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Automated Model-Based Bias Field Correction
of MR Images of the Brain

Koen Van Leemput,* Frederik Maes, Dirk Vandermeulen, and Paul Suetens

Abstract— We propose a model-based method for fully au-
tomated bias field correction of MR brain images. The MR
signal is modeled as a realization of a random process with a
parametric probability distribution that is corrupted by a smooth
polynomial inhomogeneity or bias field. The method we propose
applies an iterative expectation-maximization (EM) strategy that
interleaves pixel classification with estimation of class distribution
and bias field parameters, improving the likelihood of the model
parameters at each iteration. The algorithm, which can handle
multichannel data and slice-by-slice constant intensity offsets,
is initialized with information from a digital brain atlas about
the a priori expected location of tissue classes. This allows full
automation of the method without need for user interaction,
yielding more objective and reproducible results. We have val-
idated the bias correction algorithm on simulated data and we
illustrate its performance on various MR images with important
field inhomogeneities. We also relate the proposed algorithm to
other bias correction algorithms.

Index Terms—Bias field, digital brain atlas, MRI, tissue clas-
sification.

I. INTRODUCTION

A
CCURATE segmentation of magnetic resonance (MR)

images of the brain is of interest in the study of many

brain disorders. In multiple sclerosis, for instance, quantifica-

tion of white matter lesions is necessary for drug treatment

assessment, while in schizophrenia and epilepsy, volumetry of

gray matter, white matter, and cerebro-spinal fluid is important

to characterize morphological differences between subjects.

Since such studies typically involve vast amounts of data,

manual segmentation is too time consuming. Moreover, such

manual segmentations show large inter- and intraobserver

variability. Hence, there is a need for automated segmentation

tools.
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A major problem for automated MR image segmentation

is the corruption with a smoothly varying intensity inho-

mogeneity or bias field [1], [2]. This bias is inherent to

MR imaging and is caused by equipment limitations and

patient-induced electrodynamic interactions [2]. Although not

always visible for a human observer, such a bias can cause

serious misclassifications when intensity-based segmentation

techniques are used. Correcting the MR image intensities for

bias field inhomogeneity is therefore a necessary requirement

for robust automated segmentation.

Early methods for bias field estimation and correction used

phantoms to empirically measure the bias field inhomogeneity

[3]. However, this approach assumes that the bias field is

patient independent, which it is not [2]. Furthermore, it is

required that the phantom’s scan parameters are the same

as the patient’s, making this technique impractical and even

useless as a retrospective bias correction method. In a similar

vein, bias correction methods have been proposed for surface

coil MR imaging, using an analytic correction of the MR

antenna reception profile [4], but these suffer from the same

drawbacks as phantom-based methods. Another approach,

using homomorphic filtering [5], assumes that the frequency

spectrum of the bias field and the image structures are well

separated, but this assumption is generally not valid for MR

images [3], [6].

While bias field correction is needed for good segmenta-

tion, many approaches have exploited the idea that a good

segmentation helps to estimate the bias field. Dawant et al.

[6] manually selected some points inside white matter and

estimated the bias field as the least-squares spline fit to the

intensities of these points. They also presented a slightly

different version where the reference points are obtained by an

intermediate classification operation, using the estimated bias

field for final classification. Meyer et al. [7] also estimated the

bias field from an intermediate segmentation, but they allowed

a region of the same tissue type to be broken up into several

subregions, which creates additional but sometimes undesired

degrees of freedom.

Wells et al. [8] described an iterative method that inter-

leaves classification with bias field correction based on max-

imum likelihood parameter estimation using the expectation-

maximization (EM) algorithm [9]. However, for each set of

similar scans to be processed their method, as well as its re-

finement by other authors [10], [11], needs to be supplied with

specific tissue class conditional intensity models. Such models

are typically constructed by manually selecting representative

points of each of the classes considered, which may result in
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segmentations that are not fully objective and reproducible.

In contrast, the method we present here does not require

such a preceding training phase. Instead, we use a digital brain

atlas with a priori probability maps for each tissue class to au-

tomatically construct intensity models for each individual scan

being processed. This results in a fully automated algorithm

that interleaves classification, bias field estimation, and esti-

mation of class-conditional intensity distribution parameters.

