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Abstract

Background: For analysis of the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL) tissue samples,

it is desirable to obtain information about counts and distribution of different macrophage subtypes. Until now,

macrophage counts are mostly inferred from gene expression analysis of whole tissue sections, providing only

indirect information. Direct analysis of immunohistochemically (IHC) fluorescence stained tissue samples is confronted

with several difficulties, e.g. high variability of shape and size of target macrophages and strongly inhomogeneous

intensity of staining. Consequently, application of commercial software is largely restricted to very rough analysis

modes, and most macrophage counts are still obtained by manual counting in microarrays or high power fields, thus

failing to represent the heterogeneity of tumor microenvironment adequately.

Methods: We describe a Rudin-Osher-Fatemi (ROF) filter based segmentation approach for whole tissue samples,

combining floating intensity thresholding and rule-based feature detection. Method is validated against manual

counts and compared with two commercial software kits (Tissue Studio 64, Definiens AG, and Halo, Indica Labs) and a

straightforward machine-learning approach in a set of 50 test images. Further, the novel method and both

commercial packages are applied to a set of 44 whole tissue sections. Outputs are compared with gene expression

data available for the same tissue samples. Finally, the ROF based method is applied to 44 expert-specified tumor

subregions for testing selection and subsampling strategies.

Results: Among all tested methods, the novel approach is best correlated with manual count (0.9297). Automated

detection of evaluation subregions proved to be fully reliable. Comparison with gene expression data obtained for the

same tissue samples reveals only moderate to low correlation levels. Subsampling within tumor subregions is possible

with results almost identical to full sampling. Mean macrophage size in tumor subregions is 152.5 ± 111.3µm2.

Conclusions: ROF based approach is successfully applied to detection of IHC stained macrophages in DLBCL tissue

samples. The method competes well with existing commercial software kits. In difference to them, it is fully

automated, externally repeatable, independent on training data and completely documented. Comparison with gene

expression data indicates that image morphometry constitutes an independent source of information about

antibody-polarized macrophage occurence and distribution.
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Background
Diffuse large B-cell lymphoma (DLBCL), the most fre-

quent mature aggressive B-cell lymphoma in adults, is

characterized by very heterogeneous pathological, clini-

cal, and biological features [1]. Additionally to the neo-

plastic B-cells, cancerous tissue contains high numbers

of various subsets of T-cells, macrophages, mast cells

and stromal cells [1, 2]. The composition of this tumor

microenvironment has attracted considerable interest

since it turned out to affect the clinical outcome. Besides

of overall histological inspection, it has been largely inves-

tigated bymolecular procedures as gene expression profil-

ing (GEP) [3, 4] as well as by morphometric image analysis

[5, 6]. Based on GEP results, two biologically and clinically

distinct molecular subtypes of DLBCL were identified,

namely activated B-cell-like subtype (ABC) and germinal

center B-cell-like subtype (GCB) [7, 8], the latter being

associated with a favorable prognosis. Prognostic effects

by different signatures of the tumor microenvironment

were also found by Lenz et al. [9]. In particular, a signa-

ture associated with increased overall survival included

components of the extracellular matrix and genes that are

characteristically expressed in cells from the monocytic

lineage.

An important component of tumor microenvironment

are infiltrating tumor-associated macrophages (TAMs).

As yet, the role of TAMs and their possible importance

for prognosis is a controversially discussed item. Although

TAMs have been associated with immunomodulation in

other tumor entities [10, 11], their functional role in the

DLBCL tumor microenvironment is still not fully defined

[12–15]. A typical marker used for its identification is

CD163. In the present study, besides of CD163, we use

CD14 as a further specific marker for monocytes and

macrophages. The choice of this particular marker pair

has been motivated by the intention of future testing

whether the ratio of CD14/CD163 could be used as a

prognostic factor for clinical outcome in DLBCL patients.

Until now, macrophage counts are either inferred from

GEP analysis of whole tissue sections or by manual count-

ing in immunohistochemically (IHC) fluorescence stained

tissue microarrays (TMA) or high-power fields (HPF)

[16, 17]. However, due to the heterogeneity of the tumor

microenvironment, counts within TMAs and HPFs can-

not be considered as representative. Consequently, mor-

phometric image analysis and related macrophage count-

ing should be performed for whole IHC stained tissue

slides instead of for small subareals.

For several reasons, fully automated counting of IHC

stained macrophages within tissue sections is still a dif-

ficult task [18–20]. First, the size and shape of the

macrophages are highly variable, thus largely impeding a

recognition by prior shape information. Second, the inten-

sity of the staining shows a large variation as well, even

within a single tissue sample or for different parts of a

single macrophage. Third, we must deal with cropped

or squeezed cells as well as with macrophages located

outside the focal plane, appearing as defocused features

within the images. Further, as far as fluorescent-labeled

antibodies are used, we must cope with autofluorescence

of other structures, e.g. erythrocytes, in the tissue. For

these reasons, themost popular strategies for cell segmen-

tation [21], i.e. (fixed or adaptive) intensity thresholding

and elementary feature detection, as implemented inmost

commercial software kits, will be confronted with serious

difficulties when applied to macrophage segmentation.

In the present study, therefore, we describe a novel

ROF filter based segmentation approach, which allows

for fully automated macrophage counting in whole tis-

sue sections, and avoids the above mentioned difficulties,

at least in part. More precisely, we will combine a strat-

egy of floating intensity thresholding with a rule-based

feature detection in single-channel images. The latter has

been suggested e.g. in Steiner et al. [22] for detection

of IHC stained leukocytes. Our method is deterministic,

fully automated, externally repeatable (no dependence on

training data) and — in difference to most commercial

software packages — completely documented. It will be

validated against manual macrophage counts in a set of 50

test images.

Further, our novel method will be compared with differ-

ent existing segmentation approaches. For the mentioned

test image set, we perform a comparison with the out-

put of two commercial cell segmentation software kits

(Tissue Studio 64, Definiens AG, Munich, Germany, and

Halo, Indica Labs, Corrales, New Mexico, USA) as well as

with a straightforward machine-learning approach (train-

ing and application of a region-based convolutional neural

network). Next, our method and both commercial pack-

ages will be applied to a set of 44 whole tissue sections,

and outputs will be compared with each other as well as

with GEP data available for the same tissue samples. In a

final step, the ROF based segmentation approach will be

applied to 44 expert-specified tumor subregions for test-

ing selection and subsampling strategies. To the best of the

authors’ knowledge, a comparative analysis of automated

macrophage segmentation approaches is being conducted

for the first time.

Methods
Preparation and staining of tissue samples

44 biopsy specimens of DLBCL were selected from the

files of the Lymph Node Registry Kiel based on avail-

ability of material. Core needle biopsies were excluded.

Formalin-fixed paraffin-embedded (FFPE) tissue was

sliced into 2µm thin slides and, additionally to a con-

ventional HE-staining, an immunohistochemical staining

was done with antibodies against CD14 (Clone EPR3653;
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Cell Marque, Rocklin, CA, USA; 1:10) and CD163 (Clone

10D6; Novocastra, Leica Biosystems, Wetzlar, Germany;

1:100). Briefly, after deparaffinization in xylene and rehy-

dration in alcohol, tissue sections were incubated for

3min in citrate buffer (pH6) within a pressure cooker.

