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Abstract.

A fully automated method uses Landsat Thematic Mapper data to map snow

cover in the Sierra Nevada and make quantitative estimates of the fractional snow-covered
area within each pixel. We model winter and spring reference scenes as linear mixtures of
image end member spectra to produce the response variables for tree-based regression
and classification models. Decision trees identify cloud cover and fractional snow-covered
area. We test the algorithm on a different Thematic Mapper scene and verify with high-
resolution, large-format, color aerial photography. The accuracy of the automated
classification of Thematic Mapper data equals that obtainable from the aerial photographs
but is faster, cheaper, and covers a vastly larger area. The mapping method is insensitive
to the choice of lithologic or vegetation end members, the water equivalent of the snow

pack, snow grain size, or local illumination angle.

Introduction

Only a small fraction of the Earth’s land area is mountain-
ous, but montane snow packs are the major source of many
regions’ fresh water. For example, winter snow in the Sierra
Nevada provides three quarters of California’s agricultural wa-
ter supply. Alpine snow and ice fields may also be sensitive
indicators of the effects of climatic change on the hydrologic
cycle; one possible consequence of a warmer climate is a higher
snow line and a larger proportion of rain in the winter precip-
itation [Gleick, 1987].

Snow-covered area (SCA) is fundamental to the role of snow
in hydrology and climate. Satellite-derived estimates of SCA
are important to snowmelt runoff models [Rango and Iiten,
1976; Rango and Martinec, 1979; Martinec and Rango, 1981]
and to estimating the radiative component of the surface en-
ergy balance [Dozier, 1989]. Here we address two new steps in
the application of remote sensing to snow mapping: (1) recog-
nition of whether the perceived SCA within a pixel is unbroken
or mixed with other surface materials and (2) quantifying the
degree of mixing by determining the fraction of each pixel
covered by snow.

The Landsat Thematic Mapper (TM) is suitable for estimat-
ing montane SCA because its 30-m instantaneous field-of-view
(IFOV) is small compared to the scale of topographic relief in
alpine regions, and its spectral bands can discriminate snow
from clouds, vegetation, lithology, and open water. This study
investigates three impediments to the operational use of TM
data for mapping snow over rugged terrain:

1. The “mixed pixel” problem. Parts of the snow cover lie
beneath a forest canopy or are interspersed with rock, soil, or
vegetation. Because the recorded radiance for each pixel con-
tains contributions from all materials within the IFOV of the
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sensor, the measured spectrum is a combination of the spectra
of the individual materials. The problem is severe over rugged
terrain, where extreme variations in snow cover, vegetation
type, canopy density, lithology, cloud cover, and atmospheric
thickness occur over small horizontal distances.

2. Variable illumination. The lighting geometry typical of
montane regions compounds the mixed pixel problem by pro-
ducing the full range of illumination, from direct sun to shade.
Snow in the shadows can bc darker at all wavelengths than
sunlit rock or vegetation. Diffuse sky irradiance and irradiance
reflected from surrounding terrain are important sources of
illumination, especially on shaded slopes. Digital clevation
models (DEMs) can be used for calculating terrain view and
sky view factors [Dozier and Frew, 1990] and for converting
satellite data to hemispherical or bidirectional reflectance, but
coregistration of the topographic and satellite data is difficult,
and good topographic data are lacking for many of the world’s
mountain ranges.

3. Detector saturation. The visible bands of the TM were
designed for analysis of vegetation, soils, and open water.
Hence the upwelling radiance over snow and clouds often
exceeds the dynamic range of the detectors [Dozier, 1984]. This
can mask the spectral signatures of materials other than snow
in a pixel.

Background

In this section we present and discuss previous work map-
ping snow cover from TM data, and the rationale for our
approach. We have collected additional background material
in the Appendix. There you will find definitions and funda-
mental material on the remote sensing of snow in the TM band
passes, spectral mixture analysis, and decision tree methodology.

Previous Work on Mapping Snow in Mountainous Terrain
from Landsat

The Landsat Multispectral Scanner System (MSS) was the
predecessor to the TM. It had four bands in the visible and
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near-infrared (VNIR) portion of the electromagnetic spec-
trum. The TM has four bands in the VNIR, at similar wave-
lengths to those of the MSS, two bands in the shortwave in-
frared (SWIR), and one band in the thermal infrared. Table
Al in the Appendix gives spectral and radiometric character-
istics of the TM bands.

Rango and Itten [1976] used both supervised and unsuper-
vised computer classification techniques to map snow-covered
area in the Wind River Range from MSS data. Martinec and
Rango [1981] used MSS data coupled with degree-day mea-
surements from surface instruments to estimate the distribu-
tion of snow water equivalence (SWE) over an alpine basin.
Baumgartner et al. [1985] used MSS and digital terrain data to
hindcast snowmelt runoff across five clevation zones in the
Swiss Alps.

Because of the commonly poor quality of digital elevation
models over mountainous terrain, it usually is not feasible to
accurately estimate snow-covered area by combining reflec-
tance derived from a satellite image with pixel slope and aspect
calculated from a DEM. There is significant noise in the digital
elevation data that is amplified by the differencing operations
in the calculation of slope and azimuth, and coregistration
introduces additional errors. It is therefore possible to know
the elevation of a pixel but not its illumination geometry.
Dozier and Marks [1987] used the information in a digital
elevation model to specify boundary conditions for a radiative
transfer calculation, and they were thus able to map snow in a
TM scene from the Sierra Nevada without requiring precise
registration of the image to the terrain. They calculated top-
of-atmosphere radiances from a snow surface for randomly
sampled snow grain sizes and grid points from the DEM.
Bispectral plots (i.e., paired combinations) of calculated radi-
ances in TM bands fell within distinct envelopes for a range of
grain sizes and contaminant amounts, and they used these to
map snow in a TM scene of the same region.

Dozier {1989] demonstrated automatic snow mapping based
on apparent planetary reflectance. A threshold in band 1 was
used to discriminate snow from other materials in shadow,
while one in band 5 distinguished snow from clouds. A nor-
malized difference ratio of reflectance in bands 2 and 5 was
used to discriminate sunlit rocks, soils, and clouds from sunlit
SNOW.

In these approaches the classification was binary, that is, a
pixel is either “snow” or “not snow.” Errors result from the
surface materials within a pixel not being pure snow, rock,
vegetation, or water, but combinations of these.

Rosenthal [1993] used regression and classification trees ref-
erenced to a spectral mixture analysis to accurately map spring
snow in the Sierra Nevada. The mixture analysis was insensitive
to the choice of lithologic or vegetation spectral end members,
or to topographic illumination effects.

Compensating for Topographic Effects

The surface in rugged terrain is illuminated by direct solar
irradiance, diffuse sky irradiance, and both direct and diffuse
irradiance reflected from surrounding terrain. All illumination
on completely shaded slopes is diffuse or reflected. Surface
composition (e.g., vegetation community, snow loading) often
changes with slope, aspect, and elevation.

Because both rock and vegetation in the sun can be brighter
at all wavelengths than snow in the shadows, simple band
thresholding (or “density slicing”) cannot accurately discrimi-
nate snow from other surface materials. Supervised tech-

niques, such as parallelepiped and maximum-likelihood classi-
fiers [Richards, 1993], can identify pure pixels over a wide
range of illuminations if known training sites are available, but
they arc binary classifiers. They do not do well with spectral
mixtures or deep shadows, and they require detailed knowl-
edge of the surface because they require an adequate popula-
tion of training sites. Unsupervised clustering algorithms pro-
duce myriad classes that are often based on secondary
illumination and spectral mixtures and are therefore difficult to
interpret.

