
Automated Modeling of Dynamic Reliability Block Diagrams Using

Colored Petri Nets

Ryan Robidoux, Haiping Xu, Senior Member, IEEE, Liudong Xing, Senior Member, IEEE, and

MengChu Zhou, Fellow, IEEE

\

Abstract—Computer system reliability is conventionally

modeled and analyzed using techniques such as fault tree

analysis (FTA) and reliability block diagrams (RBD), which

provide static representations of system reliability properties. A

recent extension to RBD, called dynamic reliability block

diagrams (DRBD), defines a framework for modeling dynamic

reliability behavior of computer-based systems. However,

analyzing a DRBD model in order to locate and identify design

errors, such as a deadlock error or faulty state, is not trivial

when done manually. A feasible approach to verifying it is to

develop its formal model, and then analyze it using

programmatic methods. In this paper, we first define a

reliability markup language (RML) that can be used to formally

describe DRBD models. Then we present an algorithm that

automatically converts a DRBD model into a colored Petri net

(CPN). We use a case study to illustrate the effectiveness of our

approach and demonstrate how system properties of a DRBD

model can be verified using an existing Petri net tool. Our

formal modeling approach is compositional, thus it provides a

potential solution to automated verification of DRBD models.

Index Terms—System reliability, reliability block diagram

(RBD), extensible markup language (XML), colored Petri net

(CPN), time Petri net, formal modeling and analysis, automated

verification, deadlock detection.

NOMENCLATURE

API Application programming interface.

BNF Backus-Naur form.

CPN Colored Petri net.

DFTA Dynamic fault tree analysis.

DOM Document object model.

DRBD Dynamic reliability block diagram.

FTA Fault tree analysis.

PDP Piecewise deterministic Markov processes.

RBD Reliability block diagram.

RML Reliability markup language.

This work was supported in part by the College of Engineering,

University of Massachusetts Dartmouth.

R. Robidoux is with the Computer and Information Science Department,

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

(e-mail: u_rrobidoux@umassd.edu).

H. Xu is with the Computer and Information Science Department,

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

(corresponding author, phone: 508-910-6427; fax: 508-999-9144; e-mail:

hxu@umassd.edu).

L. Xing is with the Electrical and Computer Engineering Department,

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

(e-mail: lxing@umassd.edu).

M. C. Zhou is with the Department of Electrical and Computer

Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

(e-mail: zhou@njit.edu).

SAX Simple API for XML.

SDEP State-based dependency controller.

SPARE Spare part controller.

SRBD State-based reliability block diagram.

XML Extensible markup language.

I. INTRODUCTION

N OUR modern society, there is an increasing reliance on

computer-based systems that control critical infrastructures

such as telecommunication networks, banking systems, and

nuclear power plants. Such infrastructures are critical because

the failure of the supporting computer-based systems (e.g.,

interrupted phone service, financial loss, and nuclear

meltdown) can be catastrophic [1]. Therefore, ensuring the

reliability of such systems has become a growing need in the

computing world. There are many existing methods that can

be used to evaluate a system’s reliability, such as measuring a

system’s mean time to failure. In order to efficiently evaluate

or predicate a system’s reliability performance, an effective

system reliability model is required. Most reliability

modeling approaches are based on statistical methods. Their

typical examples are reliability block diagram (RBD), fault

tree analysis (FTA), and Markov chains [2]. The above

methods, however, can only provide system reliability

models where a system component must be either active or

failed; thus, they are very limited in their ability to accurately

model a system’s dependency relationships and dynamic

reliability properties. Dynamic FTA (DFTA) is another

modeling tool that can support modeling a functional

dependency in a system, where the failure of a component

causes some other dependent components to become

inaccessible or unusable [3]. However, DFTA cannot be used

to model a general state-based dependency relationship

between components, e.g., a state-based dependency where

the activation of a component causes the deactivation of a

dependent one.

Recently, an extension to RBD, called dynamic reliability

block diagram (DRBD) [4-5], was introduced with new

controller constructs that support modeling dynamic,

dependent and redundant relationships between components

in a computer-based system. Although it has been shown that

the DRBD approach is very effective in modeling a system’s

dynamic reliability properties, subtle flaws in it can be easily

introduced due to its modeling complexity. Therefore, formal

verification of a DRBD model is an essential step in

developing a correct system reliability model for the

I

 1

evaluation of a system’s reliability. In our recent work, we

demonstrated some preliminary results on how to formally

verify a DRBD model using colored Petri nets (CPN) [4-5],

which provide the formal semantics for DRBD models. The

approach follows the basic philosophy of recent efforts on

converting a UML (Unified Modeling Language) diagram to

Petri nets for formal verification [6]. However, the proposed

approach is not compositional for formal modeling, and does

not provide a generalized solution to automatically convert a

DRBD model into CPN. In this paper, we present an

algorithm that supports automatic conversion of a DRBD

model into CPN. Hence, DRBD’s automatic verification can

be accomplished by analyzing the state space of the CPN

using existing CPN tools. Note that since our proposed formal

modeling approach is compositional, our approach scales

with the sizes of DRBD models.

The rest of the paper is organized as follows. Section II

summarizes the related efforts in reliability modeling. Section

III provides a formal definition of DRBD with its embedded

state-based RBD (SRBD). In order to efficiently process

DRBD models, an XML-based language, called the reliability

markup language (RML), is introduced to represent a DRBD

model in XML format. Section IV outlines the procedures to

convert DRBD into CPN. Section V provides a case study

that illustrates how to create a DRBD model and convert it

into a CPN model for formal analysis. Finally, Section VI

presents the conclusions and future work.

II. RELATED WORK

Reliability modeling is an integral step in creating reliable

and fault-resistant computer-based systems. Currently, many

industries require that some form of qualitative system

reliability analysis be integrated into the design phase of a

computer-based system [3]. One of the major analysis

approaches for system reliability is FTA, which provides a

detailed analysis of a system’s failure probabilities. Fault

trees are logic diagrams that depict potential, critical events

within a system. A fault tree model represents the relationship

between a critical event and the reasons for the event’s

occurrence, such as specific component failures [7]. Since

FTA does not account for dynamic system properties, it is

extended into dynamic FTA (DFTA) in order to model

dynamic relationships between components [3, 8]. DFTA

introduces additional gates for modeling sequential and

sparing behavior, but it has limited ability to model complex

systems that involve dynamic component dependency such as

a general state-based dependency [4]. On the other hand, an

RBD represents a network of system components and their

connections [2]. The network consists of an input point and

output point, a number of blocks representing system

components, and multiple paths from the input point to output

point. The multiple paths represent successful system

operations, where an interruption of these paths may lead to

the failure of the whole system [9]. Therefore, an RBD model

represents the static topology of a computer-based system’s

reliability, where the topology can be a serial, parallel or

hybrid structure. Contrary to FTA, RBD models are

success-oriented networks that describe the function of a

system by probabilistic means [2]. Component blocks in an

RBD are arranged to illustrate the proper combinations of

working components that keep the entire system operational.

Failure of a component can be represented by removing the

component as well as its connections with other components

from the network. When a sufficient number of components

in a system fail, the whole system may also fail if there is no

connection between the input and output point.

Additional related work on system reliability modeling can

be summarized as follows. The SHARPE (symbolic

hierarchical automated reliability and performance evaluator)

tool expands the use of Markov models in reliability

verification of computer systems [10]. Sahner and Trivedi

recognize that Markov models can capture important

dynamic system behavior, but may also grow exponentially

with the number of system components. Their research

produces a hierarchical modeling technique for analyzing

complex reliability models, which allows for the flexibility of

Markov models where necessary, and retains the efficiency of

combinatorial solutions where possible. Leangsuksun, et al.

adopt UML technology to model the reliability of two-tier

computer systems [11]. They use UML deployment diagrams

to model system components and their relationships, and

manually create failure and repair rate for components in

order to construct statistical fault trees and Markov Chain

models. The system reliability is then calculated using the

SHARPE tool. Similarly, Dammag and Nissanke also propose

a visual model, called Safecharts, which can be used to

specify and design safety critical systems [12]. The novel

feature of Safecharts is its safety annotation that provides an

explicit ordering of states according to risk levels. In order to

support standards compliance testing and verification for

safety-critical systems, Hsiung, et al. attempt to integrate

Safecharts into VERTAF (Verifiable Embedded Real-Time

Application Framework), which is an application framework

for design and verification of embedded real-time software

[13]. Blake, et al. use an extension of Markov models to

specify the reliability of multiprocessor systems using

parametric sensitivity analysis [14]. Their approach creates an

upper and lower bound for each system parameter of interest

in order to compute the optimistic and conservative bounds

for the reliability of a multiprocessor system. Similar to the

FTA and RBD approaches, most of the above methods only

consider a system component as a bi-state component, which

must be either active or failed. Therefore, they suffer from the

same weakness as FTA and RBD models for modeling

dynamic system reliability properties. In our previous work,

we propose dynamic RBD (DRBD) as an extension to RBD

models [4-5]. New modeling constructs have been introduced

and formally specified in Object-Z formalism [15], and can

be used to model dynamic reliability properties of system

components, e.g., state-based dependency and spare part

relationships. Unlike DFTA, DRBD models are defined upon

state-based components where a component can be active,

 2

standby or failed. Thus, DRBD controlling constructs support

modeling general state-based dependencies. Reference [5]

gives an introduction to DRBD models as well as additional

related work on system reliability modeling.

Petri nets [16-18] have been widely used in industry for

modeling and analyzing computer-based systems such as

intelligent mobile robots and semiconductor manufacturing

systems [19-20]. There is some related work to our approach

that uses Petri nets for deadlock detection and avoidance.

Fanti and Zhou give a survey on state-of-the-art modeling and

deadlock control methods for discrete manufacturing systems

based on digraphs, automata, and Petri net approaches [21].

