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A method is presented for automated best-matching alignment of three-

dimensional models represented by ensembles of points. A normalized spatial

discrepancy (NSD) is introduced as a proximity measure between three-

dimensional objects. Starting from an inertia-axes alignment, the algorithm

minimizes the NSD; the ®nal value of the NSD provides a quantitative estimate

of similarity between the objects. The method is implemented in a computer

program. Simulations have been performed to test its performance on model

structures with speci®ed numbers of points ranging from a few to a few

thousand. The method can be used for comparative analysis of structural models

obtained by different methods, e.g. of high-resolution crystallographic atomic

structures and low-resolution models from solution scattering or electron

microscopy.

1. Introduction

The problem of ®nding the best-matching superposition of

three-dimensional structures is central in pattern recognition

and computer vision, and in docking and classi®cation studies

in structural biology. Considering only rigid-body transfor-

mations, the problem can be formulated as follows: given the

two sets of points (e.g. representing two structural models),

®nd the rotation and movement of the second set that mini-

mizes a discrepancy between the two sets. A number of

theoretical and applied approaches proposed recently for

solving this computationally intensive problem can be subdi-

vided into several groups (Loncaric, 1998; Veltkamp &

Hagedoorn, 1999).

The methods of the ®rst group aim at matching corre-

sponding features of the two models. The simplest case implies

that every point in one set has a mate in the other (Kabsch,

1978; Heffernan & Schirra, 1994; de Reezende & Lee, 1995).

More generally, features like control points (Ton & Jain, 1989),

shape segments, contours, etc. (Mount et al., 1999) are

matched. The latter approach has been most intensively used

in protein±ligand docking (Peters et al., 1996; Rarey et al.,

1997), recognition of topological similarities (Vriend &

Sander, 1991; Diederichs, 1995), structure classi®cation and

database design (Gilbert et al., 1999; Greaves et al., 1999).

Enhanced comparison tools for protein structures allow

alignment of structures with uneven numbers of feature points

(LSQMAN; Kleywegt & Jones, 1995) and freely permuted

equivalenced segments (DALI; Holm & Sander, 1997).

The feature extraction process could be computationally

expensive and in some cases it is hardly applicable at all, for

example, if an atomic model is compared with a low-resolution

model. Performing comparisons between models of different

nature and resolution permits the cross-validation of struc-

tural results obtained by different techniques. Such compar-

isons are further important for understanding the structure±

function relationship, as the crystal structure of a macro-

molecule may differ from the structure in solution (Svergun et

al., 1997, 2000). Optimal superposition of heterogeneous

models is not a simple task, especially for larger molecules,

because of principal differences in the geometric nature of the

objects to be compared. Low-resolution models are repre-

sented, for example, as smooth surfaces de®ned by an angular

envelope function (Svergun, 1994), as sets of densely packed

dummy atoms (Chacon et al., 1998; Svergun, 1999) or as stacks

of contoured layers (Frank et al., 1995). These models display

no domains, C� backbones or other characteristic features of

atomic structures. There is usually no a priori information

about the correspondence between speci®c elements of high-

and low-resolution models. Feature points could be extracted

by wavelet decomposition of the images (Mount et al., 1999),

but this approach is not suf®ciently accurate. The methods

employing af®ne invariants (Mundy & Zisserman, 1992) are

usually limited to planar objects, and they provide only a

measure of similarity without constructing the transformation

itself.

The superposition methods dealing directly with data sets

rather than with feature points are more useful in this case.

The well known alignment of the principal axes of the inertia

tensor (Holupka & Kooy, 1992; Galvez & Canton, 1993) may

yield ambiguous results, especially for objects with twofold

symmetry axes (Galvez & Canton, 1993). Further, this method

provides no quantitative estimate of the similarity of the

objects. A similar technique employing second-order moment
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invariants on the spherical harmonics basis (Burel & Hugues,

1995) is applicable to a limited class of objects only. A neural-

network approach implemented in the SITUS program

package by Wriggers et al. (1999) has a profound theoretical

background, consists of several independent program modules

and is well suited to high-resolution structures docking into

low-resolution maps, especially those obtained by electron

microscopy.

