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Abstract: With recent advances in low-cost wireless sensing and data acquisition technology, it has become feasible to instrument a large

structure with a dense array of wireless sensors. Furthermore, analog-to-digital conversion and data processing capabilities of current

wireless sensor prototypes offer the ability to efficiently distribute data processing tasks across a large network of wireless sensing nodes.

For decades, the structural engineering community has been adapting input-output modal identification techniques for use in large-scale

civil structures. However, unlike in mechanical or aerospace engineering, it is often difficult to excite a large civil structure in a controlled

manner. Thus, additional emphasis has been placed on developing a number of output-only modal identification methods for use in

structural engineering applications. In this paper, three of these output-only methods �peak picking, random decrement, and frequency

domain decomposition� are modified for implementation in a distributed array of processors embedded within a network of wireless

sensor prototypes. The software architecture proposed emphasizes parallel data processing and minimal communication so as to ensure

scalability and power efficiency. Using the balcony of a historic theater in metropolitan Detroit as a testbed, this network of wireless

sensors is allowed to collect and process acceleration response data during a set of vibration tests. The embedded algorithms proposed in

this study are used to autonomously determine the balcony’s modal properties with network-derived results found to be comparable to

those derived from traditional offline techniques.
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analysis.

Introduction

Wireless sensor networks �WSNs� offer a great number of ben-

efits to the structural engineering community. Primarily, wireless

sensing technologies promise to drastically improve the engi-

neer’s ability to monitor the structural integrity of a bridge, build-

ing, tunnel, or other complex civil structure in real time. This type

of continuous health monitoring is important because it can

greatly reduce routine maintenance and inspection costs, while

providing an increased level of public safety by alerting engineers

to potential structural problems before failure occurs. While net-

works of tethered sensors have already been installed in large

structures around the world �Hipley 2001; Wu 2003; Ko and Ni

2005�, the high costs associated with traditional tethered monitor-

ing systems have prevented their widespread adoption. By elimi-

nating the need for the extensive lengths of cable required to link

sensors to a central data repository, wireless sensing technologies

can be deployed at both reduced costs and with higher nodal

densities than traditional tethered monitoring systems that incur

costs on the order of a few thousand dollars per sensing channel

�Celebi 2002�. In addition to the cost savings derived from wire-

less communication, wireless sensors also integrate analog-to-

digital converters �ADCs� and low-power microprocessors. In

particular, microcontrollers collocated with the sensor can be le-

veraged to perform data processing tasks at each sensing node.

Today, a wide variety of commercial and academic wireless sen-

sor prototypes have been developed and validated �Lynch and

Loh 2006�.

The ability of wireless sensors to autonomously collect and

analyze data has led to these devices being labeled as “smart”

sensors �Spencer et al. 2004�. By locally interrogating data at the

individual sensing node, such “smart” devices can offer several

distinct improvements to traditional monitoring methods. Prima-

rily, instead of having to transmit long records of raw time history

data from each node to a central processing station, a “smart”

system only needs to transmit locally processed data, which is

typically only a fraction of the size of raw time history data. By

limiting the amount of communication necessary within a sensing

network, power consumption and network bandwidth problems

traditionally associated with wireless transmission can be greatly

mitigated �Lynch et al. 2004�. Furthermore, by maximizing power

efficiency and leveraging efficient bandwidth utilization, wireless
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monitoring systems can be made highly scalable �i.e., defined by

high nodal counts�.

Numerous researchers have used embedded engineering algo-

rithms such as autoregressive model fitting, wavelet transforms,

and fast Fourier transforms within the computational core of a

network of wireless sensors �Lynch 2007�. These algorithms have

typically been performed independently at the sensor, without di-

rect sharing of data between nodes. As a result, spatial informa-

tion is only obtained at the central data repository where data

processed by the wireless nodes is collected. For example, a re-

cent instrumentation of a 14-node wireless monitoring system in-

stalled on a concrete box girder bridge illustrated mode shape

estimation by peak picking. In the system, wireless sensors com-

municate the imaginary component of the Fourier spectrum at

modal peaks to a central data repository where the mode shapes

are assembled �Lynch et al. 2006�. But because wireless devices

can be deployed in ad-hoc networks featuring peer-to-peer com-

munication, many analytical routines can be easily decentralized

and distributed across a large number of wireless nodes with in-

dividual processing capabilities. By employing parallel process-

ing techniques, an ad-hoc wireless sensing network can obtain

spatial information without the need for a central data repository.

As a result, researchers have begun to look at various parallel

processing techniques for distributed data processing on wireless

sensing networks. Chintalapudi et al. �2006� present a tiered sys-

tem where data processing tasks can be performed on a distrib-

uted network using powerful gateway nodes. This method
involves a top-down approach that allows for a flexible and
highly abstracted user interface, but in which the computational
capabilities of the prolific lower nodes are largely ignored. Other
methods involving hierarchical sensing networks where data can
be aggregated and compressed have also been presented in the
literature �Gao 2005; Nagayama et al. 2006�. These promising
techniques can help improve network scalability by limiting data
size and mitigating data loss problems through averaging, but
they rely on a tradeoff between data size and accuracy. While
wireless sensing technology has seen significant growth in recent
years, additional work is still needed to modify existing analysis
methods for parallel execution within a distributed network of
wireless sensors.

