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Abstract

Purpose We propose a deep learning-based image interpretation system for skeleton segmentation and extraction of hot 

spots of bone metastatic lesion from a whole-body bone scintigram followed by automated measurement of a bone scan 

index (BSI), which will be clinically useful.

Methods The proposed system employs butterfly-type networks (BtrflyNets) for skeleton segmentation and extraction of hot 

spots of bone metastatic lesions, in which a pair of anterior and posterior images are processed simultaneously. BSI is then 

measured using the segmented bones and extracted hot spots. To further improve the networks, deep supervision (DSV) and 

residual learning technologies were introduced.

Results We evaluated the performance of the proposed system using 246 bone scintigrams of prostate cancer in terms of 

accuracy of skeleton segmentation, hot spot extraction, and BSI measurement, as well as computational cost. In a threefold 

cross-validation experiment, the best performance was achieved by BtrflyNet with DSV for skeleton segmentation and 

BtrflyNet with residual blocks. The cross-correlation between the measured and true BSI was 0.9337, and the computational 

time for a case was 112.0 s.

Conclusion We proposed a deep learning-based BSI measurement system for a whole-body bone scintigram and proved its 

effectiveness by threefold cross-validation study using 246 whole-body bone scintigrams. The automatically measured BSI 

and computational time for a case are deemed clinically acceptable and reliable.

Keywords Computer-aided interpretation · Deep learning · Bone scintigram · Bone metastatic lesion · Bone scan index

Introduction

Radionuclide imaging is a useful means of examining 

patients who may have metastasis of the prostate, breast or 

lung cancers, which are common cancers globally [1, 2]. 

A typical screening method is bone scintigraphy, which 

uses Tc-99  m-methylene diphosphonate (MDP) [3] or 

Tc-99 m-hydroxymethylene diphosphonate (HMDP) [4] 

agents. Because visual interpretation of the bone scintigram 

lacks quantitative and reproducible diagnosis, quantitative 

indices have been proposed. Soloway et al. [5] proposed 

the extent of disease (EOD), which categorises bone scan 

examinations into five grades based on the number of bone 

metastases. It is simple but not suitable for detailed diagno-

sis. Erdi et al. [6] proposed the bone scan index (BSI), which 

standardises the assessment of bone scans [7], and they pre-

sented a region growing-based semiautomated bone meta-

static lesion extraction method to measure the BSI. However, 
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the method is time-consuming and less reproducible because 

seed regions must be manually inputted.

Yin et al. [8] proposed a lesion extraction algorithm using 

the characteristic point-based fuzzy inference system. Huang 

et al. [9] presented a bone scintigram segmentation algorithm 

followed by lesion extraction using adaptive thresholding with 

different cut-offs in different segmented regions. An alterna-

tive approach for lesion extraction was proposed by Shiraishi 

et al. [10], who presented a temporal subtraction-based inter-

val change detection algorithm. Sajn et al. [11] proposed a 

classification method to classify a bone scan examination into 

no pathology or pathology using support vector machine with 

features derived from segmented bones. Sadik et al. [12–14] 

presented several algorithms which addressed skeleton seg-

mentation, hot spot detection and classification of bone scan 

examinations. The algorithms in [12] were improved, where 

an active shape model (ASM) was employed for skeleton seg-

mentation and an ensemble of three-layer perceptrons was 

introduced for hot spot detection [13], whose performance 

was evaluated with 35 physicians in [14].

It should be noted that the aforementioned studies 

[8–14] conducted hot spot detection and bone scan classi-

fication but did not assess BSI. One of the possible reasons 

for this might be low accuracy in the automated skeleton 

segmentation. For example, previous studies [8, 9] out-

putted polygonal regions, which roughly approximated 

bone regions. Although the skeleton segmentation per-

formance in the previous study [12] was improved [13] by 

the use of ASM, it was found to be sensitive to the initial 

position of the model and image noise. In addition, the 

whole skeleton could be divided into only four parts, each 

of which included several different bones. This type of 

approximation will degrade the accuracy of the measured 

BSI because coefficients as given in the ICRP publication 

[15] used in the measurement differ in bones.

Some of the aforementioned problems have been solved 

using the atlas-based approach [16], in which a manually seg-

mented atlas consisting of more than ten bones was nonlinearly 

registered to an input image, and labels in the deformed atlas 

were transferred to the image. The atlas-based approach was 

also employed in other studies [17–23], as were the commer-

cialised computer-aided interpretation systems EXINIbone 

(EXINI Diagnostics AB, Lund, Sweden) and BONENAVI 

(FUJIFILM Toyama Chemical Co., Ltd., Tokyo, Japan). 

