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Abstract: Metal workpieces are indispensable in the manufacturing industry. Surface defects affect the
appearance and efficiency of a workpiece and reduce the safety of manufactured products. Therefore,
products must be inspected for surface defects, such as scratches, dirt, and chips. The traditional
manual inspection method is time-consuming and labor-intensive, and human error is unavoidable
when thousands of products require inspection. Therefore, an automated optical inspection method
is often adopted. Traditional automated optical inspection algorithms are insufficient in the detection
of defects on metal surfaces, but a convolutional neural network (CNN) may aid in the inspection.
However, considerable time is required to select the optimal hyperparameters for a CNN through
training and testing. First, we compared the ability of three CNNs, namely VGG-16, ResNet-50, and
MobileNet v1, to detect defects on metal surfaces. These models were hypothetically implemented
for transfer learning (TL). However, in deploying TL, the phenomenon of apparent convergence
in prediction accuracy, followed by divergence in validation accuracy, may create a problem when
the image pattern is not known in advance. Second, our developed automated machine-learning
(AutoML) model was trained through a random search with the core layers of the network architecture
of the three TL models. We developed a retraining criterion for scenarios in which the model exhibited
poor training results such that a new neural network architecture and new hyperparameters could
be selected for retraining when the defect accuracy criterion in the first TL was not met. Third, we
used AutoKeras to execute AutoML and identify a model suitable for a metal-surface-defect dataset.
The performance of TL, AutoKeras, and our designed AutoML model was compared. The results of
this study were obtained using a small number of metal defect samples. Based on TL, the detection
accuracy of VGG-16, ResNet-50, and MobileNet v1 was 91%, 59.00%, and 50%, respectively. Moreover,
the AutoKeras model exhibited the highest accuracy of 99.83%. The accuracy of the self-designed
AutoML model reached 95.50% when using a core layer module, obtained by combining the modules
of VGG-16, ResNet-50, and MobileNet v1. The designed AutoML model effectively and accurately
recognized defective and low-quality samples despite low training costs. The defect accuracy of the
developed model was close to that of the existing AutoKeras model and thus can contribute to the
development of new diagnostic technologies for smart manufacturing.

Keywords: automated machine learning (AutoML); convolutional neural network (CNN); metal
surface defect

1. Introduction

The application of computer-aided design and analysis in certain domains, such as
signal processing and simulation, has gradually increased. Manual product inspections
require considerable labor, and inaccurate testing results might be obtained because of
human error which can affect the quality of manufactured products. Therefore, the use
of automated optical inspection has increased. With advancements in hardware and
software, deep learning models have been combined with optical inspection systems to
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relieve the bottleneck of defect detection in manufacturing. Technology used to detect
metal surface defects has surpassed the limits of the human eye. Image classification
through deep learning can improve the accuracy of image detection [1,2]. In addition,
with the advancement of graphics processing units, the computing power of hardware
has considerably increased. The You Only Look Once algorithm [3] and deep learning
frameworks, such as TensorFlow [4] and PyTorch [5], have been used for defect detection.
Synergistic development using a kernel filter, pooling, or activation function in image
classification has promoted advances in deep learning technology. Many studies have
employed convolutional neural networks (CNNs) to classify images [6–8]. CNNs have
deep learning structures and can be easily trained [9,10]. Such networks have been used to
effectively inspect products and detect defects in images [11].

Theoretically, the number of hidden layers of an NN strongly influences network
performance. With more layers, a network can work with and extract more complex feature
patterns and therefore achieve superior results. However, the accuracy of a network peaks
at a certain number of layers and even decreases thereafter. ResNet [12] uses residual
learning to resolve this problem and it contains shortcuts. Therefore, ResNet can suppress
the accuracy drop caused by multiple layers in deep networks. When a large kernel is
used for feature extraction in convolution operations, numerous parameters are required.
MobileNet [13] uses depthwise separable convolution to divide the convolution kernel into
single channels. It can convolve each channel without changing the depth of the input
features. Moreover, the aforementioned model can produce output feature maps with the
same number of channels as the input feature maps. This model can increase or reduce
the dimensionality of feature maps to reduce computational complexity and accelerate
calculation while maintaining high accuracy.