They present the updated results in the areas of deadlock

prevention, detection and recovery, and avoidance. Li, et al.

develop a methodology to synthesize supervisors for a special

class of Petri nets that can be used to model flexible

manufacturing systems [22]. In their research, a mixed

integer programming based deadlock detection technique is

used to find minimal siphons efficiently in a plant model.

Hsieh formulates a fault-tolerant deadlock avoidance

controller synthesis problem for assembly processes based on

a class of Petri nets [23]. He proposes a fault-tolerant

deadlock avoidance approach that consists of two algorithms,

namely a nominal algorithm to avoid deadlocks for nominal

system state and an exception handling algorithm to deal with

resource failures. Wu and Zhou propose a novel control

policy for deadlock avoidance for automated guided vehicle

system using colored resource-oriented Petri nets, and the

complexity of deadlock avoidance for the whole system is

bounded by the complexity in controlling the system [24].

More recently, Li, et al. summarize a variety of Petri net

based deadlock prevention policies for flexible

manufacturing systems [25]. Their work facilitates engineers

in choosing a suitable method for their industrial applications.

They further suggest developing polynomial algorithms in

order to improve the computational efficiency of deadlock

prevention methods that are based on the theory of regions.

Although the above Petri net based approaches can be used

for deadlock detection and avoidance, they are not aimed at

modeling system reliability. A few efforts on reliability

modeling using Petri nets can be summarized as follows.

Bobbio, et al. use the generalized stochastic Petri net (GSPN)

to support system dependability analysis [26]. Their approach

involves converting fault trees into a GSPN model for the

purpose of obtaining both qualitative and quantitative

analysis results for the modeled system. Everdij and Blom

develop piecewise deterministic Markov processes (PDP)

models using dynamically colored Petri nets (DCPN) [27].

They show that DCPN has similar modeling power to PDP,

and is more powerful than deterministic and stochastic Petri

nets. Petri nets are also applied in safety analysis of a system

as shown by Leveson and Stolzy, where Petri nets are used to

design and analyze the safety and fault tolerance of a system

[28]. Using timed Petri nets, they prove that paths to high risk

states can be removed based on reachability analysis. Buy and

Sloan propose a method to automatically analyze the timing

properties of concurrent systems [29]. Their method uses

simple time Petri nets to analyze concurrent software systems

developed in Ada. Ghezzi, et al. introduce a high-level Petri

net formalism, called ER nets (environment/relationship nets)

to model time critical software systems [30]. They prove that

ER nets can provide a satisfactory solution to analyzing the

timing and functionality of such systems. While the above

approaches are similar to our research efforts using Petri nets,

they are not concerned with formalizing dynamic reliability

properties of a computer system, such as a state-based

dependency. Furthermore, instead of providing quantitative

analysis of system reliability directly using Petri nets, our

approach currently focuses on using colored Petri nets (CPN)

[31] to verify the correctness of a DRBD model, namely the

safety properties and liveness properties [32] of the

corresponding system. Although there are many previous

efforts for formal modeling and analysis of various systems

using Petri nets [33-37], automated system modeling using

colored Petri nets is rare. As we demonstrate in the case study

in Section V, it is vital to provide an automated mechanism to

ensure the correctness of a DRBD model because a DRBD

model can become complicated when dynamic reliability

properties are involved.

III. DYNAMIC RELIABILITY BLOCK DIAGRAM

The novelty of DRBD is its ability to model dynamic

system reliability behaviors such as state-based dependency

and redundancy [4]. The DRBD approach introduces new

controller blocks, such as SDEP (state-based dependency

controller) and SPARE (spare part controller) for modeling

state-based dependency and spare part relationships,

respectively. A DRBD model consists of a state-based RBD

(SRBD) and a number of controller blocks. SRBD is an

extension to RBD where each component is associated with a

state representing the activeness of the component in the

system. An SRBD model defines the static structure of a

DRBD model, while the controller blocks model the dynamic

reliability properties of the system. The DRBD designs

described in this paper follow the notations and constructs

introduced in [4-5].

A. State-Based Reliability Block Diagram

An SRBD is a network of dynamic system components

called structural components. As defined in Fig. 1 in a

Backus-Naur form (BNF), a structural component can be one

of the three component types, namely simple component,

parallel component and serial component. Simple

components are a special case of structural components,

which represent atomic and physical system components with

a state. A component with a state can be formally defined as a

finite state machine consisting of three states, “Active”,

“Standby” and “Failed”, which may change at runtime. An

“Active” component is an online component that is actively

performing tasks. A component in a “Standby” state is ready

to perform tasks, but it is still waiting to be set online. A

“Failed” component is no longer online and cannot work

 3

properly. The two other structural component types are used

to define the topology of a DRBD. In Fig. 1, parallel

components and serial components are defined as sets of

structural components sandwiched between the tags

<parallel>…</parallel> and <serial>…</serial>,

respectively. The state of a structural component can be

logically determined by aggregating the states of its contained

components. Contained structural components within a

parallel component (i.e., simple or serial components) can

operate in parallel; therefore, only one of them must be in an

“Active” state for the parallel component to be considered as

active. A failed parallel component indicates that all of its

contained structural components are in “Failed” states.

Conversely, a serial component is not considered as active

unless all of its contained structural components (simple or

parallel component) are in “Active” states because the failure

of any of its contained components leads to the failure of the

whole serial component. Note that according to the definition

of SRBD in Fig. 1, a serial component may contain only one

component; thus, an SRBD with a single simple or parallel

component can also be viewed as a serial component.

Fig. 1. Definition of SRBD in Backus–Naur form (BNF).

Fig. 2 shows an example of an SRBD model. In this

example, two simple components (C1 and C2) are contained

within a serial component, which itself is contained in a

parallel component along with a third simple component

(C3). Note that if not specified explicitly, we assume that all

simple components are initially in “Active” states.

Fig. 2. An example of a state-based reliability block diagram.

B. DRBD Controller Blocks

Controller blocks defined in a DRBD model can be used to

model dynamic relationships between components. Fig. 3

shows the formal definition of a DRBD model with two types

of controllers, spare and state controllers, in a BNF format.

Note that additional types of controllers, e.g., a load sharing

block [5], can also be formally specified in a similar way.

Fig. 3. Definition of DRBD in BNF.

A spare controller can be used to model redundant system

behavior, where n spare components (n > 0) are used to back

up a primary component. The deactivation or failure of the

primary component (i.e., the primary event) triggers the first

spare component to enter an “Active” state. Similarly, the

deactivation or failure of the first spare component triggers

the second spare one to enter an “Active” state, and so on. The

activation of a spare component is called a spare event, while

the event of deactivation or failure of a spare component is

implicitly defined. A spare component is a simple component

with an ordering number and a sparing configuration. The

ordering number of a spare component is defined as a natural

number, and the standby spare component with the lowest

ordering number should always be activated first when a

primary component or a spare component is deactivated or

failed. The sparing configuration signifies the “activeness” of

a spare part. There are three types of sparing configurations,

namely hot, cold and warm. A hot spare component operates

in synchrony with a primary (i.e., online) component, and is

prepared to take over at any time; while a cold spare

component is unpowered until needed to replace a faulty

component [38]. A warm spare component is a tradeoff

between hot and cold configuration in terms of

reconfiguration time and power consumption. Without loss of

generality, in this paper, we assume that all spare components

used in our examples are cold spares.

Fig. 4 (a) illustrates a SPARE controller block with a

primary component, P1, and two cold spares, S1 and S2 with

<drbd> ::= <srbd><controller>{<controller>}
<controller>::= <spare controller>
 |<state controller>|...
<spare controller> ::= <spareCon><primary event>
 <spare event>{<spare event>}</spareCon>
<primary event> ::= <primary component>
 (<Deactivation>|<Failure>)
<primary component> ::= <simple component>
<spare event> ::= <spare component><Activation>
<spare component> ::= <simple component>
 <ordering number><sparing configuration>
<ordering number> ::= <natural number>
<sparing configuration > ::= <cold>|<warm>|<hot>
<state controller> ::= <stateCon><trigger event>

 <target event>{<target event>}</stateCon>
<trigger event> ::= <trigger component><event>
<trigger component> ::= <simple component>
 |<spare component>
<target event> ::= <target component><event>
<target component> ::= <simple component>
 |<spare component>
<event> ::= <Activation>|<Deactivation>|<Failure>
...

<srbd> ::= <structural component>
<structural component> ::= <simple component>
 |<serial component>|<parallel component>
<simple component> ::= <simple>
 <component id><component state></simple>
<component id> ::= <string>
<component state> ::= <Active>|<Standby>|<Failed>
<serial component> ::= <serial>
 <simple or parallel component>
 {<simple or parallel component>}</serial>
<simple or parallel component> ::=
 <simple component>|<parallel component>
<parallel component> ::= <parallel>
 <simple or serial component>
 <simple or serial component>{<simple or
 serial component>}</parallel>
<simple or serial component> ::=
 <simple component>|<serial component>)

C1 C2

C3

serial component

parallel component

 4

ordering numbers 1 and 2, respectively. In this example, the

first spare part S1 is activated if P1 fails, and S1’s failure

leads to the activation of the second spare component S2.

Note that the capitalized letter “C” at the upper right corner of

blocks S1 and S2 denotes that both are cold spares.

 (a)

 (b)

Fig. 4. (a) SPARE controller block. (b) SDEP controller block.

On the other hand, an SDEP controller block models the

state-based dependency relationships between components in

a system. With an SDEP controller block, a trigger event due

to change of state on a trigger component leads to target

events, which are state changes on target components. Both a

trigger and target component can be a simple or spare

component, and the number of target components must be

greater than zero. An event can be one of the three types,

namely “Activation,” “Deactivation,” and “Failure.” An

“Activation” event happening on a simple or spare

component causes it to enter an “Active” state. Similarly, a

“Deactivation” or “Failure” event happening on a simple or

spare component causes the component to enter a “Standby”

or “Failed” state, respectively. Fig. 4 (b) shows an example in

which the activation of C1 leads to the deactivation and

failure of C2 and C3, respectively. Note that both C2 and C3

are initially assumed in “Active” states, and otherwise, the

states of C2 and C3 may remain unchanged when C1 is

activated.

