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Abstract 

A review of the state of the art in the field of automated 

code compliance checking revealed that existing 

applications are limited in the scope of clauses they are 

able to check. While some building code clauses are 

straightforward, requiring direct checking of 

parameter values, others depend on the topological 

relationships among objects, making automated 

checking of BIM models more challenging. Moreover, 

existing applications require the user to extensively 

preprocess the model in preparation for checking.   We 

propose applying semantic enrichment for pre-

processing the BIM models. The goal of a semantic 

enrichment process in support of automated code 

compliance checking is to derive the needed clause test 

values automatically and to represent them explicitly. 

A successful semantic enrichment process can 

therefore widen the scope of requirements that can be 

checked automatically. This work demonstrates such a 

process for checking code clauses involving 

topologically complex requirements. Although 

semantic enrichment proved to be successful for 

several purposes in previous research, dealing with 

complex topologies involves different types of 

semantic enrichment tasks. We explore the subject 

through a test case of requirements from the Israeli 

code for security rooms. 

Introduction 

In a visionary paper describing a computerized 

Building Design System (BDS) published in 1975, 

Eastman predicted that “Designing would consist of 

interactively defining elements…Thus BDS will act as 

design coordinator and analyzer, providing a single 

integrated database for visual and quantitative 

analyses, for testing spatial conflicts and for drafting. 

… Later, one can conceive of a BDS supporting
automated building code checking in city hall or the 

architect’s office” (Eastman, 1975). While all the 

other specific capabilities described in that paper have 

been realized with modern BIM systems (Sacks et al., 

2018), automated building code checking remains 

limited to a narrow class of building code 

requirements, restricted almost entirely to those that 

impose numerical constraints on explicitly defined 

parameters of model objects. Furthermore, the 

discipline-specific nature of most commercial BIM 

systems means that their internal data schemas are 

specific to the discipline they serve. When models are 

exported to the ISO 16739:2013 Industry Foundation 

Class (IFC) open file format (ISO, 2013), much of the 

semantics remain implicit, and thus inaccessible to 

generic model review systems which require explicitly 

defined parameters, aggregations, connections and 

other topological structures. Semantic enrichment 

offers an automated interface to represent the implicit 

information in an explicit form, as well as supplement 

BIM models with missing information for a specific 

application or need (Belsky et al., 2016). 

IFC for automated code checking and the need for 

Semantic Enrichment 

In the 1980s and 1990s, researchers envisaged future 

automated building design review systems based on 

two developing technologies: building product 

modeling (BPM) and artificial intelligence (AI). 

Building Product Modeling is concerned with 

development of the object-oriented data schema 

considered essential for explicit digital representation 

of the form and function of buildings and their 

constituent components and systems (Eastman, 1999). 

The ‘General AEC Reference Model’ (Gielingh, 1988) 

was among the early building product models. Bjork 

laid out the guiding principles for modeling spaces, 

space boundaries and the building envelopes (Björk, 

1992). The RATAS project model (Björk, 1994), a 

model developed in the EU COMBINE project 

(Augenbroe, 1994) and CIMsteel (Crowley & Watson, 

1997) all followed. This development culminated in 

the Industry Foundation Classes (IFC), an open 

building model schema based on the ISO STEP 

standard (ISO 10303). The current version of IFC is 

IFC4 Add 2 and it has become an international 

standard (ISO, 2013).  

Existing applications for automated code compliance 

checking rely mostly on information extracted from 

the model in conformance with the IFC schema. 

Dealing with complex code clauses in an automated 

code checking process requires higher levels of 

semantic information to be explicitly represented in 

the models (Solihin et al., 2004). Retrieval of required 

information in its correct representation is one of the 

challenges in every existing automated code checking 

application (Eastman et al., 2009; Preidel & 

Borrmann, 2015). To overcome this problem,  a 

manual pre-processing stage, often called 

‘normalization’, is required for most rule based code 
checking routines  (Eastman et al., 2009). In addition 
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to being labour intensive and prone to errors, a manual 

pre-processing stage limits the degree of automation 

we can achieve in code checking. A semantic 

enrichment process is an alternative approach that 

offers to automate the interface. As the definition of 

semantic enrichment is the use of domain expert 

knowledge to infer the semantics of a given model, 

dealing with topologically complex code clauses 

requires an extensive semantic enrichment process to 

reach specific clause test values corresponding to the 

clause requirements.  