A deep learning approach was developed for an optical inspection system for surface
defects on extruded aluminum [14]. A simple camera records extruded profiles during
production, and an NN distinguishes immaculate surfaces from surfaces with various com-
mon defects. Metal defects can vary in size, shape, and texture, and the defects detected by
an NN can be highly similar. In [15], an automatic segmentation and quantification method
using customized deep learning architecture was proposed to detect defects in images of
titanium-coated metal surfaces. In [16], a U-Net convolutional network was developed to
segment biomedical images through appropriate preprocessing and postprocessing steps;
specifically, the network applied a median filter to input images to eliminate impulse noise.
Standard benchmarks were used to evaluate the detection and segmentation performance
of the developed model, which achieved an accuracy of 93.46%.

In [17], a 26-layer CNN was developed to detect surface defects on the components of
roller bearings, and the performance of this network was compared with that of MobileNet,
VGG-19 [18], and ResNet-50. VGG-19 achieved a mean average precision (mAP) of 83.86%;
however, its processing time was long (i.e., 83.3 ms). MobileNet exhibited the shortest
processing speed but the lowest mAP because of the small number of parameters and
necessary calculations. The 26-layer CNN achieved a better balance between mAP and
processing efficiency than the other three models, with the mAP of this network nearly
equal to the highest mAP of ResNet-50. Moreover, the 26-layer CNN required less time for
detection than ResNet-50 or VGG-19. In [19], an entropy calculation method was used in a
self-designed DarkNet-53 NN model, and the most suitable kernel size was selected for
the convolutional layer. The model was highly accurate in recognizing components and
required only a short training time.

In [20], two types of residual fully connected NNs (RFCNNs) were developed: RFCN-
ResNet and RFCN-DenseNet. The performance of these networks in the classification of
24 types of tumors was compared with that of the XGBoost and AutoKeras automated
machine-learning (AutoML) methods. RFCN-ResNet and RFCN-DenseNet featured en-
hancements in feature propagation and encouragement for the reuse of RFCN architectures,
while new RFCN architecture generation achieved accuracies of 95.9% and 95.7%, respec-
tively, outperforming XGBoost and AutoKeras by 4.8% and 4.9%, respectively. In another
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comparison, RFCN-ResNet and RFCN-DenseNet achieved respective accuracies of 95.9%
and 96.5% and outperformed XGBoost and AutoKeras by 6.1% and 5.5%, respectively,
indicating that RFCN-ResNet and RFCN-DenseNet considerably outperform XGBoost and
AutoKeras in modeling genomic data.

In [21], AutoKeras and a self-designed model were used to analyze water quality.
Compared to that of AutoKeras, the accuracy of the developed model was 1.8% and 1%
higher in the classification of two-class and multiclass water data, respectively. However,
the AutoKeras model exhibited higher efficiency than the developed model and required
no manual effort.

The authors of [22] proposed that random trials are more efficient than trials based
on a grid search for optimizing hyperparameters. In Gaussian process analysis, different
hyperparameters are crucial for different datasets. Thus, a grid search is a poor choice for
the configuration of algorithms for new datasets.

In smart manufacturing, quickly adapting to new complex manufacturing processes
and designing appropriate and efficient optimization networks have become crucial. In the
present study, industrial machine vision and deep learning were combined to construct an
AutoML model to detect defects on metal surfaces to reduce costs in smart manufacturing.
The proposed model can be used to develop highly adaptable visual inspection techniques
to overcome the bottlenecks caused by current image-processing techniques and thereby
advance smart manufacturing.