In this paper we focus on the bias correction component

of the algorithm. We present validation of the bias correction

on simulated data with known ground truth and demonstrate

that the algorithm is capable of robustly estimating the bias

of both single-channel and multichannel MR images. In the

companion paper [12], we focus on tissue classification, which

we evaluate by comparison with interactive segmentations by

a trained expert. In this second paper [12] we also extend

the current approach to include contextual constraints and

investigate the use of Markov random fields to improve the

segmentation generated by the algorithm.

This paper is organized as follows. Our bias correction

algorithm is explained in detail in Section II. Validation on

simulated data is presented in Section III and the perfor-

mance of the method on single and multichannel MR data

is illustrated in Section IV. The main characteristics of the

algorithm are discussed and compared to other approaches

in Section V. Finally, a summary and some conclusions are

given in Section VI.

II. METHOD

Our approach for estimating the bias field and the tissue

classification of an MR image is based on maximum likelihood

parameter estimation using the EM algorithm. We first briefly

discuss a two-step EM algorithm for MRI tissue classification

without bias correction, which iteratively alternates between

estimation of intensity model parameters and tissue classifi-

cation, maximizing the likelihood of the model parameters at

each iteration. We then extend this to a three-step procedure

by including a bias correction step such that the algorithm now

alternates between estimation of intensity model parameters,

tissue classification, and bias field estimation. We also extend

the algorithm to include multichannel input data and to cope

with background noise and slice-by-slice constant offsets.

A. Two-Step Classification Algorithm Without Bias Correction

The EM algorithm (Dempster et al. [9]) is a general tech-

nique for finding maximum likelihood parameter estimates in

problems with missing data. It is assumed that the observed

data are only part of the underlying complete data. The EM

algorithm tries to find the maximum likelihood parameter

estimates for the observed data by estimating the missing data,

based on the current parameter estimation. Combined with the

observed data, this yields an estimation of the complete data.

The EM algorithm then estimates the maximum likelihood

for the observed data by maximizing the likelihood for the

estimated complete data.

Applied to the problem of MRI tissue classification, the

observed data are the signal intensities, the missing data are

the classification of the images, and the parameters are class-

conditional intensity distribution parameters. It is assumed

that each voxel value is selected at random from one of

classes. The EM algorithm then interleaves class-conditional

distribution parameter estimation and a statistical classification

of the image voxels into classes.

Modeling each class by a normal distribution with

mean and variance , as in [8] and [13], the probability

density that class has generated the voxel value at position

is

(1)

with the tissue class at position and

the distribution parameters for class . Defining

as the model parameters, the overall probability

density for is

which is a mixture of normal distributions. Since all the voxel

intensities are assumed to be statistically independent, the

probability density for the image given the model is

The maximum likelihood estimates for the parameters

and can be found by maximization of , equivalent to

minimization of . The expression for is

given by the condition that

Differentiating and substituting by the Gauss-

ian distribution (1) yields

where Bayes’ rule was used

(2)

Rearranging the terms yields the expression for :

(3)

The same approach can be followed to derive the expression

for :

(4)

Note that (2) performs a classification, whereas (3) and (4)

are parameter estimates. Together they form a set of coupled
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equations, which can be solved numerically by alternately iter-

ating between classification (step 1) and parameter estimation

(step 2). The algorithm fills in the missing data during step

1 and then finds the parameters that maximize the likelihood

for the complete data during step 2. It has been shown in [14]

that the likelihood is guaranteed to increase at each iteration

for such an algorithm.

B. Three-Step Classification Algorithm with Bias Correction

To correct for bias field inhomogeneities during classi-

fication, we propose to extend this two-step classification

algorithm with a bias field estimation step. Each class is

modeled by a normal distribution as in the original algorithm,

but we now include a parametric model for the bias field. We

model the inhomogeneity as a linear combination

of smooth basis functions . In our implementation, we

used polynomial basis functions, but the theory is valid for

any kind of smooth basis functions, such as splines. Field

inhomogeneities are known to be multiplicative. We therefore

first logarithmically transform the intensities in order to make

the bias additive. Our model is then

and

with the bias field parameters. Bias field correction

thus involves finding the parameters and that

maximize the likelihood

Following the same approach as for (3) and (4), the expres-

sions for the distribution parameters and are

(5)

and

(6)

Equations (5) and (6) are similar to (3) and (4) of the two-

step EM algorithm. The only difference is that the data is

corrected for a bias field before the distribution parameters

are calculated.

Setting the partial derivative for of

to zero yields

Solving this equation for does not seem very tractable,

but combining all equations for all and introducing matrix

notation simplifies the problem considerably

...

(7)

with

...
...

