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Abstract—Computer system reliability is conventionally 

modeled and analyzed using techniques such as fault tree 

analysis (FTA) and reliability block diagrams (RBD), which 

provide static representations of system reliability properties. A 

recent extension to RBD, called dynamic reliability block 

diagrams (DRBD), defines a framework for modeling dynamic 

reliability behavior of computer-based systems. However, 

analyzing a DRBD model in order to locate and identify design 

errors, such as a deadlock error or faulty state, is not trivial 

when done manually. A feasible approach to verifying it is to 

develop its formal model, and then analyze it using 

programmatic methods. In this paper, we first define a 

reliability markup language (RML) that can be used to formally 

describe DRBD models. Then we present an algorithm that 

automatically converts a DRBD model into a colored Petri net 

(CPN). We use a case study to illustrate the effectiveness of our 

approach and demonstrate how system properties of a DRBD 

model can be verified using an existing Petri net tool. Our 

formal modeling approach is compositional, thus it provides a 

potential solution to automated verification of DRBD models. 

 
Index Terms—System reliability, reliability block diagram 

(RBD), extensible markup language (XML), colored Petri net 

(CPN), time Petri net, formal modeling and analysis, automated 

verification, deadlock detection. 

 

NOMENCLATURE 

API Application programming interface. 

BNF Backus-Naur form. 

CPN  Colored Petri net. 

DFTA Dynamic fault tree analysis. 

DOM Document object model. 

DRBD Dynamic reliability block diagram. 

FTA Fault tree analysis. 

PDP Piecewise deterministic Markov processes. 

RBD  Reliability block diagram. 

RML  Reliability markup language. 
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SAX Simple API for XML. 

SDEP State-based dependency controller. 

SPARE Spare part controller. 

SRBD State-based reliability block diagram. 

XML  Extensible markup language. 

I. INTRODUCTION 

N OUR modern society, there is an increasing reliance on 

computer-based systems that control critical infrastructures 

such as telecommunication networks, banking systems, and 

nuclear power plants. Such infrastructures are critical because 

the failure of the supporting computer-based systems (e.g., 

interrupted phone service, financial loss, and nuclear 

meltdown) can be catastrophic [1]. Therefore, ensuring the 

reliability of such systems has become a growing need in the 

computing world. There are many existing methods that can 

be used to evaluate a system’s reliability, such as measuring a 

system’s mean time to failure. In order to efficiently evaluate 

or predicate a system’s reliability performance, an effective 

system reliability model is required. Most reliability 

modeling approaches are based on statistical methods. Their 

typical examples are reliability block diagram (RBD), fault 

tree analysis (FTA), and Markov chains [2]. The above 

methods, however, can only provide system reliability 

models where a system component must be either active or 

failed; thus, they are very limited in their ability to accurately 

model a system’s dependency relationships and dynamic 

reliability properties. Dynamic FTA (DFTA) is another 

modeling tool that can support modeling a functional 

dependency in a system, where the failure of a component 

causes some other dependent components to become 

inaccessible or unusable [3]. However, DFTA cannot be used 

to model a general state-based dependency relationship 

between components, e.g., a state-based dependency where 

the activation of a component causes the deactivation of a 

dependent one.  

Recently, an extension to RBD, called dynamic reliability 

block diagram (DRBD) [4-5], was introduced with new 

controller constructs that support modeling dynamic, 

dependent and redundant relationships between components 

in a computer-based system. Although it has been shown that 

the DRBD approach is very effective in modeling a system’s 

dynamic reliability properties, subtle flaws in it can be easily 

introduced due to its modeling complexity. Therefore, formal 

verification of a DRBD model is an essential step in 

developing a correct system reliability model for the 
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evaluation of a system’s reliability. In our recent work, we 

demonstrated some preliminary results on how to formally 

verify a DRBD model using colored Petri nets (CPN) [4-5], 

which provide the formal semantics for DRBD models. The 

approach follows the basic philosophy of recent efforts on 

converting a UML (Unified Modeling Language) diagram to 

Petri nets for formal verification [6]. However, the proposed 

approach is not compositional for formal modeling, and does 

not provide a generalized solution to automatically convert a 

DRBD model into CPN. In this paper, we present an 

algorithm that supports automatic conversion of a DRBD 

model into CPN. Hence, DRBD’s automatic verification can 

be accomplished by analyzing the state space of the CPN 

using existing CPN tools. Note that since our proposed formal 

modeling approach is compositional, our approach scales 

with the sizes of DRBD models. 

The rest of the paper is organized as follows. Section II 

summarizes the related efforts in reliability modeling. Section 

III provides a formal definition of DRBD with its embedded 

state-based RBD (SRBD). In order to efficiently process 

DRBD models, an XML-based language, called the reliability 

markup language (RML), is introduced to represent a DRBD 

model in XML format. Section IV outlines the procedures to 

convert DRBD into CPN. Section V provides a case study 

that illustrates how to create a DRBD model and convert it 

into a CPN model for formal analysis. Finally, Section VI 

presents the conclusions and future work.  

II. RELATED WORK 

Reliability modeling is an integral step in creating reliable 

and fault-resistant computer-based systems.  Currently, many 

industries require that some form of qualitative system 

reliability analysis be integrated into the design phase of a 

computer-based system [3]. One of the major analysis 

approaches for system reliability is FTA, which provides a 

detailed analysis of a system’s failure probabilities. Fault 

trees are logic diagrams that depict potential, critical events 

within a system. A fault tree model represents the relationship 

between a critical event and the reasons for the event’s 

occurrence, such as specific component failures [7]. Since 

FTA does not account for dynamic system properties, it is 

extended into dynamic FTA (DFTA) in order to model 

dynamic relationships between components [3, 8]. DFTA 

introduces additional gates for modeling sequential and 

sparing behavior, but it has limited ability to model complex 

systems that involve dynamic component dependency such as 

a general state-based dependency [4]. On the other hand, an 

RBD represents a network of system components and their 

connections [2]. The network consists of an input point and 

output point, a number of blocks representing system 

components, and multiple paths from the input point to output 

point. The multiple paths represent successful system 

operations, where an interruption of these paths may lead to 

the failure of the whole system [9]. Therefore, an RBD model 

represents the static topology of a computer-based system’s 

reliability, where the topology can be a serial, parallel or 

hybrid structure. Contrary to FTA, RBD models are 

success-oriented networks that describe the function of a 

system by probabilistic means [2]. Component blocks in an 

RBD are arranged to illustrate the proper combinations of 

working components that keep the entire system operational. 

Failure of a component can be represented by removing the 

component as well as its connections with other components 

from the network. When a sufficient number of components 

in a system fail, the whole system may also fail if there is no 

connection between the input and output point.  