The idea of identifying system parameters from dynamic re-
sponse data originated 2 decades ago within the mechanical and
aerospace engineering communities �Ewins 1986; Ljung 1987;
Juang 1994�. The subsequent development of a set of system
identification techniques was fueled largely by the need for ana-
lytical tools that could be used to build effective models of dy-
namic physical systems from observed system data. For obvious
reasons, the ability to experimentally extract system parameters
from sensor data offers enormous benefits across all engineering
disciplines. In civil engineering, the ability to ascertain modal
information �modal frequencies, mode shapes, and damping ra-
tios� from sensor data has paved the way for the assessment of
structural performance and the calibration of analytical design
models �Alampalli 2000�. In some instances, modal parameters
can even be used to detect and locate structural damage in the
wake of natural events like earthquakes �Doebling et al. 1998�.

In the aerospace and mechanical engineering fields, modal pa-
rameter identification techniques are typically carried out using
both input and output measurement data, which can be related
through frequency response functions �FRFs� in the frequency
domain. However, it is often difficult to excite a large civil struc-
ture in a controlled manner with measurable input excitation
forces. Thus, modal parameter estimation techniques using

output-only dynamic data have become quite popular within the

civil engineering field �Cunha and Caetano 2006�. In order to

extract meaningful system properties from a large civil structure,

a large amount of data must be available from a dense array of

sensors. Fortunately, recent advances in low-cost wireless sensing

technologies have made the dense instrumentation of large civil

structures possible. In fact, it is widely anticipated that ad-hoc

networks of hundreds of sensors will soon be deployed in prac-

tice. As a result, it is important for researchers to translate tradi-

tional system identification techniques to a distributed setting for

use in wireless sensing networks.

In this paper, three output-only modal identification techniques

are adopted and modified for use within a distributed wireless

sensing network: the peak picking �PP� method, the random dec-

rement �RD� method, and the frequency domain decomposition

�FDD� method. This work sets itself apart from current work in

distributed data processing using wireless sensors by maximizing

the use of the parallel data processing environment available

within large sensing networks. Parallel and distributed computing

minimizes the need for interprocess wireless communication

which is more power consuming than local processing. This par-

allel approach, while still addressing problems associated with

power consumption and bandwidth, allows a wireless sensing

network to employ typical offline modal analysis techniques to

autonomously extract spatial modal information from a large net-

work of sensors without the need for a central data repository. In

order to validate the performance of these embedded algorithms,

the cantilevered balcony of a historic theater in metropolitan De-

troit is instrumented with a dense network of wireless sensing

prototypes. Over the span of several vibration tests, acceleration

response data from the balcony is collected by the wireless net-

work. Using the stored data, each of the distributed modal iden-

tification techniques is executed to estimate the modal properties

of the system. For validation purposes, results from the embedded

algorithms are compared with modal analysis techniques run off-

line using the time history data of the wireless network.

Distributed Implementation of Output-Only Modal
Identification Techniques on a Wireless Sensor
Network

In general, it is very difficult to excite a large civil structure in a

controlled manner. As a result, several output-only modal estima-

tion methods have been adopted for common use in structural

system identification. In this paper, three of these methods are

modified for a distributed setting and implemented on a network

of wireless sensing prototypes. The first method is the PP method

�Ewins 1986; Allemang 1999�. This frequency domain method is

commonly used in civil engineering because of its simplicity. The

second method is the FDD technique �Brincker et al. 2001b�,

which is similar to peak picking but is much more robust when

dealing with closely spaced modes. The third method is the RD

method �Cole 1968; Ibrahim 1977�. In a multiple degree of free-

dom system, this technique is dependent upon previous knowl-

edge of the system’s modal frequencies �which could be provided

by the PP algorithm�, but it offers a superior way of determining

accurate estimates for modal damping values. In this section, the

theory behind each of these methods and their distributed imple-

mentation within a wireless sensing network is described in

detail.
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Peak Picking Method

The PP method is the simplest known technique for estimating the

modal properties of a structure from system output data. This

method, like many other output-only techniques, assumes that the

immeasurable excitation input can be characterized as zero-mean

Gaussian white noise. In civil engineering applications, this type

of excitation is generally achieved using either impulse or ambi-

ent vibration loading conditions. PP analysis is based on the fact

that the FRF of a given system will experience extreme values

around that system’s modal frequencies �Ewins 1986�. Assuming

a white noise excitation, the FRF of a structure at sensor location

k, Hk�j��, can be considered equivalent to the Fourier spectrum

of the response data collected at that sensor. This spectrum can be

formulated by converting measured accelerations to the frequency

domain using a fast Fourier transform �FFT�.

If a structure is lightly damped with well separated modes,

operational deflection shapes �which are correlated to mode

shapes� can also be determined with the PP method using the

system’s FRFs �Allemang 1999�. The imaginary component of a

FRF at modal frequency �i, at sensor locations 1 through n, can

be assembled to yield the ith mode shape, �i, as follows:

�i= �imag�Hl�j�i��¯ imag�Hn�j�i���
T. From the perspective of a

wireless sensing network, this method is relatively easy to imple-

ment in a decentralized fashion. In this implementation, the user

first specifies the maximum number of peaks, p, that should be

identified. Then, a consistent set of acceleration time history data

is collected at each sensing node and converted to a FRF using an

embedded version of the Cooley–Tukey FFT algorithm. Each

node picks the p largest peaks from its frequency response func-

tion by scanning for frequencies at which the value of the FRF is

significantly and consistently higher than the value of the FRF at

surrounding frequencies. If less than p peaks are found, zeros will

be returned in place of the missing peaks. This algorithm assumes

that there are no closely spaced modes and thus can only detect

peaks separated by at least ten points on the frequency spectrum.