C. DRBD Model in Reliability Markup Language

The reliability markup language (RML) is an XML-based

schema defined to formally describe the components,

structure and dynamic behavior of a DRBD. RML is designed

based on the BNF definition of DRBD models. All

components and controllers in a DRBD model have nested

RML elements that describe their properties according to

their respected BNF definitions. Fig. 5 shows a DRBD model

with three parallel simple components C1-C3, which are

dependent on each other. The SDEP controller block specifies

that the deactivation of C1 leads to C2’s failure as well as

C3’s activation. The figure also shows the XML-based

representation of the DRBD model in RML. An RML file

uses the opening <rml> tag to signify the beginning of a

DRBD definition. Following it, an SRBD model is defined as

the top structural component, called MAIN component.

Component MAIN is defined as a serial component within the

tags <serialComponent> and </serialComponent>,

which may contain any number of structural components

(simple or parallel ones). In this example, the only structural

component contained in MAIN is a parallel component that is

defined within the tags <parallelComponent> and

</parallelComponent>. The parallel component has an

identification of PCom, which consists of three simple

components C1-C3. Each of them is defined within the tags

<simpleComponent> and </simpleComponent>, and has

an initial state defined inside the <initialState>…

</initialState> tags. In this example, the parallel

component consists of simple ones only, but in a more general

case, it may contain serial components. Similarly, a serial

component may also consist of any number of simple or

parallel components.

Fig. 5. XML-based representation of a DRBD model in RML.

After an SRBD has been defined, controllers are to be

added into the RML file using specific XML tags. For

example, state controller C1_SDEP can be defined within the

C1

C2

C3

SDEP

D

F

A

XML-based

representation

P1

S1

S2

SPARE

A

A

C

C

F

C1

C2

C3

SDEP
A

D

F

<?xml version="1.0"?>
<rml>
 <serialComponent id = "MAIN">
 <parallelComponent id = "PCom">
 <simpleComponent id = "C1">
 <initialState>Active</initialState>
 </simpleComponent>
 <simpleComponent id = "C2">
 <initialState>Active</initialState>
 </simpleComponent>
 <simpleComponent id = "C3">
 <initialState>Standby</initialState>
 </simpleComponent>
 </parallelComponent>
 </serialComponent>
 <stateController id = "C1_SDEP">
 <triggerEvent>
 <id>C1</id>
 <event>Deactivation</trigger>
 </triggerEvent>
 <targetEvent>
 <id>C2</id>
 <event>Failure</event>
 </targetEvent>
 <targetEvent>
 <id>C3</id>
 <event>Activation</event>
 </targetEvent>
 </stateController>
</rml>
</xml>

 5

<stateController> and </stateController> tags as

shown in Fig. 5. Inside the C1_SDEP definition, the trigger

and target events can be defined using <triggerEvent> …

</triggerEvent> and <targetEvent> …

</targetEvent> tags, respectively. Corresponding to (D,

F) and (D, A) state-based dependency between component C1

and C2, and C1 and C3, respectively, we define the trigger

event that occurs on C1 with a Deactivation event, and

two target events, which occur on C2 and C3 with the events

of Failure and Activation, respectively. When both

SRBD model and controllers have been defined, the RML file

is ended by the closing tag </rml>.

The motivation and major advantage of using RML to

describe a DRBD model is to allow access and mutation of a

DRBD model as an XML document. XML documents not

only support a standard information encoding and storage

format, but also allow programmers to use that information in

a standard way [39]. Currently, two dominant APIs for

processing XML-based documents are Simple API for XML

(SAX) and Document Object Model (DOM). The SAX

specification defines a low level API, which is an event-based

approach that can parse through XML data and call handler

functions when certain parts of the document are found. On

the other hand, the DOM specification defines a tree-based

approach to processing XML data. Based on the hierarchical

structure of the XML data, the DOM approach creates an

internal tree, which can be navigated at runtime. For

efficiency reasons, in this project, we have adopted the DOM

specification to process RML files.

IV. CONVERSION OF DRBD MODELS INTO CPN

In order to verify the correctness of a DRBD model, we

need to convert it into CPN using a two-step procedure. First,

the embedded SRBD of a DRBD model is converted into a

CPN model. Then, the controller blocks are converted into

Petri nets and added into the converted CPN model. The

following sections give the detailed descriptions for the

conversion procedures. Note that the CPN models described

in the following sections employ CPN-ML, which is a

powerful programming language of CPN as implemented in

CPN Tools [40]. We assume readers have the basic

knowledge of CPN-ML [41].

A. Conversion of SRBD into CPN

Before we present the algorithm to convert the embedded

SRBD of a DRBD model into a CPN model, we first describe

how to convert each type of structural components in an

SRBD into CPN. In order to model the component state, a

colored token called a state token is introduced, which has

three possible values, i.e., “Active”, “Standby” and “Failed”.

The movement of these tokens in a CPN model signifies the

state changes of the components in the DRBD model. Fig. 6

shows the conversion of a simple component into a CPN,

called simple-component CPN.

A simple-component CPN contains two places, i.e.,

C1_start and C1_up. C1_start contains an initial token with

color “Active” (denoted as 1`Active in Fig. 6), indicating

that its initial state is active. When C1 remains active and the

other input place to transition in_C1 also contains an “Active”

token (we do not show the other input place of transition

in_C1 in Fig. 6, but it is connected to in_C1 through the Input

Connection of the simple-component CPN), in_C1 may fire.

Its firing deposits an “Active” token into C1_up, indicating

that C1 is active. The “Active” token in C1_up can be further

passed along to other modules through Output Connection

(Active). On the other hand, if transition C1_destruct fires

while C1 is active, the “Active” token in C1_start is removed,

and a “Failed” token is deposited into C1_start. In this case,

transition C1_fail is enabled and can fire. When C1_fail fires,

it generates a “true” token indicating that C1 fails. The

generated “true” token can be further passed to other modules

through Output Connection (Failed).

xb

x x

x

C1_fail[x= Failed]

in_C1

[x= Act ive]

C1_dest ruct

[x= Act ive]

output (y) act ion(Failed)

C1_up

STATE

C1_start

1` Act ive

STATE

Output Connect ion
 (Act ive)

Output Connect ion
 (Failed)

I nput Connect ion

x

y
x

output (b) act ion(t rue)

Fig. 6. Simple-component CPN for a simple component.

A serial-component CPN is a set of serially connected

structural component CPN. Fig. 7 shows a serial component

in DRBD containing two simple components, C1 and C2, and

its CPN representation.

Output Connect ion
 (Act ive)

x

x

b

b
x

x

u

u

b

x
x

x

x z
y

y

x

x z

y
y

x

in_Serial

[x= Act ive]

[b= t rue]

in_Serial_up

[x= Act ive]

C2_fail

[x= Failed]

output (b)
act ion(t rue)

in_C2

[x= Act ive,
 y= Act ive]

output (z) act ion(Act ive)

C2_dest ruct

[x= Act ive]

output (y) act ion(Failed)

C1_fail

[x= Failed]

output (b) act ion(t rue)

in_C1

[x= Act ive,
 y= Act ive]

output (z)
act ion(Act ive)

C1_dest ruct

[x= Act ive]

output (y)
act ion(Failed)

Serial_start

STATE

1` e

UNI T

BOOL

Serial_up

STATE

C2_up

STATE

C2_start

1` Act ive

STATE

C1_up

STATE

C1_start

1` Act ive

STATE

Serial_down Serial_inhibit

b

Serial_fail

Output Connect ion
 (Failed)

I nput Connect ion

Fig. 7. Serial-component CPN for a serial component.

C1

C1 C2

 6

Similar to a simple-component CPN, a serial-component

CPN has an interface that consists of an Input Connection

(through its in_Serial transition) and two Output Connections

(through its Serial_up place and Serial_fail transition). When

transition in_Serial receives an “Active” token through Input

Connection, it can fire, and its firing deposits an “Active”

token into place Serial_start. This token enables transition

in_C1 if place C1_start also contains an “Active” token.

The behavior of C1 in Fig. 7 is the same as that of the

simple component C1 in Fig. 6. Note that both C1 and C2 in

Fig. 7 are modeled in exactly the same way as C1 in Fig. 6.

When both places C1_up and C2_start contain an “Active”

token, transition in_C2 is enabled, and its firing deposits an

“Active” token into C2_up. The “Active” token in C2_up

further enables transition in_Serial_up, and may place an

“Active” token in place Serial_up. Similar to a

simple-component CPN, an “Active” token in Serial_up

indicates that the serial component is functioning properly.

The firing procedure also implies that the serial component is

active only when both of its contained simple components,

C1 and C2, are active.

On the other hand, when either C1 or C2 fails, transition

C1_fail or C2_fail can fire. When either fires, a “true” token

is deposited into place Serial_down, which enables transition

Serial_fail. Firing Serial_fail generates a “true” token

indicating that the serial component cannot function properly

due to the failure of its contained components. The firing

procedure also implies that the serial component becomes

failed when either C1 or C2 fails. Note that when both C1 and

C2 fail, only one of the transitions, either C1_fail or C2_fail,

can fire because place Serial_inhibit limits the capacity of

place Serial_down to one; thus, Serial_fail will not

accidentally fire twice.

A parallel component contains a set of structural

components (simple or serial components) that are connected

in parallel. Fig. 8 shows the DRBD model of a parallel

component with two simple components C1 and C2, and its

CPN representation. Similar to a simple-component and a

serial-component CPN, a parallel-component CPN has an

Input Connection (through its in_Para transition) and two

Output Connections (through its Para_up place and Para_fail

transition).