Our aim is to create a simple, reliable and time-ef®cient

algorithm not only for best matching the models, but also for

providing a quantitative estimate of their similarity. For this,

we introduce a proximity measure between objects repre-

sented as ensembles of points in three-dimensional space. This

measure is stable with respect to noise and is normalized to be

independent of size and geometric nature of the models. The

inertia-axes alignment is used as a starting approximation for

minimizing the proximity measure, the value of which at the

end of minimization quanti®es the similarity between the

objects. The ef®ciency and limitations of the method are

analysed by its application to several low- and high-resolution

structural models.

2. Normalized spatial discrepancy between three-
dimensional point sets

A proper choice of quantitative similarity measure between

sets of three-dimensional points is a necessary prerequisite for

a reliable best-matching algorithm. To be an analogue to a

standard Eucledian distance between points, this measure

should obey the three distance axioms (see Appendix A). In

practice, it is more important for the similarity measure to be

smooth and stable than to obey the formal metric axioms

(Hagedoorn & Veltkamp, 1999). The directed Hausdorff

distance h(S1, S2) between two point sets S1 and S2 is de®ned as

the maximum over the distances of each point in S1 to the set

S2. The latter is de®ned as the minimal distance to the points

in S2:

h�S1; S2� � max
a2S1

min
b2S2

kaÿ bk: �1�

The standard Hausdorff distance, de®ned by Huttenlocher et

al. (1993) as a maximum of the two directed distances, is

frequently used. The latter measure obeys the metric axioms

but is not stable to noise, being sensitive to outlying points

(Veltkamp & Hagedoorn, 1999). A directed partial Hausdorff

distance Hk(S1, S2), equal to the kth maximal value in (1)

rather than to the maximal value itself, is of more practical

value. Although being non-symmetric [Hk(S1, S2) 6�

Hk(S2, S1)], it is more stable to noise and distortions (Mount et

al., 1999). A partial Hausdorff distance de®ned as the

maximum of the two directed partial Hausdorff distances

Hk(S1, S2) and Hk(S2, S1) is used in matching images under

homothetic transformations (translation and scaling),

although this distance is not a metric because it fails the

triangle inequality test (Huttenlocher et al., 1993). A

symmetric difference measure of similarity of convex shapes

(Alt et al., 1996) de®nes a noise-stable metric. Hagedoorn &

Veltkamp (1999) proposed a variation of the symmetrical

difference for arbitrary point sets. Walther et al. (2000) used a

discrete analog of this measure to resolve the ambiguity in

inertia-axes superposition of low-resolution models and

atomic structures taken from the Protein Data Bank (PDB;

Bernstein et al., 1977).

The above measures are not convenient for our purposes

for various different reasons (instability, asymmetry, depen-

dence on the nature and scale of the objects). We introduce a

normalized spatial discrepancy (NSD) as follows. For every

point s1i from the set S1 = {s1i, i = 1, . . . , N1}, the minimum

value among the distances between s1i and all points in the set

S2 = {s2i, i = 1, . . . , N2} is denoted as �(s1i, S2). The NSD

between the sets S1 and S2 is de®ned as a normalized average,

��S1; S2� �
n

�1=2�
h

�1=N1d
2
2�
P

N1

i�1

�2�s1i; S2�

� �1=N2d
2
1�
P

N2

i�1

�2�s2i; S1�
io1=2

; �2�

where Ni is the number of points in Si and the ®neness di is the

average distance between the neighbouring points in Si. The

NSD is a modi®cation of the distance employed by Bloch et al.

(1993) for matching three-dimensional convex polyhedra.

Provided that the ®neness parameters are computed in

advance, the NSD is evaluated in O(N1N2) time. This measure

is symmetric, independent of the size of the objects as a result

of the normalization, and is stable to the outlying points as a

result of the averaging. For ideally superimposed similar

objects, NSD tends to 0; it exceeds 1 if the objects system-

atically differ from one another. NSD is not a metric, because

only two of the three metric axioms are ful®lled. It is obvious

that �(S1, S2) = 0 if and only if S1 = S2, and that �(S1, S2) =

�(S2, S1), but the triangle inequality is not always true (a

counter example is presented in Appendix A). The following

property is more important in practice: denote byD(T, �, �, )

the matrix of a rigid-body transformation (detD = 1), deter-

mined by the translation vector T = (Tx, Ty, Tz) and the Euler

rotation angles �, �, . Then it can be proved (Bloch, 1990;

Bloch et al., 1993) that the function �[S1, D(S2)] behaves

smoothly with respect to the six parameters Tx, Ty, Tz, �, �

and .