Additional related work on system reliability modeling can 

be summarized as follows. The SHARPE (symbolic 

hierarchical automated reliability and performance evaluator) 

tool expands the use of Markov models in reliability 

verification of computer systems [10]. Sahner and Trivedi 

recognize that Markov models can capture important 

dynamic system behavior, but may also grow exponentially 

with the number of system components. Their research 

produces a hierarchical modeling technique for analyzing 

complex reliability models, which allows for the flexibility of 

Markov models where necessary, and retains the efficiency of 

combinatorial solutions where possible. Leangsuksun, et al. 

adopt UML technology to model the reliability of two-tier 

computer systems [11]. They use UML deployment diagrams 

to model system components and their relationships, and 

manually create failure and repair rate for components in 

order to construct statistical fault trees and Markov Chain 

models. The system reliability is then calculated using the 

SHARPE tool. Similarly, Dammag and Nissanke also propose 

a visual model, called Safecharts, which can be used to 

specify and design safety critical systems [12]. The novel 

feature of Safecharts is its safety annotation that provides an 

explicit ordering of states according to risk levels. In order to 

support standards compliance testing and verification for 

safety-critical systems, Hsiung, et al. attempt to integrate 

Safecharts into VERTAF (Verifiable Embedded Real-Time 

Application Framework), which is an application framework 

for design and verification of embedded real-time software 

[13]. Blake, et al. use an extension of Markov models to 

specify the reliability of multiprocessor systems using 

parametric sensitivity analysis [14]. Their approach creates an 

upper and lower bound for each system parameter of interest 

in order to compute the optimistic and conservative bounds 

for the reliability of a multiprocessor system. Similar to the 

FTA and RBD approaches, most of the above methods only 

consider a system component as a bi-state component, which 

must be either active or failed. Therefore, they suffer from the 

same weakness as FTA and RBD models for modeling 

dynamic system reliability properties. In our previous work, 

we propose dynamic RBD (DRBD) as an extension to RBD 

models [4-5]. New modeling constructs have been introduced 

and formally specified in Object-Z formalism [15], and can 

be used to model dynamic reliability properties of system 

components, e.g., state-based dependency and spare part 

relationships. Unlike DFTA, DRBD models are defined upon 

state-based components where a component can be active, 
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standby or failed. Thus, DRBD controlling constructs support 

modeling general state-based dependencies. Reference [5] 

gives an introduction to DRBD models as well as additional 

related work on system reliability modeling. 

Petri nets [16-18] have been widely used in industry for 

modeling and analyzing computer-based systems such as 

intelligent mobile robots and semiconductor manufacturing 

systems [19-20]. There is some related work to our approach 

that uses Petri nets for deadlock detection and avoidance. 

Fanti and Zhou give a survey on state-of-the-art modeling and 

deadlock control methods for discrete manufacturing systems 

based on digraphs, automata, and Petri net approaches [21]. 

They present the updated results in the areas of deadlock 

prevention, detection and recovery, and avoidance. Li, et al. 

develop a methodology to synthesize supervisors for a special 

class of Petri nets that can be used to model flexible 

manufacturing systems [22]. In their research, a mixed 

integer programming based deadlock detection technique is 

used to find minimal siphons efficiently in a plant model. 

Hsieh formulates a fault-tolerant deadlock avoidance 

controller synthesis problem for assembly processes based on 

a class of Petri nets [23]. He proposes a fault-tolerant 

deadlock avoidance approach that consists of two algorithms, 

namely a nominal algorithm to avoid deadlocks for nominal 

system state and an exception handling algorithm to deal with 

resource failures. Wu and Zhou propose a novel control 

policy for deadlock avoidance for automated guided vehicle 

system using colored resource-oriented Petri nets, and the 

complexity of deadlock avoidance for the whole system is 

bounded by the complexity in controlling the system [24]. 

More recently, Li, et al. summarize a variety of Petri net 

based deadlock prevention policies for flexible 

manufacturing systems [25]. Their work facilitates engineers 

in choosing a suitable method for their industrial applications. 

They further suggest developing polynomial algorithms in 

order to improve the computational efficiency of deadlock 

prevention methods that are based on the theory of regions. 

Although the above Petri net based approaches can be used 

for deadlock detection and avoidance, they are not aimed at 

modeling system reliability. A few efforts on reliability 

modeling using Petri nets can be summarized as follows. 

Bobbio, et al. use the generalized stochastic Petri net (GSPN) 

to support system dependability analysis [26]. Their approach 

involves converting fault trees into a GSPN model for the 

purpose of obtaining both qualitative and quantitative 

analysis results for the modeled system. Everdij and Blom 

develop piecewise deterministic Markov processes (PDP) 

models using dynamically colored Petri nets (DCPN) [27]. 

They show that DCPN has similar modeling power to PDP, 

and is more powerful than deterministic and stochastic Petri 

nets. Petri nets are also applied in safety analysis of a system 

as shown by Leveson and Stolzy, where Petri nets are used to 

design and analyze the safety and fault tolerance of a system 

[28]. Using timed Petri nets, they prove that paths to high risk 

states can be removed based on reachability analysis. Buy and 

Sloan propose a method to automatically analyze the timing 

properties of concurrent systems [29]. Their method uses 

simple time Petri nets to analyze concurrent software systems 

developed in Ada. Ghezzi, et al. introduce a high-level Petri 

net formalism, called ER nets (environment/relationship nets) 

to model time critical software systems [30]. They prove that 

ER nets can provide a satisfactory solution to analyzing the 

timing and functionality of such systems. While the above 

approaches are similar to our research efforts using Petri nets, 

they are not concerned with formalizing dynamic reliability 

properties of a computer system, such as a state-based 

dependency. Furthermore, instead of providing quantitative 

analysis of system reliability directly using Petri nets, our 

approach currently focuses on using colored Petri nets (CPN) 

[31] to verify the correctness of a DRBD model, namely the 

safety properties and liveness properties [32] of the 

corresponding system. Although there are many previous 

efforts for formal modeling and analysis of various systems 

using Petri nets [33-37], automated system modeling using 

colored Petri nets is rare. As we demonstrate in the case study 

in Section V, it is vital to provide an automated mechanism to 

ensure the correctness of a DRBD model because a DRBD 

model can become complicated when dynamic reliability 

properties are involved. 

III. DYNAMIC RELIABILITY BLOCK DIAGRAM 

The novelty of DRBD is its ability to model dynamic 

system reliability behaviors such as state-based dependency 

and redundancy [4]. The DRBD approach introduces new 

controller blocks, such as SDEP (state-based dependency 

controller) and SPARE (spare part controller) for modeling 

state-based dependency and spare part relationships, 

respectively. A DRBD model consists of a state-based RBD 

(SRBD) and a number of controller blocks. SRBD is an 

extension to RBD where each component is associated with a 

state representing the activeness of the component in the 

system. An SRBD model defines the static structure of a 

DRBD model, while the controller blocks model the dynamic 

reliability properties of the system. The DRBD designs 

described in this paper follow the notations and constructs 

introduced in [4-5].  

A. State-Based Reliability Block Diagram 

An SRBD is a network of dynamic system components 

called structural components. As defined in Fig. 1 in a 

Backus-Naur form (BNF), a structural component can be one 

of the three component types, namely simple component, 

parallel component and serial component. Simple 

components are a special case of structural components, 

which represent atomic and physical system components with 

a state. A component with a state can be formally defined as a 

finite state machine consisting of three states, “Active”, 

“Standby” and “Failed”, which may change at runtime. An 

“Active” component is an online component that is actively 

performing tasks. A component in a “Standby” state is ready 

to perform tasks, but it is still waiting to be set online. A 

“Failed” component is no longer online and cannot work 
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properly. The two other structural component types are used 

to define the topology of a DRBD. In Fig. 1, parallel 

components and serial components are defined as sets of 

structural components sandwiched between the tags 

<parallel>…</parallel> and <serial>…</serial>, 

respectively. The state of a structural component can be 

logically determined by aggregating the states of its contained 

components. Contained structural components within a 

parallel component (i.e., simple or serial components) can 

operate in parallel; therefore, only one of them must be in an 

“Active” state for the parallel component to be considered as 

active. A failed parallel component indicates that all of its 

contained structural components are in “Failed” states. 