The slides were washed in PBS and then incubated for

1 h with a mixture of the primary antibodies in antibody-

diluent (medac GmbH, Wedel, Germany). After incu-

bation with the primary antibodies, the sections were

washed in PBS and then incubated with a mixture of

the secondary fluorescent-labeled antibodies in PBS for

1 h. As secondary antibodies, donkey anti rabbit Alexa

488 and donkey anti mouse Alexa 555 were used (both

from Invitrogen, Thermo Fisher Scientific, Waltham,MA,

USA; 1:100). After washing in PBS the slices were incu-

bated with DAPI (Invitrogen, Thermo Fisher Scientific,

Waltham,MA, USA; 1:5000) for 2min, washed in PBS and

cover-slipped with mounting medium. Use of tissue was

in accordance with the guidelines of the internal review

board of the Medical Faculty of the Christian-Albrechts-

University Kiel, Germany (No. 447/10).

Image acquisition, selection of tumor subregions and ROIs

Images were generated by Hamamatsu Nanozoomer 2.0

RS slide scanner (Hamamatsu Photonics, Ammersee, Ger-

many) with 20×magnification. For every fluorescent

immunostained tissue slide, the whole tissue sample as

well as a tumor subregion were imaged, resulting in single

images for the Alexa 488, Alexa 555, and DAPI channel,

respectively, and an overlay picture of the channels. Raw

image data were saved in .ndpi format (single-channel

images) or .ndpis format (overlay image), respectively.

Pixel size is 0.45µm × 0.45µm in all images.

In order to select a tumor subregion within a whole

tissue sample, the tumor area was defined and marked

by a pathologist by inspection of the HE-stained slice.

Subsequently, within the immunostained slice, a suitable

subregion of the tumor area not larger than 10mm2 has

been selected depending on tissue and staining quality

(no tissue artifacts, no scratches or folding in the tis-

sue, no overstaining) and captured. The position of the

selected tumor subregion has been marked within the raw

data by use of the software kit NDP.view 2 (Hamamatsu

Photonics, Ammersee, Germany), which is available as

freeware [23].

From 25 randomly selected tumor subregions, ROIs of

900× 600 px (0.109mm2) size for manual counting and

comparison of image analysis methods have been sin-

gled out (CD14+/488 nm and CD163+/555 nm channels).

Note that the ROIs have been selected under the view-

point of reflecting the several difficulties of automated

macrophage recognition, see Fig. 1.

In order to prepare the scans for image analysis, raw data

were converted into uncompressed .tif format and, in

the case of whole tissue samples and tumor subregions,

sliced into tiles of 1000× 1000 px (0.202mm2) size, using

the software package ImageJ with the extension ndpi-

tools [24]. Since all obtained images are monochrome,

they have been further converted from RGB into greyscale

mode using the modulus Igrey = | IRGB | of the RGB vector

and finally saved in losslessly compressed .png format.

Thus we end up with 50 ROIs, 44 datasets for whole tis-

sue samples and 44 datasets for tumor subregions, each

comprising image data at three different immunostain-

ings. Note that the image acquisition as well as the tiling

resp. selection of the ROIs has been organized such that

no misalignment between the scans at the different wave-

lengths occurred.

Let us remark that a further staining with Pax5 (poly-

clonal; Santa Cruz Biotechnology, Heidelberg, Germany;

1:100) and donkey anti goat Alexa 647 (Invitrogen,

Thermo Fisher Scientific, Waltham, MA, USA; 1:100) has

been simultaneously performed and imaged but all related

information, as it is not concerned with macrophages, has

been completely excluded from the following analyses.

Fully automated ROF filter based segmentation

a) Method description. The described method originates

as a substantial further development of the approach pre-

sented in Bredies et al. [25], where IHC stained photore-

ceptor segmentation was performed with data-dependent

but fixed intensity thresholding and without application

of geometric rules for feature segmentation. Some of the

steps described below are visualized in Fig. 2.

After initialization of the parameters (Step 0), sub-

traction of a median-filtered version I(1) from the orig-

inal image I(0) (Step 1), which results in a brightness-

normalized, unsharply masked image I(2) = max ( I(0) −

I(1) , 0 ), we apply the Rudin-Osher-Fatemi (ROF) filter

[26] (Step 2), ending up with I(3). ROF filtering constitutes

a well-established standard procedure in image process-

ing, resulting in a sligthly coarsened, cartoon-like version

of the input image which, nevertheless, conserves the

original edge structure. The procedure allows for a sur-

prisingly efficient numerical realization [27], pp. 175 ff.

Steps 0− 2 are analogous to the algorithm described in

Bredies et al. [25]. We refer to the appendix of this paper

for an outline of the mathematical background of the ROF

approach.

Next, we extract the evaluation subregion to which the

macrophage segmentation has to be applied (i.e., the part

of the image where tissue is present). For this purpose, we

apply Steps 1 and 2 to the DAPI image, which is avail-

able together with I(0). From the obtained DAPI cartoon,

we generate a black-and-white mask Ieval by masking all

pixels with intensity less than 10 at 8bit scale with black

and covering every remaining pixel with a white 31× 31

px square centered at the given position (Step 3). In the
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Fig. 1 Six typical examples of single-channel ROIs. Contrast enhanced by factor 2 in all images, scale bar 45µm. a—No. 11 (CD14+/488 nm). b—

No. 36 (CD163+/555 nm), same region as in a. c—No. 01 (CD14+/488 nm), tightly packed and squeezed macrophages. d—No. 28

(CD163+/555 nm), tightly packed and squeezed macrophages, many erythrocytes. e—No. 12 (CD14+/488 nm), weak contrast. f—No. 40

(CD163+/555 nm), defocused and weakly stained macrophages, strongly autofluorescent erythrocytes

case of application of the method to the ROIs, this step

is being skipped, and the evaluation subregion is assumed

to coincide with the ROI image as a whole. Note that, in

difference to the following step, the application of a fixed

threshold is possible due to the much more regular struc-

ture of the DAPI image. The threshold value has been

experimentally chosen.

In difference to [25], the cartoon I(3) will be segmented

with a floating intensity threshold instead of a fixed one,

and features will be identified as macrophages by applica-

tion of a set of several geometrical rules. This subproce-

dure, which has been newly developed, will be described

in more detail. For the geometrical description of a feature

F, we employ the following variables: the size s(F) of the

feature itself, the size c(F) of the convex hull of the feature,

the ratio r(F) of the principal axes’ lengths of the small-

est ellipse covering the feature, the perimeter p1(F) of the

feature and the perimeter p2(F) of a circle with equal area

to the feature F. Further, we define the parameters smin

and smax — minimal and maximal feature size (in px),

cmin — minimal area excess of the convex hull (in per-

cent), rmax —maximal ratio of axes, and pmax —maximal

excess of the feature perimeter p1 when compared with

the perimeter of a circle with equal area p2.