Semantic Enrichment with rule inferencing and 

Machine Learning 

Current automated code compliance checking 

applications such as Solibri and SMARTreview 

(SMARTreview APR, 2017; Solibri, 2017) use 

hardcoded rule sets that represent specific code 

clauses. Each rule set requires an explicit 

representation of the relevant information to support 

evaluation of the clause test value. Sacks et al. laid out 

a spectrum for code checking strategies and the 

required pre-processing for each strategy (Sacks et al., 

2019). The strategies for checking range from 

traditional rule inferencing (Eastman et al., 2009), at 

one end of the spectrum, to the use of deep learning 

algorithms to classify building models, at the other 

end. Hypothetically, deep learning might eliminate the 

need for semantic enrichment to support automated 

compliance checking, because the patterns linking a 

model’s topology and a classification of pass or fail for 
any given clause may be identified by the system. 

However, this is still largely unexplored territory in 

terms of research to date, and there are major unsolved 

challenges in its application to building models.  

Research on semantic enrichment to date has focused 

on inferring meaningful information that was implied 

in a BIM model and explicitly adding its 

representation in the IFC file. The ‘SEEBIM’ system 
has been used successfully to demonstrate application 

of rule-inferencing to enrichment tasks such as 

classification of building objects, aggregation of 

building systems, unique identification and 

numbering, and reconstruction of occluded objects (in 

the case of models compiled from point cloud data) 

(Sacks et al., 2017). More recent work (Bloch & Sacks, 

2018) has shown that some SE tasks can be performed 

more efficiently using supervised machine learning 

techniques. These experiments led to the conclusion 

that there are several types of semantic enrichment 

tasks with distinct characteristics and that the approach 

for SE should be chosen based on the nature of the 

problem.  

To make progress in the field of automated code 

compliance checking, it is important to make progress 

in the field of semantic enrichment. While previous 

research focused on solving specific semantic 

enrichment tasks for different purposes, we strive to 

understand the structure and characteristics of 

semantic enrichment problems typically required to 

support an automated code checking process. The 

general idea is that a better understanding and 

characterization of the problem will lead to discovery 

of suitable solutions. The approach is to explore a 

range of test cases corresponding to a variety of 

regulatory codes and requirements. The expected 

result is a general framework for SE to support 

automated code checking. In this paper, we describe 

one such test case that involves complex topology. 

The paper begins with an explanation of the code 

clauses and identification of specific semantic 

enrichment tasks to support an automated compliance 

check of models for conformance to them. We then 

describe each semantic enrichment task, detailing its 

implementation and results. The next section describes 

the compliance checking process using the results 

obtained in the semantic enrichment step. Finally, we 

report an experiment conducted using a model of an 

eight story residential building to validate the rule-sets 

compiled to implement semantic enrichment and code 

checking for the test case. 

Security Room Code Requirements  

A security room is a reinforced concrete space 

designed to protect its occupants from shrapnel and 

blast impacts from conventional weapons and from 

chemical weapons. Every residence built in Israel is 

required to have a security room, or alternatively, a 

larger security room must be provided to serve all 

apartments on a floor. The design requirements for 

security rooms are defined in a design code (Home 

Front Command, 2010). The code includes both 

simple geometric clauses, such as minimum wall 

thicknesses, and clauses that depend on topologically 

complex relationships between objects, such as 

requirements for intervening concrete walls to protect 

security room doors from line-of-sight exposure to 

windows. 

Checking the supported area of walls 

In this paper, we treat the requirement that security 

rooms must be stacked one on top of the other to form 

vertical shafts, and that at least 70% of any given 

security room’s walls must be continuous and reach 
the structural foundations.  

Figure 1 illustrates the general requirement and 

provides examples of pass and fail cases. The 

structural walls at the foundation level support a 

security shaft containing three security rooms, one on 

each floor. The rooms on the first and second floors 

pass, since more than 70% of the walls are 

continuously supported and reach the foundation. For 

the security room above the third floor, the north wall 

is missing and the east wall is discontinued on the first 

floor, meaning only 50% of the walls are continuously 

supported, and it is therefore non-compliant. 
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Figure 1 explanation of the requirement that 70% of the 

security room walls must continue to reach the structural 

foundation. 

Semantic enrichment tasks 

The first step to implementation of an automated code 

checking routine is to analyse the code at hand to 

recognize all objects, attributes and relationships that 

might be used during checking. The concepts are 

compiled and detailed in the format of a formal Model 

View Definition (MVD). Once we identify all needed 

information, we move on to compose specific 

semantic enrichment tasks. Since we aim to enrich a 

model to a point we can automatically check its 

compliance to the code, the exact requirements for 

enrichment have to be defined. Thus, we first compose 

a checking routine for a specific code clause and draw 

all required concepts for enrichment from that routine.  