Conversely, a serial component is not considered as active 

unless all of its contained structural components (simple or 

parallel component) are in “Active” states because the failure 

of any of its contained components leads to the failure of the 

whole serial component. Note that according to the definition 

of SRBD in Fig. 1, a serial component may contain only one 

component; thus, an SRBD with a single simple or parallel 

component can also be viewed as a serial component. 

Fig. 1. Definition of SRBD in Backus–Naur form (BNF). 

Fig. 2 shows an example of an SRBD model. In this 

example, two simple components (C1 and C2) are contained 

within a serial component, which itself is contained in a 

parallel component along with a third simple component 

(C3). Note that if not specified explicitly, we assume that all 

simple components are initially in “Active” states. 

      

Fig. 2. An example of a state-based reliability block diagram. 

B. DRBD Controller Blocks 

Controller blocks defined in a DRBD model can be used to 

model dynamic relationships between components. Fig. 3 

shows the formal definition of a DRBD model with two types 

of controllers, spare and state controllers, in a BNF format. 

Note that additional types of controllers, e.g., a load sharing 

block [5], can also be formally specified in a similar way.  

Fig. 3. Definition of DRBD in BNF. 

A spare controller can be used to model redundant system 

behavior, where n spare components (n > 0) are used to back 

up a primary component. The deactivation or failure of the 

primary component (i.e., the primary event) triggers the first 

spare component to enter an “Active” state. Similarly, the 

deactivation or failure of the first spare component triggers 

the second spare one to enter an “Active” state, and so on. The 

activation of a spare component is called a spare event, while 

the event of deactivation or failure of a spare component is 

implicitly defined. A spare component is a simple component 

with an ordering number and a sparing configuration. The 

ordering number of a spare component is defined as a natural 

number, and the standby spare component with the lowest 

ordering number should always be activated first when a 

primary component or a spare component is deactivated or 

failed. The sparing configuration signifies the “activeness” of 

a spare part. There are three types of sparing configurations, 

namely hot, cold and warm. A hot spare component operates 

in synchrony with a primary (i.e., online) component, and is 

prepared to take over at any time; while a cold spare 

component is unpowered until needed to replace a faulty 

component [38]. A warm spare component is a tradeoff 

between hot and cold configuration in terms of 

reconfiguration time and power consumption. Without loss of 

generality, in this paper, we assume that all spare components 

used in our examples are cold spares. 

Fig. 4 (a) illustrates a SPARE controller block with a 

primary component, P1, and two cold spares, S1 and S2 with 

<drbd> ::= <srbd><controller>{<controller>} 
<controller>::= <spare controller> 
       |<state controller>|... 
<spare controller> ::= <spareCon><primary event> 
       <spare event>{<spare event>}</spareCon> 
<primary event> ::= <primary component> 
       (<Deactivation>|<Failure>) 
<primary component> ::= <simple component> 
<spare event> ::= <spare component><Activation> 
<spare component> ::= <simple component>  
       <ordering number><sparing configuration> 
<ordering number> ::= <natural number> 
<sparing configuration > ::= <cold>|<warm>|<hot> 
<state controller> ::= <stateCon><trigger event> 

 <target event>{<target event>}</stateCon> 
<trigger event> ::= <trigger component><event> 
<trigger component> ::= <simple component> 
       |<spare component> 
<target event> ::= <target component><event> 
<target component> ::= <simple component> 
       |<spare component> 
<event> ::= <Activation>|<Deactivation>|<Failure> 
... 

<srbd> ::= <structural component> 
<structural component> ::= <simple component> 
     |<serial component>|<parallel component> 
<simple component> ::= <simple>  
     <component id><component state></simple> 
<component id> ::= <string> 
<component state> ::= <Active>|<Standby>|<Failed> 
<serial component> ::= <serial> 
     <simple or parallel component> 
     {<simple or parallel component>}</serial> 
<simple or parallel component> ::=  
     <simple component>|<parallel component> 
<parallel component> ::= <parallel> 
     <simple or serial component> 
     <simple or serial component>{<simple or  
      serial component>}</parallel> 
<simple or serial component> ::=  
     <simple component>|<serial component>) 

C1 C2 

C3 

serial component 

parallel component
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ordering numbers 1 and 2, respectively. In this example, the 

first spare part S1 is activated if P1 fails, and S1’s failure 

leads to the activation of the second spare component S2. 

Note that the capitalized letter “C” at the upper right corner of 

blocks S1 and S2 denotes that both are cold spares.  

    (a)  

    (b)  

Fig. 4. (a) SPARE controller block. (b) SDEP controller block. 

On the other hand, an SDEP controller block models the 

state-based dependency relationships between components in 

a system. With an SDEP controller block, a trigger event due 

to change of state on a trigger component leads to target 

events, which are state changes on target components. Both a 

trigger and target component can be a simple or spare 

component, and the number of target components must be 

greater than zero. An event can be one of the three types, 

namely “Activation,” “Deactivation,” and “Failure.” An 

“Activation” event happening on a simple or spare 

component causes it to enter an “Active” state. Similarly, a 

“Deactivation” or “Failure” event happening on a simple or 

spare component causes the component to enter a “Standby” 

or “Failed” state, respectively. Fig. 4 (b) shows an example in 

which the activation of C1 leads to the deactivation and 

failure of C2 and C3, respectively. Note that both C2 and C3 

are initially assumed in “Active” states, and otherwise, the 

states of C2 and C3 may remain unchanged when C1 is 

activated. 

C. DRBD Model in Reliability Markup Language 

The reliability markup language (RML) is an XML-based 

schema defined to formally describe the components, 

structure and dynamic behavior of a DRBD. RML is designed 

based on the BNF definition of DRBD models. All 

components and controllers in a DRBD model have nested 

RML elements that describe their properties according to 

their respected BNF definitions. Fig. 5 shows a DRBD model 

with three parallel simple components C1-C3, which are 

dependent on each other. The SDEP controller block specifies 

that the deactivation of C1 leads to C2’s failure as well as 

C3’s activation. The figure also shows the XML-based 

representation of the DRBD model in RML. An RML file 

uses the opening <rml> tag to signify the beginning of a 

DRBD definition. Following it, an SRBD model is defined as 

the top structural component, called MAIN component. 

Component MAIN is defined as a serial component within the 

tags <serialComponent> and </serialComponent>, 

which may contain any number of structural components 

(simple or parallel ones). In this example, the only structural 

component contained in MAIN is a parallel component that is 

defined within the tags <parallelComponent> and 

</parallelComponent>. The parallel component has an 

identification of PCom, which consists of three simple 

components C1-C3. Each of them is defined within the tags 

<simpleComponent> and </simpleComponent>, and has 

an initial state defined inside the <initialState>… 

</initialState> tags. In this example, the parallel 

component consists of simple ones only, but in a more general 

case, it may contain serial components. Similarly, a serial 

component may also consist of any number of simple or 

parallel components. 