Components C1 and C2 in Fig. 8 are modeled in the same

way as shown in Fig. 6. When Input Connection passes an

“Active” token to transition in_Para, its firing deposits an

“Active” token into place Para_start, which enables both

in_C1 and in_C2. When C1 or C2 is active, transition in_C1

or in_C2 may fire, and can deposit an “Active” token in place

C1_up or C2_up, respectively. The “Active” token in either

C1_up or C2_up enables Para_C1 or Para_C2, and

eventually leads to an “Active” token in place Para_up.

Similar to a serial-component CPN, an “Active” token in

Para_up indicates that the parallel component can function

properly. Note that at any time, only one of the transitions

(either in_C1 or in_C2) may fire. Thus the capacity of place

Para_up must be one.

x

x

b

b

x

x

b

b

x

x

b

bx

y z

x

x

x

x

x

z

y
y
x

b

in_Para

Para_fail

[b= t rue]

C1_fail

[x= Failed]

output (b)
act ion(t rue)

in_Para_down

[b= t rue]

Para_C2

[x= Act ive]

C2_fail

[x= Failed]

output (b) act ion(t rue)

in_C2

[x= Act ive, y= Act ive] output (z) act ion(Act ive)

C2_dest ruct

[x= Act ive]

output (y)
act ion(Failed)

Para_C1

[x= Act ive]

in_C1

[x= Act ive, y= Act ive]

output (z)
act ion(Act ive)

C1_dest ruct

[x= Act ive]

output (y)
act ion(Failed)

C1_down BOOL

C2_down

BOOL

C2_up

STATE

C2_start

1` Act ive

STATE

C1_up

STATE

C1_start

1` Act ive

STATE

Para_down

BOOL

Para_up

STATE

Para_start

STATE

I nput Connect ion

Output Connect ion
 (Act ive)

Output Connect ion
 (Failed)

y

Fig. 8. Parallel-component CPN for a parallel component.

On the other hand, if both C1 and C2 fail, there will be a

“true” token in both places C1_down and C2_down, which

enables transition in_Para_down. Its firing deposits a “true”

token into place Para_down, which enables transition

Para_fail. Firing Para_fail generates and passes a “true”

token to other modules through Output Connection. The

firing procedure implies that the parallel component is not

functioning due to the failure of both C1 and C2.

It is worth noting that although in the above examples, both

serial and parallel components contain simple components

only, they may contain serial or parallel components in a

more general case. In such a case, CPN models can be

composed in exactly the same way as described. This is

because both a serial-component CPN and a

parallel-component CPN have the same interface as a

simple-component CPN. Thus, our conversion approach is

compositional.

We now provide a recursive algorithm for automatically

converting an SRBD model into a CPN model. The proposed

recursive algorithm treats the previous techniques as a

function that recursively expands structural components in

order to derive a CPN that formally defines an entire SRBD.

The algorithm is illustrated as pseudocode in Fig. 9, which is

defined as a recursive function convert_Serial_

Component with a parameter of type SerialComponent.

The algorithm starts with viewing a SRBD model as a

serial component, and creating the needed input and output

connections. As defined in Fig. 1, a serial component can

contain one or more than one simple or parallel components.

Thus we use a for-loop to convert each of the contained

structural components. If a contained component is a simple

or spare component, we convert it directly into a

simple-component CPN as shown in Fig. 6; otherwise, if it is

a parallel component, we first create the needed input and

output connections for the parallel-component CPN, and then

use a for-loop again to convert each of contained structural

C1

C2

 7

components into a CPN. For each contained structural

component in the parallel component, we check whether it is

a simple or spare component. If it is a simple or spare

component, we convert it directly into a simple-component

CPN; otherwise, if it is a serial one, the function

convert_Serial_Component is called recursively. When

all contained components in a parallel component have been

converted into CPNs, all simple-component CPN and

serial-component CPN are connected together (as shown in

Fig. 8) to create a parallel-component CPN. Similarly, when

all contained components in a serial component have been

converted into CPNs, all simple-component and

parallel-component CPNs are connected together (as shown

in Fig. 7) to create a serial-component CPN.

The resulting CPN for an SRBD contains open input and

output connections. In order to develop a complete CPN

model for the SRBD, we introduce additional places and

transitions into the SRBD CPN. As shown in Fig. 10, an

SRBD is treated as serial component MAIN with three major

places MAIN_start, MAIN_up, and MAIN_down.

Output Connect ion
 (Act ive)

Output Connect ion
 (Failed)

I nput Connect ion

b

b x

x

b x

x

x
SYS_up

[x= Act ive]

SYS_down

[b= t rue]

in_MAI N_up

[x= Act ive]

SRBD CPN

MAI N_down

BOOL

MAI N_up

STATE

MAI N_start

1` Act ive

Fig. 10. The complete CPN model for an embedded SRBD.

Place Main_start initially contains an “Active” token, and

connects to the SRBD CPN through Input Connection.

Similarly, Main_up and Main_down connect to the SRBD

CPN through Output Connection (Active) and Output

Connection (Failed), respectively. Note that since Output

Connection (Active) can only pass a token to a transition,

place Main_up connects to the SRBD CPN through an

intermediate transition in_Main_up. In addition, two

transitions, SYS_up and SYS_down, are connected to

MAIN_up and MAIN_down, respectively. When there is a

“true” token in either MAIN_up or MAIN_down, SYS_up or

SYS_down can fire, which denotes that the system is

functioning or failing. Note that when we execute the CPN

model, it should eventually end up with firing of either

SYS_up or SYS_down; otherwise, there must be a deadlock

state existing in the CPN model.

B. Conversion of DRBD Controllers into CPN

The next step in converting a DRBD model into a CPN is to

convert DRBD controllers into controller CPN, and add them

into the CPN model developed for the embedded SRBD

model in step one. A controller CPN consists of a set of

transitions and arcs that connect to the start places of the

corresponding simple-component CPN. Fig. 11 and Fig. 12

illustrate the algorithms for converting a spare controller into

a spare-controller CPN and converting a state controller into a

state-controller CPN, respectively. Note that in the algorithm

presented in Fig. 12, when the trigger event is deactivation,

no synchronization place needs to be introduced. We now use

the spare controller and state controller examples in Fig. 4 to

illustrate how these algorithms work. Fig. 13 shows a

spare-controller CPN for the SPARE controller block in Fig.

4 (a). The SPARE controller block models the spare part

relationship between primary component P1 and two cold

spare parts S1 and S2. When P1 fails, S1 is activated, and

similarly, when S1 fails, S2 is activated. In order to model

such a cascading relationship in CPN, we introduce two

transitions SPC_P1 and SPC_S1, which connect the start

places of P1 and S1, to the start places of S1 and S2,

respectively. When P1 fails, and S1 is in its standby state,

transition SPC_P1 may fire, which removes the “Standby”

token in place S1_start, and deposits an “Active” token into

S1_start. This indicates that S1 changes its state from

“Standby” to “Active” due to the failure of P1. Similarly,

when S1 fails, transition SPC_S1 may fire, which changes the

state of S2 from “Standby” to “Active”. Note that in the

spare-controller CPN model in Fig. 13, there are two

function convert_Serial_Component(SerialComponent se_com)
 create input/output connections for se_com;
 foreach StructuralComponent s_com in se_com
 if (s_com is simpleComponent | spareComponent)
 convert s_com directly into a simple component CPN;
 else if (s_com is ParallelComponent)
 create input and output connections for s_com;
 foreach StructuralComponent p_com in s_com
 if (p_com is SimpleComponent | SpareComponent)
 convert p_com directly into a simple component CPN;
 else if (p_com is SerialComponent)
 convert_Serial_Component(p_com);
 end
 create all parallel connections in s_com;
 end
 create all serial connections in se_com;
end function

Fig. 9. Recursive algorithm for converting a SRBD into a CPN.

 8

function convert_Spare_Controller(SpareController sp_con)
 create place P1_start and transition P1_fail for primary component P1;
 foreach SpareComponent Si (i = 1 to n) in sp_con

synchronization places: SPC_sync1 and SPC_sync2. When

transition SPC_P1 (SPC_S1) fires, a unit token is deposited

into place SPC_sync1 (SPC_sync2), which enables transition

P1_fail (S1_fail). Thus, SPC_sync1 (SPC_sync2) can be used

to ensure that the firing of transition SPC_P1 (SPC_S1)

precedes that of transition P1_fail (S1_fail), and the “Failed”

token in place P1_start (S1_start) will not be accidentally

removed before transition SPC_P1 (SPC_P2) fires.

x

x

y
u u

u u

z

x

x

S1_fail

[x= Failed]

P1_fail

[x= Failed]

SPC_S1

[x= Failed,
y= Standby]

output (z) act ion(Act ive)

SPC_P1

[x= Failed, y= Standby]

output (z) act ion(Act ive)

UNI T

SPC_sync1

UNI T

S2_start

STATE

S1_start

P1_start
1` Act ive

STATE

z
y

SPC_sync2

1` Standby

STATE

1` Standby

Fig. 13. Spare-controller CPN for the SPARE block in Fig. 4 (a).