Because some sensing nodes may not be capable of detecting

peaks at all modal frequencies due to positioning or poor data, it

is necessary to transmit peak information to a central node that

can view the individual PP results for the network as a whole. It

should be noted that every wireless sensor communicates its iden-

tified peaks �p of them� to the central node; hence, the amount of

data to be transmitted is fixed. By tabulating the periodicity at

which a given frequency has been “picked” by nodes on a net-

work, this central node can infer a subset of p �or fewer� reason-

able modal frequencies from the original PP data. Once the

central node has determined a global set of peak frequencies, it

can then share its findings �namely modal frequencies� with the

rest of the network, and the imaginary components of the FRFs at

the picked frequencies can be transferred from each sensor to the

rest of the network, one sensor at a time. This sharing of data

provides all wireless sensor nodes with mode shape information.

If necessary, other local data �such as time histories or frequency

spectra� can be subsequently communicated by each wireless sen-

sor to a central server in the network. A graphical representation

of the implementation of the PP method on a distributed network

of wireless sensors can be seen in Fig. 1.

By limiting the amount of necessary communication between

individual sensing units, this approach drastically limits the

amount of bandwidth needed for wireless data transmission. For

example, if in a centralized sensing network 20 wireless sensors

are used to send data to a central server for modal estimation, then

4,096 data points are transmitted from each unit resulting in

163,840 total bytes being transmitted �each point is a 2 byte num-
ber�. If the central server communicates modal information to
each node in a peer-to-peer configuration, an additional
7,040 bytes are transmitted �bringing the total number of bytes to
170,880�. However, should the central server be able to broadcast
to the entire network, then only an additional 352 bytes need to be
transmitted �bringing the total number of bytes to 164,192�.

In a similar scenario using the parallel in-network approach to
PP outlined above, the same results can be obtained by transmit-
ting a total of only 2,128 bytes of data. In this method, if 19 nodes
each send four peak frequencies to a central node, then 340 bytes
are communicated. Then, by peer-to-peer communication, the
central node would send the final modal frequencies back to the
original 19 nodes �requiring an additional 340 bytes�. Once each
node knows what the network has decided the modal frequencies
are, each node in the peer-to-peer network can communicate the
imaginary components of their frequency response function so
that each node can assemble the four mode shapes of the struc-
ture; this requires 1,520 bytes to be communicated. If ideal broad-
casting is possible, this approach can be further reduced to require
only 640 bytes of communication. A summary of this detailed
breakdown can be found in Table 1. This method is also advan-
tageous because it is relatively simple to implement on a sensing
network and it utilizes engineering algorithms that can be pro-
cessed quickly. However, there are several drawbacks to distrib-
uted PP analysis. Primarily, peak picking is always a subjective
practice, and it is therefore difficult to implement perfectly in
software. Additionally, peak picking does not properly handle
closely spaced modes.

Fig. 1. Implementation of peak picking method on a network of

wireless sensors
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Frequency Domain Decomposition Method

The FDD technique, developed by Brincker et al. �2001b� main-
tains most of the advantages of other classical frequency domain
methods, such as peak picking. However, the FDD technique ap-
proximately decomposes the spectral density matrix into a set of
single degree of freedom �SDOF� systems using singular value
decomposition �SVD�, allowing close modes to be identified with
high accuracy. In this method, the relationship between measured
responses y�t� and unknown inputs x�t� can be expressed as

Gyy�j�� = H
*�j��Gxx�j��H�j��T �1�

where Gyy�j��= �m�m� power spectral density �PSD�

matrix of the responses; Gxx�j��= �1�1� matrix of the input;
H

*�j��=complex conjugate of the �m�1� FRF matrix;
H�j��T=transpose of the �m�1� FRF matrix; and m=number of
output degrees of freedom.

In the FDD method, the first step is to obtain an estimate of the

output PSD matrix, Ĝyy�j�� for each discrete frequency �=�i.
This can be done by creating an array of FRFs using FFT infor-
mation from each degree of freedom in a system

Ĝyy�j�i� = �Fy�j�i���Fy
*�j�i��

T �2�

where �Fy�j�i��=array of FFT values for each degree of freedom

at a given frequency �i and �Fy
*�j�i��

T=complex conjugate trans-
pose �Hermitian matrix� of that array �Allemang 1999�.