     

 

Fig. 5. XML-based representation of a DRBD model in RML. 

After an SRBD has been defined, controllers are to be 

added into the RML file using specific XML tags. For 

example, state controller C1_SDEP can be defined within the 

C1 

C2 

C3 

SDEP 

D 

F 

A 

XML-based 

representation

P1 

S1 

S2 

SPARE 

A 

A 

C 

C 

F 

C1 

C2 

C3 

SDEP 
A 

D 

F 

<?xml version="1.0"?> 
<rml> 
  <serialComponent id = "MAIN"> 
    <parallelComponent id = "PCom"> 
      <simpleComponent id = "C1">        
        <initialState>Active</initialState> 
      </simpleComponent>    
      <simpleComponent id = "C2">  
        <initialState>Active</initialState> 
      </simpleComponent> 
      <simpleComponent id = "C3"> 
        <initialState>Standby</initialState> 
      </simpleComponent> 
    </parallelComponent>  
  </serialComponent>       
  <stateController id = "C1_SDEP"> 
    <triggerEvent> 
      <id>C1</id> 
      <event>Deactivation</trigger> 
    </triggerEvent> 
    <targetEvent> 
      <id>C2</id> 
      <event>Failure</event> 
    </targetEvent> 
    <targetEvent> 
      <id>C3</id> 
       <event>Activation</event> 
    </targetEvent> 
  </stateController> 
</rml> 
</xml> 
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<stateController> and </stateController> tags as 

shown in Fig. 5. Inside the C1_SDEP definition, the trigger 

and target events can be defined using <triggerEvent> … 

</triggerEvent> and <targetEvent> … 

</targetEvent> tags, respectively. Corresponding to (D, 

F) and (D, A) state-based dependency between component C1 

and C2, and C1 and C3, respectively, we define the trigger 

event that occurs on C1 with a Deactivation event, and 

two target events, which occur on C2 and C3 with the events 

of Failure and Activation, respectively. When both 

SRBD model and controllers have been defined, the RML file 

is ended by the closing tag </rml>. 

The motivation and major advantage of using RML to 

describe a DRBD model is to allow access and mutation of a 

DRBD model as an XML document. XML documents not 

only support a standard information encoding and storage 

format, but also allow programmers to use that information in 

a standard way [39]. Currently, two dominant APIs for 

processing XML-based documents are Simple API for XML 

(SAX) and Document Object Model (DOM). The SAX 

specification defines a low level API, which is an event-based 

approach that can parse through XML data and call handler 

functions when certain parts of the document are found. On 

the other hand, the DOM specification defines a tree-based 

approach to processing XML data. Based on the hierarchical 

structure of the XML data, the DOM approach creates an 

internal tree, which can be navigated at runtime. For 

efficiency reasons, in this project, we have adopted the DOM 

specification to process RML files. 

IV. CONVERSION OF DRBD MODELS INTO CPN 

In order to verify the correctness of a DRBD model, we 

need to convert it into CPN using a two-step procedure. First, 

the embedded SRBD of a DRBD model is converted into a 

CPN model. Then, the controller blocks are converted into 

Petri nets and added into the converted CPN model. The 

following sections give the detailed descriptions for the 

conversion procedures. Note that the CPN models described 

in the following sections employ CPN-ML, which is a 

powerful programming language of CPN as implemented in 

CPN Tools [40]. We assume readers have the basic 

knowledge of CPN-ML [41]. 

A. Conversion of SRBD into CPN 

Before we present the algorithm to convert the embedded 

SRBD of a DRBD model into a CPN model, we first describe 

how to convert each type of structural components in an 

SRBD into CPN. In order to model the component state, a 

colored token called a state token is introduced, which has 

three possible values, i.e., “Active”, “Standby” and “Failed”. 

The movement of these tokens in a CPN model signifies the 

state changes of the components in the DRBD model. Fig. 6 

shows the conversion of a simple component into a CPN, 

called simple-component CPN. 

A simple-component CPN contains two places, i.e., 

C1_start and C1_up. C1_start contains an initial token with 

color “Active” (denoted as 1`Active in Fig. 6), indicating 

that its initial state is active. When C1 remains active and the 

other input place to transition in_C1 also contains an “Active” 

token (we do not show the other input place of transition 

in_C1 in Fig. 6, but it is connected to in_C1 through the Input 

Connection of the simple-component CPN), in_C1 may fire. 

Its firing deposits an “Active” token into C1_up, indicating 

that C1 is active. The “Active” token in C1_up can be further 

passed along to other modules through Output Connection 

(Active). On the other hand, if transition C1_destruct fires 

while C1 is active, the “Active” token in C1_start is removed, 

and a “Failed” token is deposited into C1_start. In this case, 

transition C1_fail is enabled and can fire. When C1_fail fires, 

it generates a “true” token indicating that C1 fails. The 

generated “true” token can be further passed to other modules 

through Output Connection (Failed).  

                          

        

xb

x x

x

C1_fail[ x= Failed]

in_C1

[ x= Act ive]

C1_dest ruct

[ x= Act ive]

output (y)  act ion(Failed)

C1_up

STATE

C1_start

1` Act ive
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Fig. 6. Simple-component CPN for a simple component. 

A serial-component CPN is a set of serially connected 

structural component CPN. Fig. 7 shows a serial component 

in DRBD containing two simple components, C1 and C2, and 

its CPN representation.  
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Fig. 7. Serial-component CPN for a serial component. 
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Similar to a simple-component CPN, a serial-component 

CPN has an interface that consists of an Input Connection 

(through its in_Serial transition) and two Output Connections 

(through its Serial_up place and Serial_fail transition). When 

transition in_Serial receives an “Active” token through Input 

Connection, it can fire, and its firing deposits an “Active” 

token into place Serial_start. This token enables transition 

in_C1 if place C1_start also contains an “Active” token. 

The behavior of C1 in Fig. 7 is the same as that of the 

simple component C1 in Fig. 6. Note that both C1 and C2 in 

Fig. 7 are modeled in exactly the same way as C1 in Fig. 6. 

When both places C1_up and C2_start contain an “Active” 

token, transition in_C2 is enabled, and its firing deposits an 

“Active” token into C2_up. The “Active” token in C2_up 

further enables transition in_Serial_up, and may place an 

“Active” token in place Serial_up. Similar to a 

simple-component CPN, an “Active” token in Serial_up 

indicates that the serial component is functioning properly. 

The firing procedure also implies that the serial component is 

active only when both of its contained simple components, 

C1 and C2, are active. 

On the other hand, when either C1 or C2 fails, transition 

C1_fail or C2_fail can fire. When either fires, a “true” token 

is deposited into place Serial_down, which enables transition 

Serial_fail. Firing Serial_fail generates a “true” token 

indicating that the serial component cannot function properly 

due to the failure of its contained components. The firing 

procedure also implies that the serial component becomes 

failed when either C1 or C2 fails. Note that when both C1 and 

C2 fail, only one of the transitions, either C1_fail or C2_fail, 

can fire because place Serial_inhibit limits the capacity of 

place Serial_down to one; thus, Serial_fail will not 

accidentally fire twice.  