2. Introduction to VGGNet, ResNet, MobileNet, and AutoML
2.1. VGGNet

VGGNet was developed by the Visual Geometry Group of Oxford University and
placed second in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in
2014. VGGNet contains more layers than AlexNet did in 2012. The VGG block architecture
used by VGGNet contains a repeated 3 × 3 kernel size for the convolutional layers and
a 2 × 2 kernel size for the max-pooling layer. Four varieties of VGGNet with different
numbers of layers exist: VGG-11; VGG-13; VGG-16; and VGG-19. Among these, VGG-
16 and VGG-19 exhibit excellent results. In the present study, the VGG-16 model with
few parameters was used for training. VGG-16 contains five VGG blocks as presented in
Table 1. Two convolutional layers are used in each of the first two VGG blocks, and three
convolutional layers are used in each of the last three VGG blocks. VGG-16 consists of
3 fully connected layers in addition to the 13 convolutional layers.

Table 1. Architecture of VGG-16 [18].

Layer Type Filters Kernel
Size/Stride Output Size VGG Block

Conv 1 + Relu 64 3 × 3/1 224 × 224 × 64
1Conv 2 + Relu 64 3 × 3/1 224 × 224 × 64

MaxPooling 112 × 112 × 64

Conv 3 + Relu 128 3 × 3/1 112 × 112 × 128
2Conv 4 + Relu 128 3 × 3/1 112 × 112 × 128

MaxPooling 56 × 56 × 128

Conv 5 + Relu 256 3 × 3/1 56 × 56× 256

3
Conv 6 + Relu 256 3 × 3/1 56 × 56× 256
Conv 7 + Relu 256 3 × 3/1 56 × 56× 256

MaxPooling 28 × 28× 256

Conv 8 + Relu 512 3 × 3/1 28 × 28 × 512

4
Conv 9 + Relu 512 3 × 3/1 28 × 28 × 512
Conv 10 + Relu 512 3 × 3/1 28 × 28 × 512

MaxPooling 14 × 14 × 512
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Table 1. Cont.

Layer Type Filters Kernel
Size/Stride Output Size VGG Block

Conv 11 + Relu 512 3 × 3/1 14 × 14 × 512

5
Conv 12 + Relu 512 3 × 3/1 14 × 14 × 512
Conv 13 + Relu 512 3 × 3/1 14 × 14 × 512

MaxPooling 7 × 7 × 512

Fully Connected 1 1 × 1 × 4096

Fully Connected 2 1 × 1 × 4096

Fully Connected 3 1 × 1 × 1000

Softmax

2.2. ResNet

ResNet was developed by Microsoft Research in 2015 and won the ILSVRC that
year Beyond a certain point, the accuracy of NNs does not increase with the number of
layers. As displayed in Figure 1, the training error of a 56-layer NN is higher than that
of a 20-layer NN. This eventual decrease in training accuracy with network depth is the
degradation problem of NNs. When the depth of an NN increases, gradients vanishing
during backpropagation becomes more likely; thus, certain gradients cannot be transmitted
to the next node to update the weights, resulting in a decrease in training accuracy.
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Figure 1. Relationship between number of layers and training error [12].

To solve the degradation problem, ResNet employs a residual learning structure. As
displayed in Figure 2, the input x is passed through two branches. In one branch (right),
the input x is passed across the network layers through a shortcut, and no operation is
performed. In the other branch (middle), the output F(x) is obtained after an operation is
performed on x. The final output is the sum of the outputs of the two branches, namely
F(x) + x. This method can prevent gradient vanishing during convolution operations
because the shortcut allows gradients to be passed to the next layer to update the weights.

As displayed in Table 2, the input of ResNet is first passed through a
7 × 7 × 64 convolutional layer and then passed through four residual connection blocks
in sequence. The higher the number of layers, the higher the training cost; therefore, a
1 × 1 convolutional layer is placed before a 3 × 3 convolutional layer. The 1 × 1 convolu-
tional layer reduces the number of channels, which can reduce the number of parameters
required during training.
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Table 2. Architecture of ResNet [12].

