
DOI:10.35490/EC3.2019.157Page 48 of 490

2019 European Conference on Computing in Construction

Chania, Crete, Greece

July 10-12, 2019

AUTOMATED MODEL CHECKING FOR TOPOLOGICALLY COMPLEX CODE

REQUIREMENTS – SECURITY ROOM CASE STUDY

Tanya Bloch, Meir Katz, Raz Yosef and Rafael Sacks

Virtual Construction Laboratory, Faculty of Civil and Environmental Engineering, Technion – Israel
Institute of Technology, Haifa 32000, Israel

Abstract

A review of the state of the art in the field of automated

code compliance checking revealed that existing

applications are limited in the scope of clauses they are

able to check. While some building code clauses are

straightforward, requiring direct checking of

parameter values, others depend on the topological

relationships among objects, making automated

checking of BIM models more challenging. Moreover,

existing applications require the user to extensively

preprocess the model in preparation for checking. We

propose applying semantic enrichment for pre-

processing the BIM models. The goal of a semantic

enrichment process in support of automated code

compliance checking is to derive the needed clause test

values automatically and to represent them explicitly.

A successful semantic enrichment process can

therefore widen the scope of requirements that can be

checked automatically. This work demonstrates such a

process for checking code clauses involving

topologically complex requirements. Although

semantic enrichment proved to be successful for

several purposes in previous research, dealing with

complex topologies involves different types of

semantic enrichment tasks. We explore the subject

through a test case of requirements from the Israeli

code for security rooms.

Introduction

In a visionary paper describing a computerized

Building Design System (BDS) published in 1975,

Eastman predicted that “Designing would consist of

interactively defining elements…Thus BDS will act as

design coordinator and analyzer, providing a single

integrated database for visual and quantitative

analyses, for testing spatial conflicts and for drafting.

… Later, one can conceive of a BDS supporting
automated building code checking in city hall or the

architect’s office” (Eastman, 1975). While all the

other specific capabilities described in that paper have

been realized with modern BIM systems (Sacks et al.,

2018), automated building code checking remains

limited to a narrow class of building code

requirements, restricted almost entirely to those that

impose numerical constraints on explicitly defined

parameters of model objects. Furthermore, the

discipline-specific nature of most commercial BIM

systems means that their internal data schemas are

specific to the discipline they serve. When models are

exported to the ISO 16739:2013 Industry Foundation

Class (IFC) open file format (ISO, 2013), much of the

semantics remain implicit, and thus inaccessible to

generic model review systems which require explicitly

defined parameters, aggregations, connections and

other topological structures. Semantic enrichment

offers an automated interface to represent the implicit

information in an explicit form, as well as supplement

BIM models with missing information for a specific

application or need (Belsky et al., 2016).

IFC for automated code checking and the need for

Semantic Enrichment

In the 1980s and 1990s, researchers envisaged future

automated building design review systems based on

two developing technologies: building product

modeling (BPM) and artificial intelligence (AI).

Building Product Modeling is concerned with

development of the object-oriented data schema

considered essential for explicit digital representation

of the form and function of buildings and their

constituent components and systems (Eastman, 1999).

The ‘General AEC Reference Model’ (Gielingh, 1988)

was among the early building product models. Bjork

laid out the guiding principles for modeling spaces,

space boundaries and the building envelopes (Björk,

1992). The RATAS project model (Björk, 1994), a

model developed in the EU COMBINE project

(Augenbroe, 1994) and CIMsteel (Crowley & Watson,

1997) all followed. This development culminated in

the Industry Foundation Classes (IFC), an open

building model schema based on the ISO STEP

standard (ISO 10303). The current version of IFC is

IFC4 Add 2 and it has become an international

standard (ISO, 2013).

Existing applications for automated code compliance

checking rely mostly on information extracted from

the model in conformance with the IFC schema.