We start at the intensity threshold i, which will be given

as the mean intensity of I(3), rounded to the next integer

value, and the feature mask I(3)(i) := I(3). Using Ieval, we

mask in I(3)(i) all pixels outside the obtained evaluation

subregion (Step 4). Nowwe perform the first segmentation

step by masking in I(3)(i) all pixels with intensity less than

i, subsequent labeling (Step 5) and inspecting the con-

nected features Fj, j = 1 , ... , N(i), in I(3)(i) (Step 6). Each

of the features Fj will be classified by the following rules.

1) If smax < s(Fj) then do nothing, reserving the too

large feature for further analysis with incremented inten-

sity threshold (Step 7). 2) If s(Fj) < smin then neglect the

feature as too small and mask it in I(3)(i) (Step 8). 3) If

smin ≤ s(Fj) ≤ smax then test whether the feature satisfies
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Fig. 2 Visualization of processing steps in ROF filter based segmentation. a—Original single-channel image (ROI No. 09, CD14+/488 nm), contrast

enhanced by factor 3, scale bar 45µm. b—Cartoon of a as result of Steps 1 and 2, contrast enhanced by factor 6. c—Features to be examinated in

b after masking with initial threshold i = 3 (Steps 4− 6). d— Feature classification in c (Steps 7− 9): saved by Rule 1 for further processing (yellow);

excluded by Rule 2 (red), Rule 3a (purple) or Rule 3b (pink); accepted as macrophages (green). Rule 3c caused no exclusions here. e—Features to

be examinated in b after masking with incremented threshold i = 4 (white); pixels saved in d but masked now (grey) (Step 10). f— Feature

classification in e, color encoding as before. Rule 3c caused no exclusions again

all of the following three criteria: 3a) c(Fj)/s(Fj) ≥ 1 +

cmin/100 (the feature is not too round), 3b) r(Fj) ≤ rmax

(the feature is not too elongated), and 3c) p1(Fj)/p2(Fj) ≤

pmax (the feature’s boundary is regular enough). If yes,

save the feature Fj into the output mask Isegm, interpreting

it as macrophage, and mask it in I(3)(i). If at least one of

the three criteria fails then neglect the feature and mask it

in I(3)(i) as well (Steps 9 and 10).

As a result of the classification, we end up with amasked

version I(3)(i) of the cartoon and (possibly) a set of fea-

tures to be interpreted as macrophages, written into the

output mask Isegm. Now the segmentation step is repeated

with incremented intensity threshold i = i + 1, fur-

ther application of masking to I(3)(i + 1) := I(3)(i) (Step

11) and geometrical analysis of the remaining features.

Thus we repeat subsequent segmentation steps until the

maximal intensity is reached. The complete algorithm is

summarized in Fig. 3 again.

b) Input, output and implementation. As input for the

method, a single-channel greyscale image is required.

In the case of whole tissue samples and tumor sub-

regions, the related greyscale DAPI image must be

provided as well. The output of the procedure are

three black-and-white masks. Ieval, the first one, con-

tains the evaluation subregion. Into Isegm, all detected

macrophages are plotted as white features which are,

as a consequence of the organization of the processing

steps, mutually disjoint, see Fig. 4c. Into the third mask

Iconv, we plot all convex hulls conv (F) of the detected

macrophages F. All result images are of the same size

as the input image. Further, the method provides the

total area of the evaluated subregion marked in Ieval,

the number of features in Isegm as macrophage count

and the total area marked in Iconv, i.e. the cumulative

area of the convex hulls of the obtained features, as

macrophage area. We refer to the obtained count as to
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Fig. 3 Flowchart of ROF filter based segmentation algorithm
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Fig. 4 Visualization of outputs of different segmentation methods. a—Original single-channel image (ROI No. 09, CD14+/488 nm), contrast

enhanced by factor 3, scale bar 45µm. b—Manual count within a; macrophages tagged with green squares. c—Output mask Isegm of ROF filter

based segmentation (S1), (S2). d—Annotated image as output of software kit Tissue Studio (S3), contrast enhanced by factor 6, detected

macrophage area in red. e—Annotated image as output of software kit Halo (S4), contrast enhanced by factor 3, detected macrophage area in red.

f—Annotated image as output of machine learning method Mask R-CNN (S5)

method (S1) and to the obtained cumulative area as to

method (S2).

The algorithm has been implemented as a series of

MATLAB procedures. They have been tested on MAT-

LAB 9.4.0.813654 (R2018a) and require the MATLAB

Image Processing Toolbox [28, 29]. For the ROF filter-

ing in Step 2, the numerical method from [30] is applied.

The window size for the median filter (31×31 px) as well

as the internal parameters of the ROF filtering are being

fixed from the outset. The geometrical parameters from

Steps 7− 9 must be initialized as well. For the analysis of

the ROIs, we used smin = 140, smax = 800, cmin = 7.5,

rmax = 3 and pmax = 2. For the analysis of the whole tissue

samples and the tumor subregions, we set the parameters

to smin = 160, smax = 1500, cmin = 7.5, rmax = 3 and

pmax = 2.5.

The parameter smin has been set above 140 px in order

to exclude the misidentification of erythrocytes (with a

mean diameter of about 6µm and a corresponding mean

area of ca. 100 px) as (parts of ) macrophages. The setting

of smax is well in agreement with the mean macrophage

area reported in the “Results” section below. The values

of the parameters cmin, rmax and pmax have been experi-

mentally found. No particular attempts for performance

tuning have been made.

Let us remark that dependency on proprietary software

can be completely removed, e.g., by reimplementation of

the ROF segmentation procedures in the freeware envi-

ronment OCTAVE [31].

c) Availability and usage. We made the MATLAB

procedures publicly accessible (CC0 1.0 Universal Pub-

lic Domain Dedication or GNU General Public License

v3) at the Leipzig Health Atlas repository under the

address [32]. Execution assumes that a single image

set, consisting of three greyscale images representing

the CD14+/488 nm, CD163+/555 nm and DAPI chan-

nels, as well as the procedures are stored in the MAT-

LAB working directory. Output images and logfile will
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be saved at the same location. To start the analysis, type

rof_segm_public_step_00_masterfile, which

subsequently calls the other procedures, within the MAT-

LAB command window. You will be asked to enter

the image filenames and to confirm the parameter set-

tings. Progress of segmentation can be traced by dis-

play messages. Parameters are set by default to the

values used for the analysis of the whole tissue sam-

ples and the tumor subregions as described in the

subsection above. They can be changed within the

file rof_segm_public_step_01_parameters.m.

Modification of the basic procedure in order to enforce

batch processing may be easily effected but is left to the

user as it depends strongly on the particular structure of

the dataset to be analyzed.