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2[
3 × 3 64
3 × 3 64

]
× 2

[
3 × 3 64
3 × 3 64

]
× 3

1 × 1 64
3 × 3 64
1 × 1 256

× 3

1 × 1 64
3 × 3 64
1 × 1 256

× 3

1 × 1 64
3 × 3 64
1 × 1 256

× 3

conv3_x 28 × 28
[

3 × 3 128
3 × 3 128

]
× 2

[
3 × 3 128
3 × 3 128

]
× 4

1 × 1 128
3 × 3 128
1 × 1 512

× 4

1 × 1 128
3 × 3 128
1 × 1 512

× 4

1 × 1 128
3 × 3 128
1 × 1 512

× 8

conv4_x 14 × 14
[

3 × 3 256
3 × 3 256

]
× 2

[
3 × 3 256
3 × 3 256

]
× 6

1 × 1 256
3 × 3 256
1 × 1 1024

× 6

1 × 1 256
3 × 3 256
1 × 1 1024

× 23

1 × 1 256
3 × 3 256
1 × 1 1024

× 36

conv5_x 7 × 7
[

3 × 3 512
3 × 3 512

]
× 2

[
3 × 3 512
3 × 3 512

]
× 3

1 × 1 512
3 × 3 512
1 × 1 2048

× 3

1 × 1 512
3 × 3 512
1 × 1 2048

× 3

1 × 1 512
3 × 3 512
1 × 1 2048

× 3

1 × 1 average pool, 1000-d fc, softmax
FLOPs 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

2.3. MobileNet

Since the introduction of CNNs, the depth of networks has increased. Numerous layers
incur a high computational cost, limiting the application of NNs. In 2017, Google developed
MobileNet, which is a lightweight NN applied to mobile terminals. The architecture of
MobileNet is presented in Table 3. Moreover, depthwise separable convolution is used in
place of conventional convolution. The difference between depthwise convolution and
general convolution is that depthwise convolution involves splitting the convolution kernel
into single-channel forms. Depthwise separable convolution splits kernels to undergo
depthwise convolution and pointwise convolution. Even with the same input feature
depth, the convolution of each channel enables the generation of output feature maps
with the same number of channels as the input feature maps. Pointwise convolution is a
1 × 1 convolution that can increase or reduce the dimensionality of a feature map (Figure 3).
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Table 3. Architecture of MobileNet v1 [13].

Type/Stride Filter Shape Input Size

Conv/s2 3 × 3 × 3 × 32 224 × 224 × 3

Conv dw/s1 3 × 3 × 32 dw 112 × 112 × 32

Conv/s1 1 × 1 × 32 × 64 112 × 112 × 32

Conv dw/s2 3 × 3 × 64 dw 112 × 112 × 64

Conv/s1 1 × 1 × 64 × 128 56 × 56 × 64

Conv dw/s1 3 × 3 × 128 dw 56 × 56 × 128

Conv/s1 1 × 1 × 128 × 128 56 × 56 × 128

Conv dw/s2 3 × 3 × 128 dw 56 × 56 × 128

Conv/s1 1 × 1 × 128 × 256 28 × 28 × 128

Conv dw/s1 3 × 3 × 128 dw 28 × 28 × 256

Conv/s1 1 × 1 × 256 × 256 28 × 28 × 256

Conv dw/s2 3 × 3 × 256 dw 28 × 28 × 256

Conv/s1 1 × 1 × 256 × 512 14 × 14 × 256

5 × Conv dw/s1 3 × 3 × 512 dw 14 × 14 × 512
Conv/s1 1 × 1 × 512 × 512 14 × 14 × 512

Conv dw/s2 3 × 3 × 512 dw 14 × 14 × 512

Conv/s1 1 × 1 × 512 × 1024 7 × 7 × 512

Conv dw/s2 3 × 3 × 1024 dw 7 × 7 × 1024

Conv/s1 1 × 1 × 1024 × 1024 7 × 7 × 1024

Avg pool/s1 Pool 7 × 7 7 × 7 × 1024

FC/s1 1024 × 1000 1 × 1 × 1024

Softmax/s1 Classifier 1 × 1 × 1000
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2.4. AutoML

The training steps involved in traditional ML are displayed in Figure 4. A training
dataset is created, a suitable model is selected for training, and finally, the hyperparameters
are adjusted after the training results have been evaluated. This process is repeated with
many models and parameters until the most effective ones are identified.
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Figure 4. Training steps involved in ML.