Dealing with complex code clauses in an automated

code checking process requires higher levels of

semantic information to be explicitly represented in

the models (Solihin et al., 2004). Retrieval of required

information in its correct representation is one of the

challenges in every existing automated code checking

application (Eastman et al., 2009; Preidel &

Borrmann, 2015). To overcome this problem, a

manual pre-processing stage, often called

‘normalization’, is required for most rule based code
checking routines (Eastman et al., 2009). In addition

http://doi.org/10.35490/EC3.2019.157

Page 49 of 490

to being labour intensive and prone to errors, a manual

pre-processing stage limits the degree of automation

we can achieve in code checking. A semantic

enrichment process is an alternative approach that

offers to automate the interface. As the definition of

semantic enrichment is the use of domain expert

knowledge to infer the semantics of a given model,

dealing with topologically complex code clauses

requires an extensive semantic enrichment process to

reach specific clause test values corresponding to the

clause requirements.

Semantic Enrichment with rule inferencing and

Machine Learning

Current automated code compliance checking

applications such as Solibri and SMARTreview

(SMARTreview APR, 2017; Solibri, 2017) use

hardcoded rule sets that represent specific code

clauses. Each rule set requires an explicit

representation of the relevant information to support

evaluation of the clause test value. Sacks et al. laid out

a spectrum for code checking strategies and the

required pre-processing for each strategy (Sacks et al.,

2019). The strategies for checking range from

traditional rule inferencing (Eastman et al., 2009), at

one end of the spectrum, to the use of deep learning

algorithms to classify building models, at the other

end. Hypothetically, deep learning might eliminate the

need for semantic enrichment to support automated

compliance checking, because the patterns linking a

model’s topology and a classification of pass or fail for
any given clause may be identified by the system.

However, this is still largely unexplored territory in

terms of research to date, and there are major unsolved

challenges in its application to building models.

Research on semantic enrichment to date has focused

on inferring meaningful information that was implied

in a BIM model and explicitly adding its

representation in the IFC file. The ‘SEEBIM’ system
has been used successfully to demonstrate application

of rule-inferencing to enrichment tasks such as

classification of building objects, aggregation of

building systems, unique identification and

numbering, and reconstruction of occluded objects (in

the case of models compiled from point cloud data)

(Sacks et al., 2017). More recent work (Bloch & Sacks,

2018) has shown that some SE tasks can be performed

more efficiently using supervised machine learning

techniques. These experiments led to the conclusion

that there are several types of semantic enrichment

tasks with distinct characteristics and that the approach

for SE should be chosen based on the nature of the

problem.

To make progress in the field of automated code

compliance checking, it is important to make progress

in the field of semantic enrichment. While previous

research focused on solving specific semantic

enrichment tasks for different purposes, we strive to

understand the structure and characteristics of

semantic enrichment problems typically required to

support an automated code checking process. The

general idea is that a better understanding and

characterization of the problem will lead to discovery

of suitable solutions. The approach is to explore a

range of test cases corresponding to a variety of

regulatory codes and requirements. The expected

result is a general framework for SE to support

automated code checking. In this paper, we describe

one such test case that involves complex topology.

The paper begins with an explanation of the code

clauses and identification of specific semantic

enrichment tasks to support an automated compliance

check of models for conformance to them. We then

describe each semantic enrichment task, detailing its

implementation and results. The next section describes

the compliance checking process using the results

obtained in the semantic enrichment step. Finally, we

report an experiment conducted using a model of an

eight story residential building to validate the rule-sets

compiled to implement semantic enrichment and code

checking for the test case.

Security Room Code Requirements

A security room is a reinforced concrete space

designed to protect its occupants from shrapnel and

blast impacts from conventional weapons and from

chemical weapons. Every residence built in Israel is

required to have a security room, or alternatively, a

larger security room must be provided to serve all

apartments on a floor. The design requirements for

security rooms are defined in a design code (Home

Front Command, 2010). The code includes both

simple geometric clauses, such as minimum wall

thicknesses, and clauses that depend on topologically

complex relationships between objects, such as

requirements for intervening concrete walls to protect

security room doors from line-of-sight exposure to

windows.