3. The superposition algorithm

Numerical minimization of any proximity measure between

three-dimensional objects with respect to the positional and

especially rotational parameters is known to be a dif®cult task.

Function (2) displays multiple local minima. Minimization

algorithms tend to converge to the local minimum near the

starting point. As the use of a global minimization algorithm

or of an exhaustive six-dimensional space search would

require too much computing time, we employ a local mini-

mization starting from the position provided by the inertia-

axes matching.
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The principal axes of inertia are found for both objects as

the eigenvectors of the inertia tensor

I �

Ixx ÿIxy ÿIxz
ÿIxx Iyy ÿIyz
ÿIxz ÿIyz Izz

2

4

3

5

Ixx � �020 � �002

Iyy � �200 � �002

Izz � �200 � �200

Ixy � �110

Ixz � �101

Iyz � �011

�3�

where

�ijl � �1=Nk�
P

Nk

q�1

�xkq ÿ x0k�
i
�ykq ÿ y0k�

j�zkq ÿ z0k�
l
;

i� j� l � 2; k � 1; 2;

�4�

are the second central moments of distribution around the

centroid speci®ed by

x0k � �1=Nk�
P

Nk

q�1

xkq; y0k � �1=Nk�
P

Nk

q�1

xkq;

z0k � �1=Nk�
P

Nk

q�1

zkq; k � 1; 2:

�5�

Here, Ik is a symmetric matrix with real eigenvalues �k1 � �k2
� �k3 and corresponding orthonormal eigenvectors vk1, vk2,

vk3. An object is said to be in a canonical position if it is origin-

centred (that is, shifted by the vector T0
k = {ÿx0k, ÿy0k, ÿz0k})

and rotated so that its principal inertia axes taken in ascending

order of eigenvalues are aligned along the X, Y and Z axes,

respectively. The rotation matrix is [Mk]
T, where Mk is

composed by columns from the eigenvectors in ascending

order of eigenvalues. Up to possible column permutations,Mk

is equal to the matrix of diagonalizing transformation. A

negative determinant det(Mk) corresponds to an enantio-

morph transformation, which can be either allowed or

prohibited [in the latter case the sign of the last column of Mk

is changed to ensure that det(Mk) = 1].

When the two objects are in canonical positions, the inertia

ellipsoids are optimally superposed. This does not mean yet

that the principal inertia vectors are superposed as the signs of

the eigenvectors cannot be determined from the inertia tensor

only. In order to resolve this ambiguity, Galvez & Canton

(1993) suggested selecting as positive the directions to the

most distant points from the centroid along the ®rst two

eigenvectors. This noise-sensitive approach does not guar-

antee the best initial superposition. We shall select the axes

using the proximity measure: if both S1 and S2 are in the

canonical position, the best orientation of S2 should minimize

�(S1, S2) [a similar approach was used by Walther et al.

(2000)]. Depending on whether enantiomorph transforma-

tions are allowed or not, there are eight or four sign combi-

nations of the eigenvectors, respectively. After the matrices

M1 andM2 have been determined, the rotation M1M
T
2 and the

shift by the vector T
0
2 ÿ T

0
1 provide the inertia-axes super-

position of S2 onto S1.

A more complicated ambiguity is observed if two eigen-

values are equal as the orientation of the object in the plane

containing these eigenvectors is not de®ned. In this case, the

best orientation can be determined by minimizing the NSD

against a number of discretely sampled in-plane rotations.

Summarizing, the algorithm for best-matching super-

position of a three-dimensional point set S2 onto S1 is sketched

out as follows.

(i) Inertia tensors and their eigenvectors are computed for

both S1 and S2.

(ii) With the transformation M1 being ®xed, the signs of the

columns of the matrix M2 are selected out of four sign

combinations (or eight, if the enantiomorphs are allowed).