A parallel component contains a set of structural 

components (simple or serial components) that are connected 

in parallel. Fig. 8 shows the DRBD model of a parallel 

component with two simple components C1 and C2, and its 

CPN representation. Similar to a simple-component and a 

serial-component CPN, a parallel-component CPN has an 

Input Connection (through its in_Para transition) and two 

Output Connections (through its Para_up place and Para_fail 

transition). 

Components C1 and C2 in Fig. 8 are modeled in the same 

way as shown in Fig. 6. When Input Connection passes an 

“Active” token to transition in_Para, its firing deposits an 

“Active” token into place Para_start, which enables both 

in_C1 and in_C2. When C1 or C2 is active, transition in_C1 

or in_C2 may fire, and can deposit an “Active” token in place 

C1_up or C2_up, respectively. The “Active” token in either 

C1_up or C2_up enables Para_C1 or Para_C2, and 

eventually leads to an “Active” token in place Para_up. 

Similar to a serial-component CPN, an “Active” token in 

Para_up indicates that the parallel component can function 

properly. Note that at any time, only one of the transitions 

(either in_C1 or in_C2) may fire. Thus the capacity of place 

Para_up must be one. 
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Fig. 8. Parallel-component CPN for a parallel component. 

On the other hand, if both C1 and C2 fail, there will be a 

“true” token in both places C1_down and C2_down, which 

enables transition in_Para_down. Its firing deposits a “true” 

token into place Para_down, which enables transition 

Para_fail. Firing Para_fail generates and passes a “true” 

token to other modules through Output Connection. The 

firing procedure implies that the parallel component is not 

functioning due to the failure of both C1 and C2.   

It is worth noting that although in the above examples, both 

serial and parallel components contain simple components 

only, they may contain serial or parallel components in a 

more general case. In such a case, CPN models can be 

composed in exactly the same way as described. This is 

because both a serial-component CPN and a 

parallel-component CPN have the same interface as a 

simple-component CPN. Thus, our conversion approach is 

compositional.  

We now provide a recursive algorithm for automatically 

converting an SRBD model into a CPN model. The proposed 

recursive algorithm treats the previous techniques as a 

function that recursively expands structural components in 

order to derive a CPN that formally defines an entire SRBD. 

The algorithm is illustrated as pseudocode in Fig. 9, which is 

defined as a recursive function convert_Serial_ 

Component with a parameter of type SerialComponent. 

The algorithm starts with viewing a SRBD model as a 

serial component, and creating the needed input and output 

connections. As defined in Fig. 1, a serial component can 

contain one or more than one simple or parallel components. 

Thus we use a for-loop to convert each of the contained 

structural components. If a contained component is a simple 

or spare component, we convert it directly into a 

simple-component CPN as shown in Fig. 6; otherwise, if it is 

a parallel component, we first create the needed input and 

output connections for the parallel-component CPN, and then 

use a for-loop again to convert each of contained structural 

C1

C2
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components into a CPN. For each contained structural 

component in the parallel component, we check whether it is 

a simple or spare component. If it is a simple or spare 

component, we convert it directly into a simple-component 

CPN; otherwise, if it is a serial one, the function 

convert_Serial_Component is called recursively. When 

all contained components in a parallel component have been 

converted into CPNs, all simple-component CPN and 

serial-component CPN are connected together (as shown in 

Fig. 8) to create a parallel-component CPN. Similarly, when 

all contained components in a serial component have been 

converted into CPNs, all simple-component and 

parallel-component CPNs are connected together (as shown 

in Fig. 7) to create a serial-component CPN. 

The resulting CPN for an SRBD contains open input and 

output connections. In order to develop a complete CPN 

model for the SRBD, we introduce additional places and 

transitions into the SRBD CPN. As shown in Fig. 10, an 

SRBD is treated as serial component MAIN with three major 

places MAIN_start, MAIN_up, and MAIN_down.  

   

Output  Connect ion
        (Act ive)

Output  Connect ion
         (Failed)

I nput  Connect ion

b

b x

x

b x

x

x
SYS_up

[ x= Act ive]

SYS_down

[ b= t rue]

in_MAI N_up

[ x= Act ive]

SRBD CPN

MAI N_down

BOOL

MAI N_up

STATE

MAI N_start

1` Act ive

 

Fig. 10. The complete CPN model for an embedded SRBD. 

Place Main_start initially contains an “Active” token, and 

connects to the SRBD CPN through Input Connection. 

Similarly, Main_up and Main_down connect to the SRBD 

CPN through Output Connection (Active) and Output 

Connection (Failed), respectively. Note that since Output 

Connection (Active) can only pass a token to a transition, 

place Main_up connects to the SRBD CPN through an 

intermediate transition in_Main_up. In addition, two 

transitions, SYS_up and SYS_down, are connected to 

MAIN_up and MAIN_down, respectively. When there is a 

“true” token in either MAIN_up or MAIN_down, SYS_up or 

SYS_down can fire, which denotes that the system is 

functioning or failing. Note that when we execute the CPN 

model, it should eventually end up with firing of either 

SYS_up or SYS_down; otherwise, there must be a deadlock 

state existing in the CPN model. 

B. Conversion of DRBD Controllers into CPN 

The next step in converting a DRBD model into a CPN is to 

convert DRBD controllers into controller CPN, and add them 

into the CPN model developed for the embedded SRBD 

model in step one. A controller CPN consists of a set of 

transitions and arcs that connect to the start places of the 

corresponding simple-component CPN. Fig. 11 and Fig. 12 

illustrate the algorithms for converting a spare controller into 

a spare-controller CPN and converting a state controller into a 

state-controller CPN, respectively. Note that in the algorithm 

presented in Fig. 12, when the trigger event is deactivation, 

no synchronization place needs to be introduced. We now use 

the spare controller and state controller examples in Fig. 4 to 

illustrate how these algorithms work. Fig. 13 shows a 

spare-controller CPN for the SPARE controller block in Fig. 

4 (a). The SPARE controller block models the spare part 

relationship between primary component P1 and two cold 

spare parts S1 and S2. When P1 fails, S1 is activated, and 

similarly, when S1 fails, S2 is activated. In order to model 

such a cascading relationship in CPN, we introduce two 

transitions SPC_P1 and SPC_S1, which connect the start 

places of P1 and S1, to the start places of S1 and S2, 

respectively. When P1 fails, and S1 is in its standby state, 

transition SPC_P1 may fire, which removes the “Standby” 

token in place S1_start, and deposits an “Active” token into 

S1_start. This indicates that S1 changes its state from 

“Standby” to “Active” due to the failure of P1. Similarly, 

when S1 fails, transition SPC_S1 may fire, which changes the 

state of S2 from “Standby” to “Active”. Note that in the 

spare-controller CPN model in Fig. 13, there are two 

function convert_Serial_Component(SerialComponent se_com) 
   create input/output connections for se_com; 
   foreach StructuralComponent s_com in se_com 
      if (s_com is simpleComponent | spareComponent) 
          convert s_com directly into a simple component CPN; 
      else if (s_com is ParallelComponent) 
          create input and output connections for s_com; 
          foreach StructuralComponent p_com in s_com 
             if (p_com is SimpleComponent | SpareComponent ) 
                convert p_com directly into a simple component CPN; 
             else if (p_com is SerialComponent) 
                convert_Serial_Component(p_com); 
          end 
          create all parallel connections in s_com; 
   end 
   create all serial connections in se_com; 
end function 

Fig. 9. Recursive algorithm for converting a SRBD into a CPN. 
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function convert_Spare_Controller(SpareController sp_con) 
   create place P1_start and transition P1_fail for primary component P1; 
   foreach SpareComponent Si (i = 1 to n) in sp_con  

synchronization places: SPC_sync1 and SPC_sync2. When 

transition SPC_P1 (SPC_S1) fires, a unit token is deposited 

into place SPC_sync1 (SPC_sync2), which enables transition 

P1_fail (S1_fail). Thus, SPC_sync1 (SPC_sync2) can be used 

to ensure that the firing of transition SPC_P1 (SPC_S1) 

precedes that of transition P1_fail (S1_fail), and the “Failed” 

token in place P1_start (S1_start) will not be accidentally 

removed before transition SPC_P1 (SPC_P2) fires. 