...
. . .

...

The matrix represents the geometry of the bias field model,

each of its columns evaluating one basis function at all

coordinates . is a diagonal matrix of voxel weights ,

being the sum over all classes of the inverse of their variance

weighted by the class probability of voxel . The vector

represents the residue image, i.e., the difference between the

original data and the estimated bias-corrected data . Equa-

tion (7) is a weighted least-squares fit. From the intermediate

classification and Gaussian distribution parameter estimates,

a prediction of the signal without bias is constructed and

subtracted from the original data. Each voxel in the resulting

residue image is assigned a weight, inversely proportional to its

weighted variance. The bias field is obtained as the weighted

least-squares fit to the residue image.

To get more insight into (7), consider the special case in

which each voxel is exclusively assigned to a single class. The

predicted signal is then equal to each pixel’s class mean and

the weights are inversely proportional to the variance of

that class. Another case in which (7) simplifies is when all

the variances are the same. The weights are then all the

same as well, and the predicted signal is the class likelihood

weighted sum of the means of all classes.

Iterating between (2) and (5)–(7), the algorithm interleaves

classification (step 1), class distribution parameter estimation

(step 2), and bias estimation (step 3). The algorithm fills in the

missing data during step 1 and then finds the parameters that

increase the likelihood for the complete data during steps 2 and

3. While the two-step classification algorithm of Section II-A

iterates between steps 1 and 2 and does not include bias

corrections, the method of Wells et al. [8] applies steps 1

and 3, but does not update the class distribution parameters

during iterations. Since in steps 2 and 3 of our algorithm the

likelihood is only increased but not maximized, our algorithm

is called a generalized EM algorithm (GEM) [9]. It has been

shown in [14] that likelihood is guaranteed to increase at each

iteration for such GEM algorithms.
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To start the iterative scheme presented above, we need an

initial estimate of the class distribution parameters or of the

tissue classification itself. Instead of having the user manually

indicate pixels that are representative for each class, as Wells

et al. [8] do, we use a digital brain atlas that provides a priori

tissue probabilities for each voxel in the image. This will be

discussed in Section II-D.

C. Further Extensions

The algorithm, as presented so far, can only handle single-

channel input data. Since each of the channels of multispectral

MR images provides additional information, we extend the

algorithm to multichannel data in order to improve the classifi-

cation. Further extensions include a model for the background

noise and compensation for slice-by-slice constant intensity

offsets.

1) Multichannel Input Data: For multichannel data

the Gaussian distributions of the classes become

multivariate normals with mean and covariance matrix

. Extension of (3) and (4) to multivariate normals is

straightforward (see, for instance, [15]). Each channel has its

own polynomial bias field. Equation (7) for the bias field

parameters now becomes

...
...

. . .
...

...

(8)

with the vector of bias field polynomial coefficients of

channel , the weight matrix for the pair of channels

and , and the corresponding residue image

diag

Each element in the weight matrix is a weighted sum

over all classes of the elements of the inverse of the

class covariance matrices. Thus, the bias field of the different

channels cannot be calculated separately in the general case.

If all the covariance matrices were diagonal, the

would be zero for , which means that the bias fields

are uncoupled. Solving (8) would then be the same as solving

the single-channel equation (7) for each channel separately.

2) Background Model: The image background requires a

special treatment since there is no signal except for the noise.

Hence, the background is not affected by the bias field and

should therefore not constrain the polynomial bias estimation.

The background noise can be included explicitly in the

model. In [16], it is shown that in image regions with no

MR signal, the noise is governed by the Rayleigh distribu-

tion. Since we work with the logarithm of the images, the

distribution becomes

with the measured pixel intensity and the variance

parameter of the background noise. The model now becomes

with the background class. In this model the tissue classes are

affected by the bias field, while the background is not. Using

the same approach as before to find the parameters maximizing

the likelihood, the expression for the variance parameter of the

noise in the background becomes

In case of multichannel input data, this expression can be used

for each channel separately, since the noise in the different

channels is independent. The other equations remain exactly

the same, except (7) for the bias correction. The bias is now

only estimated with respect to the nonbackground classes.

Pixels assigned to the background have a zero weight for the

bias polynomial fit, which comes as a natural result since the

background was modeled to be unaffected by the bias field.