(iii) S2 is rotated byM1M
T
2 and shifted by T

0
2 ÿ T

0
1 to align its

principal axes of inertia with those of S1.

(iv) The position of S2 is re®ned by minimizing NSD (2).

The minimum value of the latter provides the estimate of

dissimilarity between the objects.

The program SUPCOMB, implementing the above algo-

rithm, was written in Fortran. The QL algorithm with implicit

shifts was employed to calculate the eigenvectors of inertia

matrix, reduced to tridiagonal form by the Householder

method (Press et al., 1992). The variable metric Brojden±

Fletcher nonlinear minimization algorithm with simple

bounds (Gill et al., 1981) was used to minimize the function (2)

starting from the canonical position.

4. Results and discussion

Numerical simulations were performed to study the perfor-

mance of the algorithm and its stability to noisy and incom-

plete data; the results are summarized in Table 1. A template

object (S1) and the object to be superposed onto the template

(S2) were high- or low-resolution models of biological

macromolecules or their fragments. In the cases in which the

best-matching position of S2 was known in advance, the

corresponding NSD �0 and the root mean square deviation

RMS0 (if S1 and S2 had a one-to-one correspondence of

points) were calculated for this position. SUPCOMB was then

applied to `best match' an arbitrarily rotated and shifted

model S2 with S1. When the best-matching position was

unknown, the program was started from an arbitrary position

of S2. The NSD between the two objects after the inertia-axes

alignment (�i), the ®nal values of �f and RMSf (when applic-

able), and the CPU time used by the algorithm on a 180 MHz

Silicon Graphics workstation are presented in Table 1.

4.1. Aligning atomic models

A fragment of the atomic model of rat kinesin (Kozielski et

al., 1997) (20 Ca atoms corresponding to residues 12±31)

displayed in Fig. 1 was used as a template (c20) in the ®rst

series of simulations (No. 1±12). In order to test the noise

robustness of the algorithm, the positions of the Ca atoms in

the template were randomized by a uniformly distributed

noise with magnitude ranging from 0.1 to 0.5 nm (structures

c20n1 to c20n5). To test the stability of the method towards

incomplete structures, the template was elongated from both

ends with the Ca chain atoms from the same structure,

composing the segments of 22 (c22), 24 (c24), 26 (c26) and 28

(c28) atoms (Table 1, rows 6±9). To test the algorithm against

J. Appl. Cryst. (2001). 34, 33±41 Kozin and Svergun � High- and low-resolution structural models 35
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noisy and incomplete data, the object c24 was further smeared

with noises of 0.2 nm (c24n2), 0.3 nm (c24n3) and 0.4 nm

(c24n4) width (Table 1, rows 10±12).

In all these tests, the objects were recognized as similar (�f <

1) and the initial position of the template was neatly restored

(see examples in Fig. 1) except for the three cases with the

largest distortions (c20n5, c28 and c24n4). In the examples

c20n1 to c20n4, SUBCOMB yielded results that virtually

coincided with those provided by the method of Kabsch

(1978), explicitly utilizing the one-to-one correspondence of

the atoms. For the noise level of 0.5 nm (c20n5), the template

was so severely distorted that SUBCOMB found the solution

with a lower NSD by ¯ipping the chain with respect to the YZ

plane in Fig. 1(a) (upper panel).

Figure 1
Superposition of atomic models. (a), (b), (c) Aligning a template chain containing 20 atoms (c20, black Ca trace) with the distorted templates c20n3 (a),
c26 (b) and c24n2 (c) (see Table 1 and text for more details). The bottom row is rotated clockwise by 90� about the Y axis. (d) Superposition of two
models of rat kinesin differing in the length of the coil±coil fragment. All ®gures were prepared on a Silicon Graphics workstation using the program
ASSA (Kozin et al., 1997).

Table 1
Results of computer simulation tests using SUBCOMB.

The number of atoms in the object is either included in its name or given in brackets.