 

x

x

y
u u

u u
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x

S1_fail
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P1_fail
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Fig. 13. Spare-controller CPN for the SPARE block in Fig. 4 (a). 

In a DRBD model, a state controller (i.e., an SDEP 

controller block) models a state-based dependency 

relationship between simple components. Fig. 14 shows a 

state-controller CPN for the SDEP controller block with a 

trigger component C1 and two target components C2 and C3 

defined in Fig. 4 (b). The SDEP block is modeled by an SDEP 

transition in the state-controller CPN, which connects the 

start places of the three components. When C1 becomes 

active, and both C2 and C3 are also active, transition SDEP 

becomes enabled. Its firing deposits a “Standby” and “Failed” 

token into places C2_start and C3_start, respectively. It also 

deposits a unit token into synchronization place SDEP_sync, 

which may enable transition in_C1 when C1_start contains 

an “Active” token. Thus, SDEP_sync ensures that the firing 

of SDEP precedes that of in_C1, and the “Active” token in 

place C1_start will not be accidentally removed before SDEP 

fires.  
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SDEP
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Fig. 14. State-controller CPN for the SDEP block in Fig. 4 (b). 

      create place Si_start and transition Si_fail; 
   end 
   create transition SPC_P1 that connects P1_start and S1_start such that  

Fig. 11. Algorithm for converting a spare controller into a spare-controller CPN. 

   when P1 fails and S1 is standby, S1 is activated; 
   foreach SpareComponent Si (i = 1 to n-1) in sp_con 
      create transition SPC_Si that connects Si_start and S(i+1)_start  
      such that when Si fails and S(i+1) is standby, S(i+1) is activated; 
   end 
   create place SPC_sync1 that connects transitions SPC_P1 and P1_fail; 
   foreach SpareComponent Si (i = 1 to n-1) in sp_con 
      create place SPC_sync(i+1) that connects transitions SPC_Si and  
   Si_fail;    
   end 
end function 

Fig. 12. Algorithm for converting a state controller into a state-controller CPN. 

function convert_State_Controller(StateController st_con) 
   create place C1_start for trigger component C1; 
   foreach TargetComponent Ci (i = 2 to n) in st_con 
      create place Si_start for Ci; 
   end 
   create transition SDEP that connects all places Ci_start (i = 1 to n)  
   according to the trigger and target events defined in st_con;  
   if (trigger event is activation) 
      create transition in_C1 for trigger component C1; 
      create place SDEP_sync that connects transitions SDEP and in_C1; 
   else if (trigger event is failure) 
      create transition C1_fail for trigger component C1; 
      create 
end function 

place SDEP_sync that connects transitions SDEP and C1_fail; 
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Note that if the trigger event from simple component C1 is 

failure instead of activation, synchronization place 

SDEP_sync should be connected to transition C1_fail instead 

of in_C1. This case is illustrated in Fig. 15. On the other hand, 

if the trigger event from C1 is deactivation, no 

synchronization place is needed. This is because when C1 

becomes standby, neither of C1_fail and in_C1 is enabled, 

and SDEP is the only one enabled due to a “Standby” token in 

place C1_start. 
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u
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xx

C1_fail

[ x= Failed]
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y= Act ive,
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Fig. 15. State-controller CPN with failure trigger event. 

Finally, the converted controller CPN models can be added 

into the CPN model developed for the embedded SRBD 

model in step one. This procedure can be done by merging the 

start places (e.g., P1_start in Fig. 13) and status transitions 

(e.g., P1_fail in Fig. 13 and in_C1 in Fig. 14) from the 

controller CPN models with the corresponding places and 

transitions defined in the CPN model for the embedded 

SRBD model. We illustrate this process in a case study 

presented in the following section. 

V. CASE STUDY: CONVERSION OF DRBD INTO CPN FOR 

FORMAL VERIFICATION 

A. DRBD Model of a Redundant Generator 

Consider a coast guard vessel whose electrical system is 

powered by three generators: primary, backup, and secondary 

backup one used only for emergency. The primary and 

backup generators can provide the vessel with enough 

kilowatts (KW) output to power all electrical components and 

equipment; while the emergency generator has less wattage 

output and can supply only power to the vessel’s essential 

equipment such as navigational lights, emergency lights and 

other equipment that keeps the engine running. Initially, only 

the primary generator is running, and the other two generators 

are in standby states. At runtime, if the primary one fails, it 

automatically triggers the backup one to switch from standby 

to online. Similarly, if the backup one fails, the emergency 

generator is activated. Connected in series to the generators is 

a power bus that is a series of circuit breakers that feed 

electricity from a generator to the electrical components on 

the ship. The power bus in this system contains two parallel 

buses, namely main and emergency buses. The main bus 

contains the breakers for all of the ship’s components, while 

the emergency bus powers only the vessel’s essential 

equipment.  

Fig. 16 shows the DRBD model for the system described 

above. It consists of two parallel components that are 

connected in serial. The first parallel component contains the 

generator components and is composed of the primary 

generator (PG1), backup generator (BG1) and emergency 

generator (BG2). PG1 is a simple component, initially in an 

“Active” state; while BG1 and BG2 are cold spare 

components, which are initially in “Standby” states. A spare 

controller (SPARE) is introduced to model the cascading 

failure of PG1 and BG1. If PG1 fails, BG1 is activated, and 

upon failure of BG1, BG2 enters its “Active” state. The 

second parallel component models the power buses. The two 

power buses, main bus (MB) and emergency bus (EB), are 

represented in the DRBD model as simple components within 

the power bus parallel component. Since the emergency 

generator BG2 does not output enough wattage to power MB 

when it enters its “Active” state, MB must be deactivated and 

EB must enter its “Active” state. This state-based dependency 

between BG2 and the power buses is modeled by an SDEP 

state controller. 

F 

 

Fig. 16. DRBD model of a redundant generator system. 