Other segmentation methods

a) Commercial software kits. We applied two commer-

cial software packages to the images. The first one is

Tissue Studio 64, v3.6.1 (Definiens AG, Munich, Ger-

many) [33]. In the case of the ROIs, single-channel images

(at 488 and 555 nm) in .png format were separately

uploaded and analyzed. Magnification was defined using

the image metadata (20×magnification, pixel resolution

0.45µm/px), stained area was analyzed in “Marker Area

Detection” mode. The minimal feature size was set to 30

µm2 in order to exclude fragments of macrophage protru-

sions from counting. Thresholds for IHCmarker intensity

staining were manually adapted for each image (within

ranges from 10 to 23 for CD14+/488 nm and from 11 to

26 for CD163+/555 nm channel on a 8bit scale). For the

analysis of the whole tissue samples, .ndpis files were

uploaded. In order to define the evaluation subregion, all

layers were used for tissue background separation. Instead

of using the auto-threshold function of the software kit,

homogeneity threshold was set on 0.2, brightness con-

trol was manually adapted within a range from 2 to 6,

tissue minimum size was set between 10 and 2000µm2

depending on the tissue sample. Areas with overstaining,

scratches or folding were excluded by manual marking.

Then the CD14+/488 nm and CD163+/555 nm channels

have been analyzed independently from each other in

“Marker Area Detection” mode. Thresholds were manu-

ally set in ranges from 13 to 40 for CD14+/488 nm and

from 12 to 45 for CD163+/555 nm channel on a 8bit scale.

As output, the software provides the total area analyzed

and the areas bearing the respective stainings. Graphical

output is an annotated version of the original image with

marking of the detected area, see Fig. 4d. We refer to the

me thod as to (S3).

The other software kit is Halo, v2.1.1637.11 (Indica

Labs, Corrales, New Mexico, USA) [34]. Magnification

was set to 0.45µm/px, and “Area Quantification FL v1.2”

mode was applied. In the case of the ROIs, single-channel

images (at 488 and 555 nm) in .png format were sep-

arately uploaded and analyzed. For the analysis of the

whole tissue samples, .ndpi files were uploaded. Based

on simultaneous inspection of all layers, the evaluation

subregion has been marked manually, excluding at the

same time areas with apparent overstaining, scratches

or folding. Then the CD14+/488 and CD163+/555 nm

channels have been analyzed independently from each

other. Again, thresholds for IHC marker intensity staining

were adapted manually for each image (within ranges

from 0.1 to 0.16 for CD14+/488 nm and from 0.125 to

0.19 for CD163+/555 nm channel for the ROIs and from

0.021 to 0.097 for CD14+/488 nm and from 0.047 to 0.279

for CD163+/555nm channel for the whole tissue samples on

a float scale). As output, the software provides the total

area analyzed and the stained areas. Graphical output is an

annotated version of the original image with marking of

the detected area, see Fig. 4e. We refer to the method as

to (S4).

b) Machine learning method (Mask R-CNN). Mask R-

CNN is a region-based convolutional neural network,

providing bounding boxes for candidate target objects

together with a binary mask for the objects themselves

[35]. It depends on two sets of greyscale images anno-

tated with bounding boxes for the contained features

of interest, which are used for training and validation,

respectively. In our case, the training set was built from

10 randomly selected ROIs (20% of data available), and

the validation set consisted of further 5 randomly selected

ROIs (10% of data available), thus leaving 35 ROIs for

the application of the method. Selection and annotation

of training resp. validation features within the original

images was performed by assigning a centered 31 × 31 px

square subregion around every tag obtained by man-

ual counting (whose output is available as a mask) as

a valid training feature. Annotation was performed by

software package VGG Image Annotator [36]. Annotated

images were converted into backbone feature map of

size 32 × 32 × 2048 by standard convolutional neural

network ResNet-101 [37]. Based on the obtained train-

ing data, the remaining 35 ROIs (at 488 and 555 nm,

70% of data available) were subjected to segmentation

with Mask R-CNN, using the implementation available

at [38]. Single-channel images were uploaded in .png

format. The output of the method is an annotated ver-

sion of the original image with bounding boxes for the

detected macrophages and a black-and-white mask of the

same size as the input image, into which all detected

macrophages have been plotted, see Fig. 4f. For count-

ing and area evaluation, features of size less than 140 px

were ignored.We refer to the obtained count as to method

(S5) and to the obtained cumulative area of macrophages,

as derived from the black-and-white mask, as to

method (S6).



Wagner et al. Biological Procedures Online           (2019) 21:13 Page 9 of 18

Mutual comparison of the segmentation methods

a) Manual count as reference basis. Within single channel

imagesof theROIs (atCD14+/488nmandCD163+/555 nm),

macrophage cells were marked with a 3 × 3 px cross and

manually counted (see Fig. 4b,wherein, for better visibility,

the cross-shaped detection marks have been replaced by

squares centered at the same pixel). Tags have been saved

into a black-and-white mask of equal size as the original

image. We refer to the manual count as to method (MC).

b) Method comparison by means of the ROIs. To the

ROI image set, segmentation methods (S1)− (S6) have

been applied and subsequently compared. For this com-

parison, the relative error turns out to be an inadequate

measure. Indeed, since manual counts range from 8 to 311

macrophages per ROI, the relative error would vary from

0.32% to 12.5% per erroneously counted single feature,

thus considerably overweighing errors made within ROIs

with small macrophage numbers. Instead, we will use

the Pearson correlation coefficients between the meth-

ods’ outputs for the complete sample of ROIs. Since the

manual count as reference method gives no information

about the area of the tagged cells, this measure has the

further advantage to allow for an immediate comparison

of count or area information without the necessity of a

normalization of the latter.

For (S1) and (S5), we will further provide the percent-

age of manually counted macrophages which are exactly

matched by the output of the respective method. Due to

the reasons mentioned in the “Background” section, the

relation between a detected feature and a manually tagged

macrophage is to be considered as a matching not only in

the case if the marking cross falls inside the convex hull

of the detected feature. A matching is given nonetheless

if the tag and the convex hull of the feature are mutually

disjoint but visual inspection reveals that the convex hull

covers the marked macrophage at least partly.

c)Method comparison bymeans of the whole samples.To

the whole samples, methods (S1)− (S4) have been applied

and subsequently compared. We provide first the Pear-

son correlation coefficients for the methods’ output for

the CD14+/488 nm and CD163+/555 nm channels. Since,

however, the evaluation subregions as well as the overall

density of cells contained within them show consider-

able variation between the samples, the outputs will be

appropriately normalized and then compared again. As

normalizations for (S1), we calculate the density, which is

given as total macrophage count divided by area of eval-

uation subregion, cf. Step 3 of Algorithm 1 above, as well

as the cell percentage, which is given as total macrophage

count diveded by estimated total number of cell nuclei

within the evaluation subregion. The latter is obtained

from the cartoon of the DAPI channel by masking all pix-

els with intensity less than 10 and dividing the number

of the remaining pixels by 100. As normalizations for

(S2)− (S4), we calculate the area percentages, which are

given as cumulative macrophage area divided by the area

of the corresponding evaluation subregion.