3) Slice-by-Slice Constant Offsets: In addition to a

smoothly varying field inhomogeneity, two-dimensional (2-D)

multislice sequence MR images, which are acquired in an

interleaved way, are typically also corrupted with a slice-by-

slice constant intensity offset. This is commonly attributed to

gradient eddy currents and crosstalk between slices [1]. In

the literature, much research has been done on intraslice bias

field correction, but the problem of such interslice artifacts

has largely been ignored. A simple model for slice-by-slice

offsets has been proposed in [17]. Every slice is assigned a

constant multiplicative shading factor. Estimation of these

offsets can be included in our algorithm by assigning to every

slice a constant additive intensity term after logarithmic

transformation. The expression to be minimized for single

channel input data then becomes

which means we have added a zero-order polynomial to each

slice. As before, the polynomial is a weighted least-squares

fit, but now only fitted to the voxels of slice Estimation of

these forms another additional step in the algorithm.

However, we have noticed on multiple data sets that this

model for the bias in 2-D multislice sequence MR images is

too restrictive. We found, experimentally, that correcting for a

2-D polynomial bias field on each slice separately gives more
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consistent classifications. Therefore, we use the following

model for this type of data sets:

with the coefficients of the 2-D polynomial bias

field on slice . Such a slice-by-slice bias correction model

was also used by Wells et al. [8] and Dawant et al. [6].

D. Initialization with a Digital Brain Atlas

The extended EM algorithm presented above iteratively

interleaves classification, class distribution estimation and bias

field correction. We initially set the bias field coefficients to

zero and start the iterations by providing the algorithm an

initial a priori estimate of the class probabilities

for each pixel and class . This allows one to compute the

class distribution parameters using (5) and (6) and to update

the bias field parameters using (7), from which a new estimate

for the classification can be derived using (2), etc.

The initial a priori pixel class probabilities are derived

from a digital brain atlas, distributed with the SPM96 package

[18] that contains spatially varying prior probability maps

for the location of white matter, gray matter, and CSF, as

shown in Fig. 1. These probability maps, with an isotropic

spatial resolution of 2 mm, were obtained by averaging binary

white-matter, gray-matter and CSF segmentations of MR brain

images from a large number of subjects, after normalization of

all images into the same space using an affine transformation

[19].

To apply the a priori information of the atlas, we first

normalize the atlas to the space of the study image by matching

the study image to a T1 template provided by SPM96 that is

already coregistered with the atlas (see Fig. 1), using the affine

multimodality registration technique based on maximization of

mutual information of corresponding voxel intensities of Maes

et al. [20]. It has been shown [20] that this registration criterion

is fairly insensitive to moderate bias fields, such that it can

be applied fully automatically and reliably to the uncorrected

MR images. The class-specific distribution parameters

and are then computed from the study image, using the

registered and reformatted a priori pixel class probability maps

provided by the atlas. This approach frees us from having to

interactively indicate representative pixels of each class, which

makes our method more objective and reproducible and allows

the method to be fully automated.

During subsequent iterations, the atlas is further used to

spatially constrain the classification by setting the a priori class

probability in (2) equal to . Thus,

the voxels are not only classified based on their intensities, but

also based on their spatial position. This makes the algorithm

more robust, especially when the images are corrupted with

a heavy bias field.

(a) (b)

(c) (d)

Fig. 1. Digital brain atlas with spatially varying a priori probability maps
for (a) white matter, (b) gray matter, and (c) CSF. High intensities indicate
high a priori probabilities. These maps were constructed by averaging binary
segmentations of MR images from a large number of subjects, after affine
spatial normalization [19]. (d) The atlas also contains a T1 template image
which is used for registration of the study images to the space of the atlas.

E. Implementation

We implemented the algorithm as a modification of the

Matlab-based [21] SPM96 [18] segmentation tool, which orig-

inally used the two-step classification algorithm without bias

correction of Section II-A. The user can choose the maximum

order of the polynomial bias field estimation, along with an

option to search for a three-dimensional (3-D) bias field or for

a 2-D field for each slice separately. There is no limit on the

number of channels of the input data.

We use six classes: three brain tissue classes for white

matter, gray matter, and CSF, respectively, two nonbrain

tissue classes and one class for the background signal. Two

classes are used for the nonbrain tissues because the intensity

distribution of the nonbrain tissue voxels cannot be accurately

modeled by a single Gaussian. Because the atlas provides a

priori probability maps for white matter, gray matter and CSF

only, we construct a priori probability maps for the three

other classes by subtracting the sum of the atlas probability

maps from a map with value one in all entries and dividing

the residual probability equally over the three other classes.