During model selection, aspects such as the dataset size and type, as well as hardware
limitations, must be considered. Model evaluation requires an adjustment of the hyperpa-
rameters, such as the learning rate and optimizer, as well as the parameters related to the
model architecture, such as the number of layers and operation of each layer. In general
ML, the aforementioned parameters must be set manually. If the training results are not
ideal, transfer learning (TL) can be applied. TL reduces the time required for parameter
adjustment. Modeling requires considerable time. Hyperparameter adjustment is the
process of searching for combinations, but this process can be automated. AutoML involves
using artificial intelligence algorithms to conduct ML automatically.

AutoML enables developers familiar or unfamiliar with NNs, or lacking relevant
domain knowledge, to use ML and deep learning techniques. Many tools are available
for AutoML. In this study, AutoKeras was used to implement AutoML. AutoKeras is an
AutoML system based on the Keras deep learning framework and uses an efficient neural ar-
chitecture search (ENAS) [23] for automated modeling. AutoKeras employs three common
methods to optimize hyperparameters: grid search; random search; and Bayesian search
(Figure 5). Grid search is a brute-force method used to check all possible combinations of
the range of hyperparameters provided by network designers. For example, if the learning
rate is 0.01 or 0.1 and the batch size is 10 or 20, the four possible parameter combinations
are produced in sequence for the training method. Random search is similar to grid search,
but the combinations of hyperparameters are produced in a random order. Bayesian search
involves searching for hyperparameters on the basis of Bayes’ theorem [24], and only
parameter combinations that maximize a certain probability function are considered.
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In 2016, Google developed the neural architecture search (NAS) with reinforcement
learning [25]. The NAS system consists of three main components as displayed in Figure 6.
This system includes different types of network layers, including convolutional and fully
connected layers. These layers are connected to form network architecture, which generally
requires a manual design. In Google’s NAS, various candidate network architectures are
tested, and the optimal architecture is selected on the basis of various evaluation indicators.
NAS can be used to evaluate chosen strategies based on different models and tests in
addition to candidate models.
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From target data, NASNet [26] constructs a high-accuracy, high-complexity, and
multilayered NN model for image classification. When the number of data is large, the
network consumes considerable computation resources. Therefore, it begins searching a
small dataset for suitable network layer units and then searches a larger dataset (Figure 7).
NASNet judges whether the NN architecture can produce suitable gradient-descent results
and modifies the probability of selecting that network architecture according to its judgment.
It then selects the optimally performing network model. ENAS is an improved variant of
NASNet which allows a parent model to share weights with its submodels; thus, training
need not be restarted from scratch for the submodels.
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3. Architecture of Designed System
3.1. Workpiece for Experimental Detection

An experiment was performed to detect defects on a workpiece made of 304 stainless
steel parts (Figure 8). A burr generated around a chamfered hole (blue square in Figure 8)
during machining with computer numerical control (CNC) was the detection target. Be-
cause wires would eventually pass through such a hole, defects must be detected to prevent
wire scratching.
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The experimental system comprised a 1280 × 1024-pixel camera (Basler acA1280-60gm
GigE, CMOS, Ahrensburg, Germany) with a 50 + 15 mm extension ring lens. We used a
shadowless ring light to provide illumination from different angles. The surface of the
tested workpiece was composed of opaque reflective material. Using a common light
source makes the incident angle equal to the reflection angle, thus producing a reflection.
Using a ring light source can prevent reflection and highlight defects, thereby effectively
solving the reflection problem caused by direct illumination. The optimal light source
position and camera inclination angle (α) can be determined through iterative adjustment
and experimentation. The angular positioning of the camera relative to the light source in
the present study is illustrated in Figure 9.
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3.2. Dataset

The original image size was 1280 × 550 pixels (Figure 10). The focuses of okay (OK)
and not good (NG) images are shown in the green and red boxes, respectively, in Figure 11.
After obtaining 300 OK and 300 NG images, we cropped the images to 186 × 189 pixels
and used them for training. We defined rough surfaces (e.g., the irregular white parts in
the red boxes in Figure 11) as defects.
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3.3. Experimental Architecture