Accurate skeleton segmentation allows precise measurement 

of BSI [18] and accurate classification of bone scintigrams 

[17, 19–21]. Ulmet et al. [18] reported that the correlation 

between manual and automated BSI was 0.80 using EXINI-

bone. Horikoshi et al. [17] and Koizumi et al. [21] evaluated 

the performance of BONENAVI and Pertersen et al. [20] 

explored the performance of EXINIbone to demonstrate their 

effectiveness. Nakajima et al. [19] compared EXINIbone and 

BONENAVI using a Japanese multi-centre database. Brown 

et al. [22, 23] employed an atlas-based anatomical segmenta-

tion and proposed a new biomarker used in the commercially 

available system (MedQIA, Los Angeles, USA). The atlas-

based segmentation is a promising approach but suffers from 

the problems of initial positioning of the atlas and differences 

in shape, direction and size between the atlas and skeleton of 

an input image. These problems might be solved by a multi-

atlas-based approach [24]. However, it is a time-consuming 

process, which is not acceptable for clinical use.

Deep learning-based approaches have recently emerged 

in the field of medical image analysis [25]. This was initi-

ated by the great success of an image recognition competi-

tion [26]. Numerous novel technologies [27–32] have been 

reported. For example, U-Net-type fully convolutional net-

works [28, 29] are some of the most successful networks 

for medical image segmentation, which might be useful for 

skeleton segmentation and extraction of hot spots of bone 

metastatic lesion.

This study presents a system consisting of skeleton seg-

mentation and extraction of hot spots of bone metastatic 

lesion followed by BSI measurement. We employed a deep 

learning-based approach to achieve high accuracy in skel-

eton segmentation and hot spot extraction. One of the rea-

sons for the low accuracy of skeleton segmentation and hot 

spot extraction in existing studies [6, 8, 14, 16–21] may be 

that anterior and posterior images have been independently 

processed, thus resulting in the inconsistent results. We used 

a butterfly-type network (BtrflyNet) [30] which fuses two 

U-Nets into a single network which can process anterior 

and posterior images simultaneously. Because a deep and 

complicated network might be problematic for the training 

process, we introduced deep supervision (DSV) [31] and 

residual learning [32], both of which are effective at avoid-

ing gradients vanishing or exploding during the training of 

a deep network. We conducted the experiment using 246 

cases of prostate cancer and demonstrated the effectiveness 

of the proposed system by comparing it with conventional 

approaches, namely multi-atlas-based skeleton segmentation 

and U-Net-based hot spot extraction.

Methods

Bone scintigraphy

Inputs of the proposed system were anterior and pos-

terior bone scintigrams as shown in Fig. 1, the sizes of 

which were 512 × 1024 pixels. The imaging systems 

were ‘VERTEX PLUS, ADAC’, ‘FORTE, ADAC’ and 

‘BRIGHTVIEW X, Philips’ equipped with collimators 

named ‘VXGP’, ‘LEHR’ and ‘LEHR’, respectively. The 

energy peak was centred at 140 keV with a 10% win-

dow. The whole body was scanned for approximately 
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ten minutes about 3 h after the intravenous injection of 

Tc-99 m-HMDP (555–740 MBq, Nihon Medi-Physics Co., 

Ltd, Tokyo, Japan), and the scan speed was 20 cm/min.

Outline of skeleton segmentation

First, the posterior image was flipped horizontally and 

aligned to the anterior image for simultaneous segmenta-

tion. Second, spatial standardisation consisting of rotation, 

scaling and translation was applied to both the anterior and 

posterior images to ensure the body axis was parallel to a 

vertical axis of the image. The length from the top of head to 

the tip of the toe was 2000 mm. Third, grey-scale normalisa-

tion was performed for both images independently using the 

following equation.

where I
in

 is an input grey value, I
x% is the upper x th percen-

tile and � is the golden ratio. Central regions of the images 

(Fig. 2) were then forwarded to the trained BtrflyNet. Inverse 

transformation of the spatial standardisation and the align-

ment of the posterior image were performed to transfer the 

segmentation labels to the input images.