Checking the supported area of walls

In this paper, we treat the requirement that security

rooms must be stacked one on top of the other to form

vertical shafts, and that at least 70% of any given

security room’s walls must be continuous and reach
the structural foundations.

Figure 1 illustrates the general requirement and

provides examples of pass and fail cases. The

structural walls at the foundation level support a

security shaft containing three security rooms, one on

each floor. The rooms on the first and second floors

pass, since more than 70% of the walls are

continuously supported and reach the foundation. For

the security room above the third floor, the north wall

is missing and the east wall is discontinued on the first

floor, meaning only 50% of the walls are continuously

supported, and it is therefore non-compliant.

Page 50 of 490

Figure 1 explanation of the requirement that 70% of the

security room walls must continue to reach the structural

foundation.

Semantic enrichment tasks

The first step to implementation of an automated code

checking routine is to analyse the code at hand to

recognize all objects, attributes and relationships that

might be used during checking. The concepts are

compiled and detailed in the format of a formal Model

View Definition (MVD). Once we identify all needed

information, we move on to compose specific

semantic enrichment tasks. Since we aim to enrich a

model to a point we can automatically check its

compliance to the code, the exact requirements for

enrichment have to be defined. Thus, we first compose

a checking routine for a specific code clause and draw

all required concepts for enrichment from that routine.

To explore the abilities of the semantic enrichment

process in the case of topologically complex code

requirements, we aim to fully enrich the model. Thus,

the checking process will include a single logical rule

applied on an explicit clause test value we provide

during enrichment. In this case we aim to enrich the

model so that each security room explicitly contains

the value of total supported walls percentage. This

essentially dictated all the requirements for semantic

enrichment, which consists of the following steps:

a) identify all enclosed spaces (rooms) in a

model, and where objects representing the

spaces are missing, create them;

b) uniquely identify the security rooms and

classify them;

c) explicitly associate all of the walls belonging

to a security room with it;

d) identify any walls or foundations that support

each wall and associate them with it;

e) for walls supported by foundations, identify

the portion of their cross section that is

supported, and store this supported area;

f) for walls supported by walls below them,

identify the portion of their cross section area

that is supported by the lower wall’s
supported area, and store it;

g) calculate the value of the total supported area

of walls for each security room.

This final test value needs to be stored as an attribute

of each security room. These SE tasks are explained in

detail in the next section of the paper.

Semantic Enrichment Steps

Classification tasks

Bloch et al. (2018) demonstrated that classification of

room types in residential apartments is a task better

solved with a ML approach than with rule inferencing.

From this work we can conclude that dealing with

classification of physical elements with distinct

geometry, like bridge elements (Ma et al., 2016) is

different than classification of abstract elements with

a similar box-like geometry. Since we are only

interested in security rooms for the checking of the

code at hand, we defined a less complex task of a two-

class classification. In other words, we classify all

spaces in the apartment as 'security room' or 'not

security room'. Although this specific ask can be

solved by both rule inferencing and machine learning,

we continue to treat problems of room type

classifications with a machine learning approach.

Using a two class decision forest algorithm we reach

96.6% accuracy in classification on a cross validation

set.

Association tasks

Once all spaces in the model are classified and the

security rooms are tagged, we proceed to associate the

walls bounding each security room to the security

room. To make this association explicit, we do not

create relationships between the walls and the spaces

but tag the walls with the IDs of the spaces they bound.

During the association, we also compute and store

each wall’s initial cross section area as an attribute of
the security room.