Principal components transformations [Richards, 1993} and
band ratioing [Crippen, 1988] can extract and reduce effects
caused by topographic shading and can emphasize differences
in surface composition. Band ratios require the reflectances of
different surface materials to vary proportionally with changes
in illumination, which is not the case when the TM’s VNIR
bands saturate over snow or cloud. Moreover, ratios involving
the SWIR bands are sensitive to detector noise in deep shad-
ows. Principal components transformations often concentrate
variations in illumination in the first principal component and
differences in surface composition in lower-order components,
but both the orientation and the magnitude of the principal
component eigenvectors are sensitive to scene composition,
which changes throughout the snow season.

None of these approaches provides a means for quantifying
the snow-covered area of a pixel, none addresses the problem
of mixed pixels, and all lack objective standards for specifying
thresholds or statistical distances that separate snow-free from
snow-containing pixels.

Analysis of Spectral Mixtures

Spectral mixture analysis uses the method of least squares to
model pixel spectra as linear combinations of pure component
spectra (spectral “end members”; see Appendix, section A3).
It can normalize for different topographic illumination if the
spectra maintain characteristic shapes that differ primarily in
amplitude across the full range of scene illumination. Where
the spectra of shaded materials are distinct from those of sunlit
materials, separate end member spectra may be used.

Classification and Regression With Tree-Based Models

We use classification and regression trees to identify regions
of TM band space occupied by pixels with similar snow cover
fractions or obscuring clouds. The mixture analysis can thereby
be generalized to other data sets, and cloud cover and surface
materials occurring outside the modeled area can be included
in the analysis without violating constraints on the number of
possible end members.

For operational mapping of snow cover at subpixel resolu-
tion, a decision tree is much faster than spectral unmixing
because the data are classified by a small set of splitting rules
rather than computation of a constrained least squares solu-
tion. A full six-band TM image of about 42 million pixels can
be classified by three decision trees (to mask clouds, identify
pixels containing snow, and estimate the fraction of each pixel
covered by snow) in less than 10 min on a high-end, 300 MIPS
workstation.

Methods

We modeled portions of winter and spring TM reference
scenes of the Sierra Nevada as linear mixtures of snow, rock,
and vegetation image end members. We then grew decision
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Figure 1. Map of the Sierra Nevada study area imaged in
Landsat 5 Thematic Mapper (TM) path 34, row 42 (see Figure 2).
The image is a swath 185 km wide by 170 km along the satellite
track. Boxes indicate the location and orientation of subscenes of
the Evolution region and the Mammoth Lakes Basin.

trees on a random sample of pixels from the modeled scenes,
using band reflectances as the predictor variables and the cor-
responding scaled snow fraction from the spectral mixture
analyses as the response variable. We tested the decision trees

with a new TM image, and verified our accuracy with coinci-
dent large-format, high-resolution acrial photographs. We also
measured snow depth and water equivalence at field sites.

The Study Area

Figure 1 shows the study area in the Sierra Nevada. It covers
a full Landsat 5 Thematic Mapper scene (path 42, row 34) and
is a swath 185 km wide by 170 km along the satellite track.
Elevation varies from less than 100 m in the Central Valley to
over 4300 m along the crests of the Sierra Nevada and White
Mountains. Mean annual precipitation across the scene in-
creases from less than 250 mm in the Central Valley to over
1800 mm in the Sierra Nevada, then decreases to less than 150
mm in Owens Valley [Kahrl, 1978]. Figure 2 is a TM image of
the study area.

Data Selection and Preparation

We chosc the two reference scenes for spectral mixture
analysis from 16 archived TM images of the study area from
1983 to 1993. Weather and snow accumulation records of the
Mammoth Mountain Ski Area (near the center of the scene)
were used to evaluate each scene for fresh or lingering snow on
rocks or in the forest canopy.

We selected the spring reference scene, May 26, 1986, for its
absence of clouds, extensive snow cover, the variety of vegeta-
tion represented, and the well-exposed, snow-free lithology.
The snow depth at our 2700-m study site on Mammoth Moun-
tain was 2.54 m, with the most recent snowfall occurring on
May 7, when 0.05 m fell. This was preceded by 0.05 m of new
snow on both May 4 and April 17. Air temperatures during the
period were seasonally warm (e.g., the high temperature on
May 26 was 19°C, and the low was 6°C). The solar zenith angle

Figure 2. Histogram-equalized TM band 4 image of the study area, TM path 34, row 42, acquired on May
10, 1992. The area is mapped in Figure 1. The swath is 185 km wide by 170 km along the satellite track. The
image is skewed to compensate for the rotation of the Earth beneath the satellite as it passed from (roughly)

north to south.
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at the time of the satellite overpass was 32° at the scene center,
and the solar azimuth was 61° east of south.

The winter reference scene, December 20, 1992, was chosen
for its cloud-free area and because 0.36 m of new snow was
recorded the previous morning. The total snow depth was 1.38
m, 2.36 m of snow having fallen during the preceding 2 weeks.
The solar zenith angle at the time of the satellite overpass was
67°, and the solar azimuth was 29° east of south.

Atmospheric correction was limited to subtracting the addi-
tive contribution of path radiance, which we estimated by it-
erative ratioing for the spring scene [Crippen, 1987] and, be-
cause illumination extremes precluded iterative ratioing,
finding the histogram minimum- for the winter scene. Histo-
gram minima-for the spring scene. were ‘always within 1 or 2
digital radiance numbers (DN) Gf he Value chosen from iter-

, adjustmeni befare usmg band

éranonal automated processing

parent surface reﬂectan coeiﬁments of
Markham and Barker {1985,198

To test the final snow—mappmg algortthm we selected a May
10, 1992, TM image because it had the least cloud cover of the
1992 spring scenes in our inventory. To compare the satellite
snow classification against “truth,” we obtained large-format,
stereo color aerial photographs at the time of the satellite
overpasses along three flight lines within the scene: Inyo Cra-
ters (elevation 2400-3170 m), Mammoth Lakes basin (2700-
3370 m), and Ruby Lake basin (3370-4180 m). The camera
was a nadir-viewing Wild RC-10 with an area-weighted average
resolution of 83 cycles (line pairs) per millimeter. The nominal
photographic scale was 1:8400 for the average surface eleva-
tion below the flight lines, resulting in a nominal ideal ground
resolution of 0.1 m. The true resolution varied from this value
because variations in elevation produced variations in scale
along the flight lines. The photographs, which overlapped 50%,
were digitized at a resolution of 12 pixels mm !, degrading the
nominal resolution to about 0.7 m. The off-nadir portions were
not usable for evaluating the satellite view because of (1)
surface obstruction by trees and rocks, which increases away
from the optical center of the photograph, and (2) “rubber
sheet” distortions introduced by the rugged topography. The
central portion (~10%) of each digitized photograph was reg-
istered to the TM test image.

We measured snow depth, density, grain size, and morphol-
ogy along the Ruby Lake and Mammoth Lakes flight lines at
the time of the satellite and aircraft overpasses. In the Mam-
moth Lakes basin we measured along four transects (20-m
probe interval) and dug three snow pits between the elevations
of 2700 and 3120 m. We measured three transects in the Ruby
Lake basin between 3370 and 3700 m (100- to 200-m probe
interval) with a federal sampler, which probes depth and ex-
tracts a snow core for weighing. These measurements estab-
lished that even in a drought year, the Sierra snow pack could
be considered optically semi-infinite (i.e., the directional-
hemispherical reflectance is within 1% of that from a snow
pack of infinite optical depth).