(1)Inormalized =

{

log
e

(

𝜙 ⋅

Iin−I98%

I10%−I98%

+ 1
)

; Iin > I98%

0; elsewhere

Outline of hot spot extraction

First, a mask of a human was generated by applying a 3 × 

3 pixel median filter and thresholding (1: I ≥ 4, 0: else) fol-

lowed by opening and closing operations. (The structural 

element was a circle with radius of 2 pixel.) Second, grey-

scale normalisation and registration between posterior and 

anterior images were conducted, both of which were the 

same as those in the skeleton segmentation. The image was 

then evenly divided into patch images of 64 × 64 pixel at 

every 32-pixel interval (Fig. 3).

Patch images that contained one or more pixels in the 

human mask were forwarded to the trained BtrflyNet for hot 

spot extraction. Finally, patch images with the extracted hot 

spots were integrated into an output image whose size was 

equal to that of the input image.

BtrflyNets

BtrflyNets for skeleton segmentation and hot spot extrac-

tion are different networks but are nonetheless similar. 

Major differences exist in terms of the sizes of input and 

output images as well as the number of output layers. 

Skeleton segmentation input was a pair of anterior and 

posterior images of a whole body, and hot spot extraction 

input was a pair of anterior and posterior patch images. 

Output of anterior skeleton consisted of 13 layers cor-

responding to 12 bones (skull, cervical vertebrae, tho-

racic vertebrae, lumbar vertebrae, sacrum, pelvis, ribs, 

Fig. 1  Pair of input a anterior 

and b posterior images

(a) (b)
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scapula, humerus, femur, sternum and clavicle) and back-

ground. Outputs of posterior skeleton were 12 layers for 

ten bones (skull, cervical vertebrae, thoracic vertebrae, 

lumbar vertebrae, sacrum, pelvis, rib, scapula, humerus 

and femur) and background. Note that one output layer 

in the posterior was for overlapped regions of the rib and 

scapula. Output for hot spot extraction was consisted of 

three layers each of which corresponded to a hot spot of 

bone metastatic lesion, hot spot of non-malignant lesion 

(e.g., fracture, infection) and others (e.g., physiological 

renal uptake, radioactive isotope distribution of bladder 

and background). In addition, sizes of feature maps of the 

BtrflyNets were different because of the size differences 

of input images. In Fig. 4, numbers of output layers and 

the sizes of feature maps are shown in blue for skeleton 

segmentation and in red for hot spot extraction. Further-

more, the BtrflyNet for hot spot extraction had an addi-

tional layer following the input layer enclosed by dotted 

red squares. This additional layer derives from improve-

ment by residual blocks [32] which is described later.

Loss functions

The loss functions to be minimised in the training of skel-

eton segmentation and hot spot extraction are given as 

follows.

Skeleton segmentation

where n and c are indices of pixel and class (= bone meta-

static lesion, non-malignant lesion and others) and N and 

C are total numbers of pixels and classes, respectively. In 

addition, p
cn

 is the softmax of output y
cn

 of the network 

and t
cn

 denotes the true label in which the pixel value of the 

organ of interest is 1 and other is 0. Finally, � is a tiny value 

to prevent zero division.

Hot spot extraction

where w
c
 is a weight of class c to reduce the influence by the 

difference in the number of pixels.

(2)

[Generalised Dice loss] L
GDL

= 1 −
2

C

C
�

c

�

∑N

n
pcntcn + �

∑N

n
pcn +

∑N

n
tcn + �

�

(3)pcn = softmax
�

ycn

�

=

eycn

∑C

c
eycn

(4)

[

Class weighted softmax cross entropy
]

LWSCE = −

1

N

N
∑

n

C
∑

c

wctcnlog
(

pcn

)

Fig. 2  Spatially standardised 

a anterior and b posterior 

images with normalised grey 

values from Fig. 1 for skeleton 

segmentation
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Improvements of networks

DSV [31] is introduced for skeleton segmentation, in which 

loss functions are computed at not only output layers but also 

at four layers neighbouring to output layers and as indicated 

by black dots in Fig. 4. Loss is a summation of the general-

ised Dice losses at the six layers.

Residual blocks [32] are used instead of convolutions and 

deconvolutions in the BtrflyNet for hot spot extraction. The 

improved BtrflyNet is called ResBtrflyNet in this study.