Since we are only interested in brain tissue, we confine the

algorithm to the region where the atlas indicates a nonzero a

priori probability for white matter, gray matter, or CSF. All

other pixels are of no interest and are simply discarded.

In order to reduce calculation time, we estimate the pa-

rameters on down-sampled 3-D data and afterwards use those

to perform bias estimation and tissue classification at full

resolution. In order not to introduce extra partial volume
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voxels, we avoid interpolation during down sampling by only

considering voxels lying on the original image grid. We start

with a zero-order bias polynomial and increase the order

when convergence is detected, until the maximum order,

typically four, is reached. The iterations are stopped when

the log likelihood no longer increases significantly (relative

change smaller than 0.01%), which is typically after about 30

iterations. The output of the program are the classifications in

the form of probability images and an estimation of the bias

field for each input channel.

When run on an IBM RS6000 workstation, the whole

process of atlas registration, parameter estimation on down-

sampled 3-D data for a fourth-order polynomial, and subse-

quent classification of the full-resolution data typically takes

about 0.5 h for a single-channel image with dimensions 256

256 52. Increasing the size of the images and adding more

channels increases the calculation time slightly.

F. A 2-D Example

Fig. 2 illustrates the bias correction algorithm presented

above, with the simple example of a single sagittal slice of

a T1-weighted MR image of the head. The figure shows the

status of the algorithm on the last iteration. Based on the

bias and distribution estimation from the previous iteration,

a classification is made. The predicted signal without bias

[Fig. 2(b)] is calculated from this classification and from

the distribution estimation. The residue image [Fig. 2(c)] is

obtained by subtracting this predicted signal from the original

image. The bias [Fig. 2(e)] is estimated as the weighted least

squares fit through the residue image, using the weights shown

in Fig. 2(d).

The residue and weight images are the key to understanding

the algorithm. If our model had been perfect, then the residue

image would be the bias field corrupted with some noise. How-

ever, it can be seen that this is not true, especially not for CSF

and the tissues surrounding the brain. The reason is that, unlike

white matter and gray matter, the intensity distribution of those

classes is not very peaked. When a Gaussian distribution model

is used, the mean may be unrepresentative for the intensity of

the pixels belonging to those classes, introducing large errors

in the residue image.

However, the influence of such errors on the estimation

of the bias field is tempered by the weights. Indeed, classes

whose distributions are not very peaked and, as a consequence,

show large errors in the residue image, will also have a large

variance. Since the weights are inversely proportional to the

variance, those classes will be assigned a low weight for bias

estimation. This can be seen in Fig. 2(d). Pixels belonging to

white matter and, to a lesser extent, gray matter have a very

high weight compared to pixels belonging to other classes.

Thus, the bias field is estimated mainly from brain tissue pixels

and extrapolated via the polynomial model to regions where

the bias field cannot be confidently estimated.

III. VALIDATION

Quantitative validation of the performance of image analysis

methods on clinical data is difficult due to the lack of ground

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Illustration of the bias correction algorithm on a 2-D T1-weighted
MR image at the last iteration. (a) Original image. (b) Predicted signal based
on previous iterations. (c) Residue image. (d) Weights. (e) Estimated bias field.
(f) Corrected image. The algorithm is confined to the region where the atlas
indicates a nonzero a priori probability for white matter, gray matter, or CSF.

truth. We therefore evaluated the performance of the bias

correction algorithm on simulated T1-, T2-, and PD-weighted

MR images corrupted with a known bias field, as shown in

Fig. 3. These images were obtained from the BrainWeb MR

simulator [22]–[24]. The images have an isotropic voxelsize

of 1 1 1 mm and are corrupted by a bias field of 40%.

We varied the standard deviation of the noise between 1–9%

of the mean white matter intensity. For each noise level,

we used the three-step EM algorithm, as presented above, to

estimate the bias fields for the different channels from each

channel separately (single channel input), as well as from all

channels combined (three-channel input). The estimated and

the imposed bias fields were compared by dividing them and

calculating the coefficient of variation (variance divided by

mean times 100) of the resulting image. This coefficient is

zero if the true bias field has been totally recovered.
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(a)

(b)

(c)

Fig. 3. Validation of the bias correction algorithm on simulated data. (a) Simulated T1-, T2-, and PD-weighted MR images obtained from the BrainWeb
simulator [22]. (b) Known bias fields imposed on the T1-, T2-, and PD-weighted images. The amplitude of the bias fields is exaggerated for visualization
purposes. (c) Coefficient of variation before correction, after single-channel correction and after three-channel correction for different noise levels.