Spectral Mixture Analysis of the Reference Scenes

We conducted spectral mixture analyses on coregistered
winter and spring subscenes centered on the Evolution region

ilgotithm [Crippen, 1988], and:

of the Sierra Nevada (Figure 1). The subscene measures 47 km
by 68 km (3.9 million pixels). Elevation ranges from less than
600 m to about 4300 m.

We used singular value decomposition to invert the spectral
library and determine the end member fractions [Boardman,
1989]. The end member fractions were constrained to be non-
negative and to sum to not more than 1. By requiring the end
member fractions to be physically realistic we increase our
confidence in the model results. The overall RMS error will be
higher for a fully constrained model than for an unconstrained
one, unless the model is perfect. A low RMS error for the fully
constrained model therefore indicates a good fit to the data.

End member selection. Studies using laboratory reference
spectra to quantify ground cover have typically been conducted
in regions of low local relief, such as the Amazon Basin or the
floor of Owens Valley, California. In mountainous regions
atmospheric variations and anisotropic reflectance make the
use of laboratory spectra problematic. Normally one uses lab-
oratory rather than image spectra in the end member matrix
because of the assumption that homogeneous regions of pure
end members are rare or nonexistent at the pixel scale. How-
ever, large areas of uninterrupted snow and monolithic rock
exist within our TM scenes, and dense vegetation covers many
pixels. The apparent surface reflectance spectra of rock and
vegetation match the field and laboratory reference spectra
gathered by Satterwhite and Henley [1990].

Snow: The search for snow end members was simpler than
for rock or vegetation because the Sierra snow pack is com-
posed only of nearly pure ice, air, and possibly a small amount
of liquid water. However, the modeling was complicated by
VNIR detector saturation and SWIR reflectance at or below
the instrument noise level, and because deeply shaded snow is
spectrally different from snow that is brightly illuminated. We
identified bright snow end members in each scene by principal
components analysis, and chose those for shaded snow itera-
tively from the RMS error image of the mixture analysis.

Only five bands (three VNIR and two SWIR) were used in
the spring mixture mode] because in the spring at this latitude
all image pixels containing significant amounts of snow,
whether shaded or sunlit, saturate TM band 1. We modeled
snow in the spring scene as a mixture of brightly illuminated
(southeast facing) and shaded (northwest facing) snow (Figure
3). Both spectra are those of coarse-grained old snow. Reflec-
tance in the SWIR bands is significant but near zero; all VNIR
bands saturate for the bright snow end member, and band 3
saturates for the shaded snow end member.

Modeling the winter scene presented a different set of prob-
lems. We modeled sunlit snow by a VNIR-saturated end mem-
ber and one that was unsaturated (Figure 3). Reflectances
exceed unity because of anisotropic scattering by the snow.
SWIR reflectance is high because the snow is new and fine
grained. A third snow end member, chosen from the deeply
shadowed cirque of the Darwin Glacier, was necessary for
modeling shaded snow near the winter solstice. It differs from
the other winter snow spectra in that SWIR reflectance is
within the instrument noise level, and the VNIR reflectance is
low.

Lithology: The Sierra Nevada comprises several hundred
granitic plutons, large metamorphic roof pendants, and great
expanses of recent volcanic rock. Numerous rock or soil end
members widely distributed about the scene would mean that
the decision tree learning sample would have to be drawn from
many modeled subscenes of various sizes and compositions,
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Figure 3. The final end member spectra used to model snow-
covered area (SCA) over the Sierra Nevada. Rock was repre-
sented by the Half Dome granodiorite. Herbaceous vegetation
from a wet meadow near Shaver Lake was the vegetation end
member. The brightest winter and spring snow spectra are
severely distorted by detector saturation in bands 1-4. Reflec-
tance values can exceed unity because of extreme anisotropic
reflectance from the snow pack.

greatly complicating the sampling strategy. The first task was
therefore to determine the distinct lithologic end members
identifiable from TM data of the Sierra Nevada and evaluate
possible combinations or syntheses.

Within the study area, we identified 99 major rock units on
15 U.S. Geological Survey (USGS) geologic quadrangles (15-
min series). Of these, 43 were well exposed in the May 26,
1986, reference image. We cropped a set of 18 subimages from
the spring reference image for spectral mixture analysis of the
influence of different rock units on estimated snow abundance.

To characterize the lithology, we ran spectral mixture anal-
yses on the 18 subimages, minimizing the error in the 43 ex-
posed rock units. When the brightest (Cathedral Peak grano-
diorite} and darkest (Ritter Range metavolcanic) spectra were
mutually substituted into their respective subscene mixture
models, the overall modeling errors and estimated snow abun-
dances were insensitive to the choice of rock end member. For
mapping snow, therefore, we need not distinguish between the
various kinds of rock that may be exposed.

We chose Half Dome granodiorite (Figure 3) as the litho-
logic end member, because it is among the most extensive units
in the study area and consistently produced low modeling er-
rors in all surface classes. It outcrops throughout the Yosemite
region and is similar in composition and texture to the wide-
spread Paradise pluton of the Great Western Divide in Se-
quoia National Park.

Vegetation: The Sierra Nevada presents a 4000-m barrier
to Pacific storms, and the resultant climatic extremes have
produced a diverse assemblage of plant communities. The li-
thology mixture models included vegetation from the alpine
zone down to about 1500 m in Owens Valley (east of the Sierra
Nevada) and about 1000 m in the Central Valley (to the west).
Additional subscenes were used to extend the vegetation mod-
eling to below 400 m on the western slope south of Yosemite.

We visited the sites from which the vegetation end members
were chosen after the analysis was completed. We identified
vegetation to the species level except for willows, and also

noted the community type [Storer and Usinger, 1962; Weeden,
1981; Whitney, 1985).

The vegetation end members differed primarily in the
amount of healthy, green, unshaded leaf area exposed to the
sensors. This is consistent with other work suggesting that the
spectral signatures of plants are not species specific but are a
consequence of their composition and architecture [Ustin et al.,
1988; Sarterwhite and Henley, 1990; Smith et al., 1990], at least
at the spectral resolution of the Landsat TM. The vegetation
end member used in the final modeling was an herbaceous
vegetation spectrum, chosen because it produced the lowest
modeling errors in all surface classes.

Mixture model results. The reflectance RMSE (average
root-mean-square error) across the winter reference scene was
0.012, or 2.7 NEAR | (mean instrument quantization steps) for
all six TM bands, 1.1% of the range of the data. RMSE was 0
in deeply shaded cirques, 0 to 0.9 X NEAR, in snow-covered
subalpine forests, and 0.9 to 2.7 X NEAR, in sunlit alpine
basins. The highest errors occurred in patches along sunlit
snow ridges, where only bands 1 and 3 would saturate, and
ranged between 7 and 20. These errors were acceptable be-
cause they occurred in only a small fraction of the image pixels,
and, as with the surrounding pixels, they contained only snow
end member fractions.