To explore the abilities of the semantic enrichment 

process in the case of topologically complex code 

requirements, we aim to fully enrich the model. Thus, 

the checking process will include a single logical rule 

applied on an explicit clause test value we provide 

during enrichment. In this case we aim to enrich the 

model so that each security room explicitly contains 

the value of total supported walls percentage. This 

essentially dictated all the requirements for semantic 

enrichment, which consists of the following steps: 

a) identify all enclosed spaces (rooms) in a 

model, and where objects representing the 

spaces are missing, create them; 

b) uniquely identify the security rooms and 

classify them; 

c) explicitly associate all of the walls belonging 

to a security room with it; 

d) identify any walls or foundations that support 

each wall and associate them with it; 

e) for walls supported by foundations, identify 

the portion of their cross section that is 

supported, and store this supported area; 

f) for walls supported by walls below them, 

identify the portion of their cross section area 

that is supported by the lower wall’s 
supported area, and store it; 

g) calculate the value of the total supported area 

of walls for each security room. 

This final test value needs to be stored as an attribute 

of each security room. These SE tasks are explained in 

detail in the next section of the paper.  

Semantic Enrichment Steps 

Classification tasks 

Bloch et al. (2018) demonstrated that classification of 

room types in residential apartments is a task better 

solved with a ML approach than with rule inferencing. 

From this work we can conclude that dealing with 

classification of physical elements with distinct 

geometry, like bridge elements (Ma et al., 2016) is 

different than classification of abstract elements with 

a similar box-like geometry.  Since we are only 

interested in security rooms for the checking of the 

code at hand, we defined a less complex task of a two-

class classification. In other words, we classify all 

spaces in the apartment as 'security room' or 'not 

security room'. Although this specific ask can be 

solved by both rule inferencing and machine learning, 

we continue to treat problems of room type 

classifications with a machine learning approach. 

Using a two class decision forest algorithm we reach 

96.6% accuracy in classification on a cross validation 

set.  

Association tasks 

Once all spaces in the model are classified and the 

security rooms are tagged, we proceed to associate the 

walls bounding each security room to the security 

room. To make this association explicit, we do not 

create relationships between the walls and the spaces 

but tag the walls with the IDs of the spaces they bound. 

During the association, we also compute and store 

each wall’s initial cross section area as an attribute of 
the security room. 

IF object 1 is an element of type IFCSPACE AND  

object 1 description is “Security Room” AND  

object 2 is an element of type 

IFCWALLSTANDARDCASE AND  

object 2 centroid elevation is between object 1 

minimum elevation and object 1 maximum 

elevation 

THEN 

object 2 description is “Security Room Wall” AND  

object 2 tag := object 1 tag AND  

object 1 user field “Area” := object 2 Area 

 

To enable the next step, in which the supported area 

for each wall is computed, we need to compare every 

two walls that are in contact but above one another to 

find the overlap between them (the calculation itself is 

detailed in the next section). To form those pairs of 

walls we need to take into account the fact that every 

pair of walls is separated by a slab that can vary in 

thickness. This makes it difficult to use an operator 

which tests for “contact” between two walls. To 
overcome this problem, we explicitly associate the 

slabs to each security room and use them to find the 

correct pairs of objects for the calculation.  
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IF object 1 is an element of type IFCFOOTING 

AND  

object 2 is an element of type 

IFCWALLSTANDARDCASE AND  

object 2 is made of "concrete" AND  

object 1 is in contact with object 2 

THEN create IFCRELAGGREGATES object 1 

"supports" object 2 

 

IF object 1 is an element of type IFCSLAB AND  

object 2 is an element of type 

IFCWALLSTANDARDCASE AND  

object 2 is made of "concrete" AND  

object 1 is in contact with object 2 AND 

object 1 is above object 2 

THEN create IFCRELAGGREGATES object 2 

"supports" object 1 

 

IF object 1 is an element of type IFCSLAB AND  

object 2 is an element of type 

IFCWALLSTANDARDCASE AND  

object 2 is made of "concrete" AND  

object 1 is in contact with object 2 AND 

object 2 is above object 1 

THEN create IFCRELAGGREGATES object 1 

"supports" object 2 

 

Notice that if a non-structural wall bounds a security 

room, which clearly denotes a modelling or design 

mistake, the wall will be associated to the room but 

will not be used to calculate the walls’ overlapping 
areas, which is the correct interpretation. 