Three experiments were conducted using Python on Google Colaboratory through the
website. In Experiment 1, the results of training different models through TL were evaluated.
In each training process, the following hyperparameters were used: the optimizer was
Adam; the batch size was 10; the number of epochs was 5; and the learning rate was
0.0001. Datasets for two different training and validation distribution ratios of 5:5 and 8:2
were tested, and the ratio achieving superior results was used for Experiments 2 and 3.
Experiment 2 involved the design of this research for an AutoML model. Experiment 3
involved the use of commercial AutoKeras software to import the same dataset for training
and a comparison of the model architecture and calculation results with those of our
designed AutoML model.
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3.4. Design of AutoML Model

We extracted feature modules from the three models used for TL in Experiment 1,
namely VGG-16, ResNet, and MobileNet as V, R, and M, respectively. In Figure 12, the VGG
block, residual connection block of ResNet, and depthwise separable convolution block of
MobileNet (i.e., the extracted feature modules) are denoted by V, R, and M, respectively.
The designed AutoML model contained a network of the aforementioned blocks. Adam,
SGD (stochastic gradient decent), and Adagrad (Adaptive gradient) were selected as the
optimizers for this model, and the learning rates were 0.01, 0.001, and 0.0001. In [22],
random search was more effective than grid search for the selection of hyperparameters.
Therefore, we used random search to select the model architecture, optimizer, and learning
rate. If the model accuracy was insufficient, a new architecture and new hyperparameters
were used for retraining. In Experiment 1, VGG-16 exhibited an accuracy of 91% when TL
was used; thus, 91% was established as the standard for retraining the designed AutoML
model. The operation of the designed AutoML model is illustrated in Figure 12.
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4. Experimental Results and Discussion

The following text describes the training accuracy, validation accuracy, loss charts,
and confusion matrices obtained for each model with the number of epochs being 5. The
confusion matrix comprises true positives (TPs), true negatives (TNs), false positives (FPs),
and false negative (FNs). First of all, in Experiment 1, the TPs were OK images correctly
identified as OK. The TNs were NG images correctly identified as NG. The FPs were NG
images incorrectly identified as OK. Finally, the FNs were OK images incorrectly identified
as NG.

4.1. Results of Experiment 1

Figure 13 displays the accuracy and loss of VGG-16, ResNet-50, and MobileNet v1 in
training and validation. The training and validation accuracy of VGG-16 approached 1
when the number of epochs was 3 and decreased marginally when the number of epochs
was 4. When the number of epochs was 5, the accuracy was higher and lower than when
the number of epochs was 4 and 3, respectively. The training loss was approximately 0.6
with 4 epochs. The training and verification accuracy of ResNet-50 approached 1 when
the number of epochs was 5 and 4 respectively. The validation accuracy increased to 0.6
when the number of epochs was 3. When the number of epochs was 5, the validation loss
was poor at 0.6, which is not favorable. The training accuracy of MobileNet v1 increased
from 0.5 at the beginning to 0.8. The validation accuracy initially increased with training
accuracy; however, when the number of epochs was 3, the validation accuracy was only
approximately 0.4. The validation and training losses of MobileNet v1 were close to 0.8 and
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above 0.4, respectively, when the number of epochs was 5. Thus, by TL, the phenomenon of
apparent convergence in prediction accuracy, followed by divergence in validation accuracy,
could happen, especially when the selected network model and content of the image profile
is not known prior.
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The accuracy, loss, number of parameters, and training time for each tested model
are listed in Table 4. In terms of accuracy and loss, the VGG-16 model exhibited optimal
performance; however, it required a high number of parameters (i.e., 134,268,738) and a
long training time. The MobileNet v1 model required the shortest training time of only 77 s
but achieved low accuracy.

Table 4. Results of Experiment 1.