The second step in the FDD process is to extract singular
values and singular vectors from the PSD of the response by

taking the SVD of the matrix Ĝyy�j��

Ĝyy�j�i� = UiSiUi
H �3�

where the matrix Ui= �ui1 ,ui2 , . . . ,uim�=unitary matrix holding
singular vectors uij; Si=diagonal matrix holding the scalar singu-

lar values sij; and Ui
H=Hermitian matrix of Ui. Near a peak in the

PSD function corresponding to a given mode in the spectrum, this

mode or a possible close mode will be dominating. Thus, the first

singular vector, ui1, can be an estimate of the mode shape �i:

�̂i=ui1. An extension of the FDD method that allows for the de-

tection of additional modal information �i.e., modal frequencies

and damping ratios� is often called enhanced frequency domain

decomposition �EFDD�, and was originally proposed by Brincker

et al. �2001a�. However, in this study the FDD method will only

be used to determine system mode shapes.

Unfortunately, because of the need to store and manipulate the

output power spectral density matrix for each degree of freedom

in a system, the implementation of a centralized FDD method

requires a significant amount of memory relative to the PP

method. On a wireless sensing network where there are heavy

constraints on the amount of available storage at each sensing

node, an alternate decentralized method is proposed and imple-

mented. The key feature of this approach is that mode shapes are

determined by creating a collection of overlapping two-node

modes and stitching them together after computation is complete.

First, the wireless sensing network collects a synchronized set

of time history acceleration data. This set of data is then trans-

formed to the frequency domain via an embedded FFT algorithm,

and the aforementioned embedded PP technique is employed to

identify modal frequencies at each node on the network. Peak

picking results are then transmitted wirelessly to a central node,

where a final set of modal frequencies are decided upon and

shared among the nodes in the network. At this point, every unit

in the network transmits its complex FFT results corresponding to

the picked modal frequencies to the next unit in a predetermined

chain �except for the last unit in the chain, which has no succes-

sor�. Using this shared data, all but one of the sensing nodes �the

first in the chain� is able to construct a two degree of freedom

output PSD matrix at each modal frequency using the two sets of

FFT results. After each wireless sensor performs a SVD on the

PSD matrix, two-node mode shapes are extracted from the result-

ing singular vectors at the frequencies previously determined by

Table 1. Summary of Wireless Data Transmission Needed in Network with 20 Nodes Where 4,096 Data Points Are Used to Calculate Modal Information

for Four Modes

Method Transmission Payload type Bytes Results Assumption

Centralized server 4,096 shorts�20 nodes Time history data to server from each node 163,840 �a� —

4 floats�20 nodes 4 damping ratios from server to each node 320 ��i� —

80 floats�20 nodes 4 mode shapes from server to each node 6,400 ��i� —

4 floats�20 nodes 4 frequencies from server to each node 320 �f i� —

Total 170,880

Decentralized PP 4 floats�19 nodes 4 frequency peaks to central node 304 �f i� —

4 floats�19 nodes 4 modal frequencies back each node 304 �f i� —

4 floats�20�19 nodes Imaginary components with each node �20�

sending to every other node �19�

1,520 ��i� —

Total 2,128

Decentralized FDD 8 floats�19 nodes Spectral value at each mode from one node

to a neighboring node

608 Q��� Modal frequencies

already known

8 floats�18 nodes 2 node mode shape to central node 576 ��i�

80 floats�19 nodes 4 stitched mode shapes back to each node 6,080 ��i�

Total 7,264

Decentralized RD 4 floats�19 nodes 4 identified frequencies to central node 304 �f i� Modal frequencies

already known4 floats�19 nodes 4 identified damping ratios to central node 304 ��i�

4 floats�19 nodes 4 modal frequencies back each node 304 �f i�

4 floats�19 nodes 4 modal damping ratios back each node 304 ��i�

Total 1,216

Note: short=2 bytes; and float=4 bytes.
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PP. Finally, all two-node mode shapes are transmitted back to a
central node, where they are recombined to form full system
mode shapes; global mode shapes are then shared with the entire
network. A graphical representation of this decentralized FDD
method embedded within a network of wireless sensors can be
seen in Fig. 2. It is also possible to extract damping information
from the SVD results for each two-node mode shape by perform-
ing an embedded inverse FFT �IFFT� on its SDOF PSD function
and calculating its logarithmic decrement. In this study, however,
all FDD damping estimates are performed offline. If desired, a
user can also request complete recorded time histories, FFT infor-
mation, and complete SVD results from each unit.

This approach requires slightly more wireless communication
than the PP method. Assuming modal frequencies have been pre-
viously identified, the decentralized FDD method requires a total
of 7,264 bytes to be communicated in a 20 node network, as
summarized in Table 1. In the current implementation, data com-
munication is done by peer-to-peer communication links. How-
ever, the number of bytes to be communicated could be reduced
to 1,504 if the central node is able to broadcast the global modes
to all of the network nodes as opposed to one at a time as is
currently implemented. As seen in Table 1, these numbers are
significantly less than the 170,880 bytes of data required in the
centralized setting. As such, while the distributed FDD analysis
technique presented above requires significantly more computa-
tion than does peak picking, it is effective in limiting the amount
of data transmission necessary to ascertain modal frequencies and
mode shapes. In addition, the implemented FDD method provides
more reliable and robust mode shape estimates compared to PP,
especially in the case of closely spaced modes. Additionally, be-
cause all FFT and SVD computations are performed simulta-
neously in a parallel fashion, significant time savings can be

realized from the parallel implementation. As a result, this method
can be made scalable to an almost infinite number of nodes.

