this study, the attention approach aids the model in highlighting the relevant features of
the Chest X-ray images, resulting in the suggested model’s prediction capacity. The internal
working structure of the Proposed model starts with the input image being divided into
patches before adding the positional embedding. By merging the pixel layers in a patch
and then stretching it to the proper input dimension, each patch is compressed into a vector
representation. positional embedding demonstrates how the model interprets distance
within the input image in terms of position embedding comparability, i.e., relatively close
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patches have a lot of position similar embeddings. For accurate feature extraction, patches
and learnable embeddings are employed to treat each patch separately.

The model can remember where each patch was during the initial input and output
thanks to positional embedding. To begin, 2D learnable convolutions are used to convert the
patches. Figures 8 and 9 confirm the suggested approach’s efficacy in boosting prospective
ROIs, allowing the proposed model to focus on these regions rapidly and successfully and
detect the disease, by examining the effects of the patch and embedding combo. It shows
how the suggested model can generalize across the input frame, even within the simplest
layers, thanks to the Self-attention heads. According to the diagram, the total distance in
input images across which relevant data is assimilated is comparable to the receptive scale
factor in CNNs and is highly recognized in our model due to our network backbone, which
is an ensemble of pre-trained models, and thus we observed small attention scales in the
small layers continuously. The attention heads focus on the bulk of the image in the lowest
layers when the suggested model is implemented without a network backbone, i.e., by
building features from scratch, implying that the model’s ability to compress information
globally is used. The suggested model, as illustrated in Figures 8 and 9, focuses on visual
aspects that are semantic information that is vital for classification.
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4.2. Comparison with the State-of-the-Art Based on Deep Learning Models

We compute and show the Accuracy, Precision, Sensitivity, and F1 score to compare
the proposed model classification performance to existing cutting-edge approaches. When
compared to other state-of-the-art approaches, the proposed model achieves the best overall
accuracy of 98% (Table 11). For COVID-19 multiclassification, Wang et al. [53] suggested
using COVIDNet, but Khan et al. [69] suggested using CoroNet. The COVIDNet model,
on the other hand, beats the CoroNet model, with an accuracy of 90.78%, precision of
91.1%, an F1_score of 90.81% vs. 89.6%, the precision of 90.0%, and F1_score of 89.8%.
Nonetheless, in terms of sensitivity, the CoroNet model outperformed the COVIDNet
model recording 96.4%. The Mag-SD model was recommended by Li et al. [70], who
attained 92.35% accuracy, 92.50% precision, 92.20% sensitivity, and 92.34% F1_score. To in-
crease feature extraction comprehension of CXr images, Mondal et al. [71] and Shi et al. [72]
advocated adopting an attention mechanism. Teacher-Student Attention was presented by
Shi et al. [72]. The accuracy was 91.38%, which was better than the previous methods. The
Local-Global Attention Network was introduced by Mondal et al. [71], and it surpassed ear-
lier state-of-the-art models in terms of classification accuracy (95.87%), precision (95.56%),
sensitivity (95.99%), and F1_score (95.74%). The author of Reference [73] used two different
CXr classification algorithms with the same dataset in this study. With 92% accuracy, 91.75%
precision, 94.50% sensitivity, and 92.75% F1_score, EfficientNetB1 (Strategy 2) produced the
best classification results. Furthermore, the proposed technique has the maximum precision
for COVID-19 circumstances, which means that a COVID-19 negative sample is rarely
misidentified as a positive sample by the proposed classifier. Furthermore, the proposed
approach has the highest recall score, indicating that the classifier can correctly identify the
majority of positive COVID-19 samples. When compared to the baseline approaches, the
suggested method has the highest F1_score, indicating that it is the most balanced in terms
of precision and sensitivity.

This research leverages the Dataset_B classification performance as given in Table 12
to further test the proposed model’s superiority over state-of-the-art models. This compar-
ison is based primarily on the many models used to detect pneumonia from chest X-ray
images. Researchers have utilized several methodologies, such as the pre-trained model
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approach, ensemble model approach, and from-scratch model approach, as shown in the
Table. Naralasetti et al. [74] used Deep CNN architecture and achieved a 91% accuracy rate.
Ensemble models allow for a deeper understanding of the task and better results. However,
when compared to the CNN model used by Dokur et al. [75], the proposed ensemble
model fared poorly. In Accuracy, Precision, Recall, and F1_score, the CNN model outper-
formed the ensemble model by a factor of 3. For pneumonia detection feature extraction,
Hammoudi et al. [36] implemented several deep-learning models. DenseNet121, VGG16,
VGG19, and ResNet50 were the best of the implemented models. For X-ray pneumonia clas-
sification tasks, traditional models such as K-Nearest Neighbor (KNN), Nave Bayes (NB),
Support Vector Machine (SVM), and Random Forest were used (RF). The authors concluded
that DenseNet-169 when combined with ideal SVM RBF kernel hyper-parameter values,
outperformed all other models tested. The from-scratch techniques were employed [76,77].
The researchers developed a novel model for pneumonia detection; however, the model’s
performance was poor, with accuracy, precision, recall, and F1_score all falling below
90%. The authors [78] used the AlexNet architecture via transfer learning and produced
the best classification accuracy among the state-of-the-art models with a 97.40% accuracy
after analyzing the transfer learning methodologies. With a percentage accuracy of 98.19,
precision of 97.29%, recall of 97.29%, and F1_score of 97.29%, the proposed model, which
integrates all the investigated strategies, has proved to outperform all previous techniques.