Computation tasks 

The next step is the calculation of overlapping area 

between every pair of supported objects. Starting from 

the overlap between the structural foundation walls to 

the room bounding walls that rest on them, we first 

compute the bounding box representing the 

overlapping area between each pair of walls (or pairs 

of slabs and walls) where one is immediately above the 

other. The same computation is implemented until we 

reach the top of the building. The procedure is 

illustrated in Figure 2 below. This computation 

requires association of all pairs of walls (or pairs of 

slabs and walls) where one is immediately above the 

other.  

Once the supported area of all security room walls is 

computed, we compute the overall percentage of 

support for each room. This is the sum of the supported 

areas divided by the sum of the gross areas for the set 

of walls belonging to any given room. This value is 

stored in a user-defined ‘walls_to_foundation_ratio’ 
field for each security room.  

IF object 1 Aggregates("supports") object 2 AND  

object 1 longest dimension is parallel to object 2 

longest dimension  

THEN object 2 user field “Support Area” := 
calculate_supported_area of object 1 and object 

2. 

 

 

Figure 2 calculation of overlap between walls using their 

bounding boxes 

Compliance Checking Step 

Since we have enriched the model to contain an 

explicit clause test value, the checking itself consists 

of a single rule to check if the final calculated test 

value is greater than 70%.  

IF object 1 is an element of type IFCSPACE AND  

object 1 description is “Security room” AND 

Object 1 walls_to_foundation_ratio >= 70% 

THEN object 1 user field support_clause_flag := 

TRUE 

 

Once the checking is complete, the results are stored 

in the IFC file. This enables reporting in various forms, 

including viewing of a colour-coded model. 

Validation 

To validate the results, the entire process of 

enrichment and checking was applied to a construction 

project of a residential building in Tel Aviv. The 

building contains eight floors with six apartments on 

each floor, and three underground floors for parking. 

Every floor is designed to contain a public security 

room that serves all six apartments on that floor. 

Figure 3 shows a typical floor plan. 

 Although the security rooms are similar on every 

typical floor, there are some significant differences on 

the ground floor and the underground levels, where the 

walls have openings to facilitate parking spaces. These 

openings are most significant for the code check at 

hand, adding geometric complexity to the topological 

complexity of the minimum foundation support clause 

case. Figure 4 (a) illustrates the configuration of a 

typical security room, and (b) the configuration of the 

security room's walls with the openings on level -3. 

Notice that there is an opening in the north wall and in 

the east wall, meaning the walls are not entirely 

continuous to the structural foundations.  
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Figure 3 A typical floor plan 

 

(a) 

 

(b) 

Figure 4. (a) A typical security room. (b) The security 

room's suporting walls on level -3. 

As the building had already been granted a 

construction permit, we expected the model to be 

compliant to the code clause, which was indeed the 

result of the enrichment and checking process in 

SEEBIM. To further explore and validate the proposed 

procedure, we introduced several changes to the 

model’s geometry to create cases that were not 
compliant to the described code clause.  

To create and test a case similar to the one illustrated 

in Figure 1, we introduced two changes to the original 

model. First, we changed the material of a single wall 

of the security room on floor four from cast in place 

concrete to masonry concrete blocks. This should have 

the same effect on the particular code clause as 

removing the wall entirely. As can be seen in Table 1, 

in the row for floor 4, according to manual 

calculations, this will lead to 70.2% of the security 

room's walls on floor four being continuous to the 

structural foundation, which is still compliant.  

The second change introduced to the model was to 

create a 123cm wide opening in the north wall of the 

security room on flor six. Again, based on the manual 

calculations shown in Table 1, we expect the result of 

checking the supported wall area to be only 64.3% for 

the security room on floor six, making it not compliant 

to the code requirements. Subsequently, the supported 

wall areas of security rooms on floors seven and eight 

will also be 64.3%, meaning those security rooms are 

not code compliant as well.  

 

 

 

Figure 5. A  view of the building model with tags for 

security rooms that pass and that fail  the foundation 

support clause. 
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The model with modified geometry was exported as an 

IFC 4 design transfer view and used as input for the 

SEEBIM engine. The file size of the original REVIT 

file was 122 MB; the corresponding IFC 4 reference 

view file was 45 MB; the run time in SEEBIM was ~3 

minutes (although the time to write the export file 

using the IFC Engine is some 60 minutes). The rule 

sets detailed above were used in SEEBIM to complete 

all of the described semantic enrichment tasks and to 

perform the compliance check. Results received from 

SEEBIM match the expected results as described in 

Table 1. 

Figure 5 illustrates a view of the model using an IFC 

file viewer software, in which users can visualize the 

results of the code compliance check for minimum 

continuous wall foundation support for security rooms. 