IF object 1 is an element of type IFCSPACE AND

object 1 description is “Security Room” AND

object 2 is an element of type

IFCWALLSTANDARDCASE AND

object 2 centroid elevation is between object 1

minimum elevation and object 1 maximum

elevation

THEN

object 2 description is “Security Room Wall” AND

object 2 tag := object 1 tag AND

object 1 user field “Area” := object 2 Area

To enable the next step, in which the supported area

for each wall is computed, we need to compare every

two walls that are in contact but above one another to

find the overlap between them (the calculation itself is

detailed in the next section). To form those pairs of

walls we need to take into account the fact that every

pair of walls is separated by a slab that can vary in

thickness. This makes it difficult to use an operator

which tests for “contact” between two walls. To
overcome this problem, we explicitly associate the

slabs to each security room and use them to find the

correct pairs of objects for the calculation.

Page 51 of 490

IF object 1 is an element of type IFCFOOTING

AND

object 2 is an element of type

IFCWALLSTANDARDCASE AND

object 2 is made of "concrete" AND

object 1 is in contact with object 2

THEN create IFCRELAGGREGATES object 1

"supports" object 2

IF object 1 is an element of type IFCSLAB AND

object 2 is an element of type

IFCWALLSTANDARDCASE AND

object 2 is made of "concrete" AND

object 1 is in contact with object 2 AND

object 1 is above object 2

THEN create IFCRELAGGREGATES object 2

"supports" object 1

IF object 1 is an element of type IFCSLAB AND

object 2 is an element of type

IFCWALLSTANDARDCASE AND

object 2 is made of "concrete" AND

object 1 is in contact with object 2 AND

object 2 is above object 1

THEN create IFCRELAGGREGATES object 1

"supports" object 2

Notice that if a non-structural wall bounds a security

room, which clearly denotes a modelling or design

mistake, the wall will be associated to the room but

will not be used to calculate the walls’ overlapping
areas, which is the correct interpretation.

Computation tasks

The next step is the calculation of overlapping area

between every pair of supported objects. Starting from

the overlap between the structural foundation walls to

the room bounding walls that rest on them, we first

compute the bounding box representing the

overlapping area between each pair of walls (or pairs

of slabs and walls) where one is immediately above the

other. The same computation is implemented until we

reach the top of the building. The procedure is

illustrated in Figure 2 below. This computation

requires association of all pairs of walls (or pairs of

slabs and walls) where one is immediately above the

other.

Once the supported area of all security room walls is

computed, we compute the overall percentage of

support for each room. This is the sum of the supported

areas divided by the sum of the gross areas for the set

of walls belonging to any given room. This value is

stored in a user-defined ‘walls_to_foundation_ratio’
field for each security room.

IF object 1 Aggregates("supports") object 2 AND

object 1 longest dimension is parallel to object 2

longest dimension

THEN object 2 user field “Support Area” :=
calculate_supported_area of object 1 and object

2.

Figure 2 calculation of overlap between walls using their

bounding boxes

Compliance Checking Step

Since we have enriched the model to contain an

explicit clause test value, the checking itself consists

of a single rule to check if the final calculated test

value is greater than 70%.

IF object 1 is an element of type IFCSPACE AND

object 1 description is “Security room” AND

Object 1 walls_to_foundation_ratio >= 70%

THEN object 1 user field support_clause_flag :=

TRUE

Once the checking is complete, the results are stored

in the IFC file. This enables reporting in various forms,

including viewing of a colour-coded model.

Validation

To validate the results, the entire process of

enrichment and checking was applied to a construction

project of a residential building in Tel Aviv. The

building contains eight floors with six apartments on

each floor, and three underground floors for parking.

Every floor is designed to contain a public security

room that serves all six apartments on that floor.

Figure 3 shows a typical floor plan.

 Although the security rooms are similar on every

typical floor, there are some significant differences on

the ground floor and the underground levels, where the

walls have openings to facilitate parking spaces. These

openings are most significant for the code check at

hand, adding geometric complexity to the topological

complexity of the minimum foundation support clause

case. Figure 4 (a) illustrates the configuration of a

typical security room, and (b) the configuration of the

security room's walls with the openings on level -3.