We consider a feature detected within the CD14+/

488 nm channel as double-stained if at least 20% of the

area of its convex hull is covered by convex hulls of some

features detected within corresponding CD163+/555 nm

channel image. Note that the presence of a double staining

does not influence the detection of a feature by methods

(S1)− (S4) since the channels are analyzed independently

from each other. However, the more completely and uni-

formly a given macrophage is stained, the more probable

is the recognition of a possible double staining.

d) Analysis of tumor subregions. The tumor subregions

have been analyzed with method (S1) only. Here, we will

compare the full output with its 50% and 25% downsam-

pling, considering only one half or one quarter of the tiles

of the given tumor subregion dataset for evaluation. Fur-

ther, we provide a comparison with the outputs of (S1)

and (GE) for the corresponding whole tissue sample. The

analysis is repeated with the normalized outputs of (S1),

calculated as densities. All comparisons will be given in

terms of Pearson correlation. Moreover, the percentage

of double-stained features according to the above given

definition will be recorded. Finally, we characterize the

distribution of the feature sizes, which will be derived

from the analysis of the CD14+/488 nm channel. Frequen-

cies are obtained by counting up all features of a given size

and subpopulation over the outputs for all 44 datasets.

Comparison with gene expression data for the whole

samples

Digital-multiplexed gene expression (DMGE) profiling

was performed with the nCounter platform (NanoString,

Seattle, OR, USA), targeting the genes of interest by digi-

tally color-coded oligonucleotides. For a detailed descrip-

tion of the procedure, see [39, 40]. The data were further

processed and normalized by the following three steps.

First, we performed quality controls using the R package

NanoStringQCPro [41]. Here, four samples were flagged

and removed from subsequent analysis. Second, we added

a pseudo count and normalized the data by dividing

sample-wise through the geometric mean of the house-

keeper genes (B2M, MTMR14, PGK1, ABCF1, EIF2B4,

LDHA, CTCF, TBP, WDR55, POLR2B), and third, we

multiplied the data with a factor of 1000 to bring them on

a natural scale. We refer to the normalized gene expres-

sion values as to method (GE). Below, the normalized

counts will be compared with the outputs of image mor-

phometry in terms of Pearson correlation coefficients.

Summary of methods’ application

In Tables 1 and 2, we provide a summary of the properties

of the described macrophage counting approaches and
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Table 1 Summary of segmentation methods’ properties

(S1) (S2) (S3) (S4) (S5) (S6)

Software type

proprietary • •

freeware extension of proprietary • •

freeware • •

Input

.png format • • • • • •

.ndpi(s) format • •

Output

count • •

area • • • •

annotated image • • • •

feature mask • • • •

logfile • •

Evaluation subregion

prescribed • •

manual detection •

automated detection • • (•)

Threshold adaptation

manually • •

automated • • n/a n/a

Feature detection

none • •

rule-based • •

by training set • •

Abbreviations: (MC) —manual count, (S1) — automated macrophage count from

ROF filter based segmentation approach, (S2) — cumulative macrophage area from

ROF filter based segmentation approach, (S3) — cumulative macrophage area from

Tissue Studio software, (S4) — cumulative macrophage area from Halo software,

(S5) — automated macrophage count from Mask R-CNN machine learning

approach, (S6) — cumulative macrophage area from Mask R-CNN machine learning

approach, (GE) — normalized gene expression values from nCounter platform

the experiments performed with them. Note that, for the

whole tissue samples, comparison of results of (S1)− (S4)

is possible for 40 datasets, and of (S1)− (S4) and (GE) for

35 datasets while (S5) and (S6) have not been applied.

Results
Application to ROIs

a) Application of segmentation methods and its mutual

correlation. First, we present the results of the methods’

application to the ROIs. In Table 3, we describe the

parameters of the outputs (minimal/maximal value,

mean, median, standard deviation). Calculation comprises

all 50 ROIs for (MC), (S1)− (S4) and a subset of 35 ROIs

for (S5)− (S6) while the remaining 15 images have been

used for the generation of training and validation data.

Table 4 contains the survey of the Pearson correla-

tion coefficients between manual count (MC) and out-

put of methods (S1)− (S6). Again, the mutual correla-

tions between (MC), (S1)− (S4) have been calculated on

the base of the complete ROI dataset while correlations

involving (S5) and (S6) are calculated on the subset of

35 ROIs where the outputs of the latter were available.

Complete results of methods’ application to the ROIs are

provided in Additional file 1.

We observe that the ROF filter based segmentation

method (S1) shows the best correlation with the manual

count (MC), namely 0.9297. This correlation is slightly

better than (S3) and (S2) and clearly superior to (S4), (S5)

and (S6). The relative order of the correlations between

(S1)− (S4) is 0.9661 : 0.8901 : 0.6898.

b) Exact matching of manually counted macrophages. In

Table 5, we provide the analysis of exact feature match-

ings between (MC)− (S1) resp. (MC)− (S5). Here, the

total number of macrophages counted in (MC) is summed

up over all 50 ROIs for the comparison with (S1) (column

2) and over the 35 ROIs available for analysis with (S5)

(column 5).
Table 2 Summary of methods’ application to image data

Manual count (S1) (S2) (S3) (S4) (S5) (S6) (GE)

ROIs

# single-channel images at CD14+/488 nm analyzed 25 25 25 25 25 17 17 −

# single-channel images at CD163+/555 nm analyzed 25 25 25 25 25 18 18 −

DAPI channel used no no no no no no no −

Whole tissue samples

# single-channel datasets at CD14+/488 nm analyzed − 44 44 43 41 − − 37

# single-channel datasets at CD163+/555 nm analyzed − 44 44 43 41 − − 37

DAPI channel used − yes yes yes yes − − no

Tumor subregions

# single-channel datasets at CD14+/488 nm analyzed − 44 − − − − − −

# single-channel datasets at CD163+/555 nm analyzed − 44 − − − − − −

DAPI channel used − yes − − − − − −
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Table 3 Results of segmentation methods (ROIs)

Method (MC) (S1) (S2) (S3) (S4) (S5) (S6)

Unit # # µm2 µm2 µm2 # µm2

Min. 8 22 1780.0 499.0 210.8 9 1406.0

Max. 311 204 19999.4 55057.3 34920.9 60 9686.2

Mean 112.6 97.9 10083.2 17904.0 5291.5 33.7 5543.0

Median 75 78.5 8597.0 13608.0 2842.7 37 6014.4

St.dev. 83.3 47.2 4839.2 13420.7 6539.5 15.5 2568.9

Application to whole tissue samples

a) Mutual correlation between segmentation methods. For

the application of (S1)− (S4) to the whole tissue samples,

we compare first the obtained evaluation subregions in

termsofPearsoncorrelationcoefficients, seeTable 6. For (S1),

we include the estimated number of cell nuclei as well.

In Table 7, we show the Pearson correlation coeffi-

cients between the outputs of methods (S1)− (S4) and

the gene expression data (GE) for the CD14+/488 nm

and CD163+/555 nm channels, respectively. In Table 8,

we repeat the survey with the normalized outputs of

(S1)− (S4). Calculations comprise 40 datasets for the

mutual correlations between (S1)− (S4) and 35 datasets

for correlations involving (GE).