In a DRBD model, a state controller (i.e., an SDEP

controller block) models a state-based dependency

relationship between simple components. Fig. 14 shows a

state-controller CPN for the SDEP controller block with a

trigger component C1 and two target components C2 and C3

defined in Fig. 4 (b). The SDEP block is modeled by an SDEP

transition in the state-controller CPN, which connects the

start places of the three components. When C1 becomes

active, and both C2 and C3 are also active, transition SDEP

becomes enabled. Its firing deposits a “Standby” and “Failed”

token into places C2_start and C3_start, respectively. It also

deposits a unit token into synchronization place SDEP_sync,

which may enable transition in_C1 when C1_start contains

an “Active” token. Thus, SDEP_sync ensures that the firing

of SDEP precedes that of in_C1, and the “Active” token in

place C1_start will not be accidentally removed before SDEP

fires.

y

u

x

z

wv

xx

in_C1

[x= Act ive]

SDEP

[x= Act ive,
y= Act ive,
z= Act ive]

output (v,w) act ion(Standby, Failed)

SDEP_sync

UNI T

C2_start

1` Act ive

STATE

C3_start

1` Act ive

STATE

C1_start

1` Standby

STATE

u

Fig. 14. State-controller CPN for the SDEP block in Fig. 4 (b).

 create place Si_start and transition Si_fail;
 end
 create transition SPC_P1 that connects P1_start and S1_start such that

Fig. 11. Algorithm for converting a spare controller into a spare-controller CPN.

 when P1 fails and S1 is standby, S1 is activated;
 foreach SpareComponent Si (i = 1 to n-1) in sp_con
 create transition SPC_Si that connects Si_start and S(i+1)_start
 such that when Si fails and S(i+1) is standby, S(i+1) is activated;
 end
 create place SPC_sync1 that connects transitions SPC_P1 and P1_fail;
 foreach SpareComponent Si (i = 1 to n-1) in sp_con
 create place SPC_sync(i+1) that connects transitions SPC_Si and
 Si_fail;
 end
end function

Fig. 12. Algorithm for converting a state controller into a state-controller CPN.

function convert_State_Controller(StateController st_con)
 create place C1_start for trigger component C1;
 foreach TargetComponent Ci (i = 2 to n) in st_con
 create place Si_start for Ci;
 end
 create transition SDEP that connects all places Ci_start (i = 1 to n)
 according to the trigger and target events defined in st_con;
 if (trigger event is activation)
 create transition in_C1 for trigger component C1;
 create place SDEP_sync that connects transitions SDEP and in_C1;
 else if (trigger event is failure)
 create transition C1_fail for trigger component C1;
 create
end function

place SDEP_sync that connects transitions SDEP and C1_fail;

 9

Note that if the trigger event from simple component C1 is

failure instead of activation, synchronization place

SDEP_sync should be connected to transition C1_fail instead

of in_C1. This case is illustrated in Fig. 15. On the other hand,

if the trigger event from C1 is deactivation, no

synchronization place is needed. This is because when C1

becomes standby, neither of C1_fail and in_C1 is enabled,

and SDEP is the only one enabled due to a “Standby” token in

place C1_start.

y

u

u

x

z

wv

xx

C1_fail

[x= Failed]

SDEP

[x= Failed,
y= Act ive,
z= Act ive]

output (v,w) act ion(Failed, Failed)

SDEP_sync

UNI T

C2_start

1` Act ive

STATE

C3_start

1` Act ive

STATE

C1_start

1` Act ive

STATE

Fig. 15. State-controller CPN with failure trigger event.

Finally, the converted controller CPN models can be added

into the CPN model developed for the embedded SRBD

model in step one. This procedure can be done by merging the

start places (e.g., P1_start in Fig. 13) and status transitions

(e.g., P1_fail in Fig. 13 and in_C1 in Fig. 14) from the

controller CPN models with the corresponding places and

transitions defined in the CPN model for the embedded

SRBD model. We illustrate this process in a case study

presented in the following section.

V. CASE STUDY: CONVERSION OF DRBD INTO CPN FOR

FORMAL VERIFICATION

A. DRBD Model of a Redundant Generator

Consider a coast guard vessel whose electrical system is

powered by three generators: primary, backup, and secondary

backup one used only for emergency. The primary and

backup generators can provide the vessel with enough

kilowatts (KW) output to power all electrical components and

equipment; while the emergency generator has less wattage

output and can supply only power to the vessel’s essential

equipment such as navigational lights, emergency lights and

other equipment that keeps the engine running. Initially, only

the primary generator is running, and the other two generators

are in standby states. At runtime, if the primary one fails, it

automatically triggers the backup one to switch from standby

to online. Similarly, if the backup one fails, the emergency

generator is activated. Connected in series to the generators is

a power bus that is a series of circuit breakers that feed

electricity from a generator to the electrical components on

the ship. The power bus in this system contains two parallel

buses, namely main and emergency buses. The main bus

contains the breakers for all of the ship’s components, while

the emergency bus powers only the vessel’s essential

equipment.

Fig. 16 shows the DRBD model for the system described

above. It consists of two parallel components that are

connected in serial. The first parallel component contains the

generator components and is composed of the primary

generator (PG1), backup generator (BG1) and emergency

generator (BG2). PG1 is a simple component, initially in an

“Active” state; while BG1 and BG2 are cold spare

components, which are initially in “Standby” states. A spare

controller (SPARE) is introduced to model the cascading

failure of PG1 and BG1. If PG1 fails, BG1 is activated, and

upon failure of BG1, BG2 enters its “Active” state. The

second parallel component models the power buses. The two

power buses, main bus (MB) and emergency bus (EB), are

represented in the DRBD model as simple components within

the power bus parallel component. Since the emergency

generator BG2 does not output enough wattage to power MB

when it enters its “Active” state, MB must be deactivated and

EB must enter its “Active” state. This state-based dependency

between BG2 and the power buses is modeled by an SDEP

state controller.

F

Fig. 16. DRBD model of a redundant generator system.

B. Automatic Generation of a CPN Model

According to the algorithm presented in Section IV, the

DRBD model of the redundant generator system can be

converted into a CPN model as shown in Fig. 17. The first

structural component within MAIN serial component is a

parallel component representing the set of generators,

denoted as GEN. During the conversion of GEN into CPN,

CPN models corresponding to each generator (PG1, BG1, or

BG2) are first created and then connected in parallel

according to the algorithm. These parallel connections are

illustrated in Fig. 17, where each generator CPN initially

contains an “Active”, “Standby”, and “Standby” token in

their start places PG1_start, BG1_start, and BG2_start,

respectively. When any of these components is active, there is

an “Active” token in one of places PG1_up, BG1_up, and

BG2_up, which enables transitions GEN_PG1, GEN_BG1,

and GEN_BG2, respectively. When one of these transitions

fires, an “Active” token is deposited into place GEN_up,

indicating that the GEN parallel component is active. On the

other hand, if all of the places PG1_down, BG1_down, and

BG2_down contain a “true” token, transition in_GEN_down

may fire, which deposits a “true” token into place

GEN_down. This enables transition GEN_fail, and its firing

generates a “true” token indicating that the GEN structural

PG1

BG1

BG2

 SDEP

SPARE
A D

MB

A

A

EB

C

C

A

 10

u u

u u

zy

v

w

b

x

b

b

x

b

b

x

y

y

x

b

b

x

u

x

x

z y

zx

y

y

x

z

b

b x

x

x

x

x

x

x

u
b b

b

x

xx

x

zx
y

x

b

b

u

b x

x

b

b x

y

x

x

y

zx
y
x

y

z

x
y
x

b

PG1_fail

[x= Failed]

output (b) act ion(t rue)

BG1_fail

[x= Failed]

output (b) act ion(t rue)

MB_fail [x= Failed]

output (b) act ion(t rue)

SDEP

SPC_BG1 [x= Failed, z= Standby]
output (y) act ion(Act ive)

in_BG2

[x= Act ive, y= Act ive]

SPC_PG1 [x= Failed, z= Standby]
output (y) act ion(Act ive)

SYS_down
[b= t rue]

[x= Act ive]

in_GEN

[x= Act ive]

in_BUS

BUS_fail

[b= t rue]

BUS_EB

EB_fail [x= Failed]
output (b) act ion(t rue)

[x= Act ive, y= Act ive]

EB_dest ruct

[x= Act ive]

output (y) act ion(Failed)

BUS_MB

[x= Act ive]

in_MB

[x= Act ive,
 y= Act ive]

output (z) act ion(Act ive)

MB_dest ruct

[x= Act ive]

output (y) act ion(Failed)

GEN_fail [b= t rue]

in_GEN_down

[b= t rue]

BG2_fail

[x= Failed]

output (b) act ion(t rue)

BG2_dest ruct
[x= Act ive]

output (y) act ion(Failed)

in_BG1

output (z) act ion(Act ive)

BG1_dest ruct

[x= Act ive]

output (y)
act ion(Failed)

in_PG1

[x= Act ive, y= Act ive]

output (z) act ion(Act ive)

PG1_dest ruct

[x= Act ive]

output (y)
act ion(Failed)

SPC_sync2

UNI T

SPC_sync1

UNI T

PG1_down

BOOL

BG1_down

BOOL

MB_down

BOOL

STATE

EB_down

BOOL

EB_upEB_start

1` Standby

STATE

MB_upMB_start

1` Act ive

STATE

BUS_down

BOOL

BUS_start

STATE

BG2_down

BOOL

BG2_start

1` Standby

STATE

BG1_start

1` Standby

STATE

STATE

PG1_start

1` Act iveSTATE

GEN_down

BOOL

STATE

GEN_start

STATE

MAI N_inhibit

1` e

UNI T

MAI N_down

BOOL

MAI N_start

1` Act ive

STATE

u

GEN_BG2

BG2_up

output (z)
act ion(Act ive)

[x= Act ive]

[x= Act ive]

GEN_up

UNI T

[x= Act ive] x

BUS_up

[x= Act ive]
x

STATE

colset UNI T = unit with e;
colset BOOL = bool;
colset STATE = with Act ive | Standby | Failed;

var x, y, z, v, w : STATE;
var u : UNI T;
var b : BOOL;

PG1_up

GEN_PG1

BG1_up

GEN_BG1

[x= Act ive, y= Act ive]

STATE

x

in_EB

in_MAI N_up

MAI N_up

in_BUS_down

[b= t rue]

y

output (w,v) act ion(Standby, Act ive)

SDEP_sync
[x= Act ive,
y= Act ive,
z= Standby]

STATE

STATE

x

[x= Act ive]

STATE

x

x

[x= Act ive]
SYS_up

Fig. 17. CPN model converted from the DRBD model in Fig. 16.

component is not functioning.