The plots in Fig. 3 show the coefficient of variation for the

T1-, T2-, and PD-weighted images before and after correction.

It can be seen that, in all cases, the algorithm has significantly

reduced the bias field. Adding noise decreases the accuracy of

the bias estimation only slightly. For the T1- and T2-weighted

images, the performance is clearly better when all the channels

are combined, compared to the situation where only a single

channel is used. This can be explained by considering that

each channel provides additional information, yielding better

classifications and, thus, more accurate bias estimations.

IV. RESULTS

In this section we describe experimental results on various

MR images of the head. We applied the algorithm to correct

the bias field on images with different resolution, number

of channels and severity of field inhomogeneity. In all the

experiments, we used a fourth-order polynomial.

A. Single-Channel Data

Fig. 4 shows the classification result for a high-resolution

sagittal T1-weighted MR image (Siemens Vision 1.5 T, 3-D

MPRAGE, 256 256 matrix, 1.25-mm slice thickness, 128

slices, FOV 256 mm, TR 11.4 ms, TE 4.4 ms) obtained

with the two-step classification algorithm without bias correc-

tion of Section II-A and with our extended algorithm using a

3-D polynomial bias field model. Because a relatively strong

bias field reduces the intensities at the top of the head, the two-

step algorithm wrongly classifies white matter in that area as

gray matter. The extended algorithm succeeds in compensating

for this and provides better segmentations.
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(a)

(b)

(c)

(d)

Fig. 4. Slices of a high-resolution T1-weighted MR image illustrating the performance of the method on single-channel data. (a) Original data. (b)
White-matter classification with the two-step classification algorithm without bias correction. (c) White-matter classification with our three-step algorithm
with bias correction. (d) Estimated bias field.

Fig. 5 shows 3-D rendered images of the white– and gray-

matter segmentation of this data set. It can be seen that without

bias correction, gray matter is a little bit thinner at the top of

the brain and white matter is seriously misclassified as gray

matter.

B. Multichannel Data

Fig. 6 shows an example of two-channel input data con-

sisting of historical PD and T2-weighted MR images (GE

Signa 1.5 T, 40 axial slices of 256 256, pixel size of

0.94 0.94 mm , 5-mm slice thickness, 2-mm interslice

gap) taken from a schizophrenia study. Although the effect

of the bias field is hardly visible, it has a big impact on the

resulting segmentation. For visualization purposes, we derived

a hard segmentation from the probability maps produced by

the algorithm by assigning each voxel exclusively to the class

it most probably belongs to. At the top and the bottom of

the images, the image intensities are slightly reduced due to

the bias field such that, without bias correction, gray matter is

wrongly classified as white matter. After bias correction, the

segmentation is clearly improved.

A quantitative analysis of the bias correction for this ex-

ample is shown in Table I. We manually selected some repre-

sentative pixels for white and gray matter and calculated the

coefficient of variation of their intensities (standard deviation

divided by the mean) before and after bias correction. As is

clear from Table I, the coefficient of variation has decreased

significantly after bias correction. The remaining variance can

be attributed to tissue microtexture, noise, partial volume

effect, and remaining bias.

The effect of bias correction can also be visualized in feature

space. Fig. 7 shows scatter plots of PD versus T2 intensity of

the selected white- and gray-matter pixels before and after bias

correction. Clearly, the bias field causes a serious overlap in

feature space, which leads to severe misclassifications. After

bias correction, white–matter and gray-matter pixels are much

more clustered and their clusters are also more separated, such

that better classifications can be made.

C. 2-D Multislice Sequence

To illustrate bias correction for images with slice-by-slice

constant offsets, we have processed the single-channel 2-D

multislice T1-weighted image shown in Fig. 8 (19 sagittal
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TABLE I
COEFFICIENT OF VARIATION FOR THE DATA OF FIG. 6

(a) (b)

(c) (d)

Fig. 5. 3-D rendering of the gray-matter (left) and white-matter (right)
segmentation of the MR image of Fig. 4. (a) and (b) Two-step algorithm
without bias correction. (c) and (d) Three-step algorithm with bias correction.

slices of 256 256, voxel size of 0.94 0.94 5.00

mm , interslice gap of 2.00 mm). The slice-by-slice offsets can

clearly be seen as an interleaved bright–dark intensity pattern

in a cross section orthogonal to the slices. The estimated bias

and the corrected images are also shown. It can be seen that

the algorithm compensates for the slice-by-slice offsets and

produces more consistent classification results.