VGG-16 ResNet-50 MobileNet v1

Accuracy 0.9100 0.5900 0.5000
Loss 0.2280 0.6290 0.7144

Number of parameters 134,268,738 23,591,810 3,230,914
Training time (s) 538 195 77

Table 5 presents the training results obtained with VGG-16, ResNet-50, and MobileNet
v1 under two distribution ratios. The highest values for the 5:5 and 8:2 data distribu-
tions were 100 and 20, respectively. The accuracy achieved on the 5:5 dataset was higher
than that achieved on the 8:2 dataset; therefore, the 5:5 dataset distribution was used in
Experiments 2 and 3. A possible reason for these results is that the defects in the original
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images comprised with the characteristics of uncomplicated profile as simply as line edges
or curves. Overfitting is likely when the traditional 8:2 or 7:3 ratio is used.

Table 5. Training results obtained ith VGG-16, ResNet-50, and MobileNet v1 with two data distributions.

VGG-16 ResNet-50 MobileNet v1

Distribution ratio five-five eight-two five-five eight-two five-five eight-two

Accuracy (%) 91.00 66.39 59.00 56.94 50.00 44.44

Loss (%) 22.80 63.16 62.90 55.82 71.44 69.57

Time (s) 538 555 195 201 77 71

TP 100 20 100 20 100 0

TN 0 0 0 0 0 20

FP 18 20 82 20 100 0

FN 82 0 18 0 0 20

4.2. Results of Experiment 2

As previously mentioned, the phenomenon of apparent convergence in prediction
accuracy, followed by divergence in validation accuracy, which may cause a problem
in the selection of an appropriate network model when using TL, sounds reasonable.
As presented in Table 5, among the compared models, VGG-16 exhibited the highest
accuracy of 0.91 in Experiment 1. Therefore, in Experiment 2, we used this accuracy as the
criterion for evaluating the necessity of retraining. Table 6 presents the results obtained
with the designed AutoML model during training as well as the hyperparameters, model
architecture, training time, accuracy, loss, and confusion matrix for different iterations.

Table 6. Parameters and architectures selected by designed AutoML model in six training iterations.

First Time Second Time Third Time Fourth Time Fifth Time Sixth Time

Learning rate 0.0001 0.0001 0.0001 0.01 0.0001 0.001

Optimizer Adam Adagrad Adagrad SGD SGD Adam

Model composition order RMV RMV MVR VMR RMV MRV

Number of parameters 928,450 928,450 2,019,116 1,901,378 928,450 810,796

Training time (s) 1911 1897 4171 1013 1917 2339

Accuracy 0.6600 0.7400 0.9000 0.8750 0.8250 0.9550

Loss 0.6399 0.5238 1.1061 0.3181 0.2680 0.5756

TP 100 100 100 100 100 96

TN 0 0 0 0 0 4

FP 68 52 20 25 35 5

FN 32 48 80 75 65 95

Table 6 lists the model architecture and parameters randomly selected by the designed
AutoML model in each of the six training iterations. The RMV (quoted name as the
abstracted module adopted from Resnet-50, VGG-16, and MobileNet v1, respectively)
model was selected three times, and different optimizers were used for training. However,
the training results were poor: the model achieved an accuracy lower than that achieved
in Experiment 1. The third training iteration required the highest number of parameters
(>2 million) and longest training time (>1 h) but achieved the second highest accuracy (i.e.,
90%). In the sixth iteration (Table 7), the MRV model was used with a learning rate of 0.001,
Adam was selected as the optimizer, and a considerably lower parameter number was
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required than those of the first five iterations. The developed AutoML model required
13,242 s (nearly 4 h) to train six models and achieved a final accuracy of 95.5%. The designed
AutoML model by MRV is demonstrated in Figure 14.

Table 7. Model architecture selected in sixth training iteration by designed AutoML model.