Random Decrement Method

The RD technique is based upon the concept of the “random
decrement signature,” proposed initially by Cole �1968�, and ex-
plored in greater detail by Ibrahim �1977� and Asmussen �1997�.
This concept essentially states that the response of a single degree
of freedom structure due to a random input is composed of a
deterministic impulse part and a random part with an assumed
zero mean. Thus, by averaging enough samples of the same ran-
dom response, the random part will average out, leaving only the
deterministic part of the signal. In order to avoid averaging out
the deterministic part of the signal, random decrement analysis
consists of averaging N windows of length �. Each of these win-
dows must always start with one of the following:
1. A constant level, which yields the free decay step response;
2. Positive slope and zero level, which yields the free decay

positive impulse response; and
3. Negative slope and zero level, which yields the free decay

negative impulse response.
Thus, if y�t��random response, the free decay impulse re-

sponse, x�t�, can be written as

x��� =
1

N
�
n=1

N

y�tn + �� �4�

with the condition t= tn, when y�t�=ys=constant level; or y�t�=0
and dy /dt�0; or y�t�=0 and dy /dt�0.

The response resulting from applying the random decrement
signature technique is equivalent to the free decay response of the
structure. From this free response function, modal frequencies can
be extracted by examining zero crossings; and modal damping
can also be estimated using the logarithmic decrement of the
decay function. In a multiple degree of freedom structure, the
random decrement response for each mode can be calculated by
taking the time history response of the structure to the frequency
domain, and filtering out all frequencies that do not correspond to
a given mode.

In this study, a distributed RD algorithm is designed and em-
bedded within the computational core of a network of wireless
sensors so that the network can autonomously estimate modal
frequencies and damping ratios. For this algorithm, a set of con-
sistent time history acceleration data is first collected at each
sensing node. Each node in the network then transfers its data to
the frequency domain using an embedded FFT. Employing a fre-
quency window provided by the user �or calculated from prior
peak picking information�, frequencies irrelevant to a given mode
are filtered out, and the signal is taken back to the time domain
using an embedded IFFT. This window is specific to one modal
frequency, and thus the RD process must be repeated for each
mode. At this point, a summation trigger ys �which is also desig-
nated by the user� is used within each sensing node to create a
number of samples for random decrement averaging. These
samples are converted into a SDOF free decay impulse response
function by applying the concepts in Eq. �4�. Zero crossing and
logarithmic decrement techniques are employed to automatically
extract modal frequency and damping information from the im-
pulse response. These parameters, calculated independently in
each node in the network, can then be sent wirelessly to a central
node where a systemwide modal frequency and damping ratio can
be determined using statistical measures and broadcast to the net-

Fig. 2. Implementation of frequency domain decomposition method

on a network of wireless sensors, assuming previous knowledge of

modal frequencies
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work. A graphical representation of the distributed RD algorithm

can be found in Fig. 3. Note that it is also possible to extract

mode shapes using embedded RD analysis by choosing a com-

mon lead node with which to trigger the RD averaging �Ibrahim

1977�. However, in this study, the RD method is only used to

calculate modal frequencies and damping ratios.

Much like the embedded PP method, this decentralized RD

technique greatly limits the amount of data needed to be transmit-

ted wirelessly. In a network with 20 nodes, where 4,096 points of

data from each sensor are being used to calculate modal informa-

tion for four distinct modes, the decentralized RD method pre-

sented above requires only 1,216 bytes of data to be transmitted

wirelessly. However, it does rely on previous knowledge of ap-

proximate modal frequencies. Thus, as seen in Table 1, this

method, when used in conjunction with the decentralized PP al-

gorithm, can provide accurate estimates of modal frequencies and

damping ratios by transmitting a total of only 3,344 bytes of data.

In a wireless network allowing for ideal broadcasting, this num-

ber can be reduced to a mere 1,040 bytes. This is a significant

improvement over the requirements of the centralized setting. The

decentralized RD method is also rather simple to implement on a

wireless sensing network and utilizes engineering algorithms that

can be processed quickly. This method provides accurate esti-

mates of modal damping ratios by taking advantage of the great

degree of redundancy available within a sensing network. How-

ever, in a multiple degree of freedom system, prior knowledge of

the frequency characteristics of the system �possibly obtained

from an embedded PP analysis� is required in order to properly

window the Fourier spectrum. This method is also not suited to

determining modal properties involving closely spaced modes.

Experimental Testbed

Theater Balcony

A historic theater, located in metropolitan Detroit, is selected as
an appropriate structure to validate the embedded algorithms pro-
posed for use within a wireless sensing network. This theater is
one of the largest in the United States, and is part of a large
complex which includes several theater service areas and an at-
tached office building. The auditorium itself has two balconies: a
main balcony located at the fifth floor level of the building, and a
loge balcony located at the third floor level. The main balcony,
shown in Fig. 4�a�, is chosen for instrumentation purposes. This
balcony is approximately 50 m �150 ft� wide, and is structurally
supported only at the rear and sides of the auditorium. As a result
of its long unsupported span, the theater’s balcony is known to
suffer from humanly perceptible vibrations �Setareh 1990�.