(5)w
c
=

N −

∑N

n
t
cn

N

Outputs of the system

The proposed system outputs segmented bones and detected 

hot spots, all of which are determined by using probability 

p
cn

 in output layers of the trained BtrflyNets. The skeleton 

segmentation selects labels with a maximum p
cn

 at each 

pixel. The hot spot extraction employs the threshold value 

of the following equation so that the sensitivity per hot spot 

of bone metastatic lesion is 0.9.

(6)

⎧
⎪
⎨
⎪
⎩

pmeta.,n ≥ th → Hot spot by bone metastatic lesion

else ifpnon-mal.,n ≥ pothers,n → Hot spot by non-malignant lesion

else → others

(a) (b)

Fig. 3  Pair of a anterior and b posterior patches with normalised grey values. Dotted red arrows indicate the correspondence between the two 

patches
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where p
cn

 at the overlapped area of neighbouring patch 

images is computed by averaging y
cn

 of the two patches.

The BSI is measured using segmented bones and 

extracted hot spots of bone metastatic lesions [18]. First, 

the correspondence between the bones and hot spots is deter-

mined. Second, a ratio between the area of the extracted hot 

spots and that of the corresponding bone is measured, and 

the weight fraction constant as given in the ICRP publication 

[15] is multiplied with the ratio. Finally, a summation of all 

values is outputted as BSI.

Experimental set-up

The experiment was approved by the Ethics Committee 

at Osaka City University (Approval No. 3831) and Tokyo 

University of Agriculture and Technology (Approval No.30-

30, 30-43). The total number of bone scintigrams was 246, 

derived from Japanese males with prostate cancer whose 

ages were from 52 to 95 (average: 72.8, standard deviation: 

6.96). The dataset was divided into three groups to conduct 

threefold cross-validation. We also prepared a validation 

dataset to determine an optimal training iteration to avoid 

overtraining. In summary, 164 scans were for training, 41 

for validation and 41 for testing. Because the validation and 

testing datasets were switched in onefold, we obtained test 

results from 246 total scans. The number of anterior and 

Fig. 4  BtrflyNet for skeleton segmentation and hot spot extraction. 

Parameters of the network are listed, where blue numbers denote 

skeleton segmentation, red numbers indicate hot spot extraction and 

black numbers are common parameters for both networks. Note that 

the sizes of feature maps for the decoder part of the BtrflyNet are the 

same as those of the encoder part
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posterior patch pairs for onefold in training the hot spot 

extraction network was approximately 0.7 million.

Initialisation and optimisation of the networks

In the training process, He’s initialisation [33] was used 

to initialise all weights of the networks. The loss func-

tions were minimised using adaptive moment estima-

tion (Adam) [34]. The detailed parameters are given as 

follows.

Skeleton segmentation

The parameters of Adam were set to α = 0.001, β = 0.9, 

γ = 0.999 and ε = 10−8. Note that α was decreased by one-

tenth at the 1350th iteration in which the batch size was 6. 

The maximum number of iterations was set to 1620, and 

the optimal number of iterations was determined when the 

average Dice score from (7) of the validation dataset reached 

the maximum. The tiny value of ε from (2) was set to 0.001.

Hot spot extraction

The parameters of Adam were set to α = 0.001, β = 0.9, 

γ = 0.999 and ε = 10−8, where the batch size was 256. Aug-

mentation was conducted by flipping an input image hori-

zontally with a probability of 0.5. The maximum number 

of iterations was set to 50,000, and the optimal number 

of iterations was determined when the total number of 

misclassified pixels of the validation dataset was at the 

minimum.

Performance evaluation

The Dice score between the segmented bone region and true 

region was computed to evaluate the performance of skel-

eton segmentation.

where #(region) denotes the number of pixels in the region. 

The sensitivity of hot spot detection, the numbers of false 

positive pixels and regions (8-connectivity) were used 

to evaluate hot spot extraction. Note that true regions of 

bones and hot spots were manually delineated by medical 

(7)

Dice score =
2 × #(“segmented bone region” ∩ “true bone region”)

#(“segmented bone region” + #“true bone region”)

Multi-atlas

0.9220 0.8910

0.7560 0.8438

0.7125 0.8074

0.9219 0.9117

0.8219 0.6833

0.8613 0.7414

0.8228

0.9501 0.9175

0.8991 0.8801

0.8154 0.8949

0.8962 0.9382

0.8209 0.8142

0.9293 0.7518

0.8756

BtrflyNet with D

0.9495 0.9254

0.9231 0.8769

0.8482 0.9025

0.9415 0.9383

0.8446 0.8057

0.9270 0.7874

0.8892

Input

Skull Ribs

Cervical Vert. Scapula

Thoracic Vert. Humerus

Lumbar Vert. Femur

Sacrum Sternum

Pelvis Clavicle

AVERAGE

BtrflyNet

Fig. 5  Typical results of skeleton segmentation. White lines and coloured regions are boundaries of true and segmented bone regions, respec-

tively. Numbers denote Dice scores of bones in which the highest Dice scores among the three methods are bolded
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engineers and approved by medical doctors at the Depart-

ment of Nuclear Medicine at the university hospital.