The RMSE for the spring reference scene was also 0.012, but
for that date and latitude this was 5.0 NEAR  across the scene,
2.0% of the range of the data. Errors were between 0 and 1.6
in the snow-covered subalpine forests and 3.3 to 6.5 in the thin
forests at tree line and in the alpine snow fields. The RMSE
over shaded snow in northwest facing cirques was 8.2. The
larger error in the spring scene is attributable primarily to
saturation in the VNIR bands over a large fraction of the snow
pixels.

The winter and spring scaled snow fraction images were the
final output of the spectral mixture modeling (Figures 4 and 5).
The mean scaled snow fraction (F, the ratio of the sum of all
snow fractions to the sum of all end member fractions) for the
winter model was 0.81, with 98% of the 3.91 miilion pixels
modeled as containing snow. The mean F, for the spring
model was 0.46, with 64% of the pixels modeled as containing
snow. Note that in the spring scene (Figure 4), white water on
the Kings River at near peak runoff is classified as snow be-
cause it is spectrally identical with snow.

We examined the influence of topography on the spectral
mixture analysis by registering the scaled snow fraction models
to four USGS 7.5-min digital elevation models: Blackcap
Mountain, Mount Darwin, Mount Goddard, and North Pali-
sade. We calculated the local illumination angle for each point
in the DEMs, and we drew a set of 500 coordinate pairs at
random for each F_/DEM pair and obtained the correspond-
ing pixel values. Figure 6 presents the two sets of 2000 points.
The spring sample mean F is 0.79 with a mean illumination
angle of 0.61 radians (~35°). The coefficient of determination
R? = 0.007, and there is little or no relationship between F
and illumination angle for angles up to about 1.3 rad (~75°).
The winter mean F is 0.92, and mean illumination angle is
1.42 rad (65.4°). As in the spring data set, illumination angle
has little or no influence on F (R* = 0.008) out to at least
1.4 to 1.5 rad (80°-85° from normal).

For the 9% of the sample that is in the shade (i.e., the Sun
is below the local horizon), the range of the data is restricted
to values of F = 0.73 with a mean of 0.97. Radiance near 0
(noise) in the SWIR bands could inflate F in shaded pixels
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Figure 4. The May 26, 1986, Evolution region scaled snow
fraction image. This is the scaled snow fraction image from
which spring response variables were drawn for the decision
trec learning samples. The scene dimensions are 47 by 68 km.
Pixels with F, = 0 are coded black; those with F, = 1.0 are
white.

where all illumination is either diffuse sky irradiance or re-
flected from adjacent slopes, but several factors support the
model accuracy in alpine shadows. The recent snow and rime
(contact-frozen, supercooled cloud droplets) would still adhere
to surfaces protected from direct llumination, and shadowed
cirques and canyon walls are where the deepest snow accumu-
lation and least insolation occur. Some deeply shadowed can-
yons (e.g., below the confluence of the South and Middle Forks
where the Kings River gorge is 1800 m deep) exhibit a full
range of snow cover fractions down to 0, and visual inspection
of TM bands 1 and 2 shows snow distributed throughout the
shadowed regions congruent with the model results. In the
absence of definitive ground or aircraft data, we tentatively
accept the accuracy of the mixture model in the deepest shad-
ows, but we continue to investigate the influence of secondary
illumination on fractional snow cover estimates.

Figure 7 plots F i, from the winter model against F from the
spring model for 82 subalpine forest test sites on the western
slope. They lie above the spring 1986 snow line, contain a mean
of 421 pixels each, and were identified in the winter false color
composite image of bands 5, 4, and 2. The corresponding sites

were extracted from the models and a simple linear regression
performed. Except for the two points with the largest residuals,
the residuals are normally distributed and the variance is con-
stant except at the ends of the distribution. The coefficient of
determination R* = 0.766. If snow were distributed uni-
formly on the forest floor, the points should lie nearly along the
1:1 line but, even ignoring possible canopy changes from
growth, fire, disease, or infestation during the 6 years between
the images, this is not the case.

The spring data were acquired after an unusual winter with
a single severe storm in February and March, followed by many
weeks of warm, dry weather. Those for winter were acquired
after a generally dry fall, but the day after a cold, moderately
heavy storm deposited snow down to about 1000 m on both
sides of the range.

Depending on depth and wetness, snow in the branches can
obscure up to 100% of the canopy to nadir viewing instru-
ments. There is, almost without doubt, snow in the canopy in
the winter image, and riming is common in Sierra winter
storms because of the proximity of the Pacific Ocean. Snow

0.0 1.0

Figure 5. The December 20, 1992, Evolution region scaled
snow fraction image. This is the scaled snow fraction image
from which winter response variables were drawn for the de-
cision tree learning samples. The scene is coregistered with
Figure 4, and the dimensions are 47 by 68 km. Pixels with F,
= ( are coded black; those with F = 1.0 are white.
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Figure 6. The relationship between illumination angle and
F, for 2000 pixels. For the spring set (top), the coefficient of
determination R* = 0.007, and for the winter set (bottom) R?
= 0.008. The regression lines (solid) and mean values
(dashed lines) are plotted. Illumination angle has little or no
effect on the spectral mixture analysis.

intercepted by the canopy, which thins toward the alpine tree
line so that it accounts for a decreasing proportion of modeled
snow cover, probably accounts for the intercept and slope of
the regression line. Additional physical factors should influ-
ence the sample variance. The forest floor is not a uniform
surface. Rock outcrops, shrubs, small trees, and other features
are progressively covered as the snow pack thickens. In the
spring the forest snow pack is littered with pine needles and
branches broken by wind and snow load. Conifer trunks are
then surrounded by deep wells because less snow is deposited
within the drip line (snow falling through conifer branches is
deflected outward and, if intercepted; also sublimates from the
canopy) and because of accelerated settling, melting, and sub-
limation caused by thermal radiation emitted by the trunks.

Decision Tree Analysis of the Reference Scenes

Five thousand cases each were drawn from the winter and
spring Evolution TM subscenes and their respective mixture
model-scaled snow fraction images. After bad data lines were
eliminated from the spring set, 9986 cases were assembled into

the learning sample: 8039 cases of pixels containing snow and
1947 cases of snow-free pixels. Because it is necessary to dis-
criminate montane snow cover from surfaces different from
those found in the models, additional snow-free cases were
added to the learning sample: randomly chosen pixels from the
Central Valley below 500 m, from the Owens Valley floor
north of Tinemaha Reservoir, and from Mono Basin (includ-
ing Mono Lake, its surrounding evaporite deposits, and saline
soil). The final learning sample contained 17,627 cases.

The classification tree to identify pixels containing snow was
grown on the complete learning sample. The predictor vari-
ables were the apparent surface reflectances R, in each of the
six reflective TM bands, the normalized band 1 reflectance
index Ry /(R,, + -+ t+ Ry;), and the simple difference between
bands 2 and 5 (R, — R,s). The difference between bands 2 and
5 is higher for snow than for other natural substances, as is the
normalized band 1 index except for bodies of water. The re-
sponse variable was categorical, with a value of 0 for snow-free
pixels and 1 for pixels containing snow. To assess tree stability,
the sample was randomly split, and classification trees were
grown on each half of the data. The trees were nearly identical
in size, choice of splits, and misclassification rate. They were
then discarded and a new tree grown on the full learning
sample. Splitting was continued until node deviance was re-
duced to 0.1% that of the root node. This produced a tree of
61 terminal nodes. Tenfold cross validation showed no reduc-
tion in deviance for trees larger than 14 terminal nodes, and
the large tree was pruned to 11 terminal nodes by minimum
cost-complexity pruning. Tree accuracy was gauged using a
2000-pixel test sample of spring and winter data not used to
grow the tree.