Notice that there is an opening in the north wall and in

the east wall, meaning the walls are not entirely

continuous to the structural foundations.

Page 52 of 490

Figure 3 A typical floor plan

(a)

(b)

Figure 4. (a) A typical security room. (b) The security

room's suporting walls on level -3.

As the building had already been granted a

construction permit, we expected the model to be

compliant to the code clause, which was indeed the

result of the enrichment and checking process in

SEEBIM. To further explore and validate the proposed

procedure, we introduced several changes to the

model’s geometry to create cases that were not
compliant to the described code clause.

To create and test a case similar to the one illustrated

in Figure 1, we introduced two changes to the original

model. First, we changed the material of a single wall

of the security room on floor four from cast in place

concrete to masonry concrete blocks. This should have

the same effect on the particular code clause as

removing the wall entirely. As can be seen in Table 1,

in the row for floor 4, according to manual

calculations, this will lead to 70.2% of the security

room's walls on floor four being continuous to the

structural foundation, which is still compliant.

The second change introduced to the model was to

create a 123cm wide opening in the north wall of the

security room on flor six. Again, based on the manual

calculations shown in Table 1, we expect the result of

checking the supported wall area to be only 64.3% for

the security room on floor six, making it not compliant

to the code requirements. Subsequently, the supported

wall areas of security rooms on floors seven and eight

will also be 64.3%, meaning those security rooms are

not code compliant as well.

Figure 5. A view of the building model with tags for

security rooms that pass and that fail the foundation

support clause.

Page 53 of 490

The model with modified geometry was exported as an

IFC 4 design transfer view and used as input for the

SEEBIM engine. The file size of the original REVIT

file was 122 MB; the corresponding IFC 4 reference

view file was 45 MB; the run time in SEEBIM was ~3

minutes (although the time to write the export file

using the IFC Engine is some 60 minutes). The rule

sets detailed above were used in SEEBIM to complete

all of the described semantic enrichment tasks and to

perform the compliance check. Results received from

SEEBIM match the expected results as described in

Table 1.

Figure 5 illustrates a view of the model using an IFC

file viewer software, in which users can visualize the

results of the code compliance check for minimum

continuous wall foundation support for security rooms.

The illustration shows results for the security room on

floor four, which is compliant to the clause and on

floor six, which is not compliant. All of the security

rooms were evaluated correctly, both in the original

building model obtained from the developer, and in the

model in which the researchers intervened to create

cases in which the security rooms on floors 6-8 failed

the code check.

Technical Implementation

As described above, the rules sets were implemented

in the SEEBIM 2.0 inferencing engine. The interface

is illustrated in Figure 6.

The rules were compiled directly in the user interface,

without any need for programming. Rules can be

compiled directly in the user interface, by selecting

from a set of pre-coded operators to apply to every pair

of IFC objects in the model (see Figure 7).

Users can upload any IFC file and apply any of the

existing rules to that model. Rules can also be

aggregated into rule sets, in this case including all the

enrichment and checking rules needed for checking the

compliance of the security rooms wall supported area.

Once the user runs a set of rules on a specific file, a

new, enriched IFC file is created, which can be

downloaded and opened in any compatible platform.

Figure 6 The SEEBIM 2.0 user interface

Figure 7 Compiling new rules directly in the user interface

During the validation experiments, a number of

challenges arose which shed light on the process as a

whole. These included:

a) Unexpected and non-uniform modelling practices

on the part of the design team. For example, some

walls were left ‘unconnected’ to the slabs above
them, so that they protruded through and above

the slabs (apparently a result of changes to the

levels of slabs during design); structural

foundations were modelled as floors.

b) Omission of objects and technical errors in the

IFC files exported by Revit 2018: walls with

openings were absent from IFC4 reference view

export.

c) Unforeseen design situations. For example, in

some places in the parking levels, designers

modelled floor to ceiling openings in concrete

walls by placing two wall sections rather than one

section with an opening. This meant that the

cardinality of the ‘structural support’ relationship
between walls was m:n rather than 1:1, as had

been implicitly assumed (such situations were not

contemplated in the simple lab models used when

compiling the rules).