No. Template object S1 Matched object S2 �0 �i �f RMS0 RMSf CPU time (s)

1 c20 c20n1 0.28 0.27 0.26 1.05 0.99 0.018
2 c20n2 0.56 0.55 0.54 2.05 1.97 0.019
3 c20n3 0.72 0.68 0.65 3.33 3.33 0.021
4 c20n4 0.75 0.75 0.70 3.95 4.00 0.026
5 c20n5 1.01 0.96 0.93 5.24 9.28 0.024
6 c22 0.21 0.40 0.20 ± ± 0.025
7 c24 0.41 0.63 0.39 ± ± 0.030
8 c26 0.65 0.76 0.61 ± ± 0.031
9 c28 0.89 0.86 0.83 ± ± 0.026
10 c24n2 0.70 0.74 0.65 ± ± 0.027
11 c24n3 0.84 0.88 0.82 ± ± 0.021
12 c24n4 1.09 1.03 1.01 ± ± 0.024
13 dk675 dk700 0.36 1.40 0.35 ± ± 6.92
14 lyz_pdb (123) lyz_sld (611) 1.36 1.36 1.33 ± ± 4.07
15 lyz_pdb (123) lyz_dam (3018) 0.76 0.79 0.75 ± ± 10.8
16 lyz_sld4 (611) lyz_sld7 (611) 0.58 0.71 0.57 1.72 1.73 6.46
17 1got (338) lyz_sld (611) ± 2.44 2.24 ± ± 5.79
18 hCP (1046) hCP10 (1046) 0.65 0.70 0.59 4.81 3.86 14.95
19 hCP (1046) hCP20 (1046) 1.48 1.81 0.92 11.43 6.87 18.8
20 hCPdam1 (1091) hCP10 (1046) 0.63 0.86 0.63 ± ± 20.7
21 hCPdam (1071) hCP10 (1046) 0.83 0.87 0.81 ± ± 21.5
22 1got_pdb (338) 1got_dam (410) ± 1.33 1.24 ± ± 4.4
23 pvd_pdb (1074) pvd_dam (582) ± 1.14 1.10 ± ± 13.2
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Figure 2
(a), (b) Superposition of the atomic model of lysozyme with its low-resolution envelope and with the space-®lling dummy-atom representation,
respectively; (c) superposition of two envelope models of lysozyme at different resolution levels. The bottom row is rotated clockwise by 90� about the Y
axis. (d) The envelope model of lysozyme superposed with the atomic model of the GTP-binding transducer. Blue: templates. Red: search models.

Figure 3
Superposition of multidomain human cerulloplasmin models. (a), (b) Alignment of the template high-resolution atomic model (hCP) and the same
structure with one of the domains rotated about residue No. 338 (marked by a square) by the Euler angles {10�, 10�, 10�} (hCP10) and {20�, 20�, 20�}
(hCP20), respectively. (c), (d) Superposition of hCP10 onto the template with the space-®lling dummy-atom model replacing the structure of the rotated
domain (hCPdam1) and the whole template (hCPdam), respectively. The bottom row is rotated clockwise by 90� about the Y axis. Black: templates. Red:
search models.
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In simulation No 13, the two copies of the entire model of

rat kinesin (Kozielski et al., 1997) differing by the length of the

coil±coil fragment were superimposed. As seen from Fig. 1(d),

in the orientation found by SUPCOMB, common portions of

the molecule are neatly matched. The �f value does not exceed

unity (Table 1, row 13) indicating that the two objects are

similar.

4.2. Aligning structural models of different resolution

Simulations No. 14±16 dealt with different models of the

same protein (lysozyme). The method has found a correct

matching of the hollow envelope model lyz_sld computed by

the program CRYSOL (Svergun et al., 1995) from the PDB

code 6lyz (Diamond, 1974) with the atomic model lyz_pdb

(Fig. 2a) although the NSD exceeds 1 because the points

describing lyz_sld are located only on the surface of the object.

The NSD decreased when the envelope model was uniformly

®lled by densely packed dummy atoms (lyz_dam) (Fig. 2b).

Fig. 2(c) presents the superposition of two envelope models of

lysozyme, differing by the resolution de®ned by the maximum

order of spherical harmonics used (Svergun, 1994): L = 4 for

lyz_sld4 and L = 7 for lyz_sld7. According to SUPCOMB,

these models of the same protein are indeed similar (�f = 0.57).