Macrophage densities, as observed by (S1) in all 44

datasets, range from 353.6 to 1374.6 cells/mm2 with a

mean of 847.9 ± 269.3 cells/mm2 for the CD14+/488 nm

channel, and from 325.7 to 1715.4 cells/mm2 with a mean

of 833.9± 328.2 cells/mm2 for the CD163+/555 nm chan-

nel.Macrophage cell percentages resulting from (S1) range

from 2.42% to 11.29% with a mean of 5.56±2.05% for the

CD14+/488 nm channel, and from 2.23% to 10.87% with

a mean of 5.47 ± 2.35% for the CD163+/555 nm channel.

Complete results of methods’ application to whole tissue

samples are provided in Additional file 2.

The relative order of correlations between (S1)− (S4) is

0.9909 : 0.7424 : 0.7181 and 0.9803 : 0.8415 : 0.7675 in

Table 7, and 0.9660 : 0.7972 : 0.4880 and 0.9606 : 0.7964 :

0.7765 in Table 8.

b) Correlation with gene expression data. In Tables 7

and 8, (GE) is correlated with the output of (S1) with

Table 4 Correlation between segmentation methods (ROIs)

(MC) (S1) (S2) (S3) (S4) (S5) (S6)

(MC) − 0.9297 0.8944 0.9077 0.6201 0.2864 0.3195

(S1) 0.0000 − 0.9661 0.8901 0.6898 0.3533 0.3877

(S2) 0.0000 0.0000 − 0.8999 0.7050 0.4972 0.5282

(S3) 0.0000 0.0000 0.0000 − 0.7719 0.3369 0.3741

(S4) 0.0000 0.0000 0.0000 0.0000 − 0.3233 0.3532

(S5) 0.0953 0.0373 0.0024 0.0478 0.0581 − 0.9985

(S6) 0.0614 0.0214 0.0011 0.0268 0.0374 0.0000 −

p-values below the diagonal

coefficients of 0.3261, 0.6380, 0.5961 and 0.7354, respec-

tively. For Table 7, column 4, this is the best value, while

in Table 7, column 9, and Table 8, methods (S3), (S2)

and (S2) are slightly better correlated with coefficients of

0.7099, 0.6184 and 0.7924, respectively. Otherwise, corre-

lation between (GE) and the commercial software kits (S3)

and (S4) is rather poor.

c) Double-stained features. In the output of (S1), we

observed considerable numbers of double-stained fea-

tures. Percentages range from 25.72% to 77.68% of

the detected CD14-positive macrophages within a single

dataset bearing CD163-positive staining as well. In the

mean, 55.51% of the macrophages per dataset detected by

(S1) were double-stained.

Application to tumor subregions

a) Results of subsampling. In Table 9, we show the Pearson

correlation coefficients between the output of methods

(S1) and (GE) for the whole tissue samples and the output

of (S1) for the respective tumor subregions selected within

them, subjected to 100%, 50% and 25% sampling rate.

In Table 10, we repeat the analysis with the macrophage

densities instead of the counts. Calculations comprise 44

datasets for themutual comparisons of (S1) and 37 datasets

for the comparison with (GE). Note that the correlations

between (S1) and (GE) inTables 9 and10 differ slightly from

those in Tables 7 and 8 because of additional data involved

in the calculation of the latter (37 instead of 35 datasets).

Macrophage densities, as observed by (S1) in all

44 fully evaluated datasets, range from 463.3 to

1574.9 cells/mm2 with a mean of 907.7 ± 325.3 cells/

mm2 for the CD14+/488 nm channel, and from 371.3 to

1758.9 cells/mm2 with a mean of 836.9±376.9 cells /mm2

for the CD163+/555 nm channel. Macrophage cell per-

centages resulting from (S1) range from 2.17% to 13.99%

with a mean of 5.93 ± 2.62% for the CD14+/488 nm

channel, and from 1.98% to 14.36% with a mean of

5.46 ± 2.82% for the CD163+/555 nm channel.

Complete results of application of (S1) to tumor subre-

gions are provided in Additional file 3.

b) Double-stained features.As to expect from our obser-

vations for the whole tissue samples above, double-stained

features are fairly common in the output of (S1). Percent-

ages range from 25.37% to 75.95% per fully evaluated

dataset, with a mean percentage of 53.41%.

c) Distribution of feature sizes. Within the counts of

features and convex hulls of features, we distinguish sub-

populations with or without double staining. The proper-

ties of the obtained distributions (minimal/maximal value,

mean, median, standard deviation, 95% quantil) are sum-

marized in Table 11. All feature sizes are given in px. The

minimal feature sizes result from the choice of parame-

ters smin = 160 and cmin = 7.5, the maximal feature

sizes in columns 2− 4 reflect the setting of the parameter
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Table 5 Exact matches between (MC)− (S1) and (MC)− (S5) (ROIs)

Method (MC) (S1) (MC)− (S1) (MC) (S5) (MC)− (S5)

macrophages features exact matches macrophages features exact matches

total number (#) 5632 4894 3724 4194 1180 1101

Percentages related to (MC)

total (all 50 resp. 35 ROIs) 100.0 86.9 66.1 100.0 28.1 26.2

Percentages related to (S1) resp. (S5)

total (all 50 resp. 35 ROIs) 100.0 76.1 100.0 93.3

Min. 20.8 33.3

Max. 97.5 100.0

Mean 71.0 91.7

Median 77.2 94.6

St.dev. 19.3 12.3

smax = 1500. Figure 5 shows the histogram of the feature

sizes.

From Table 11, we observe a mean macrophage size

of 152.5 ± 111.3µm2. For the single-stained subpopula-

tion, the mean size is 133.6± 101.5µm2, slightly differing

from the double-stained subpopulation with a mean size

of 167.9 ± 116.5µm2.

Discussion
• Our results show that the ROF filter based segmen-

tation method (S1) may be considered as fairly reliable

and well-comparable with with other existing methods.

Besides of showing the best correlation with the manual

count (MC), the mean and median of (S1) and (MC) are

closely related. Further, we see that the automated deter-

mination of evaluation subregions in (S1)/(S2) based on

DAPI channel information is fully reliable. The relative

order of correlations between (S1)− (S4) is comparable

for the applications to ROIs and whole tissue samples.

Our results further indicate that the different normaliza-

tions of (S1) (density and cell percentage) contain different

information and must be indeed distinguished. As to

expect, the percentage of exact matches between the fea-

tures detected by (S1) andmanually countedmacrophages

Table 6 Correlation of normalization bases (whole tissue

samples)

(S1)/(S2) (S1)/(S2) (S3) (S4)

eval. area est. # nuclei eval. area eval. area

(S1)/(S2) − 0.9418 0.9305 0.9314

eval. area

(S1)/(S2) 0.0000 − 0.7930 0.7886

est. # nuclei

(S3) 0.0000 0.0000 − 0.9974

(S4) 0.0000 0.0000 0.0000 −

p-values below the diagonal

is lower than in situations where more regular shaped and

uniformly stained cells are targeted. In view of the difficul-

ties described in the “Background” section, the absolute

and relative percentages of 66.1% and 76.1% of exactly

matched macrophages, respectively, although moderately

underestimating the absolute number ofmacrophages, are

still fairly large. For large numbers of macrophages, cell

counts by (S1) and area determination by (S2) turn out to

be largely equivalent.