Results

Skeleton segmentation

Figure 5 presents the typical results of skeleton segmenta-

tion, and Fig. 6 shows Dice scores for all test cases. Note 

that the multi-atlas-based approach [24] employed B-spline-

based non-rigid registration of 164 atlases from the training 

dataset and only anterior images were segmented because 

of high computational cost.

Hot spot extraction

Figure 7 shows the typical extraction results of hot spots of 

bone metastatic lesions when the sensitivity per hot spot of 

bone metastatic lesion was 0.9. Table 1 presents the number 

of false positive pixels, false positive regions and misclassi-

fied pixels by U-Net, BtrflyNet and ResBtrflyNet.

Measurement of BSI

Figure 8 compares automatically measured BSI with true 

BSI, which was computed using true regions of bones and 

hot spots of bone metastatic lesions.

Computational cost

Average computation time for each test case was measured 

using a computer with 24 threads based on 41 cases for 

skeleton segmentation and five cases for hot spot extrac-

tion. The computer specifications were: OS: Ubuntu 16.04, 

CPU: Xeon Silver 4116. 12 Cores, 24 Threads, 2.10 GHz × 

2, Memory: 196 GB.

Skeleton segmentation (without pre‑ and post‑processes)

• Multi-atlas (anterior image only) = 5287 s.

• BtrflyNet (or BtrflyNet with DSV) = 16 s.

(**:p<0.01, *:p<0.05)

Fig. 6  Dice scores of skeleton segmentation. Numbers indicate the median of scores. Statistical test was conducted by a Wilcoxon signed-rank 

test with the null hypothesis of ‘there is no difference in performance between the two methods’
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Hot spot extraction

• U-Nets = 70 s.

• BtrflyNet = 63 s.

• ResBtrflyNet = 94 s.

Discussion

Skeleton segmentation

The red circles in Fig. 5 show typical errors in segmentation 

by the multi-atlas-based method because of atypical shapes 

or directions of the skull, right humerus and sternum. Fig-

ure 6 suggests that the multi-atlas-based method was inferior 

to BtrflyNet-based approaches for all organs, and the differ-

ences were statistically significant.

An example of the improvement gained by DSV is indi-

cated by the yellow circle in Fig. 5. Figure 6 indicates that 

BtrflyNet with DSV was superior to the naïve BtrflyNet for 

nine out of 12 bones in an anterior image and three out of 

ten bones in a posterior image. Statistical differences were 

U-Net ResBtrflyNetInput with true 

labels

BtrflyNet U-Net ResBtrflyNetInput with True 

labels

BtrflyNet

(a) (b)

Bone metasta�c lesion

Non-malignant lesion

Fig. 7  Typical extraction results of hot spots of bone metastatic lesions in a anterior and b flipped posterior images. False positives close to true 

bone metastatic lesions are circled by red dots, and a false negative is circled by yellow dots

Table 1  Average number of false positive pixels, false positive 

regions (8-connectivity) and misclassified pixels ({“false posi-

tives”} ∪ {“false negatives”}) when sensitivity per hot spot of bone 

metastatic lesion was 0.9

y = 1.1564x + 0.1693
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Fig. 8  Relationship between automatically measured BSI and true 

BSI
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observed for three bones each in anterior and posterior 

images. By contrast, the rib in a posterior image was the 

only bone for which the naïve BtrflyNet was statistically 

superior. Therefore, we concluded that BtrflyNet with DSV 

was the best in our experiment. The main reason may have 

been lower loss during training. Figure 9 shows transitions 

of training losses at the output layers, where the red line of 

the BtrflyNet with DSV was lower than the blue line of the 

naïve BtrflyNet, which suggests that the DSV was effective 

at reducing loss in the training data.