D. Surface Coil Image

Fig. 9 shows a T1-weighted 2-D multislice image acquired

with a surface coil (Siemens Vision 1.5 T, 20 sagittal slices

of 256 256, voxel size of 0.90 0.90 7.20 mm ,

1.20-mm interslice gap). Despite their limited region of detec-

tion, surface coils can be used in situations where the improved

signal-to-noise ratio and the higher spatial resolution are

beneficial: for instance, for functional imaging. An important

drawback is the large bias field, as is clear from Fig. 9, which

impedes even visual inspection by a human observer.

Nevertheless, our algorithm performs very well on such

images, as is apparent from Fig. 9. After bias correction, white

and gray matter have the same intensity all over the image,

making visual inspection possible. This example illustrates

(a) (b)

(c) (d)

Fig. 6. Segmentation of multichannel PD- and T2-weighted MR data. (a)
PD slice. (b) T2 slice. (c) Segmentation with the two-step algorithm without
bias correction. (d) Segmentation with our three-step algorithm with bias
correction. Tissue classes are color-coded as follows: bright = CSF; dark
gray = gray matter; light gray = white matter; black = background and
nonbrain tissues.

(a) (b)

Fig. 7. Separation of white matter (crosses) and gray matter (circles) in
feature space. The plots show the intensity of T2 versus the intensity of
PD before (left) and after (right) bias correction for the same points used in
Table I.

the robustness of our algorithm, even for fairly large bias

fields. However, it should be pointed out that in this case

the procedure was not completely automatic. Although the

intensity based registration algorithm we use to normalize the
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(a)

(b)

(c)

(d)

(e)

Fig. 8. An example of bias correction of a T1-weighted 2-D multislice image
corrupted with slice-by-slice offsets. (a) Original data. (b) Estimated bias. (c)
Corrected data. (d) White matter probability map for the two-step algorithm
(no bias correction). (e) White matter probability map for our three-step
algorithm.

(a)

(b)

(c)

Fig. 9. The 3-step algorithm applied to a T1-weighted surface coil image.
(a) Original data. (b) Estimated bias. (c) Corrected data.

atlas to the study images is fairly insensitive to moderate bias

fields, it was confused by the very large bias field in this image

such that we had to provide a good initial position manually

to make the registration work.

V. DISCUSSION

The MR bias correction method we proposed in this paper

models the MR signal as the realization of a random process

with a parametric probability density, corrupted by a smooth

parametric bias field. We presented an extended EM algorithm

that interleaves tissue classification with class distribution and

bias field parameter estimation, increasing the likelihood of the

model parameters at each iteration. The main characteristics of

our algorithm are the weights used to estimate the parameters

of the bias field model, iterative reestimation of the tissue class

distributions, and the use of a priori tissue probability maps

from a digital brain atlas.

The bias field is modeled as a linear combination of smooth

basis functions. The parameters of this model are computed

from a weighted least-squares fit to the residue image, each

pixel’s weight being inversely proportional to the variance of

the class that pixel belongs to. The bias field is therefore
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computed primarily from pixels that belong to classes with

a narrow intensity distribution, such as white and gray matter.

For these classes, the residue image is a good indicator for

the bias field, while for CSF and nonbrain tissue classes that

have a rather broad intensity distribution, the residue image

shows large errors, as can be seen in Fig. 2. Our algorithm is

robust for such errors because it automatically assigns a low

weight to these regions. The smooth spatial model of the bias

field extrapolates the bias field from regions where it can be

confidently estimated from the data (white and gray matter)

to regions where such an estimate is ill conditioned (CSF,

nonbrain tissues).

The algorithm of Wells et al. [8] uses the same residue

and weights as our algorithm, but they compute the bias field

from the residue image by spatial filtering. Because large filter

sizes are required for sufficient smoothing, this approach can

suffer significantly from boundary effect artifacts due to the

limited extent of the image domain [25]. Moreover, the bias

estimation is a mere low-pass filtered version of the residue

in large regions with the same tissue class, independent of the

weights. In regions with low weights, such as the ventricular

area in Fig. 2, this can be expected to lead to errors.