Of course, within the outputs of method (S1), one may

observe the typical errors in automated cell counting,

which would be avoided by a human examiner (cf. [25],

p. 11, Fig. 4). While, on the one hand, tightly packed and

uniformly stained macrophages may be lumped into a sin-

gle feature, nonuniform staining of single macrophages

may cause, on the other hand, a “breaking” of the cell

image, resulting in a double or multiple count. For the

same reason, many macrophages will be recognized only

partly, thus be properly counted but inaccurately masked.

The setting of the parameter smax may exclude large sin-

gle macrophages or aggregates of squeezed macrophages

from counting. Background structures may be misidenti-

fied as macrophages as well.

Nevertheless, method (S1) shows considerable robust-

ness when dealing with scratches, folds, overstainings or

splatters of staining liquid (which were excluded when

selecting ROIs and tumor subsections but are present in

the whole tissue samples). In Fig. 6, some typical examples

are shown.

For the obtained cell counts, no stereological correc-

tions [42] have been applied since the mean size of target

macrophages largely exceeds the thickness of tissue slides.

• The application of commercial software kits to

macrophage segmentation is confronted with serious dif-

ficulties. The above described selection of the analy-

sis modes and parameters has been performed to the

best of the authors’ experience. In particular, due to the
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Table 7 Methods’ correlation (whole tissue samples)

CD14+/488 nm channel CD163+/555 nm channel

(S1) (S2) (S3) (S4) (GE) (S1) (S2) (S3) (S4) (GE)

(S1) − 0.9909 0.7424 0.7181 0.3261 − 0.9803 0.8415 0.7675 0.6380

(S2) 0.0000 − 0.7367 0.7257 0.3020 0.0000 − 0.8589 0.7755 0.6257

(S3) 0.0000 0.0000 − 0.5959 0.2700 0.0000 0.0000 − 0.7288 0.7099

(S4) 0.0000 0.0000 0.0000 − 0.2545 0.0000 0.0000 0.0000 − 0.5821

(GE) 0.0559 0.0778 0.1168 0.1402 − 0.0000 0.0000 0.0000 0.0002 −

p-values below the diagonal

heterogeneity of the data, the use of fixed thresholds

turned out to be inappropriate. For the same reasons,

we refrained from the application of cell counting modes

with prior nucleus detection (based on synchronous DAPI

staining of the samples) and subsequent colocalization

of stained area around the nuclei. As a consequence, we

must restrict ourselves to detection modes analyzing the

stained area in single-channel fluorescence images, and

the necessity of repeated manual interventions for param-

eter adaptation had to be accepted. Even under these

preconditions, both software packages cope very poorly

with artifacts in tissue preservation (typical examples are

shown in Fig. 6). For the analysis of whole tissue sam-

ples Nos. 23 and 35, both suffering from overstaining and

widespread presence of erythrocytes, application of (S4)

(in the above described analysis mode) failed at all.

Let us further remark that our results reveal a consid-

erable disagreement between the outputs of both com-

mercial software kits with a correlation of 0.7719 for the

ROIs and correlations ranging from 0.4077 to 0.7612 for

the whole tissue samples.

Compared with the commercial software kits applied

in this study, the ROF filter based segmentation method

has the advantages of full automatization, complete docu-

mentation of the algorithm and exact repeatability. Tissue

preservation artifacts are handled in a much more robust

way. Moreover, shapes, sizes, positions and colocalization

of macrophages can be observed from the method’s

output.

• Straightforward application of the Mask R-CNN

machine learning approach (S5)/(S6) leaded to very poor

results in terms of correlation with (MC) as well as

of the absolute percentage of exact matches between

(MC) and (S5). The relative percentage of artifacts

(6.7 %) generated by (S5), however, is considerably lower

than in (S1). Nevertheless, although we used the com-

mon ratio of 20%:10%:70% between training, valida-

tion and analysis data, it is obvious that the appli-

cation of the neural network suffered from a strong

deficiency of training items. As a consequence, we

refrained from an application of (S5)/(S6) to whole tissue

samples.

The window size for the training items has been selected

in agreement with the mean macrophage area observed in

Table 11.

• For the whole tissue samples as well as for the tumor

subregions, correlation coefficients for the CD163 staining

are slightly larger than for CD14 staining for all surveyed

methods. This observation may be explained by the fact

that the CD14 staining appears weaker than the CD163

staining. In general, such differences depend on the dis-

tribution of the epitop on the cell surface and the binding

Table 8 Methods’ correlation (whole tissue samples), normalized outputs

CD14+/488 nm channel CD163+/555 nm channel

(S1) (S1) (S2) (S3) (S4) (GE) (S1) (S1) (S2) (S3) (S4) (GE)

density cell perc. area perc. area perc. area perc. density cell perc. area perc. area perc. area perc.

(S1) density − 0.8150 0.9660 0.7972 0.4880 0.5961 − 0.8616 0.9606 0.7964 0.7765 0.7354

(S1) cell perc. 0.0000 − 0.7634 0.5809 0.4360 0.5543 0.0000 − 0.7873 0.6460 0.6732 0.6970

(S2) 0.0000 0.0000 − 0.8247 0.5772 0.6184 0.0000 0.0000 − 0.8548 0.8228 0.7924

(S3) 0.0000 0.0001 0.0000 − 0.4077 0.3139 0.0000 0.0000 0.0000 − 0.7612 0.6713

(S4) 0.0014 0.0049 0.0001 0.0090 − 0.3204 0.0000 0.0000 0.0000 0.0000 − 0.6384

(GE) 0.0002 0.0005 0.0001 0.0663 0.0606 − 0.0000 0.0000 0.0000 0.0000 0.0000 −

p-values below the diagonal
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Table 9 Correlations under subsampling (whole tissue samples and tumor subregions)

CD14+/488 nm channel CD163+/555 nm channel

(S1) (GE) (S1) (S1) (S1) (S1) (GE) (S1) (S1) (S1)

whole whole TS TS TS whole whole TS TS TS

100% 50% 25% 100% 50% 25%

(S1), whole − 0.3306 0.6550 0.6572 0.6535 − 0.6308 0.6749 0.6733 0.6735

(GE), whole 0.0457 − 0.4425 0.4434 0.4310 0.0000 − 0.5767 0.5745 0.5684

(S1), TS, 100% 0.0000 0.0061 − 0.9994 0.9985 0.0000 0.0002 − 0.9996 0.9987

(S1), TS, 50% 0.0000 0.0060 0.0000 − 0.9991 0.0000 0.0002 0.0000 − 0.9990

(S1), TS, 25% 0.0000 0.0077 0.0000 0.0000 − 0.0000 0.0002 0.0000 0.0000 −

p-values below the diagonal

of the primary antibody. Experiments during the stain-

ing process revealed that the combination of the primary

antibody CD14 with the fluorophore Alexa 488 resulted in

the clearest possible images.