B. Automatic Generation of a CPN Model 

According to the algorithm presented in Section IV, the 

DRBD model of the redundant generator system can be 

converted into a CPN model as shown in Fig. 17. The first 

structural component within MAIN serial component is a 

parallel component representing the set of generators, 

denoted as GEN. During the conversion of GEN into CPN, 

CPN models corresponding to each generator (PG1, BG1, or 

BG2) are first created and then connected in parallel 

according to the algorithm. These parallel connections are 

illustrated in Fig. 17, where each generator CPN initially 

contains an “Active”, “Standby”, and “Standby” token in 

their start places PG1_start, BG1_start, and BG2_start, 

respectively. When any of these components is active, there is 

an “Active” token in one of places PG1_up, BG1_up, and 

BG2_up, which enables transitions GEN_PG1, GEN_BG1, 

and GEN_BG2, respectively. When one of these transitions 

fires, an “Active” token is deposited into place GEN_up, 

indicating that the GEN parallel component is active. On the 

other hand, if all of the places PG1_down, BG1_down, and 

BG2_down contain a “true” token, transition in_GEN_down 

may fire, which deposits a “true” token into place 

GEN_down. This enables transition GEN_fail, and its firing 

generates a “true” token indicating that the GEN structural 

PG1 

BG1 

BG2 

 SDEP 

SPARE 
A D 

MB 

A 

A 

EB 

C 

C 

A 

 10



u u

u u

zy

v

w

b

x

b

b

x

b

b

x

y

y

x

b

b

x

u

x

x

z y

zx

y

y

x

z

b

b x

x

x

x

x

x

x

u
b b

b

x

xx

x

zx
y

x

b

b

u

b x

x

b

b x

y

x

x

y

zx
y
x

y

z

x
y
x

b

PG1_fail

[ x= Failed]

output (b)  act ion( t rue)

BG1_fail

[ x= Failed]

output (b)  act ion( t rue)

MB_fail [ x= Failed]

output (b)  act ion( t rue)

SDEP

SPC_BG1 [ x= Failed, z= Standby]
output (y)  act ion(Act ive)

in_BG2

[ x= Act ive, y= Act ive]

SPC_PG1 [ x= Failed, z= Standby]
output (y)  act ion(Act ive)

SYS_down
[ b= t rue]

[ x= Act ive]

in_GEN

[ x= Act ive]

in_BUS

BUS_fail

[ b= t rue]

BUS_EB

EB_fail [ x= Failed]
output (b)  act ion( t rue)

[ x= Act ive, y= Act ive]

EB_dest ruct

[ x= Act ive]

output (y)  act ion(Failed)

BUS_MB

[ x= Act ive]

in_MB

[ x= Act ive, 
 y= Act ive]

output (z)  act ion(Act ive)

MB_dest ruct

[ x= Act ive]

output (y)  act ion(Failed)

GEN_fail [ b= t rue]

in_GEN_down

[ b= t rue]

BG2_fail

[ x= Failed]

output (b)  act ion( t rue)

BG2_dest ruct
[ x= Act ive]

output (y)  act ion(Failed)

in_BG1

output (z)  act ion(Act ive)

BG1_dest ruct

[ x= Act ive]

output (y)  
act ion(Failed)

in_PG1

[ x= Act ive, y= Act ive]

output (z)  act ion(Act ive)

PG1_dest ruct

[ x= Act ive]

output (y)  
act ion(Failed)

SPC_sync2

UNI T

SPC_sync1

UNI T

PG1_down

BOOL

BG1_down

BOOL

MB_down

BOOL

STATE

EB_down

BOOL

EB_upEB_start

1` Standby

STATE

MB_upMB_start

1` Act ive

STATE

BUS_down

BOOL

BUS_start

STATE

BG2_down

BOOL

BG2_start

1` Standby

STATE

BG1_start

1` Standby

STATE

STATE

PG1_start

1` Act iveSTATE

GEN_down

BOOL

STATE

GEN_start

STATE

MAI N_inhibit

1` e

UNI T

MAI N_down

BOOL

MAI N_start

1` Act ive

STATE

u

GEN_BG2

BG2_up

output (z)  
act ion(Act ive)

[ x= Act ive]

[ x= Act ive]

GEN_up

UNI T

[ x= Act ive] x

BUS_up

[ x= Act ive]
x

STATE

colset  UNI T    =   unit  with e;  
colset  BOOL   =   bool;
colset  STATE  =   with Act ive |  Standby |  Failed;

var x, y, z, v, w :  STATE;
var u                 :  UNI T;
var b                 :  BOOL;

PG1_up

GEN_PG1

BG1_up

GEN_BG1

[ x= Act ive, y= Act ive]

STATE

x

in_EB

in_MAI N_up

MAI N_up

in_BUS_down

[ b= t rue]

y

output (w,v)  act ion(Standby, Act ive)

SDEP_sync
[ x= Act ive, 
y= Act ive, 
z= Standby]

STATE

STATE

x

[ x= Act ive]

STATE

x

x

[ x= Act ive]
SYS_up

Fig. 17. CPN model converted from the DRBD model in Fig. 16. 

component is not functioning. 

The second structural component contained in MAIN is 

parallel component BUS representing the parallel power bus 

circuit in the DRBD model shown in Fig. 16. The conversion 

of BUS into CPN follows the same procedure as for parallel 

component GEN. When either of the buses is active, an 

“Active” token is deposited into place BUS_up, indicating 

that BUS is active. On the other hand, when both buses fail 

(indicated by a “true” token in both places MB_down and 

EB_down), transition in_BUS_down may fire, and its firing 

leads to a “true” token in place BUS_down. When the bus is 

down, transition BUS_fail may fire, and its firing generates a 

“true” token that can be passed to place MAIN_down. 

Once GEN and BUS are converted into their corresponding 

CPN models, they can be connected serially within 

component MAIN. The serial connection between the two 

structural components is simply made by connecting place 

GEN_up from parallel-component CPN of GEN to transition 

in_BUS from parallel-component CPN of BUS. In addition, 

since GEN is the first serially connected structural 

component, its transition in_GEN is connected to place 

MAIN_start. Similarly, since BUS is the last serial 

component, its place BUS_up is connected to transition 

in_MAIN_up. On the other hand, both transitions GEN_fail 

and BUS_fail are connected to place MAIN_down. However, 

due to inhibitor place MAIN_inhibit, only one of the 

transitions may fire, which ensures that the capacity of 

MAIN_down is one. 

In step two of the conversion, the DRBD controllers are 

converted into CPN and added into the CPN model developed 
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in step one. In this example, we have two controllers, i.e., 

SPARE and SDEP controller block. The SPARE controller 

block models the redundant behaviors of the three generators 

(PG1, BG1, and BG2) and is converted into two transitions 

SPC_PG1 and SPC_BG1 in the spare-controller CPN. The 

transition SPC_PG1 connects PG1_start and BG1_start, 

which is responsible for activating the backup generator BG1 

when primary generator PG1 fails. Similarly, transition 

SPC_BG1 connects BG1_start and BG2_start, which is 

responsible for activating emergency generator BG2 when 

backup generator BG1 fails. Note that synchronization place 

SPC_sync1 is used to ensure that a “Failed” token in place 

PG1_start (BG1_start) is not removed before transition 

SPC_PG1 (SPC_BG1) fires. The state controller block SDEP 

in Fig. 16, which deactivates main power bus MB and 

activates emergency power bus EB when BG2 is activated, is 

converted into transition SDEP in the state-controller CPN. 

The SDEP transition connects the three start places of 

components BG2, MB and EB, and its firing deposits a 

“Standby” token and an “Active” token into places MB_start 

and EB_start, respectively. SDEP_sync is used to ensure that 

the “Active” token is not accidentally removed before 

transition SDEP fires. 