The second structural component contained in MAIN is

parallel component BUS representing the parallel power bus

circuit in the DRBD model shown in Fig. 16. The conversion

of BUS into CPN follows the same procedure as for parallel

component GEN. When either of the buses is active, an

“Active” token is deposited into place BUS_up, indicating

that BUS is active. On the other hand, when both buses fail

(indicated by a “true” token in both places MB_down and

EB_down), transition in_BUS_down may fire, and its firing

leads to a “true” token in place BUS_down. When the bus is

down, transition BUS_fail may fire, and its firing generates a

“true” token that can be passed to place MAIN_down.

Once GEN and BUS are converted into their corresponding

CPN models, they can be connected serially within

component MAIN. The serial connection between the two

structural components is simply made by connecting place

GEN_up from parallel-component CPN of GEN to transition

in_BUS from parallel-component CPN of BUS. In addition,

since GEN is the first serially connected structural

component, its transition in_GEN is connected to place

MAIN_start. Similarly, since BUS is the last serial

component, its place BUS_up is connected to transition

in_MAIN_up. On the other hand, both transitions GEN_fail

and BUS_fail are connected to place MAIN_down. However,

due to inhibitor place MAIN_inhibit, only one of the

transitions may fire, which ensures that the capacity of

MAIN_down is one.

In step two of the conversion, the DRBD controllers are

converted into CPN and added into the CPN model developed

 11

in step one. In this example, we have two controllers, i.e.,

SPARE and SDEP controller block. The SPARE controller

block models the redundant behaviors of the three generators

(PG1, BG1, and BG2) and is converted into two transitions

SPC_PG1 and SPC_BG1 in the spare-controller CPN. The

transition SPC_PG1 connects PG1_start and BG1_start,

which is responsible for activating the backup generator BG1

when primary generator PG1 fails. Similarly, transition

SPC_BG1 connects BG1_start and BG2_start, which is

responsible for activating emergency generator BG2 when

backup generator BG1 fails. Note that synchronization place

SPC_sync1 is used to ensure that a “Failed” token in place

PG1_start (BG1_start) is not removed before transition

SPC_PG1 (SPC_BG1) fires. The state controller block SDEP

in Fig. 16, which deactivates main power bus MB and

activates emergency power bus EB when BG2 is activated, is

converted into transition SDEP in the state-controller CPN.

The SDEP transition connects the three start places of

components BG2, MB and EB, and its firing deposits a

“Standby” token and an “Active” token into places MB_start

and EB_start, respectively. SDEP_sync is used to ensure that

the “Active” token is not accidentally removed before

transition SDEP fires.

In order to illustrate automatic generation of a CPN model

from a DRBD model, we have implemented a prototype

application that transforms an input file of DRBD model in

RML into an output file of CPN model in XML that can be

recognized by CPN Tools [40]. The prototype was

implemented in Java 5, which provides a simple interface that

can load an RML file and output a converted CPN model in

XML. We use Document Object Model (DOM) technology

[42] to parse an input RML file into a tree representing the

corresponding DRBD structure for efficient processing and

conversion. For details about the implementation of the

prototype, refer to [43].

C. Analysis of DRBD Model Using CPN Tools

Design errors in a DRBD model can be discovered by

analyzing the state space of the CPN model converted from

the DRBD model. Using an existing Petri net tool, called

CPN Tools [40], we can generate a report detailing the

properties of the CPN model in Fig. 17. The report, shown as

the analysis results in Table I, indicates that the full state

space (or called the occurrence graph) can be generated from

the CPN model in zero second (almost instantaneously),

which consists of 288 nodes and 763 arcs. Similarly, the CPN

Tools can be used to further generate a strongly connected

components (Scc) graph from the occurrence graph. The

generated Scc graph consists of 288 nodes and 744 arcs, and

plays an important role for analysis. The report also indicates

that there are three deadlock states in the CPN model, namely

S78, S171, and S282. They imply that transition SYS_up or

SYS_down of the CPN model cannot eventually fire;

therefore, there must be some design errors in the DRBD

model. By tracing these deadlocks using CPN Tools, we find

the following firing sequences that lead to them.

σ1 = <S1, in_GEN, S4, in_PG1, S10, GEN_PG1, S19, MB_destruct,

S30, in_BUS, S49, MB_fail, S78>

σ2 = <S1, PG1_destruct, S2, in_GEN, S6, SPC_PG1, S14, in_BG1, S26,

GEN_BG1, S43, MB_destruct, S55, PG1_fail, S87, MB_fail, S128,

in_BUS, S171>

σ3 = <S1, PG1_destruct, S2, SPC_PG1, S7, BG1_destruct, S15,

SPC_BG1, S28, SDEP, S46, EB_destruct, S74, EB_fail, S114,

in_GEN, S143, in_BG2, S184, PG1_fail, S222, BG1_fail, S251,

GEN_BG2, S271, in_BUS, S282>

TABLE I

ANALYSIS RESULTS OF THE CPN MODEL IN FIG. 14

Statistics Liveness Properties

From firing sequence σ1, it is easy to see that S78 is due to

the failure of main bus MB when the primary generator PG1

is functioning. Although emergency bus EB is in the

“Standby” state, and can provide services if activated, no such

spare part relationship between MB and EB exists in either the

DRBD model or corresponding CPN model. The firing

sequence σ2 shows the similar situation when PG1 fails, and

backup generator BG1 is active, but MB fails and EB is still in

a “Standby” state. The firing sequence σ3 illustrates a

different scenario. When both PG1 and BG1 fail, and

emergency generator BG2 is activated, MB and EB will be

deactivated and activated, respectively, due to the SDEP

relationship between BG2 and bus components MB and EB.

However, at this point of time, when EB fails, the BUS

parallel component cannot be considered as “failed” because

MB is still in a “Standby” state. Therefore, in the

parallel-component CPN of BUS, neither place BUS_up will

receive an “Active” token nor transition BUS_fail can fire.

This leads to another deadlock situation in the CPN because

no token will be deposited into either of places MAIN_down

and MAIN_up. As a consequence, none of transitions

SYS_down and SYS_up can fire eventually.

In order to correct the design errors in the DRBD model,

we need to define EB as a spare part of MB by introducing a

SPARE block that links MB and EB, and labeling the links

from MB to SPARE, and SPARE to EB by D | F and A,

respectively. This implies that when MB is deactivated or

failed, EB is automatically activated. As a result, in Fig. 16,

the link from SDEP to EB labeled by A is no longer needed,

and can be deleted. Now based on the revised version of the

DRBD model, we fix the CPN model in Fig. 17 as follows.

1. Add transition SPC_MB with places MB_start and

EB_start as both of its input and output places.

2. Add synchronization place SPC_sync3 with SPC_MB as

State Space
 Nodes: 288
 Arcs: 763
 Secs: 0
 Status: Full
Scc Graph
 Nodes: 288
 Arcs: 744
 Secs: 0

Dead Markings
 [78,171,282]
Dead Transition Instances
 Generator'BUS_fail 1
 Generator'in_BUS_down 1
Live Transition Instances
 None

 12

its input transition and MB_fail as its output transition.

3. Set the guard of transition SPC_MB such that MB_start

contains a “Failed” or “Standby” token and EB_start

contains a “Standby” token, i.e., [x=Failed orelse

x=Standby, y=Standby];

4. Set the output of transition SPC_MB to deposit an

“Active” token into place EB_start when SPC_MB fires,

i.e., output(z); action(Active).

5. Modify the guard of transition MB_fail from

[x=Failed] to [x=Failed orelse x=Standby]. This

is because MB is deactivated only when both PG1 and

BG1 are failed. In this case, MB should not be activated,

and thus, should be considered as failed.

6. Delete the arcs between transition SDEP and place

EB_start.

We now use the CPN Tools again to analyze the revised

CPN model, and get the analysis results as shown in Table II.

The results show that the revised CPN model has no

deadlocks, which guarantees the correctness of the revised

DRBD model in terms of deadlock-freeness. Further

properties of the DRBD model can be analyzed using model

checking techniques as demonstrated in previous work [5].

Refer to [44] for more examples of system properties that can

be formally verified using existing Petri net tools.

It is worth noting that the correct CPN model we developed

for the redundant generator system can be further used for

analysis and evaluation of system reliability properties. Such

analysis and evaluation techniques are demonstrated in

[26-27]. The detailed description of reliability evaluation on

the CPN model is beyond the scope of this paper, but will be

presented in our future work.

VI. CONCLUSIONS AND FUTURE WORK

There is a growing demand to build reliable and stable

computer systems. Building these types of systems involves

creating an accurate and correct system reliability model. A

reliability model ensures that the constructed system has the

desired measures of reliability determined by the system

designers. This paper presents a procedure for formal

modeling and verifying dynamic reliability block diagram

(DRBD) for computer-based systems. In the procedure, a

DRBD model is first converted into CPN. Then, existing CPN

tools are used to verify the behavioral properties of the DRBD

model, where design flaws and faulty states of the DRBD

model can be identified by tracing the deadlock states of the

CPN model. Our case study shows that the proposed

approach supports effective detection and tracing of subtle

design errors in a DRBD model, and can provide a potential

solution to automated verification of DRBD models. For

future work, we plan to investigate automated verification

approaches for safety critical system analysis. We will

consider to use compositional time Petri nets [45] to model

time sensitive dependency between components in a system.

We will also study how to analyze a DRBD model for system

reliability evaluation, and develop a comprehensive

development environment that supports editing, verification,

analysis and evaluation of DRBD models for complex and

large computer-based systems.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and

all anonymous referees whose comments and suggestions

greatly helped us to improve the presentation and the quality

of this paper.