Instrumentation and Excitation Strategy

On February 2, 2007, the front section of the main balcony of the
theater �specifically the first five rows within a 3 m �15 ft� band
of the balcony edge� was instrumented using a network of wire-
less sensors. These sensors, proposed by Wang et al. �2005� and
shown in Fig. 5, are capable of 16-bit data collection on four
simultaneous sensor channels and can communicate data up to
300 m on the 900 MHz radio band. A low-power 8-bit microcon-
troller is included in the wireless sensor design for local data
processing, and a rich library of data interrogation algorithms
have been included in the operating system �Lynch 2007�. Pow-
ered by five AA batteries, these units can operate for 30 h. Vari-
ous instrumentation studies of the unit on various long-span
bridges have validated the accuracy of the system �Lu et al. 2006;
Hou and Lynch 2006; Wang et al. 2006, Lynch et al. 2006�, in-
cluding tight time synchronization �i.e., a synchronization error of
less than 5 ms between nodes �Lynch et al. 2006��.

In this study, 21 wireless sensing units were installed in a
7�3 grid, with seven units distributed evenly across the span of
the balcony in each of rows 1, 3, and 5. The location of these
sensing units is shown in Fig. 4�c�. Attached to each wireless
sensing unit was either a PCB Piezotronics 3801D1FB3G micro-
electro mechanical system �MEMS� capacitive accelerometer or a
Crossbow CXL02LF1Z MEMS capacitive accelerometer; each
was oriented to monitor the vertical acceleration of the balcony.
The sensitivity of the PCB accelerometer is 0.7 V /g and its dy-
namic range is 3g, peak-to-peak. The sensitivity of the Crossbow
accelerometer is 1.0 V /g and its dynamic range is 2g, peak-to-
peak. To improve the performance of the wireless monitoring
system, a signal conditioning circuit proposed by Lynch et al.
�2006� was included with each sensor to both amplify and band-
pass �0.02–25 Hz� acceleration response data before inputting to
the wireless sensor’s ADC. This circuit essentially amplifies the
accelerometer output so that the noise floor of the accelerometer
controls the data quality as opposed to the quantization error of
the ADC; this is especially useful for ambient structural accelera-
tions. To verify the integrity of the wireless monitoring system,
two additional tethered acceleration channels were monitored
using a cable-based Freedom Data Acquisition System PC from
Olson Instruments, Inc.; this system comes equipped with its own
data acquisition software. Internally, data acquisition is accom-
plished using a National Instruments 1.25 MS /s, 16-channel
12-bit PCI data acquisition card. Tethered Dytran accelerometers
�Models 3165A and 3116A� were employed with the Freedom

Fig. 3. Implementation of random decrement method on a network

of wireless sensors, assuming previous knowledge of approximate

modal frequencies
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system. These accelerometers have sensitivities of 1.0 V /g with a
dynamic range of ±5g. As seen in Fig. 4�c�, the locations of the
tethered sensors are collocated with wireless sensors 4 and 5; as a
result, tethered sensors are denoted as 4 T and 5 T, respectively.

Because all three output-only identification methods previ-
ously presented assume a broadband white input, an appropriate
method of excitation had to be adopted for testing. For the pur-
poses of this study, impulsive excitation was delivered using a
simple heeldrop test. This type of loading is performed by quickly
raising and dropping both heels simultaneously. This test is typi-
cally thought to mimic an impulse load. The location of this heel-
drop loading was between sensor 2 and sensor 3 at the front of the
balcony, as seen in Fig. 4�d�.

Experimental Results

On the day of testing, a set of nine nearly identical tests �denoted
as runs Nos. 1–9� were run using impulse loadings generated by a
single person weighing 82 kg �180 lb� and performing a heeldrop.
The objectives of these tests were to validate the accuracy of the
wireless data acquisition system and to compare the ability of the
proposed distributed modal identification methods to accurately
determine the balcony’s modal parameters �modal frequencies,
damping ratios, and mode shapes� using the embedded processing

Fig. 4. Wirelessly instrumented theater balcony: �a� main balcony; �b� typical wireless sensor layout; and �c� location of wireless and tethered

accelerometers �plan view not drawn to scale�

Fig. 5. Wireless sensing prototype with individual components

highlighted
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capabilities residing on the spatially distributed network of wire-
less sensor nodes.

Wireless System Performance

The first testing objective was to validate the accuracy of the
proposed wireless sensing network against a traditional, tethered
monitoring system. During all 15 tests, two channels of tethered
acceleration data were collected in parallel with the wireless net-
work. Both monitoring systems employed a sample rate of 50 Hz.
If the response of the tethered system is compared alongside that
of the wireless system, it can be seen that the recorded time his-
tory data is nearly identical, as seen in Fig. 6. In this figure, the
response from both monitoring systems is plotted between 68 and

75 s. Very little discrepancy is observed if the two acceleration
time histories are subtracted from one another. Similar results
were obtained in other locations and in all testing scenarios.

Embedded Peak Picking Results

The second testing objective was to validate each of the distrib-
uted data processing algorithms �PP, FDD, RD� proposed in this
study. In order to validate the ability of the PP method to extract
modal frequencies from an output-only system, it is necessary to
first prove the effectiveness of each of the numerical tools used
within this identification technique. The first of these tools is the
embedded FFT. In all of the testing runs in which PP analysis was
requested, each node of the wireless sensor network was required
to calculate a 4,096-point complex-valued Fourier spectrum from
the time history data collected. A Fourier spectrum from one sens-
ing location is shown in Fig. 7. For comparison, Fourier spectra
calculated offline in Matlab using time history data from the teth-
ered and wireless monitoring systems are also shown. It can be
seen that the frequency characteristics extracted from the embed-
ded algorithm are very similar to the results obtained using an
offline analysis of either tethered or wireless time history data.