Hot spot extraction

In the anterior image of Fig. 7, U-Net failed to detect one 

hot spot by a bone metastatic lesion, and 17 false posi-

tive regions existed, whereas BtrflyNet and ResBtrflyNet 

detected all hot spots of bone metastatic lesions, where 

the numbers of false positive regions were seven and 

five, respectively. In addition, BtrflyNet and ResBtrflyNet 

showed high consistency between the results of anterior 

and posterior images. The difference in the number of false 

positive regions by BtrflyNets and ResBtrflyNet was one, 

whereas that by U-Nets was 13. This fact suggests that 

simultaneous process of both images by BtrflyNet and 

ResBtrflyNet realised a high consistency, thus leading to 

high performance.

Table 1 suggests that ResBtrflyNet was the best in terms 

of the numbers of false positive and misclassified pixels as 

well as number of false positive regions in an anterior image. 

The differences among the networks could be because of 

the difference in losses of the training dataset (Fig. 10), in 

which the loss of ResBtrflyNet was the minimum. In fact, 

the loss of ResBtrflyNet at the optimal number of iterations 

was 29.9% lower than that of BtrflyNet.

BSI measurement

Figure 8 shows good correlation between the automatically 

measured BSI and true BSI when using the best combina-

tion of networks with the highest performance, namely the 

BtrflyNet with DSV for skeleton segmentation and ResB-

trflyNet for hot spot extraction. The cross-correlation was 

0.9337, which was higher than 0.80 as reported by Ulmert 

et al. [18] and seems reliable for clinical use. Note that com-

paring the two values directly is difficult because the dataset 

used was different. However, the higher cross-correlation 

suggests a promising performance with the proposed system.

The limitations of the proposed system must be men-

tioned. Figure 11 shows the case with the maximum error 

with the BSI measurement (red arrow in Fig. 8). Although 

the skeleton was recognised correctly, hot spots by osteoar-

thritis in thoracic and lumbar vertebrae were misclassified as 

hot spots of bone metastatic lesions. One possible reason for 

this failure is the limited amount of training data for osteo-

arthritis. Training using a large dataset with osteoarthritis 

cases remains an important future study.

Computational cost

The proposed BtrflyNet-based skeleton segmentation took 

16 s. for the case using 24 threads. By contrast, the cost of 

the multi-atlas-based method for an anterior image was over 

300 times greater than that of BtrflyNet. The most time-

consuming step was non-rigid registration, which took 

3420 s. on average, even when ten registration processes 

ran in parallel.

In the hot spot extraction experiments with multi-

ple threads, the naïve BtrflyNet was the fastest because it 

shared the deepest layers for anterior and posterior images 

as compared with U-Net. ResBtrflyNet was 1.5 times longer 

than the naïve BtrflyNet because of the high computational 

cost of residual blocks. However, the difference was not 

considerable.

The cost of the best combination of networks including 

pre- and post-processes (e.g., spatial standardisation) was 

112.0 s. per case, which seems acceptable for clinical use.

Fig. 9  Transitions of generalised Dice loss in the training

Fig. 10  Transitions of class weighted softmax cross-entropy during 

the training
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Conclusion

This study proposed a deep learning-based image inter-

pretation system for automated BSI measurements from a 

whole-body bone scintigram, in which BtrflyNets were used 

to segment the skeleton and extract hot spots of bone meta-

static lesions. We conducted threefold cross-validation using 

246 bone scintigrams of prostate cancer to evaluate the per-

formance of the system. The experimental results revealed 

that the best performance was achieved by a combination of 

BtrflyNet with DSV for skeleton segmentation and BtrflyNet 

with residual blocks, and the number of misclassified pixels 

for which was minimum. The computational time of both 

processes for a case was 112.0 s., and automatically measured 

BSI showed high correlation (0.9337) with the true BSI, both 

of which is deemed clinically acceptable and reliable.

An important future work will involve increasing the size 

of the training dataset to improve the misclassification of 

the osteoarthritis case. The effect of dataset size on perfor-

mance would be an interesting topic. Optimising the hyper-

parameters of deep networks, e.g., number of layers, number 

of channels (feature maps) and weights in loss functions, is 

also essential to boost the performance in terms of segmenta-

tion and extraction accuracy as well as computational cost. It 

would be interesting to perform a leave-one-out examination 

for further performance analysis. Developing an anatomically 

constrained network is also necessary to avoid anatomically 

the wrong results and to enhance the reliability of the system.
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