By contrast, an attempt to superpose rather different objects,

namely the globular hollow envelope model of lysozyme

(lyz_sld) and a prolate atomic structure of the � subunit of the

GTP-binding transducer (Sondek et al., 1996), PDB code 1got,

yields a poor �f = 2.24 (Fig. 2d and Table 1, row 17).

4.3. Aligning multidomain models

In the following four simulations (18±21), the models of the

same multidomain particle in different conformations and at

different resolutions were aligned. The structure of apo

human ceruloplasmin (hCP) (Zaitsev et al., 1999), containing

1046 residues, was taken as a template in simulation No 18.

The apo-hCP contains three domains linked by ¯exible loops

freely moving in solution (Vachette, 1999). One of the side

domains was rotated around the connecting residue (No. 338)

by the Euler angles {10�, 10�, 10�} to obtain the search model

hCP10. It took less than 15 s of CPU time for SUPCOMB to

recover the superposition of the two structures in Fig. 3(a),

identical to the superposition provided by the method of

Kabsch (1978). The position of the undistorted domain,

including the rotation point indicated as a square, is restored

correctly. The same experiment was repeated with the object

hCP20 obtained from the template by rotation around the

same residue with the Euler angles {20�, 20�, 20�}. In this case

the restored position of undistorted domains differs more

signi®cantly from the initial one (Fig. 3b), although the ®nal

value of �f = 0.93 indicates that SUPCOMB still regards the

objects as similar. The differences in the �f and RMSf values

(Table 1, rows 18 and 19) for these two simulations are clearly

visualized in the residue-distance distributions in Figs. 4(a)

and 4(b). The averaged displacements between the corre-

sponding residues for the two domains are shown by the

dashed lines in Fig. 4. The ratio between the averaged

displacements for ®xed and rotated domains (AD ratio) is 6.0/

0.9 for hCP10 and 9.8/3.3 for hCP20. As seen from Fig. 4, the

residue separating the two domains can be approximately

located for hCP10 (Fig. 4a) but not for hCP20 (Fig. 4b). It

should be stressed that the alignment is obtained without prior

knowledge about the residue±residue correspondence so that

the domains may contain different numbers of atoms. In this

example, we have taken the same number of atoms for illus-

trative purposes only (Fig. 4).

Moreover, it is possible to use this technique if the template

(or part of it) is known only at low resolution. In the experi-

ment No. 20, the structure of the domain to be rotated was

replaced in the template by its shape represented by dummy

atoms (hCPdam1), and hCP10 was taken as a search model.

The position restored by SUPCOMB (Fig. 3c) is nearly

identical to that obtained in the experiment No. 18. In the

experiment No. 21, a space-®lling representation of the whole

template was used (hCPdam). SUPCOMB still detects the

similarity of the structures (�f = 0.81) and restores the initial

Figure 4
Displacements between the corresponding residues in the structures of
human cerulloplasmin hCP (template) and the search models in the
position found by SUPCOMB. The search models are: (a) hCP10
superposed on hCP; (b) hCP20 superposed on hCP; (c) hCP10
superposed on hCPdam1; (d) hCP10 superposed on hCPdam. The
vertical line indicates the rotation point. Dotted horizontal lines indicate
the averaged displacements for corresponding domains.
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position of the `undistorted' portion of the template reason-

ably well (Fig. 3d). To characterize the obtained alignments,

the RMS and residue displacement distribution were eval-

uated for the superimposed models with respect to the high-

resolution template (hCP). The AD ratio for the experiment

20 (6.1/0.8) and the residue±residue distribution (Fig.4c) are

virtually the same as those obtained for the high-resolution

template. For the experiment No. 21, the AD ratio is dimin-

ished to 4.73/2.08, but the border between the domains can

still be seen on the displacement plot (Fig. 4d). Thus, the

method is able to identify structural domains in the models of

complex particles against both high- and low-resolution

templates.

4.4. Aligning atomic models with models from solution

scattering

The two ®nal examples display superposition of crystal-

lographic atomic models of proteins with low-resolution

shapes restored ab initio from experimental solution-scat-

tering data using the dummy-atoms method of Svergun (1999).