Discussion and Conclusion

A set of rules was compiled and implemented for

checking compliance of a building model to a building

code clause that requires evaluation of complex

geometry and topology. The rules were evaluated

using the SEEBIM forward chaining inference engine.

The successful application of the rule sets

demonstrates the feasibility of replacing normalization

- the manual process for pre-processing a model to

populate it with the specific information concepts

needed for code compliance checking - with an

automated procedure. By defining a specific clause

test value and the corresponding concepts in an MVD,

we can define semantic enrichment tasks that will lead

to explicit representation of that test value in the BIM

model. Once all semantic enrichment tasks are

complete, simple logical rules can perform the

Page 54 of 490

compliance check itself. The overall development

procedure can be broken down into three stages: a)

establish the interim concepts and define them as

targets in an MVD; b) compose the SE rule sets and

implement them in the inference engine or in ML

processes, c) test and validate the resulting system.

Through this experiment, we demonstrate that it is

feasible to compose a set of rules that chain together to

fulfil the semantic enrichment that is needed. The rules

progressively add the concepts that are needed, such as

'supported area' for each wall, as the rule inferencing

engine is cyclical, repeating all of the rules on each and

every pair of objects on the model, until such time as

no new information is added in a full cycle. This is an

effective method for enrichment of concepts that

involve complex geometry as they require a

progressive chain of calculations based on the relevant

The unexpected modelling conditions encountered in

the validation underline the need for effective semantic

enrichment. Despite being modelled by a highly

skilled and professional design team, the model still

contained object compositions that were not foreseen

during SE rule compilation. The essentially unlimited

diversity of possible modelling practice raises a

question concerning the feasibility of a purely rule-

based approach to SE. Machine-learning may be

superior in dealing with diverse object compositions.

The same can be said for unforeseen design situations.

geometric features.

Once the SE process is complete, the rule checking

reduces to a simple IF THEN rule evaluation for each

space. We assume that this is the case for all code

clauses with a single test case value that can be

represented explicitly in the BIM model either directly

in the design phase or through semantic enrichment.

The result emphasizes the importance of progress in

the field of semantic enrichment.

In general, the selection of a rule-based or a machine

learning approach will depend on the nature of the

problem and the amount of effort that is needed for

compiling the code checking solution. In ongoing

research, we are testing the machine learning approach

to the same clause, with a view to learning more about

alternative approaches.

References

Augenbroe, G. (1994) Integrated use of building

design tools: results from the COMBINE

project. In: Automation Based Creative

Design–Research and Perspectives. Elsevier,

pp.205–218.

Belsky, M., Sacks, R. & Brilakis, I. (2016) Semantic

enrichment for building information

modeling. Computer-Aided Civil and

Infrastructure Engineering, 31 (4), pp.261–
274.

Table 1. Validation test case values.

Floor

Supported Wall Areas [m2] Ratio of

supported walls North East South West Total

Whole

room 1.41 1.21 1.41 1.21 5.24 100.0%

-4 1.41 0.41 1.41 1.21 4.43 84.6%

-3 1.06 0.41 1.41 1.21 4.08 78.0%

-2 1.06 0.41 1.41 1.21 4.08 78.0%

-1 1.06 0.41 1.41 1.21 4.08 78.0%

G 1.06 0.41 1.41 1.21 4.08 78.0%

1 1.06 0.41 1.41 1.21 4.08 78.0%

2 1.06 0.41 1.41 1.21 4.08 78.0%

3 1.06 0.41 1.41 1.21 4.08 78.0%

4 1.06 0.00 1.41 1.21 3.68 70.2%

5 1.06 0.00 1.41 1.21 3.68 70.2%

6 0.75 0.00 1.41 1.21 3.37 64.3%

7 0.75 0.00 1.41 1.21 3.37 64.3%

8 0.75 0.00 1.41 1.21 3.37 64.3%

Page 55 of 490

Björk, B. (1994) RATAS Project—Developing an

Infrastructure for Computer‐Integrated

Construction. Journal of Computing in Civil

Engineering, 8 (4), pp.401–419.