REFERENCES

[1] S. M. Rinaldi, “Modeling and simulating critical infrastructures and

their interdependencies,” in Proc. 37th Annual Hawaii Int. Conf.

System Sciences (HICSS'04), Jan. 2004, Big Island, HI, USA, pp.

20054a (1-8).

TABLE II

ANALYSIS RESULTS OF THE CPN MODEL IN FIG. 14 (AFTER REVISION)

[2] M. Rausand and A. Hoyland, System Reliability Theory: Models,

Statistical Methods, and Applications, 2nd Edition, New York, USA,

Wiley-Interscience, 2003.

[3] R. Manian, J. Dugan, D. Coppit, and K. Sullivan, “Combining various

solution techniques for dynamic fault tree analysis of computer

systems,” in Proc. 3rd Int. Symp. High-Assurance Systems Engineering

(HASE’98), Washington, D.C., USA, 1998, pp. 21–28.

[4] H. Xu and L. Xing, “Formal semantics and verification of dynamic

reliability block diagrams for system reliability modeling,” in Proc.

11th Int. Conf. Software Engineering and Applications, Nov. 2007,

Cambridge, Massachusetts, USA, pp. 155–162.

[5] H. Xu, L. Xing, and R. Robidoux, “DRBD: dynamic reliability block

diagrams for system reliability modeling,” International Journal of

Computers and Applications (IJCA), vol. 31, no. 2, pp. 132-141, 2009.

[6] Z. Hu and S. M. Shatz, “Explicit modeling of semantics associated with

composite states in UML statecharts,” Journal of Automated Software

Engineering, vol. 13, no. 4, Oct. 2006, pp. 423-467.

[7] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault

Tree Handbook, NUREG-0492, U.S. Government Printing Office,

Washington, DC, USA, 1981.

[8] H. Boudali, P. Crouzen, and M. Stoelinga, “Dynamic fault tree analysis

using input/output interactive Markov chains,” in Proc. 37th Annual

IEEE/IFIP Int. Conf. Dependable Systems and Networks (DSN’07),

June 2007, Edinburgh, UK, pp. 708-717.

[9] A. Abd-Allah, “Extending reliability block diagrams to software

architecture,” Technical Report USC-CSE-97-501, University of

Southern California, Mar. 1997.

[10] R. A. Sahner and K. S. Trivedi, “Reliability modeling using SHARPE,”

IEEE Trans. Reliab., vol. R-36, no. 2, pp. 186-193, Jun. 1987.

[11] C. Leangsuksun, H. Song, and L. Shen, “Reliability modeling using

UML,” In Proc. 2003 Int. Conf. Software Engineering Research and

Practice, Jun. 2003, Las Vegas, Nevada, USA, pp. 259-262.

[12] H. Dammag and N. Nissanke, “Safecharts for specifying and designing

safety critical systems,” in Proc. 18th IEEE Symp. Reliable Distributed

Systems, 1999, Lausanne, Switzerland, pp. 78-87.

[13] P.-A. Hsiung; S.-W. Lin; C.-H. Tseng; T.-Y. Lee; J.-M. Fu; W.-B. See,

“VERTAF: an application framework for the design and verification of

Statistics Liveness Properties

State Space
 Nodes: 897
 Arcs: 2836
 Secs: 1
 Status: Full
Scc Graph
 Nodes: 897
 Arcs: 2700
 Secs: 0

Dead Markings
 None
Dead Transition Instances
 None
Live Transition Instances
 None

 13

embedded real-time software,” IEEE Trans. Softw. Eng., vol. 30, no.

10, pp. 656-674, Oct. 2004.

[14] J. T. Blake, A. L. Reibman, and K. S. Trivedi, “Sensitivity analysis of

reliability and performability measures for multiprocessor systems,” in

Proc. 1988 ACM SIGMETRICS Conf. Measurement and Modeling of

Computer Systems, 1988, pp. 177-186.

[15] R. Duke, G. Rose, and G. Smith, “Object-Z: a specification language

advocated for the description of standards,” Computer Standards and

Interfaces, vol. 17, North-Holland, 1995, pp. 511-533.

[16] T. Murata, “Petri nets: properties, analysis and applications,” Proc.

IEEE, vol. 77, no. 4, pp. 541-580, Apr. 1989.

[17] J. Wang, Timed Petri Nets: Theory and Application, Norwell, MA,

Kluwer Academic Publishers, 1998.

[18] M. C. Zhou and K. Venkatesh, Modeling, Simulation and Control of

Flexible Manufacturing Systems: A Petri Net Approach, Singapore,

World Scientific, 1999.

[19] F.-Y. Wang, K. J. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A

Petri-net coordination model for an intelligent mobile robot,” IEEE

Trans. Syst., Man and Cybern., vol. 21, no. 4, pp. 777-789, Jul.-Aug.

1991.

[20] M. Jeng, X. Xie, and S.-L. Chung, “ERCN* merged nets for modeling

degraded behavior and parallel processes in semiconductor

manufacturing systems,” IEEE Trans. Syst., Man and Cybern. A, Syst.,

Humans, vol. 34, no. 1, pp. 102-112, Jan. 2004.

[21] M. P. Fanti and M. C. Zhou, “Deadlock control methods in automated

manufacturing systems,” IEEE Trans. Syst., Man, and Cybern. A, Syst.,

Humans, vol. 34, no. 1, pp. 5-22. Jan. 2004.

[22] Z. W. Li, H. S. Hu, and A. R. Wang, “Design of liveness-enforcing

supervisors for flexible manufacturing systems using Petri nets,” IEEE

Trans. Syst., Man, and Cybern. C, Appl. Rev., vol. 37, no. 4, pp.

517-526, Jul. 2007.

[23] F.-S. Hsieh, “Fault-tolerant deadlock avoidance algorithm for assembly

processes,” IEEE Trans. Syst., Man and Cybern. A, Syst., Humans, vol.

34, no. 1, pp. 65-79, Jan. 2004.

[24] N. Wu and M. C. Zhou, “Modeling and deadlock avoidance of

automated manufacturing systems with multiple automated guided

vehicles,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 35, no.

6, pp. 1193-1202, Dec. 2005.

[25] Z. W. Li, M. C. Zhou, and N. Q. Wu, “A survey and comparison of

Petri net-based deadlock prevention policy for flexible manufacturing

systems,” IEEE Trans. Syst., Man, and Cybern. C, Appl. Rev., vol.38,

no.2, pp. 172-188, 2008.

[26] A. Bobbio, G. Franceschinis, L. Portinale, and R. Gaeta, “Exploiting

Petri nets to support fault-tree based dependability analysis,” in Proc.

8th Int. Workshop on Petri Nets and Performance Models, Zaragoza,

Spain, Sept. 1999, pp. 146-155.

[27] M. Everdij and H. Blom, “Petri-nets and hybrid-state Markov processes

in a power-hierarchy of dependability models,” in Proc. IFAC Conf.

Analysis and Design of Hybrid Systems, June 2003, Saint-Malo,

Brittany, France.

[28] N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE

Trans. Softw. Eng., vol. 13, no. 3, pp. 386-397, Mar. 1987.

[29] U. Buy and R. Sloan. “A Petri net-based approach to real-time program

analysis,” in Proc. 7th Int. Workshop on Software Specification and

Design, Dec. 1993, Redondo Beach, California, pp. 56-60.

[30] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzc, “A unified

high-level Petri net formalism for time-critical systems,” IEEE Trans.

Softw. Eng., vol. 17, no. 2, pp. 160-172, Feb. 1991.

[31] K. Jensen, “Coloured Petri nets: basic concepts, analysis methods, and

practical use,” Basic Concepts EATCS Monographs on Theoretical

Computer Science, vol. 2, Springer-Verlag, 1997.

[32] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE

Trans. Softw. Eng., vol. 3, no. 2, pp. 125-143, Mar. 1977.

[33] Y. Y. Du, C. J. Jiang, and M. C. Zhou, “Modeling and analysis of

real-time cooperative systems using Petri nets,” IEEE Trans. Syst., Man

and Cybern. A, Syst., Humans, vol. 37, no. 5, pp. 643-654, Sept. 2007.

[34] V. R. L. Shen and T. T.-Y. Juang, “Verification of knowledge-based

systems using predicate/transition nets,” IEEE Trans. Syst., Man and

Cybern. A, Syst., Humans, vol. 38, no. 1, pp. 78-87, Jan. 2008.

[35] L. Ma and J. J. P. Tsai, “Formal modeling and analysis of a secure

mobile-agent system,” IEEE Trans. Syst., Man and Cybern. A, Syst.,

Humans, vol. 38, no. 1, pp. 180-196, Jan. 2008.

[36] J.-S. Lee, M. C. Zhou, and P.-L. Hsu, “Multiparadigm modeling for

hybrid dynamic systems using a Petri net framework,” IEEE Trans.

Syst., Man and Cybern. A, Syst., Humans, vol. 38, no. 2, pp. 493-498,

Mar. 2008.

[37] H. Wang and Q. Zeng, “Modeling and analysis for workflow

constrained by resources and nondetermined time: an approach based

on Petri nets,” IEEE Trans. Syst., Man and Cybern. A, Syst., Humans,

vol. 38, no. 4, pp. 802-817, Jul. 2008.

[38] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems,

Boston, MA, Addison-Wesley Longman Publishing Co. Inc., 1989.

[39] C. Goldfarb and P. Prescod, The XML Handbook, Upper Saddle River,

NJ, Prentice Hall, 2000.

[40] A. V. Ratzer, L. Wells, H. M. Lasen, M. Laursen, J. F. Qvortrup, et al.,

“CPN Tools for editing, simulating and analyzing colored Petri nets,”

in Proc. 24th Int. Conf. Application and Theory of Petri Nets,

Eindhoven, Netherlands, Jun. 2003, pp. 450-462.