The regression tree for estimating SCA at subpixel resolu-
tion was grown on a learning sample restricted to those 8039
cases of pixels containing snow. The predictor variables were
limited to the apparent surface reflectances R, in each of the
six reflective TM bands. No SWIR/VNIR ratios or indices were
used because deep winter shadows contain only noise in the
SWIR bands. The response variable was the scaled snow frac-
tion estimated by the spectral mixture analysis. Tree stability
was evaluated as above, with similar results. The final regres-

Forest Scaled Snow Fractions, December 20, 1992
0.4

0.4 08 0.8 1.0
Forest Scaled Snow Fractions, May 26, 1986

Figure 7. December 20, 1992, scaled snow fractions versus
May 26, 1986, scaled snow fractions for subalpine forest. The
mean sample size was 421 pixels. The intercept is 0.296, the
slope is 0.648, and the coefficient of determination R 2 i 0.766.
Factors accounting for the slope of the regression line and
sample variance are discussed in the text.



122

TM1<0.2638

TM1>0.24

ratio<0.34585

ROSENTHAL AND DOZIER: AUTOMATED MAPPING OF MONTANE SNOW COVER

ratio>0.34585

8 35740% 4 21273028
ratio<0.34675 ratio<0.24115 ratio<0.48015
ratio>0.34675 ratio>0.24115 ratio>0.48015
(e (G
0729 357112 377467 257468
TM3<0.2279 TM7<0.10435 TM1<0.2827
TM3>0.2279 TM7>0.10435 ; TM1>0.2827
28/274 97!194 417118 4672437
TM2<0.3765
TM2>0.3765
33/553

Figure 8. The core of the classification tree for detecting optically thick clouds. The full tree has 21 terminal
nodes. Rectangles are terminal nodes, and ellipses are internal nodes. The fraction under each node is the

ratio of misclassified cases to total cases in the node.

fication rate is 0.008. Pixels identified as “cloud” are
are passed to the snow extent classification tree.

sion tree was grown until the deviance in a node was reduced
to 0.1% that of the root node, generating 109 terminal nodes.
Tenfold cross validation showed that tree deviance was not
reduced beyond a maximum of 40 terminal nodes, and mini-
mum cost-complexity pruning trimmed the tree to 39 nodes.
Accuracy was tested with a test sample of 2000 pixels not used
to grow the tree.

Clouds were detected and masked by a classification tree. A
TM scene from May 23, 1985 (path 42, row 34), containing
abundant, thick cumulus clouds provided the spring cloud
cases for the learning sample. The elevation of the cloud bases,
estimated from shadows, surface elevation and solar geometry,
was approximately 4000 m. The tops of the central updrafts
were therefore much higher but could not be calculated be-
cause their shadows fell on other clouds. We obtained winter
data from clouds blanketing the northwestern quadrant of the
full December 20, 1992, scene. No elevation estimate was pos-
sible. To these we added random pixels from the cloud-free
spring reference scene and pixels from the winter reference
scene and from the Central Valley.

The combined set of 12,876 cases then constituted the learn-
ing sample for identifying clouds, with the six reflective TM
bands and the ratio of band 5/band 2 as predictors, and a
binary factor for the presence or absence of cloud as the

“Ratio” is the ratio band 5/band 2. The tree misclassi-
masked from further processing; those classified “clear”

response. We used uncorrected apparent planetary reflectance
R, rather than R because the normally high elevation of cloud
tops reduces atmospheric path radiance and increases trans-
mittance and because an algorithm for screening clouds should
not require knowledge of the atmosphere or surface beneath
the clouds. Tree stability was assessed as before, with the same
results. For a tree grown on the full learning sample, 10-fold
cross validation showed a minimum tree deviance at 26 termi-
nal nodes, and minimum cost-complexity pruning ultimately
yielded a tree with 21 terminal nodes.

Testing the Decision Tree Model

The decision rules from all three trees (for determining
cloud cover, maximum snow extent, and fractional snow-
covered area, Fgca) were incorporated into a program for
sequentially classifying TM image data. First clouds, then sur-
face pixels other than snow are masked, then Fg, is estimated
for the surviving pixels.

Coregistered regions of the digitized photographs and the
1992 TM test image were classified and compared. The mean
size of TM test sites was 157 pixels, over which we averaged
Fsca. The mean size of the photographic test sites was 30,080
pixels, with large variation because of changes of elevation
beneath the airplane.
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Each photographic subimage was contrast stretched to pro-
duce a binary classification of snow cover extent, which was
converted to Fg, by dividing the number of snow pixels by the
total pixel number.

Results
Identifying and Masking Clouds

The full cloud classification tree is too large to reproduce
here, but the primary splits (reducing tree deviance 87%) are
shown in Figure 8. The full tree has 21 terminal nodes, a total
deviance 6.0% of that of the root node, and a misclassification
rate of 0.008.

The tree reflects the physical considerations discussed in the
“Background” section. Optically thick clouds have high reflec-
tances across all TM bands. The root node split, made on R, in
band 1, reduces the tree deviance 32%. The ratio of band 5 to
band 2 cleaves the right descendent node of the root into
nearly pure daughter nodes, one primarily of cloud cases and
the other of cloud-free. This split and the first reduce tree
deviance 80%.

The misclassification rate of 0.008 is probably too low be-
cause (1) it applies only to optically thick clouds, not to thin
clouds through which the ground is visible, and (2) land sur-
faces that, like clouds, are reflective across the solar spectrum
(e.g., evaporite deposits and white water in steep mountain
canyons) may be misclassified as cloud. Snow mapping through
thin clouds is not addressed further in this paper, but errors of
the second type are acceptable because such surfaces are not
snow and should be masked.

Estimating Maximum Snow Extent

The classification tree shown in Figure 9 identifies pixels
containing snow. The tree provides a parsimonious description
of the data; there are only 11 terminal nodes, and the first split
reduces the total tree deviance §81.2%. The difference in re-
flectance between TM bands 2 and 5 will always be positive or
only slightly negative for pixels containing snow. The left
branch off the root is then classified with the normalized band
1 index only because, except for open water (where most re-
flectance is in band 1), this value is higher for snow than for
other surfaces. After the third level of splits only a single node
(containing 1.7% of the cases) is not terminal. The final tree
deviance is 7.1% that of the root node, and the misclassifica-
tion rate is 0.012. The misclassification rate on the 2000-case
test sample, a better indicator of predictive skill, is 0.052.

Estimating Fractional SCA

The regression tree for estimating SCA at subpixel resolu-
tion has 39 terminal nodes, a total deviance 9.63% of that of
the root node, and a standard error of 0.073. The test sample
standard error is 0.105. The fuil tree is too large to reproduce
here, but the primary splits are shown in Figure 10.

The splits reflect the considerations discussed in the “Back-
ground” section. Within a given node a split on a visible TM
band will assign pixels with higher reflectances to higher snow
cover fractions, and those with lower reflectances to lower
fractions. Conversely, splits on SWIR reflectance send brighter
pixels to the daughter node containing lower snow cover frac-
tions.

Including the ratio between bands 5 and 2 in the learning
sample produces a regression tree with only 10 terminal nodes
and a total deviance less than that of the tree shown here.