The illustration shows results for the security room on 

floor four, which is compliant to the clause and on 

floor six, which is not compliant.  All of the security 

rooms were evaluated correctly, both in the original 

building model obtained from the developer, and in the 

model in which the researchers intervened to create 

cases in which the security rooms on floors 6-8 failed 

the code check. 

Technical Implementation 

As described above, the rules sets were implemented 

in the SEEBIM 2.0 inferencing engine. The interface 

is illustrated in Figure 6.  

The rules were compiled directly in the user interface, 

without any need for programming. Rules can be 

compiled directly in the user interface, by selecting 

from a set of pre-coded operators to apply to every pair 

of IFC objects in the model (see Figure 7).  

Users can upload any IFC file and apply any of the 

existing rules to that model. Rules can also be 

aggregated into rule sets, in this case including all the 

enrichment and checking rules needed for checking the 

compliance of the security rooms wall supported area. 

Once the user runs a set of rules on a specific file, a 

new, enriched IFC file is created, which can be 

downloaded and opened in any compatible platform.  

 

Figure 6 The SEEBIM 2.0 user interface 

 

Figure 7 Compiling new rules directly in the user interface 

During the validation experiments, a number of 

challenges arose which shed light on the process as a 

whole. These included: 

a) Unexpected and non-uniform modelling practices 

on the part of the design team. For example, some 

walls were left ‘unconnected’ to the slabs above 
them, so that they protruded through and above 

the slabs (apparently a result of changes to the 

levels of slabs during design); structural 

foundations were modelled as floors. 

b) Omission of objects and technical errors in the 

IFC files exported by Revit 2018: walls with 

openings were absent from IFC4 reference view 

export. 

c) Unforeseen design situations. For example, in 

some places in the parking levels, designers 

modelled floor to ceiling openings in concrete 

walls by placing two wall sections rather than one 

section with an opening. This meant that the 

cardinality of the ‘structural support’ relationship 
between walls was m:n rather than 1:1, as had 

been implicitly assumed (such situations were not 

contemplated in the simple lab models used when 

compiling the rules). 

 

Discussion and Conclusion 

A set of rules was compiled and implemented for 

checking compliance of a building model to a building 

code clause that requires evaluation of complex 

geometry and topology. The rules were evaluated 

using the SEEBIM forward chaining inference engine. 

The successful application of the rule sets 

demonstrates the feasibility of replacing normalization 

- the manual process for pre-processing a model to 

populate it with the specific information concepts 

needed for code compliance checking - with an 

automated procedure. By defining a specific clause 

test value and the corresponding concepts in an MVD, 

we can define semantic enrichment tasks that will lead 

to explicit representation of that test value in the BIM 

model. Once all semantic enrichment tasks are 

complete, simple logical rules can perform the 
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compliance check itself. The overall development 

procedure can be broken down into three stages: a) 

establish the interim concepts and define them as 

targets in an MVD; b) compose the SE rule sets and 

implement them in the inference engine or in ML 

processes, c) test and validate the resulting system.  

Through this experiment, we demonstrate that it is 

feasible to compose a set of rules that chain together to 

fulfil the semantic enrichment that is needed. The rules 

progressively add the concepts that are needed, such as 

'supported area' for each wall, as the rule inferencing 

engine is cyclical, repeating all of the rules on each and 

every pair of objects on the model, until such time as 

no new information is added in a full cycle. This is an 

effective method for enrichment of concepts that 

involve complex geometry as they require a 

progressive chain of calculations based on the relevant 

 

 

The unexpected modelling conditions encountered in 

the validation underline the need for effective semantic 

enrichment. Despite being modelled by a highly 

skilled and professional design team, the model still 

contained object compositions that were not foreseen 

during SE rule compilation. The essentially unlimited 

diversity of possible modelling practice raises a 

question concerning the feasibility of a purely rule-

based approach to SE. Machine-learning may be 

superior in dealing with diverse object compositions. 

The same can be said for unforeseen design situations. 

 

geometric features.  

Once the SE process is complete, the rule checking 

reduces to a simple IF THEN rule evaluation for each 

space. We assume that this is the case for all code 

clauses with a single test case value that can be 

represented explicitly in the BIM model either directly 

in the design phase or through semantic enrichment. 

The result emphasizes the importance of progress in 

the field of semantic enrichment.  

In general, the selection of a rule-based or a machine 

learning approach will depend on the nature of the 

problem and the amount of effort that is needed for 

compiling the code checking solution. In ongoing 

research, we are testing the machine learning approach 

to the same clause, with a view to learning more about 

alternative approaches. 
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