The second numerical tool in question is the embedded PP
algorithm itself. This algorithm is required in both the PP and the
FDD output-only identification methods presented in this paper.
In all of the test cases in which one of these two methods was
used, each wireless sensor in the network was asked to extract the

Fig. 6. Balcony response recorded by �a� wireless; �b� tethered

monitoring systems at sensor location 5; and �c� difference between

two measured histories

Fig. 7. Fourier spectra for balcony response at sensor location 5: �a�

embedded FFT executed by wireless sensor; �b� calculated offline

using wireless data; and �c� calculated offline using tethered data

Fig. 8. Embedded PP modal frequency results from: �a� sensor

location 2; �b� sensor location 4; �c� sensor location 20; and �d�

system-wide distribution of picked peaks tabulated at central wireless

sensor node
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three highest peaks from the Fourier spectrum created using the
embedded FFT algorithm. Because peak picking is a somewhat
subjective science, no one sensing unit can be solely relied upon
to correctly identify three distinct modal frequencies. As such, PP
results from each sensing node must be transmitted to a desig-
nated node or central server where an intelligent decision can be
made about final modal frequencies. PP results from three differ-
ent units can be seen in Fig. 8, which also shows the ability of a
central server to determine system-wide modal frequencies from a
complete set of PP data �compiled from all 21 nodes�. It can be
seen that by looking at the peak picking results as a whole, a
reasonable global estimate of peak frequencies can be extracted
from system-wide data. The central node was able to identify
system-wide modal frequencies and extract mode shapes for the
first �2.77 Hz�, second �4.14 Hz�, fourth �6.40 Hz�, and fifth
�7.93 Hz� modes. Note that the third mode �5.11 Hz� is absent, as
the chosen excitation point did not provide adequate spectral con-
tent at this modal frequency for proper peak picking mode detec-
tion. Fig. 9 compares a set of mode shapes calculated using the
embedded PP method with a set of mode shapes calculated offline
using the centralized FDD technique. Numerical comparisons be-
tween modal frequencies and mode shapes calculated using the
two methods are presented in Table 2. In this table, mode shapes
determined with peak picking are compared with the offline FDD
modes using the modal assurance criteria �MAC�, as defined by
Allemang and Brown �1982�. Strong agreement is observed in the
modal frequencies and mode shapes between those derived by the
wireless sensor network and those found off-line using a central-
ized server running Matlab. Modal frequencies are within 1% of
one another while MAC values of 0.9 or greater are observed in
most modes.

Embedded Frequency Domain Decomposition Results

The second embedded modal identification method presented in
this paper is the FDD technique. This method was chosen for this

study because of its advantages over peak picking when estimat-

ing mode shapes from output response data. When implemented

within a wireless sensing network, this method creates a large

array of overlapping two-node mode shapes, which can be easily

assembled at a later time by a central processor �either a desig-

nated node or a server�. This distributed technique provides a

great degree of scalability by parallelizing a typically centralized

algorithm to be executed by a community of wireless sensor

nodes. As such, three distinct network topologies were designed

and tested for the sharing of Fourier spectra and the creation of

two-node mode shapes. As can be seen in Fig. 10, data sharing in

each of the three network topologies begins with the same root

node �wireless sensor 1�, but creates a very different set of two-

node pairs. Each topology is meant to test different nodal overlaps

so as to observe the sensitivity of the distributed FDD method to

topology and to validate the scalability of this method. Because it

has been shown that a very small synchronization error �with a

maximum of 5 ms� may occur between distantly spaced nodes,

the assumption is that topologies with closely spaced two-node

mode shapes should behave better than topologies with distantly

spaced nodal connections. Additionally, it is assumed that in-

creased symmetry within a topology will lead to a decrease in

mode shape accuracy, depending on the nodal locations of the

detected modes. Fig. 11 displays the extracted mode shapes using

these three distinct network topologies in addition to the mode

shapes found using an offline centralized FDD method. Because

of the loading location, the third mode �5.11 Hz� was not cap-

tured in each of these cases. Table 3 provides a numerical com-

parison between mode shapes calculated using the embedded

FDD method and those calculated offline. Again, these mode

shapes are compared using the MAC, and MAC values of 0.9 or

greater are typically obtained for the network determined modes.

It can be seen from Fig. 11 that the first topology provides

excellent mode shape estimates for all four detected modes. How-

ever, the fourth mode in the second topology and the third mode

Table 2. Summary of Modal Identification Results from Embedded Peak Picking Method

Method Run

Natural frequency

�Hz� MAC

Mode 1 Mode 2 Mode 4 Mode 5 Mode 1 Mode 2 Mode 4 Mode 5

Centralized FDD �off-line� 1 2.734 4.163 6.335 7.946 1.000 1.000 1.000 1.000

2 2.727 4.210 6.349 7.996 — 0.949 0.937 0.779

Peak Picking �embedded� 3 2.734 4.135 6.342 8.020 0.825 0.678 0.427 0.817

4 2.772 4.144 6.396 7.929 0.990 0.973 0.869 0.944

Fig. 9. �a� Offline centralized FDD mode shape results; �b� embedded PP mode shape results based on in-network processing
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in the third topology appear to be somewhat inconsistent with the

mode shapes calculated using a centralized FDD �MAC�0.9�.