Other
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Figure 9. The maximum snow extent classification tree used
to mask water and other surface types that cannot be snow.
“Index” is the normalized band 1 reflectance. The tree mis-
classification rate is 0.012, and the test sample misclassification
rate is 0.052. Pixels classified as “other” are masked from
further processing; those classified as “snow” are passed to the
regression tree for estimating fractional SCA.

Ratios efficiently partition the band space with planes through
the origin that must be approximated by step functions of
single bands. The price of such parsimony is accuracy, for all
deeply shadowed pixels, regardless of snow content, are clas-
sified as pure snow.

Evaluating the Decision Tree Algorithm

Figure 11 is the classified May 12, 1992, test image produced
by the decision tree program. Almost all clouds detectable in
false color composite images are masked. Snow is mapped in
the Sierra Nevada, Glass Mountains, and White Mountains.
The only visually detectable errors occur (1) at several point
locations on the floor of the Central and Owens Valleys and in
the desert northeast of the White Mountains; and (2) in two of
the dozens of large bodies of water in the scene: Mono and
Bass Lakes. These errors are detailed in the “Discussion”
section.

Because Figure 11 is printed at low resolution, the Mam-
moth Lakes basin portion of the classified test image is shown
in Figure 12. One of the three aerial photo flight lines extended
from Mammoth Mountain, at the upper left, to Duck Lake at
the lower right.

Regression tree estimates of Fg, for 46 regions in the TM
test scene, and those obtained from corresponding regions in
the large format aerial photographs are plotted in Figure 13.
The relationship is linear and well modeled by a simple linear
regression with an intercept of —0.009 and a slope of 0.978.
The coefficient of determination R?> = 0.979, and the stan-
dard deviation of the Fg-, estimate is 0.043. A normal prob-
ability plot shows the residuals to be normally distributed,
while a plot of the standardized residuals versus predicted
aerial photo values shows constant variance across the range of
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Figure 10. The core of the fractional SCA regression tree. The mean F g4 is within each node, and the node
deviance is beneath. Only one node is terminal. The full tree has 39 terminal nodes and a standard error of

0.073. The test sample standard error is 0.105.

the data. Making the assumption that the errors are normally
and independently distributed, and using student’s ¢ statistic
for 44° of freedom, the 95% confidence interval for the slope
is from 0.934 to 1.02, and for the intercept is from —0.039 to
+0.022. The hypotheses that the regression line has a slope of
1 and an intercept of 0 for the distribution (¢, 55.44) cannot
be rejected.

Discussion

Failure to reject the hypothesis suggests that the accuracy of
the automated classification using TM data equals that obtain-
able from high-resolution aerial photography, while being
faster, cheaper, and covering a vastly larger area.

In the introduction we identified three factors that hamper
operational snow mapping from TM data: mixed pixels, vari-
able illumination, and detector saturation. Our results show
considerable progress toward removing these obstacles. The
strength of the relationship between photographic and TM
estimates of snow-covered area suggests that we can accurately
measure SCA at subpixel resolution either directly, by mixture
modeling, or indirectly, by regression trees referenced to mod-
eled scenes. Figure 6 offers strong evidence that we have made
substantial progress in dealing with illumination effects. Figure
13 provides evidence that detector saturation does not pose a
significant problem to the mixture and tree-based models. The
May 10 test image suffers from severe band saturation prob-

lems, yet the variance remains constant for the highest Fgc,
estimates.

Because the learning sample cases span a large range of
snow grain sizes and illumination conditions, the decision trees
should provide accurate estimates of snow-covered area at
subpixel resolution throughout the year in the Sierra Nevada
and in montane regions with similar lithologies, vegetation
communities, and ranges of illumination. We have classified
other Sierra Nevada TM scenes from midwinter to late sum-
mer; our results agree with visual observations, but there is no
supporting aerial photography.

Individual mixture models are sensitive to snow grain size, so
a wide range of snow types must be modeled to generate the
learning sample for the decision trees. The approach’s insen-
sitivity to grain size is a result of regression tree decision
boundaries that segregate regions of TM band space occupied
by pixels with similar snow cover fractions. As additional snow
types and illumination geometries are added to our learning
sample, we expect these regions to become more continuous
and the trees to become even more robust. The variations in
reflectance between different rock or vegetation types are
much greater than variation between snow of different grain
sizes. We have tested the influence of different rock and veg-
etation types on the accuracy of snow mapping and found them
to be small.

The trees developed here are noteworthy because they dem-
onstrate the power of such classifiers, but they should be
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0.0 0.98

Figure 11. Fractional snow covered area, Fgca, over the Sierra Nevada, Glass Mountains, and White
Mountains on May 10, 1992, estimated by the regression iree in Figure 10. This is the same area mapped in
Figure 1, and should be compared with Figure 2. The crescent of “snow” around Mono Lake is submerged
lake bottom. Bass Lake is the bright, elongated patch a third of the way in from the left and up from the
bottom. These mapping errors are discussed in the text.

0.0 0.98

Figure 12. Image of F¢, over the Mammoth Lakes basin. The scene is located in Figure 1 and measures
about 11 by 9 km. One of the three photographic flight lines for testing the decision tree zlgorithm was from
Mammoth Mountain (upper left) to Duck Lake (lower right). Much rock and vegetation is exposed because
the 1992 water year was unusually dry. Probed snow depth in the basin on May 10 did not exceed 1 m.
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Figure 13. Photographic versus Thematic Mapper and re-
gression tree estimates of Fg, for 46 test sites. The mean size
of the TM test sites was 157 pixels, and of the photographic test
sites, 30,080 pixels. The coefficient of determination is 0.979.
The 95% confidence intervals for the intercept and slope are
plotted (dotted lines). The hypotheses that the regression line
has a slope of 1 and an intercept of 0 for the distribution
(tp.025.44), and that the accuracies of the methods are there-
fore equivalent, cannot be rejected.

viewed as beginning rather than end products of the research.
In our current work their role is being extended to the start of
the modeling process, so that the spectral mixture analysis can
be automated. We use decision trees to screen pixels contain-
ing snow from those that do not. Then we model the pixel sets
separately with different sets of end members. The mixture
model provides additional cases to modify the decision trees in
an ever evolving classification system.

Mechanisms that enhance VNIR reflectance or depress
SWIR reflectance may lead to the false identification of snow.
Examples include water beneath a turbid atmosphere, thin
clouds or fog; frozen lake surfaces and glacier ice; wet desert
playas or saline soils; white river water; and dark water mixed
with bright shore.

The May 10 classified image illustrates this. The bright cres-
cent of “snow” around Mono Lake is entirely underwater and
is sandy lake bottom up to 1 km offshore. The topographic
gradient in this area is about 0.005. The region mapped as
snow is less than 5 m deep, usually less than 1 or 2 m. The
water-covered sand is spectrally similar to snow and is as bright
as snow in the shadows. Bass Lake is mapped as 85% snow
covered but, at approximately 1000 m elevation, is well below
the snow line. All other large reservoirs on the west slope, at
both lower and higher elevations (and therefore probably un-
der both more and less turbid atmospheres) are classified as
snow-free and masked. This error may be caused by shallow
lake depth, suspended sediment or phytoplankton, or an oil
film from boat engines.