Table 11. Proposed model classification performance comparison with state-of-the-art models
using Data_A.

Reference Year Model Accuracy Precision Sensitivity F1_score

Khan et al.
(Strategy 1) [73] 2022

EfficientNetB1 92 91.75 94.50 92.75
NasNetMobile 89.30 89.25 91.75 91
MobileNetV2 90.03 92.25 92 91.75

Khan et al.
(Strategy 2) [73] 2022

EfficientNetB1 96.13 97.25 96.50 97.50
NasNetMobile 94.81 95.50 95 95.25
MobileNetV2 93.96 94.50 95 94.50

Mondal et al. [71] 2022 Local Global
Attention Network 95.87 95.56 95.99 95.74

Shi et al. [72] 2021 Teacher Student
Attention 91.38 91.65 90.86 91.24

Li et al. [70] 2021 Mag-SD 92.35 92.50 92.20 92.34
Khan et al. [69] 2020 CoroNet 89.6 90.0 96.4 89.8
Shi et al. [72] 2020 COVIDNet 90.78 91.1 90.56 90.81

Ours 2022 98.00 96.21 96.02 96.03

Table 12. Proposed model classification performance comparison with state-of-the-art models
using Data_B.

Reference Year Architecture Accuracy Precision Recall F1_score

Naralasetti et al. [74] 2021 Deep CNN 91% - - -

Dokur et al. [75] 2020 CNN
Ensemble

78%
75%

80%
77%

78%
75%

78%
75%

Hammoudi et al. [36] 2020

VGG19
ResNet+RNN1
ResNet+RNN2
DenseNet169

83%
78%
80%
96%

-
-
-
-

-
-
-
-

-
-
-
-

Windodo et al. [76] 2021 UBNetV1
UBNetV2

88%
88%

89%
89%

86%
85%

86%
86%

Kermany et al. [77] 2021 AutoML 86% 82% 84% 84%
Ibrahim et al. [78] 2020 AlexNet 97.40% - - -

Ours 2022 98.19% 97.29% 97.29% 97.29%
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4.3. Limitations and Future Works

The implemented model, on the other hand, has some limitations. To begin, the model
was only investigated using chest X-ray scans, hence our findings are limited to chest
X-ray images. There are various medical image modalities for lung disease detection and
classification, including magnetic resonance imaging (MRI), ultrasound, and computed
tomography (CT). In the future, the proposed approach will be applied to the listed medical
image modalities. Furthermore, no Image Feature improvement procedures were examined
in this investigation, and the degree of the lung disease (mild, moderate, or severe disease)
was not considered. We also notice that the chest X-ray dataset only shows one series per
patient, which supports [79]‘s thesis that a small dataset (one chest x-ray series per patient)
cannot be utilized to predict whether a patient would develop a radiographic abnormality as
the disease progresses. This will be thoroughly investigated in our upcoming investigation.
Finally, the suggested model can be utilized to predict oral cancer, skin cancer, breast cancer,
and other types of cancer.

5. Conclusions

This research focuses primarily on the identification of pneumonia and COVID-19, as
these are the two most common lung diseases now afflicting people around the world. Lung
disease identification was and continues to be an important part of epidemic diagnosis,
and effective CXr data extraction aids in the correct diagnosis of lung illnesses, allowing
for early detection and treatment. We present a unique Chest X-ray Image Based Feature
Extraction Framework that split the images into patches and positional embeddings for
accurate and fast lung disease identification. This paper first looked into the efficiency of
six pre-trained deep learning models. Secondly, we proposed our model first the first step
is to use a fusion model to extract deep features (generic features. Since the fusion model
involves three concatenated models, there is a need for a higher-order representation of the
features hence we introduced the global second-order pooling before the application of the
multi-head self-attention network to analyze the input image regional features which in
return pass the extracted features to the MLP layer for accurate lung disease classification
and detection. To test the efficacy of the proposed approach, two publicly available datasets
were employed. Data_A had a precision of 96.20% and an accuracy of 98.00%, while Data_B
had a precision of 97.29% and an accuracy of 98.19%. We also assess the proposed model’s
forecasting accuracy using an explainability-driven heatmap visualization to emphasize the
key aspects influencing the prediction decision it makes. Not only are these decipherable
visual clues a step closer to understandable AI, but they may also benefit professional
radiologists in diagnosis. We have empirically proved the efficacy of the suggested strategy
over state-of-the-art CNN-based algorithms in terms of precision, recall, and F1 score.
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