[41] CPN Group, “CPN ML: language for declarations and net

inscriptions,” CPN Tools Help, Department of Computer Science,

University of Aarhus, Jul. 2008, Retrieved on Aug. 26, 2008, from

http://wiki.daimi.au.dk/cpntools-help/cpn_ml.wiki

[42] E. R. Harold, Processing XML with Java: A Guide to SAX, DOM,

JDOM, JAXP, and TrAX, Boston, MA, Addison-Wesley Professional,

2002.

[43] R. Robidoux, “Automated verification of a computer system reliability

model,” M.S. Thesis, Computer and Information Science Department,

University of Massachusetts Dartmouth, Jul. 2007.

[44] H. Xu and S. M. Shatz, “A framework for model-based design of

agent-oriented software,” IEEE Trans. Softw. Eng., vol. 29, no. 1, pp.

15-30, Jan. 2003.

[45] J. Wang, Y. Deng, and M. Zhou, “Compositional time Petri nets and

reduction rules,” IEEE Trans. Syst., Man and Cybern. B, Cybern., vol.

30, no. 4, pp. 562-572, Aug. 2000.

Ryan Robidoux the B.S. degree and the

M Science from University

of Massach , in 2004 and

2007,

 receive

.S. degree in Computer

usetts Dartm

 respectively.

He is currently a R

e Developer at

ch and I

cation, and an adjunc

mputer and Informati

of Massachus

d

outh, MA

e

nnovation in

o ar

e

03–S

r Engineer

g

te

on,

p

C

 worked with

search Associate and a

Softwar the Kaput Center for

Resear Mathematics

Edu t faculty member in the

Co n Science Dep tment at

University tts Dartmouth. His major

research interests include neural network, software

engineering, formal methods, and web services.

Ryan is a recipient of the Faculty Award for top students in the Computer

and Information Science Department, University of Massachusetts

Dartmouth, 2004.

Haiping X M’07) received the

B.S. degree ical ing from

Zhejian zhou, China, in 1989, the

M r Science from Wright

State Univer OH, in 1998, and the

Ph.D. degree in uter Science from the

University hicago, IL, in 2003.

u (S’97–M’

 in Elect

g University, Han

.S. degree in Compu

sity, Dayt

 Com

 of Illinois at

Prior to 1996, he successively

en-Yan Systems T

Packard Co., as

Sh echnology, Inc. and

Hewlett- a Software Engineer, in

Beijing, China. Since 2003, he has been with the

University of Massachusetts Dartmouth, where he is currently an Associate

Professor at the Computer and Information Science Department, and a

Co-Director of the Concurrent Software Engineering Laboratory (CSEL). He

has published over 40 research papers including 20 peer-reviewed journal

publications. He has supervised about 30 M.S. theses and M.S. projects at

University of Massachusetts Dartmouth, and co-supervised 2 Ph.D.

dissertations. His research has been supported by the U.S. National Science

Foundation (NSF) and the U.S. Marine Corps. His research interests include

distributed software engineering, formal methods, cyber security,

multi-agent systems, electronic commerce, trustworthy computing,

reliability engineering and service-oriented systems.

Dr. Xu is a senior member of the Association of Computing Machinery

(ACM). He is currently an Associate Editor for several journals including the

 14

Journal of Computers (JCP) and International Journal of Computers and

Applications (IJCA). He has served as a program committee Co-Chair for the

International Conference on Software Engineering Theory and Practice

(SETP), and a program committee member for over 30 international

conferences. He is a recipient of the Outstanding Ph.D. Thesis Award in

2004, and has been included in the 11th Edition of Who's Who Among

America's Teachers, 2006.

 15

ely.

orks.

edded control.

Liudong Xing (S’00–M’02–SM’07) received the

B.E. degree in Computer Science from Zhengzhou

University, Zhengzhou, China, in 1996 and the

M.S. and Ph.D. degrees in Electrical Engineering

from the University of Virginia, Charlottesville, in

2000 and 2002, respectiv

She was a Research Assistant with the Chinese

Academy of Sciences, Shenyang, from 1996 to

1998. She joined University of Massachusetts

Dartmouth, North Dartmouth, in 2002, where she is

currently an Associate Professor with the Electrical

and Computer Engineering Department. Her major field of study is on

reliability engineering and fault-tolerant computing. Her current research

interests include dependable computing and networking, hardware and

software reliability engineering, fault-tolerant computing, and wireless

sensor netw

MengChu Zhou (S’88–M’90–SM’93–F’03)

received the B.S. degree in Electrical Engineering

from Nanjing University of Science and

Technology, Nanjing, China, in 1983, the M.S.

degree in Automatic Control from the Beijing

Institute of Technology, Beijing, China, in 1986,

and the Ph.D. degree in Computer and Systems

Engineering from Rensselaer Polytechnic Institute,

Troy, NY, in 1990.

He joined New Jersey Institute of Technology

(NJIT), Newark, in 1990, where he is currently a

Professor of electrical and computer engineering in the Department of

Electrical and Computer Engineering and the Director of Discrete-Event

Systems Laboratory. He also serves as the Director of the M.S. in Computer

Engineering Program and Area Coordinate of Intelligent Systems, NJIT. He

is also with the School of Electro-Mechanical Engineering, Xidian

University, Xi’an, China. He organized and chaired over 80 technical

sessions and served on program committees for many conferences. He has

led or participated in 36 research and education projects with a total budget of

over ten million dollars, funded by the National Science Foundation,

Department of Defense, Engineering Foundation, New Jersey Science and

Technology Commission, and industry. He was invited to lecture in

Australia, Canada, China, France, Germany, Hong Kong, Italy, Japan, Korea,

Mexico, Singapore, Taiwan, and U.S. and served as a plenary speaker for

several conferences. He has over 300 publications including seven books,

more than 130 journal papers, and 17 book chapters. He is the coauthor (with

F. DiCesare) of Petri Net Synthesis for Discrete Event Control of

Manufacturing Systems (Kluwer Academic, 1993), the Editor of Petri Nets in

Flexible and Agile Automation (Kluwer Academic, 1995), the coauthor (with

K. Venkatesh) of Modeling, Simulation, and Control of Flexible

Manufacturing Systems: A Petri Net Approach (World Scientific, 1998), the

coeditor (with M. P. Fanti) of Deadlock Resolution in Computer-Integrated

Systems (Marcel Dekker, 2005), the coauthor (with H. Zhu) of

Object-Oriented Programming in C++: A Project-based Approach (Tsinghua

University Press, 2005), and the coauthor (with B. Hruz) of Modeling and

Control of Discrete Event Dynamic Systems (Springer, 2007). His research

interests are automated manufacturing systems, life cycle engineering and

sustainability evaluation, Petri nets, wireless ad hoc and sensor networks,

system security, semiconductor manufacturing, and emb

Dr. Zhou is a Life Member of the Chinese Association for Science and

Technology, USA, and he served as its President in 1999. He served as an

Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS AND

AUTOMATION from 1997 to 2000 and the IEEE TRANSACTIONS ON

AUTOMATION SCIENCE and ENGINEERING from 2004–2007. He is

currently the Managing Editor of the IEEE TRANSACTIONS ON SYSTEMS,

MAN AND CYBERNETICS (SMC)—PART C: APPLICATIONS AND

REVIEWS, the Editor of the IEEE TRANSACTIONS ON AUTOMATION

SCIENCE AND ENGINEERING, and an Associate Editor of the IEEE

TRANSACTIONS ON SMC—PART A: SYSTEMS AND HUMANS and the

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. He served as a

Guest Editor for many journals including the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS and the IEEE TRANSACTIONS ON

SEMICONDUCTOR MANUFACTURING. He was the General Chair of the

IEEE Conference on Automation Science and Engineering, Washington,

D.C., August 23–26, 2008; the General Cochair of the 2003 IEEE

International Conference on SMC, Washington, D.C., October 5–8, 2003; the

Founding General Cochair of the 2004 IEEE International Conference on

Networking, Sensing and Control, Taipei, March 21–23, 2004; and the

General Chair of the 2006 IEEE International Conference on Networking,

Sensing and Control, Ft. Lauderdale, FL, April 23–25, 2006. He was the

Program Chair of 1998 and 2001 IEEE International Conference on SMC and

the 1997 IEEE International Conference on Emerging Technologies and

Factory Automation. He was the Founding Chair of the Discrete Event

Systems Technical Committee, the Founding Cochair of the Enterprise

Information Systems Technical Committee of IEEE SMC Society, and the

Chair (founding) of the Semiconductor Manufacturing Automation

Technical Committee of the IEEE Robotics and Automation Society. He was

the recipient of the National Science Foundation Research Initiation Award;

the Computer-Integrated Manufacturing University-LEAD Award by the

Society of Manufacturing Engineers; the Perlis Research Award by NJIT; the

Humboldt Research Award for U.S. Senior Scientists; the Leadership Award

and the Academic Achievement Award by the Chinese Association for

Science and Technology, USA; the Asian American Achievement Award by

the Asian American Heritage Council of New Jersey; and the Distinguished

Lecturership of IEEE SMC Society.

	I. INTRODUCTION
	II. Related Work
	III. Dynamic Reliability Block Diagram
	A. State-Based Reliability Block Diagram
	B. DRBD Controller Blocks
	C. DRBD Model in Reliability Markup Language

	IV. Conversion of DRBD Models into CPN
	A. Conversion of SRBD into CPN
	B. Conversion of DRBD Controllers into CPN

	V. Case Study: Conversion of DRBD into CPN for Formal Verification
	A. DRBD Model of a Redundant Generator
	B. Automatic Generation of a CPN Model
	C. Analysis of DRBD Model Using CPN Tools

	VI. Conclusions and Future Work