Layer Type Filter Shape Output Size
Conv_dw_BN_ReLU 3 × 3 × 512 dw, Stride 2 224 × 224 × 3

Conv_BN_ReLU 1 × 1 × 512 224 × 224 × 512

Conv 3_BN_ReLU

1 × 1 64
3 × 3 64
1 × 1 256

× 1 112 × 112 × 512

Conv 1_ReLU 3 × 3, 64 112 × 112 × 64
Conv 2_ReLU 3 × 3, 64 112 × 112 × 64
MaxPooling 2 × 2, Stride 2 56 × 56 × 64

Flatten 200,704
Fully Connected 2

Softmax 2

4.3. Results of Experiment 3

AutoKeras has three preset model architectures, namely ResNet-50, EfficientNet
B7 [27], and a CNN composed of two convolutional layers. In the present study, Au-
toKeras selected the CNN model for training. The details of the architecture of the CNN
model are presented in Table 8. The dataset input to the CNN model was normalized and
then passed through the following layers in sequence: two 3 × 3 convolutional layers; a
max-pooling layer; a dropout layer with a dropout rate of 0.25; a flat layer; a dropout layer
with a dropout rate of 0.5; and a fully connected layer (named dense), which provided the
output. The Adam optimizer and a learning rate of 0.001 were used.

Table 8. Model architecture selected by AutoKeras.

Layer Type Filter Shape Output Size

Normalization 256 × 256 × 3

Conv1 3 × 3 × 32 254 × 254 × 32

Conv2 3 × 3 × 64 252 × 252 × 64

MaxPooling 2 × 2, Stride 2 126 × 126 × 64

Dropout (0.25) 126 × 126 × 64

Flatten 1,016,064

Dropout (0.5) 1,016,064

Dense 1

The training results of the AutoKeras model are displayed in Figure 15. This model was
trained twice, and no validation dataset was used in the second training iteration. Because
AutoKeras merged the training and validation datasets for the final training iteration,
Figure 14 displays only a training chart and no validation chart. The trained model weights
were added to the test dataset, and a confusion matrix was obtained. The test dataset
comprised 100 OK and 100 NG images, and all pictures were identified correctly. Because
the AutoKeras model was trained twice, it required a long training time (i.e., 1388 s). The
final accuracy and loss of the aforementioned model were 0.9983 and 0.0063, respectively.
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5. Conclusions

In this study, we detected a burr around the chamfered hole of 304 stainless steel
parts produced through CNC machining. To prevent the scratching of the wires that pass
through this hole, defects should be detected through imaging; thus, images of the hole
were used as the training data in this study. A CNN that can perform TL and AutoML, as
well as adopt the AutoKeras model, was designed. Experiments were conducted using
these three networks and a training dataset.

The TL model was trained with the following fixed hyperparameters: the Adam
optimizer; batch size = 10; number of epochs = 5; and learning rate = 0.0001. This model
used VGG-16, ResNet-50, or MobileNet v1. VGG-16 had the highest accuracy among these
in the dataset used in this study. The training and validation accuracies of this model were
high. Although the training accuracy of ResNet-50 eventually reached 1, its validation
accuracy was low. Moreover, large fluctuations in prediction accuracy were observed
when the number of epochs was 3. Presumably, larger network layers should cause the
result of apparent stability in prediction convergence. However as the number of epochs
increase, actually unstable prediction accuracy was observed when the detection defect is
not complicated. The training and validation accuracies of MobileNet v1 were considerably
lower than those of the other tested models. The designed AutoML model used random
search to obtain a combination of modules to construct the optimal model architecture. It
then obtained the hyperparameters after training and established a retraining mechanism
so that a new architecture could be selected and retrained if the accuracy of the training
results was low. The designed AutoML model trained six models and achieved a final
training accuracy of 95.5%. The AutoKeras model required a longer training time but
constructed the neural architecture search model in a shorter time. The accuracy and
two-layer architecture of the convolutional model selected by AutoKeras indicate that the
dataset used was simple and did not require a complex model.

The VGG-16, ResNet-50, and MobileNet v1 models all exhibit the advantage of small
architecture that prevents gradient vanishing. Based on the spirit of TL, deploying the
above model can provide preliminary prediction accuracy in a few trials. Our designed
AutoML model composed of a core layer module, obtained by combining the modules
of VGG-16, ResNet-50, and MobileNet v1, can effectively improve defect detection and
reduce the associated training costs. Our model has considerable advantages in deploying
proof-of-concept in defect detection with the selection of a bettering candidate for the CNN.
The results of this study can act as a reference for the development of new diagnostic
technology for cutting-edge smart manufacturing.
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