Björk, B.-C. (1992) A conceptual model of spaces,

space boundaries and enclosing structures.

Automation in Construction, 1 (3), pp.193–
214.

Bloch, T. & Sacks, R. (2018) Comparing machine

learning and rule-based inferencing for

semantic enrichment of BIM models.

Automation in Construction, 91, pp.256–272.

Crowley, A.J. & Watson, A.S. (1997) Representing

engineering information for constructional

steelwork. Computer-Aided Civil and

Infrastructure Engineering, 12 (1), pp.69–81.

Eastman, C. (1975) The use of computers instead of

drawings in building design. AIA Journal, 63

(3), pp.46–50.

Eastman, C., Lee, Jae-min, Jeong, Y. & Lee, Jin-kook

(2009) Automatic rule-based checking of

building designs. Automation in construction,

18 (8), pp.1011–1033.

Eastman, C.M. (1999) Building product models:

computer environments supporting design

and construction. Boca Raton, FL, USA,

CRC press.

Gielingh, W. (1988) General AEC reference model

(GARM). In: ISO TC184/SC4. CIB

Publication, pp.165–178.

Home Front Command (2010) Specifications for

Building Shelters. Ramle, Israel, Protective

structures department, Home Front

Command. Available from:

<http://www.oref.org.il/SIP_STORAGE/file

s/6/3196.pdf>.

ISO (2013) ISO 16739:2013 Industry Foundation

Classes (IFC) for data sharing in the

construction and facility management

industries.

Ma, L., Sacks, R., Kattel, U. & Bloch, T. (2016) 3D

Object Classification Using Geometric

Features and Pairwise Relationships.

Computer-Aided Civil and Infrastructure

Engineering, 33 (2), pp.152–164.

Preidel, C. & Borrmann, A. (2015) Automated Code

Compliance Checking Based on a Visual

Language and Building Information

Modeling. In: ISARC. Proceedings of the

International Symposium on Automation and

Robotics in Construction. Vilnius Gediminas

Technical University, Department of

Construction Economics & Property, p.1.

Sacks, R., Bloch, T., Katz, M. & Yosef, R. (2019)

Automating Design Review with Atrificial

Intelligence and BIM: State of the Art and

Research Framework. In: Future Cities and

Resilient Infrastructures. Atlanta, GA, USA.

Sacks, R., Eastman, C., Lee, G. & Teicholz, P. (2018)

BIM handbook: A guide to Building

Information Modeling for Owners,

Designers, Engineers, Contractors, and

Facility Managers. Third Edition. Hoboken,

NJ, John Wiley & Sons.

Sacks, R., Ma, L., Yosef, R., Borrmann, A., Daum, S.

& Kattel, U. (2017) Semantic Enrichment for

Building Information Modeling: Procedure

for Compiling Inference Rules and Operators

for Complex Geometry. Journal of

Computing in Civil Engineering, 31 (6),

p.04017062.

SMARTreview APR (2017) SMARTreview APR

[Internet]. Available from:

<https://www.smartreview.biz/home>

[Accessed 6 July 2017].

Solibri (2017) Solibri Model Checker (SMC)

[Internet]. Available from:

<https://www.solibri.com/> [Accessed 13

March 2017].

Solihin, W., Shaikh, N., Rong, X. & Poh, K.L. (2004)

Beyond interoperatibility of building model:

A case for code compliance checking. In: BP-

CAD Workshop. Carnegie Mellon University.