The ab initio solution-scattering models are not only different

in resolution, but they also include a hydration shell around

the macromolecule. Such differences may cause ambiguities in

superposition, as illustrated for the � subunit of the GTP-

binding transducer (Sondek et al., 1996). Using SUPCOMB,

the superposition of the atomic structure (1got_pdb) with the

ab initio dummy-atom model of the particle (1got_dam) in

Fig. 5(a) yielded �f = 1.24. A manual search for the initial

approximation enables a visually more appropriate super-

position to be obtained, as shown in Fig. 5(b), with a slightly

better NSD (�f = 1.22). However, in all other cases analysed

up to now (more than three dozen), it was not possible to

improve the quality of the SUBCOMB superposition by the

manual search. A typical result obtained for a dimeric yeast

pyruvate decarboxylase (Arjunan et al., 1996) is illustrated in

Fig. 5(c) (pvd_pdb is the atomic structure and pvd_dam is the

dummy-atom model). It is important that the enanthiomorph

option is allowed in such superpositions as the handedness of

the ab initio models from solution scattering can be selected

arbitrarily.

5. Conclusions

The proposed algorithm enables the rapid superposition of

structural models of different nature and provides a quanti-

tative estimate of similarity between the models. The above

numerical simulations demonstrate the reliability of the

method, but also reveal its limitations. A signi®cant

improvement over the initial inertia-axes alignment is

observed especially for similar structures with different

numbers of atoms (Table 1, rows 8 and 13) and for models

differing in resolution (Table 1, rows 16 and 20). The

normalized spatial discrepancy (2) is analogous to the error-

weighted discrepancy � characterizing deviations between

one-dimensional data sets. The ®neness di plays the role of a

standard deviation, so that the value �f > 1 points to systematic

deviations between the objects.
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Figure 5
Superposition of ab initio dummy-atom low-resolution models (blue semi-transparent spheres) with the atomic models (red): (a), (b) automated and
manual superposition of the � subunit of the GDP-binding transducer; (c) pyruvate decarboxylase. The bottom row is rotated clockwise by 90� about the
Y axis.
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The CPU time used by SUPCOMB is proportional to the

product of the numbers of points in the two objects. As seen

from Table 1, the program can handle about 40 noisy 20-atom

motifs per second. The program can thus be used for auto-

mated density-map interpretation in protein crystallography,

where the need for fast and reasonably accurate identi®cation

methods is rather high. Speci®cally, the method could be

applied for detecting certain structure templates, such as �-

helices in pseudo-atomic structures obtained from electron

density maps by the program aRP/wARP (Perrakis et al.,

1999).

The program can read standard PDB ®les, envelope func-

tions speci®ed by spherical harmonics and the major formats

used in electron microscopy. The executable module of

SUPCOMB for Windows 9x/NT and major Unix platforms is

available via www.embl-hamburg.de/ExternalInfo/Research/

Sax/index.html.

APPENDIX A
Normalized spatial discrepancy and triangle inequality

A metric on a set of objects X is a function p: X*X ! R,

satisfying the following conditions for all x, y, z 2 X (Copson,

1968):

p�x; y� � 0 , x � y; �6�

p�x; y� � p�y; x� �symmetry�; �7�

p�x; y� � p�y; z� � p�x; z� �triangle inequality�: �8�

Let us construct an example when the measure (2) fails the

triangle inequality. First, we extend the de®nition of the

structure ®neness parameter to the case of singleton structure,

assuming that di = 1 if Si contains only one point. Consider a

rhomb ABCD of unit side with the diagonal AC = a. Let the

set S1 consist of the vertex A, the set S2 consist of the vertices

A, B, C andD, and the set S3 consist of the vertex C. Then d1 =

d2 = d3 = 1, and according to (2),

��S1; S2� � ��S2; S3� � 2��S1; S2�

� 2��1=2��a2 � 2�=4� 0�1=2

� ��a2 � 2�=2�1=2 �9�

and

��S1; S3� � a; �10�

so that

��S1; S3� > ��S1; S2� � ��S2; S3�; �11�

if a > 21/2, i.e. if the angle B is obtuse. Now assume that both S1
and S3 consist of two or more points separated by the same

distance d � 1. Then the distances (9) and (10) must be

divided by d1 = d3 = d. Since the other changes in these values

are negligibly small, the inequality (11) holds true.
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