These examples suggest that an operational subresolution
snow mapping scheme will have to incorporate a choice be-
tween two types of errors. We can accept the current classifi-
cation errors, perhaps using auxiliary information to mask
them, or the decision trees can be pruned to eliminate some of
the errors at the cost of masking some snow, primarily during
winter in the forests.
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Our results suggest that the spectral unmixing and decision
tree methods can be extended to wide-swath sensors with bet-
ter temporal but poorer spatial resolution such as the current
National Oceanic and Atmospheric Administration’s advanced
very high resolution radiometer (NOAA/AVHRR) and the
future EOS moderate-resolution imaging spectrometer (EOS/
MODIS) [Running et al., 1994]. MODIS will not saturate over
snow, and its 20 spectral bands between 0.4 and 3.0 pm will
permit the use of more end members. MODIS mixture models
will also be more overdetermined, leading to greater confi-
dence in the SCA estimates.

Conclusions

We have presented a decision tree algorithm for automated
snow mapping over mountainous terrain using Landsat The-
matic Mapper data. Classification trees mask cloud cover and
other targets distinct from snow, and a regression tree esti-
mates fractional SCA at subpixel resolution. We derived the
algorithm from spectral mixture analyses of winter and spring
reference scenes from the Sierra Nevada.

Our results suggest that snow fraction estimates from the
satellite data can be as accurate as those attainable with high-
resolution aerial photography, but they are obtained faster, at
much lower cost, and over a vastly larger area. The algorithm
is insensitive to the choice of rock or vegetation end members
or to snow pack physical parameters such as the size of the
snow grains, the snow-water equivalent of the pack, or the
levels of particulate contamination common to maritime
ranges like the Sierra Nevada. Variable illumination caused by
topography has little or no apparent effect on estimated snow
abundance.

The long-range benefits from this work extend beyond rapid
snow mapping with TM data on a 16 day repeat period. TM
data may be used as reference data for wide-swath sensors with
better temporal but poorer spatial resolution such as the cur-
rent NOAA/AVHRR and the future EOS/MODIS. Parallel
algorithms developed for these instruments should permit the
routine daily snow mapping necessary to take advantage of the
infrequent clear weather over many of the Earth’s mountain
ranges during the precipitation and run-off seasons.

Appendix
Al

Radiative transfer in snow can be modeled as a multiple
scattering problem in which Mie calculations provide the scat-
tering properties of “optically equivalent spheres,” perhaps
having the same surface to volume ratios as the irregularly
shaped ice grains [Wiscombe and Warren, 1980]. Parameters
calculated from the Mie equations are used in radiative trans-
fer calculations to solve for R, the spectral directional-
hemispherical reflectance of the snow pack [Meador and
Weaver, 1980; Dozier, 1989]. R, also called spectral albedo, is
the ratio of the angular integration of the upwelling radiance
(intensity) to the incoming direct irradiance (flux density):

27 1
J J pL(p, ¢) dp do
0 0 Fy

Ripo) = Holy B woFo

F, is the direct spectral irradiance on a surface normal to the
beam, p, is the cosine of the solar illumination angle (mea-

Definitions

ey
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Table Al. Landsat 5 Thematic Mapper Band Characteristics
Wavelength ?{23{:;10(2 Saturation Reflectance
Interval, Spectral Wm ™2 .
Band pm Region wm ™ !sr! May 26, 1986 Dec. 20,1992 May 10, 1992
1 0.45-0.52 Visible 1521 0.2916 0.6037 0.2962
2 0.53-0.61 Visible 296.8 0.6085 1.2605 0.6182
3 0.62-0.69 Visible 204.3 0.4874 1.0192 0.4952
4 0.78-0.90 NIR 206.2 0.7316 1.5298 0.7432
5 1.57-1.78 SWIR 27.19 0.4668 0.9631 0.4743
7 2.10-2.35 SWIR 14.38 0.7243 1.4989 0.7358

The Landsat 5 Thematic Mapper band passes for reflected solar irradiance range from the visible to the
near infrared (NIR) and the shortwave infrared (SWIR). The instrument IFOV is 30 m for the reflective
bands, but pixels are resampled to 28.5 m because of instantaneous field-of-view (IFOV) overlap. The
radiances are recorded as 8-bit digital radiance numbers (DN) from 0 to 255. Saturation radiances
correspond to DN = 255. The corresponding saturation reflectances are apparent planetary reflectances
for the center of the Sieira Nevada study area, calculated for the solar angle and Earth-Sun distance on
the given date. The band pass and radiance specifications are from Markham and Barker [1985, 1987],
while saturation reflectances ate calculated from their data.

stred from normal to the surface), and L (., ¢) is the upward
spectral radiance at the angle arccos w and azimuth ¢.

Apparent planetary reflectance, R, is the apparent spectral
albedo of the Earth and atmosphere if the reflected radiation
is assumed to have an isotropic distribution [Nicodemus et al.,
1977}

7d*L(X) 5
oS o(N) )

where d is the Earth-Sun distance in astronomical units, L (A)
is the satellite measured radiance in spectral band A, and §,(A)
is the exoatmospheric solar irradiance in band A.

Snow water equivalence (SWE) is the product of snow pack
depth and density. It is often expressed as the depth of liquid
water equivalence, 1 kg m~? = 1 mm.

R,(\) =

A2, Spectral Signatures of Snow and Other Surface
Materials in the TM Band Passes

Table Al summarizes the TM’s reflective band passes. The
recorded radiance in each band is quantized as an 8-bit digital
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Figure Al. Directional-hemispherical reflectance of deep,

pure snow in the TM band passes. Reflectance in the visible
bands is insensitive to ice grain size, while reflectance in the
SWIR bands is sensitive for the smallest grains. Displayed
values are calculated for snow of semi-infinite optical depth
using a two-stream approximation to the radiative transfer
equation [Dozier and Marks, 1987).

radiance number (DN) from 0 to 255. The quantization step
differs for each band because of detector design and because
solar irradiance varies across the spectrum.

Figure Al displays calculated reflectance spectra for deep,
pure snow in the TM band passes. Pure snow is a distinctive
target in the TM’s reflective bands, being among the brightest
of natural substances in the visible and near infrared part of
the spectrum (VNIR, bands 1-4) but among the darkest in the
shortwave infrared (SWIR, bands 5 and 7). The spectral vari-
ability of the albedo of snow is controlled by the absorption
coefficient of ice, k, the imaginary part of the refractive index.
Absorption in ice reaches a minimum at wavelength 0.46 um,
but increases by 107 as wavelength increases out to 2.5 um
[Warren, 1982]. The e-folding distance for ice, the distance over
which transmittanee is reduced to e ~ !, decreases from 22.5 m
at the center wavelength of TM band 1 to only 679 um at the
center of band 5 (Table A2).

Light in snow is scattered primarily by refraction through,
not reflection from, the ice grains. Photons are scattered at the
grain surfaces, but absorbed while traversing the grain interi-
ors. Bohren and Barkstrom [1974] found that only about 3% of
the light scattered by an ice grain is reflected from the external
surface, while nearly 89% is refracted through the grain and
8% is scattered after internal reflections. Because ice is so

Table A2. Light Absorption by Ice

e-

Band Pass Folding

Band Center, pm k Distance
1 0.485 1.709 x 10~ 22.6 m

2 0.570 3.520 x 107° 129 m
3 0.655 1.543 x 1078 338 m
4 0.840 1.510 X 1077 426 mm

5 1.675 1.964 x 10~* 679 pm
7 2.225 2.143 x 107* 826 um

Light absorption by ice in the Landsat-5 Thematic Mapper band
passes. The absorption coefficient of ice, k, is the imaginary part of the
complex refractive index. The e-folding distance is the distance
through ice over which the transmittance is reduced to e ', Values
given are for the band pass centers. This table demonstrates why grain
size has little influence on visible reflectance but becomes important at
longer wavelengths.
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transparent to visible radiation, snow reflectance is insensitive
to grain size in TM bands 1, 2, and 3. However, reflectance in
these bands is sensitive to absorbing impurities in the snow
(mainly dust and soot) and to SWE, because the ground can
absorb light that penetrates optically thin snow packs [Wis-
combe and Warren, 1980; Warren and Wiscombe, 1980]. Ab-
sorption by ice is much stronger in bands 5 and 7, so reflec-
tance at these wavelengths is insensitive to absorbing
impurities and SWE, but sensitive to grain size. Absorbing
particulates affect snow reflectance out to 0.9 um [Grenfell et
al., 1981}, so band 4 is sensitive to moderate amounts of im-
purities and also sensitive to grain size.