We used a fourth-order polynomial model for the bias field

[3], [7], [26]. We have not investigated other representations

such as splines [6], [27], [28], nor did we investigate tech-

niques to estimate the order or the stiffness of the bias field

model automatically from the data itself. For 2-D multislice

sequence images, we found that correcting for a 2-D polyno-

mial bias field on each slice separately, which was also done in

[6] and [8], yields a more consistent classification than when

a single 3-D polynomial is used, even when correcting for

slice-by-slice constant intensity offsets between slices.

Our extended EM algorithm reestimates at each iteration

the parameters and of the normal intensity distribution

of each class, while in earlier approaches [8], [10] these

parameters were determined by manual training and kept

fixed during iterations. It has been reported [10], [26], [29]

that Wells’ method [8] is sensitive to the training of its

classifier: the algorithm produces different results depending

on which pixels were selected for training. Moreover, pixels

the algorithm was not trained for may cause severe errors in

the residue image and the bias field estimation [10], [29]. This

typically occurs in regions surrounding the brain, consisting of

several different tissue types that are easily overlooked during

training. Guillemaud and Brady [10] proposed to account for

this by modeling these nonbrain tissues by a single class

with a uniform distribution, artificially assigning the nonbrain

tissue pixels a zero weight for the bias estimation. This is not

necessary with our algorithm. The class distribution parameters

are updated at each iteration from all pixels in the image and

classes consisting of different tissue types are automatically

assigned a large variance and, thus, a low weight for bias

estimation.

Our algorithm avoids manual training of the classifier by

using a digital brain atlas that provides a priori information

about the expected location of white matter, gray matter, and

CSF. This yields objective and reproducible results and allows

full automation of the algorithm. Moreover, the use of an atlas

makes our algorithm significantly more robust. Even for severe

bias fields as in Fig. 9, the method converges to the right

solution because it is forced by the atlas to classify most of

the pixels correctly. A drawback of this approach is that it

assumes such an atlas to be available, which currently limits

the practical use of our method to brain images only. Also,

while the registration approach is able to compensate for global

differences in brain morphology, for instance when segmenting

MR images of children [12], we found that the method may

occasionally fail, due to poor initialization in the presence

of large pathology-induced abnormalities in brain shape, for

instance, in subjects with dramatically increased ventricles.

This problem may be overcome by using nonrigid rather than

affine registration for atlas matching.

In our current implementation, the atlas is normalized to

the study image using an affine geometric transformation

which is computed automatically from the data [20]. The

registration to the atlas may fail for surface coil images with

very large bias, such that manual intervention is sometimes

required to provide good initial alignment. The fuzziness

of the atlas we are currently using helps to temper the

influence of local misregistration, not corrected for by the

affine registration. However, while the unsharpness of the atlas

has no significant influence on the bias correction itself, it

may occasionally introduce voxel classification errors. Because

some nonbrain voxels may be assigned a nonzero a priori

brain tissue probability by the atlas, they can be misclassified

as white or gray matter. Inclusion of contextual constraints

on the classification and elastic registration techniques may

overcome this problem and are currently being investigated

[12], [30].

A number of authors have proposed bias correction methods

that do not use an intermediate classification [26], [27]. The

approach of Sled et al. [27], for instance, is based on deconvo-

lution of the histogram of the measured signal, assuming that

the histogram of the bias field is Gaussian, while Brechbühler

et al. [26] find the bias field that optimizes some heuristic

measure for the sharpness of the histogram of the corrected

image. Contrary to our approach, these methods treat all

pixels alike for bias estimation. This looks rather unnatural,

since it is obvious that the white-matter pixels, which have

a narrow intensity histogram, are much more suited for bias

estimation than, for instance, the tissues surrounding the brain

or ventricular CSF. As argued above, our algorithm takes

this into account, explicitly, by the class-dependent weights

assigned to each pixel.

VI. CONCLUSION

In this paper, we presented a method for MR bias field

correction and tissue classification using a priori tissue prob-

ability maps from a digital brain atlas. Our algorithm is

fully automated, avoids user interaction, and therefore yields

objective and reproducible results. We extended a two-step

EM classification algorithm without bias correction to a three-

step procedure, incorporating an explicit parametric model of

the bias field. The algorithm interleaves classification with

parameter estimation, yielding better results at every iteration.
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Results were presented and discussed on various MR data

sets with important field inhomogeneities and slice-by-slice

offsets. We related the algorithm to some previously published

bias correction algorithms. Future work will focus on incor-

porating elastic registration techniques to normalize the atlas

to the space of the images and on validation of the tissue

classification algorithm.
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