In order to illustrate automatic generation of a CPN model 

from a DRBD model, we have implemented a prototype 

application that transforms an input file of DRBD model in 

RML into an output file of CPN model in XML that can be 

recognized by CPN Tools [40]. The prototype was 

implemented in Java 5, which provides a simple interface that 

can load an RML file and output a converted CPN model in 

XML. We use Document Object Model (DOM) technology 

[42] to parse an input RML file into a tree representing the 

corresponding DRBD structure for efficient processing and 

conversion. For details about the implementation of the 

prototype, refer to [43]. 

C. Analysis of DRBD Model Using CPN Tools 

Design errors in a DRBD model can be discovered by 

analyzing the state space of the CPN model converted from 

the DRBD model. Using an existing Petri net tool, called 

CPN Tools [40], we can generate a report detailing the 

properties of the CPN model in Fig. 17. The report, shown as 

the analysis results in Table I, indicates that the full state 

space (or called the occurrence graph) can be generated from 

the CPN model in zero second (almost instantaneously), 

which consists of 288 nodes and 763 arcs. Similarly, the CPN 

Tools can be used to further generate a strongly connected 

components (Scc) graph from the occurrence graph. The 

generated Scc graph consists of 288 nodes and 744 arcs, and 

plays an important role for analysis. The report also indicates 

that there are three deadlock states in the CPN model, namely 

S78, S171, and S282. They imply that transition SYS_up or 

SYS_down of the CPN model cannot eventually fire; 

therefore, there must be some design errors in the DRBD 

model. By tracing these deadlocks using CPN Tools, we find 

the following firing sequences that lead to them. 

σ1 = <S1, in_GEN, S4, in_PG1, S10, GEN_PG1, S19, MB_destruct, 

S30, in_BUS, S49, MB_fail, S78> 

σ2 = <S1, PG1_destruct, S2, in_GEN, S6, SPC_PG1, S14, in_BG1, S26, 

GEN_BG1, S43, MB_destruct, S55, PG1_fail, S87, MB_fail, S128, 

in_BUS, S171> 

σ3 = <S1, PG1_destruct, S2, SPC_PG1, S7, BG1_destruct, S15, 

SPC_BG1, S28, SDEP, S46, EB_destruct, S74, EB_fail, S114, 

in_GEN, S143, in_BG2, S184, PG1_fail, S222, BG1_fail, S251, 

GEN_BG2, S271, in_BUS, S282> 

TABLE I 

ANALYSIS RESULTS OF THE CPN MODEL IN FIG. 14 

Statistics Liveness Properties 

 

From firing sequence σ1, it is easy to see that S78 is due to 

the failure of main bus MB when the primary generator PG1 

is functioning. Although emergency bus EB is in the 

“Standby” state, and can provide services if activated, no such 

spare part relationship between MB and EB exists in either the 

DRBD model or corresponding CPN model. The firing 

sequence σ2 shows the similar situation when PG1 fails, and 

backup generator BG1 is active, but MB fails and EB is still in 

a “Standby” state. The firing sequence σ3 illustrates a 

different scenario. When both PG1 and BG1 fail, and 

emergency generator BG2 is activated, MB and EB will be 

deactivated and activated, respectively, due to the SDEP 

relationship between BG2 and bus components MB and EB. 

However, at this point of time, when EB fails, the BUS 

parallel component cannot be considered as “failed” because 

MB is still in a “Standby” state. Therefore, in the 

parallel-component CPN of BUS, neither place BUS_up will 

receive an “Active” token nor transition BUS_fail can fire. 

This leads to another deadlock situation in the CPN because 

no token will be deposited into either of places MAIN_down 

and MAIN_up. As a consequence, none of transitions 

SYS_down and SYS_up can fire eventually.  

In order to correct the design errors in the DRBD model, 

we need to define EB as a spare part of MB by introducing a 

SPARE block that links MB and EB, and labeling the links 

from MB to SPARE, and SPARE to EB by D | F and A, 

respectively. This implies that when MB is deactivated or 

failed, EB is automatically activated. As a result, in Fig. 16, 

the link from SDEP to EB labeled by A is no longer needed, 

and can be deleted. Now based on the revised version of the 

DRBD model, we fix the CPN model in Fig. 17 as follows. 

1. Add transition SPC_MB with places MB_start and 

EB_start as both of its input and output places. 

2. Add synchronization place SPC_sync3 with SPC_MB as 

State Space 
  Nodes:  288 
  Arcs:   763 
  Secs:   0 
  Status: Full 
Scc Graph 
  Nodes:  288 
  Arcs:   744 
  Secs:   0 

Dead Markings 
  [78,171,282] 
Dead Transition Instances 
  Generator'BUS_fail 1 
  Generator'in_BUS_down 1 
Live Transition Instances 
  None 
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its input transition and MB_fail as its output transition. 

3. Set the guard of transition SPC_MB such that MB_start 

contains a “Failed” or “Standby” token and EB_start 

contains a “Standby” token, i.e., [x=Failed orelse 

x=Standby, y=Standby];  

4. Set the output of transition SPC_MB to deposit an 

“Active” token into place EB_start when SPC_MB fires, 

i.e., output(z); action(Active). 

5. Modify the guard of transition MB_fail from 

[x=Failed] to [x=Failed orelse x=Standby]. This 

is because MB is deactivated only when both PG1 and 

BG1 are failed. In this case, MB should not be activated, 

and thus, should be considered as failed. 

6. Delete the arcs between transition SDEP and place 

EB_start. 

We now use the CPN Tools again to analyze the revised 

CPN model, and get the analysis results as shown in Table II. 

The results show that the revised CPN model has no 

deadlocks, which guarantees the correctness of the revised 

DRBD model in terms of deadlock-freeness. Further 

properties of the DRBD model can be analyzed using model 

checking techniques as demonstrated in previous work [5]. 

Refer to [44] for more examples of system properties that can 

be formally verified using existing Petri net tools. 

 

 

It is worth noting that the correct CPN model we developed 

for the redundant generator system can be further used for 

analysis and evaluation of system reliability properties. Such 

analysis and evaluation techniques are demonstrated in 

[26-27]. The detailed description of reliability evaluation on 

the CPN model is beyond the scope of this paper, but will be 

presented in our future work. 

VI. CONCLUSIONS AND FUTURE WORK 

There is a growing demand to build reliable and stable 

computer systems. Building these types of systems involves 

creating an accurate and correct system reliability model. A 

reliability model ensures that the constructed system has the 

desired measures of reliability determined by the system 

designers. This paper presents a procedure for formal 

modeling and verifying dynamic reliability block diagram 

(DRBD) for computer-based systems. In the procedure, a 

DRBD model is first converted into CPN. Then, existing CPN 

tools are used to verify the behavioral properties of the DRBD 

model, where design flaws and faulty states of the DRBD 

model can be identified by tracing the deadlock states of the 

CPN model. Our case study shows that the proposed 

approach supports effective detection and tracing of subtle 

design errors in a DRBD model, and can provide a potential 

solution to automated verification of DRBD models. For 

future work, we plan to investigate automated verification 

approaches for safety critical system analysis. We will 

consider to use compositional time Petri nets [45] to model 

time sensitive dependency between components in a system. 

We will also study how to analyze a DRBD model for system 

reliability evaluation, and develop a comprehensive 

development environment that supports editing, verification, 

analysis and evaluation of DRBD models for complex and 

large computer-based systems.  
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