The spectral signatures of other common scene constituents
differ markedly from that of snow. Clouds and snow are both
bright to the TM’s VNIR detectors (bands 1-4), but clouds are
much brighter than snow in the SWIR region (bands 5 and 7)
because the smaller sizes of the scatterers in clouds decrease
the probability of absorption in this spectral region where ice
and water are moderately absorptive [Crane and Anderson,
1984; Dozier, 1984, 1989]. Conversely, bodies of open water are
dark at all wavelengths. Vegetation is dark in the visible bands
because of absorption by photosynthetic pigments, but has a
reflectance peak in band 4 because of leaf cell structure [Hoffer,
1978]. Reflectance in bands 5 and 7 is inversely related to leaf
water content for healthy vegetation, and is high compared to
that of snow. Most rocks and soils present spectra that are the
inverse of snow’s, with absorption by iron oxides and organic
matter producing reflectances that are low in the visible bands
but high in the SWIR.

A.3. Spectral Mixture Analysis

The measured pixel reflectance in band b using N image or
reference library end members is modeled as

N
Rb = & + E r[mfn

=l

(3)

R, is the measured reflectance in band b (from the satellite
image), ¢, is the error between the model and the measure-
ment in band b, r,, is the reflectance in band b from end
member n (chosen from the image or a library of reference
reflectance spectra), and f,, is the fraction of the pixel occupied
by end member #n. Common model constraints are that the end
member fractions either sum to 1 or be nonnegative and sum
to not more than 1. The goodness-of-fit of the model is mea-
sured by the average root-mean-square error (RMSE) in all
bands for all pixels in the modeled region.

First used to identify components in chemical mixtures
[Lawton and Sylvestre, 1971], mixture modeling has been used
as a remote sensing tool to identify minerals on the lunar and
Martian surfaces [Johnson et al., 1985; Adams et al., 1986], map
regional vegetation and geologic substrates [Smith et al., 1990],
estimate vegetation canopy densities [Ustin er al., 1988], and
estimate fluvial suspended sediment concentrations, a nonlin-
ear mixing problem [Mertes et al., 1993]. Smith et al. [1990]
showed that in Owens Valley the linear mixing assumption is
valid for the waxy, semiopaque foliage of arid environments
despite wide variation in soil brightness, and that the best set of
reference end members does not change with seasonal illumi-
nation and canopy density.

Spectral mixture analysis can normalize for different topo-
graphic illumination if the spectra maintain characteristic

shapes that differ primarily in amplitude across the full range
of scene illumination. If the fractions of the materials within a
pixel are constrained to be nonnegative and to sum to not more
than 1, then the sum of those fractions is proportional to the
illumination on the pixel. If one fraction is ratioed against the
sum, the result is the fraction of the pixel occupied by that
material if the pixel spectrum is a linear combination of the
contributing spectra and if the contributing spectra are well
chosen, that is, they are good representatives of the spectra of
the materials in the pixel.

If materials are spatially segregated within a pixel and inci-
dent photons interact with only one surface material, then the
spectral mixture is macroscopic and can be modeled as a linear
combination of the pure component spectra. Intimate mixtures
occur if surface materials are distributed so that photons in-
teract with multiple components; the component spectra may
then combine nonlinearly.

Possible sources of nonlinear mixing in snow are VNIR
absorption by contaminating particulates or by the substrate,
SWIR absorption by ice (which increases with particle size),
anisotropic reflectance (snow is a forward scattering medium),
topographic illumination, and light scattered upward from the
snow pack through the forest canopy. We evaluated each of
these and found that the linear mixing assumption is appro-
priate for mapping montane snow packs at subpixel resolution
[Rosenthal, 1993].

A.4. Decision Tree Methods

The data used to grow a decision tree are arrayed in a
learning sample &£. Each case in & contains a set of predictor
variables (in this study, TM band values from a randomly
drawn set of pixels) and a response variable (the corresponding
estimated scaled snow fraction from the spectral mixture anal-
ysis). The entire sample (or root node) is then partitioned into
the two more homogeneous subsets (descendant nodes) that
most reduce the “impurity” of the set of responses in £. The
data are typically split on the value of a single predictor vari-
able, though splits on linear and boolean combinations of vari-
ables are possible.

The process is recursively repeated on each descendant
node. When either the inhomogeneity or number of cases at a
node falls below a specified level, the splitting is stopped, and
the node is considered terminal. In principle, the splitting can
be continued until all descendant subsets contain only identical
response variables, but such a tree would overfit the data and
have an optimistic misclassification rate of 0.

Sonquist and Morgan [1964] introduced tree-structured mul-
tivariate regression. A node was split into the two subgroups
that produced the largest reduction in the unexplained sum of
squares. The y-squared statistic [Kass, 1980] and the likelihood
function [Ciampi et al., 1987; Clark and Pregibon, 1992] have
also been used as the bases for splits and for merging similar
terminal nodes. Breiman et al. [1984] eliminated the need for a
stopping rule by growing an oversized tree and then pruning it
back by minimizing a cost complexity measure: the sum of the
tree misclassification rate and a penalty for the size of the tree.

Decision trees offer several advantages over other tech-
niques of data analysis. Error estimates are provided as a direct
consequence of the splitting procedure; the classification tree
error rate is the ratio of misclassified cases to the total number
of cases, while the standard error of regression tree estimates
is the square root of the mean residual deviance for all termi-
nal nodes. The splitting criteria are easier to understand from
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physical principles than the equations produced by multiple
linear regression or the hidden node weights of neural net-
works. Decision trees are robust to outliers and misclassified
input, which tend to be segregated into small terminal nodes.

The decision trees developed here use the likelihood func-
tion in splitting and pruning algorithms for classification trees,
and the reduction of the residual sum of squares as the splitting
criterion for regression trees [Becker et al., 1988; Clark and
Pregibon, 1992]. The goodness-of-split criterion is the reduc-
tion in deviance from a parent node to its descendants. For
regression trees the deviance D of response variable y within a
node with mean g is

D=(y—pf? (4)

and the deviance for the entire node is the residual sum of
squares. For classification trees the deviance of response vari-
able y is

K

D=-2 E v log (py) (5)

k=1

where K is the number of classes, p;, is the probability of case
i falling into class k, and y,, is 1 if y; falls into class &, and 0
otherwise. If a node is pure (i.e., contains only identical obser-
vations) then D = 0. The deviance of a node is the sum of the
deviances of the observations contained within it. The split
chosen at a node is the one that produces the greatest reduc-
tion in deviance by maximizing D purene = (Diete + D signo)-
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