With regard to the possible nonuniformity of the stain-

ing of single macrophages, it is obvious that the distribu-

tion of the macrophage sizes should be observed from the

convex hulls of the features rather than from the features

themselves. The slighty increasedmean size of the double-

stained subpopulation may simply reflect the fact that the

detection of a double staining is less probable for small cell

fragments, dissected or cropped cells.

Subsampling within the tumor subregions leads to

almost perfectly correlated results, which are mutu-

ally correlated with coefficients greater than 0.99.

On the other hand, the discrepancies between the

counts and densities obtained for the whole tis-

sue samples and the tumor subregions cannot be

neglected.

• In general, comparison between image morphome-

try and gene expression analysis reveals moderate to low

correlation levels, regardless whether (GE) is compared

with (S1)/(S2) or with the outputs of the commercial

software kits (S3) and (S4). Further, we may observe that

normalization of the outputs of (S1)− (S4) improves the

correlations to a moderate level at best, and that corre-

lations for the CD163 staining/expression are better than

those for the CD14 staining/expression.

If tumor subregions are piloted instead of whole tissue

samples, correlations shift in a nonuniform way without a

considerable improvement.

• We may conclude that the ROF filter based seg-

mentation method constitutes a solid approach to obtain

reliable counts and distributions for different macrophage

types in IHC stained whole tissue samples. Compared

with counts of high power fields, the new method pro-

vides an easy access to a complete representation of

the heterogeneous tumor microenvironment. In terms

of Pearson correlation, results of gene expression pro-

filing are not reproduced by morphometrical image

analysis. In difference to GEP, ROF filter based seg-

mentation is able to identify and to count double-

labeled macrophages, thus enabling the study of diverse

macrophage subpopulations. Moreover, the method

allows for a systematic study of the local distribution of the

macrophages, thus enabling subsequent investigations of

Table 10 Correlations under subsampling (whole tissue samples and tumor subregions), normalized outputs

CD14+/488 nm channel CD163+/555 nm channel

(S1) (GE) (S1) (S1) (S1) (S1) (GE) (S1) (S1) (S1)

whole whole TS TS TS whole whole TS TS TS

100% 50% 25% 100% 50% 25%

(S1), whole − 0.6184 0.8528 0.8533 0.8555 − 0.7422 0.9148 0.9144 0.9113

(GE), whole 0.0000 − 0.7478 0.7444 0.7318 0.0000 − 0.8069 0.8068 0.8036

(S1), TS, 100% 0.0000 0.0000 − 0.9991 0.9968 0.0000 0.0000 − 0.9994 0.9970

(S1), TS, 50% 0.0000 0.0000 0.0000 − 0.9981 0.0000 0.0000 0.0000 − 0.9984

(S1), TS, 25% 0.0000 0.0000 0.0000 0.0000 − 0.0000 0.0000 0.0000 0.0000 −

p-values below the diagonal
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Table 11 Distribution of feature sizes (px) in tumor subregions, output of (S1), CD14+/488 nm channel

Features • • •

Convex hulls • • •

Staining resp. subpopulation all single double all single double

Min. 160 160 160 172 172 172

Max. 1500 1500 1500 6000 6000 5996

Mean 534.6 486.1 574.0 753.3 659.8 829.2

Median 445.5 390.5 494.5 570.5 482.5 654.5

St.dev. 313.6 298.5 320.0 549.8 501.2 575.2

95% quantil 1195.5 1136.5 1231.5 1899 1736 1997

macrophage clustering and applications of point pattern

statistics.

As a future challenge, the detailed information about

macrophage counts and distribution obtained by the ROF

filter based segmentation method has to be tested for its

prognostic potential in different lymphoma diseases. In a

first step, we carried out a clinical application of the ROF

method to a large cohort of DLBCL patients (N > 400).

Based on IHC stained TMAs, image data for the Alexa

488, Alexa 555 and DAPI channels were generated by

the same protocol as described above. These images have

been analyzed in full analogy to the tumor subsections,

obtaining counts and densities for CD14- and CD163-

positive macrophages, to be investigated for possible cor-

relations with the documented clinical outcome. Again,

we observed a fairly robust behaviour of the method, cop-

ing well with folds, scratches and overstainings in the

tissue cores. Results will be reserved for a forthcoming

publication.

Conclusions
To the detection of IHC stained macrophages (CD14,

CD163) in DLBCL tissue samples, a ROF filter based

segmentation method has been successfully applied. The

method, providing number, area, shape, and location of

stained macrophages, is deterministic, fully automated,

externally repeatable, independent on training data as well

as on particular markers and completely documented.

Comparison of macrophage counts obtained by ROF fil-

ter based segmentation with gene expression data reveals

only moderate levels of correlation, thus indicating that

image morphometry constitutes an independent source

of information about antibody-polarized macrophage

occurence and distribution.

Fig. 5 Histogram of feature sizes in tumor subregions, output of (S1), CD14+/488 nm channel. a— x-axis: size of detected features (px), linear scale.

y-axis: sum of feature counts over all 44 analyzed datasets. Blue: all features, green: features without double staining, yellow: features bearing double

staining. b— x-axis: size of convex hulls of detected features (px), logarithmic scale. y-axis: sum of feature counts over all 44 analyzed datasets.

Colors as before
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Fig. 6 Segmentation methods (S1) - (S4) coping with problems in tissue preservation. Features have been identified based on information from all

of three analyzed channels. a – d Sample with vessel (bottom left) and erythrocytes (middle). a—Original single-channel image (whole tissue sample

No. 24, cutout from tile No. (42, 16), CD163+/555 nm), contrast enhanced by factor 1.5, scale bar 45µm. b—Result of (S1), (S2); vessel as a

hyperfluorescent feature removed, erythrocytes partly ignored. c—Result of (S3), contrast enhanced by factor 1.5; vessel erroneously marked as

target area, erythrocytes partly ignored. d—Result of (S4), contrast enhanced by factor 1.5; vessel as well as erythrocytes erroneously marked as

target area. e – h Sample with tissue fold. e—Original single-channel image (whole tissue sample No. 31, cutout from tile No. (3, 20),

CD14+/488 nm), contrast enhanced by factor 2, scale bar 45µm. f—Result of (S1), (S2); fold as a strongly fluorescent feature removed,

macrophages under the fold partly detected. g—Result of (S3), contrast enhanced by factor 2; fold erroneously marked as target area. h—Result

of (S4), contrast enhanced by factor 2; fold erroneously marked as target area. i – l Sample with staining artifact (splatter of staining liquid). i—Original

single-channel image (whole tissue sample No. 11, cutout from tile No. (18, 21), CD163+/555 nm), scale bar 45µm. j—Result of (S1), (S2); splatter as

a hyperfluorescent feature removed, macrophages close to its border properly detected. k—Result of (S3); splatter erroneously marked as target

area. l—Result of (S4); splatter erroneously marked as target area
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Additional files

Additional file 1: Analysis of ROIs. (XLS 30 kb)

Additional file 2: Analysis of whole tissue samples. (XLS 51 kb)

Additional file 3: Analysis of tumor subregions with (S1). (XLS 44 kb)

Additional files 1, 2 and 3 contain the segmentation results for the ROIs,

whole tissue samples and tumor subregions, respectively.
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