This is most likely due to the nodal locations of the third and

fourth modes, as well as symmetry between two-node pairs in the

second and third topologies. Because of the impact that topology

can have on the accuracy of mode shapes extracted with this

distributed FDD technique, more work is required to fully under-

stand the effects of topology choice on this method.

Embedded Random Decrement Results

The third distributed system identification technique implemented

on the wireless sensor network in the study is the RD method. For

each test in which the RD method was used, each sensor on the

network collected a consistent set of time history data. Using the

RD algorithm, this time history response was transformed at each

node into a SDOF free decay response function using a user-

defined trigger amplitude �which is defined as a certain percent of

the standard deviation of the time history response� and frequency

window �e.g., 2.0 to 3.5 Hz for mode 1, etc.� meant to target a

specific mode. Fig. 12 shows an output response time history

alongside a random decrement free decay response for each of the

first two modes, calculated by wireless sensors 4 and 6, respec-

tively. It can be seen that by employing zero crossing and loga-

rithmic decrement techniques on the resulting free decay response

functions, estimates of modal frequencies and damping ratios can

be determined at each sensing location. The type of quality result
seen in Fig. 12 was repeated in each testing instance and at almost
all sensing locations. Once collected at the individual sensor,
modal frequency and damping data can be shared with a central-
ized node or server and a global set of modal frequencies and
damping ratios can be determined by throwing out outliers and
averaging the remaining results. After averaging, the distributed

Fig. 10. Network topologies for two-node FDD data sharing

�arrows and shading indicate transmission of Fourier spectra for

two-point mode determination�: �a� topology 1; �b� topology 2; and

�c� topology 3

Fig. 11. �a� Offline centralized FDD mode shape results and embedded FDD mode shape results for �b� topology 1; �c� topology 2; and �d�

topology 3.
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RD method produced system-wide modal frequencies of 2.74 and
4.16 Hz and damping ratios of 1.79 and 1.86% for the first two
modes. These results are compared with offline results obtained
using a centralized EFDD method and are displayed in Table 4.

Summary and Conclusions

Structural monitoring systems have become increasingly popular
for monitoring the response characteristics of large civil structures
subjected to ambient and forced vibrations. By leveraging wire-
less communication technology, wireless monitoring systems can
be installed at a fraction of the cost and in much higher sensor
densities than traditional tethered sensing systems. In addition to
these cost savings, however, wireless sensors have an enormous
advantage over their tethered counterparts because of their local
analog-to-digital conversion and data processing capabilities. By
taking advantage of the embedded computing resources distrib-
uted across a large network of wireless sensors, decentralized
wireless health monitoring systems can perform as well as cen-
tralized tethered systems.

In this study, three existing output-only system identification
techniques were modified for a parallel processing environment
and embedded within a network of wireless sensing prototypes. In
February 2007, a 21-node wireless monitoring system was de-
ployed on the balcony of a historic theater in metropolitan
Detroit. With accelerometers attached to the wireless sensors, the
acceleration response of the balcony was measured during a set of
vibration tests. To excite the balcony with white noise frequency
characteristics, heeldrop impact loading methods were employed.

Using the embedded output-only modal parameter estimation
methods proposed in this study, the wireless monitoring system
was shown to be capable of collecting and processing measured

data at the individual sensor. The wireless network was able to
autonomously determine modal frequencies using a distributed PP
algorithm, mode shapes using a distributed FDD method, and
modal damping ratios using a distributed RD technique. It can be
seen that the embedded techniques yield modal parameters com-
parable to those obtained using traditional offline analyses.

This study represents the successful implementation of distrib-
uted modal parameter estimation techniques within the computa-
tional core of a network of wireless sensing prototypes. However,
further research is still needed to extend existing distributed com-
puting concepts to other system identification and damage detec-
tion methods. Both new and existing distributed techniques need
to be further validated in increasingly large-scale networks, and
must be deployed in long-term structural health monitoring situ-
ations. To successfully accomplish these tasks, work must be
done to improve the power efficiency of current wireless devices
and to enhance the efficiency of local data processing techniques
when applied in increasingly dense sensing networks.
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Table 3. Summary of Modal Identification Results from Embedded Frequency Domain Decomposition Method

Method Run

MAC

Mode 1 Mode 2 Mode 4 Mode 5

Centralized FDD �off-line� 1 1.000 1.000 1.000 1.000

5 0.957 0.985 0.961 0.840

Decentralized FDD �embedded� 6 0.988 0.943 0.821 0.373

7 0.994 0.984 0.630 0.960

Fig. 12. Embedded RD modal frequency and damping results
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Table 4. Summary of Modal Identification Results from Embedded Random Decrement Method

Method Run

Natural frequency

�Hz�

Damping ratio

�%�

Mode 1 Mode 2 Mode 1 Mode 2

Centralized FDD �off-line� 1 2.734 4.163 2.321 1.610

Random decrement �embedded� 8 2.740 — 1.792 —

9 — 4.159 — 1.864
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