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Abstract

First reported in March 2014, an Ebola epidemic impacted West Africa, most notably Liberia,

Guinea and Sierra Leone. We demonstrate the value of social media for automated surveil-

lance of infectious diseases such as the West Africa Ebola epidemic. We experiment with

two variations of an existing surveillance architecture: the first aggregates tweets related to

different symptoms together, while the second considers tweets about each symptom sepa-

rately and then aggregates the set of alerts generated by the architecture. Using a dataset

of tweets posted from the affected region from 2011 to 2014, we obtain alerts in December

2013, which is three months prior to the official announcement of the epidemic. Among the

two variations, the second, which produces a restricted but useful set of alerts, can poten-

tially be applied to other infectious disease surveillance and alert systems.

Introduction

Infectious disease surveillance systems differ in terms of their objective and scope[1]. These

systems have traditionally utilised information sources such as health encounters, medical rec-

ords, hospital statistics, disease registries, over-the-counter drug sales data, laboratory results

and surveys. However, for the purpose of early epidemic detection, traditional surveillance

data are less timely and sensitive due to factors such as the long process of data validation,

influence of bureaucracy, politics, higher costs and resource requirements[2, 3]. The WHO

website states that early indicators for more than 60% of epidemics can be found through

informal sources such as social media. Therefore, traditional surveillance can be supplemented

through the use of publicly available data from internet-based or electronic platforms such as

search engines, social media, blogs or forums[4, 5]. When combined with signals and informa-

tion from traditional sources and agencies, social media-based surveillance of infectious dis-

eases can assist early detection of public health emergencies. While all infections or symptoms

may not necessarily get reported on social media due to a variety of reasons, we claim that a

change in the prevalence of symptom reports on social media can be an indicator of an out-

break, and can supplement traditional infectious disease surveillance.
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In this paper, we investigate if early indicators of the Ebola epidemic in West Africa in 2014

can be obtained from social media posts. This epidemic is regarded as one of the deadliest epi-

demics in recent times that resulted in a high loss of life and severe stress to medical services in

the countries impacted. We evaluate the possibility of surveillance using a dataset of tweets—

social media posts published on Twitter—posted between 2011 and 2014 in key cities of the

affected region in West Africa. A typical pipeline for a surveillance system to monitor infec-

tious diseases using social media consists of two steps: (a) collection of social media posts

reporting symptoms related to the infectious disease; and, (b) application of a monitoring algo-

rithm to generate alerts for an epidemic[6]. For step (a), we employ automatic techniques

based on computational linguistics and for step (b), statistical time series monitoring. A lead

time of more than two months can be obtained for the Ebola epidemic when these automatic

techniques are applied to tweets.

Most past work in social media-based infectious disease surveillance uses datasets created

using a set of symptom words. The goal is to signal a disease outbreak before official health sys-

tems detect it. This is not to say that social media-based epidemic intelligence would replace

human expertise. However, social media brings value in terms of being real-time and origi-

nated by human users. However, past work monitors several symptoms of an illness as a col-

lection, and constructs a stream of tweets that is then monitored. For example, for detection of

influenza, tweets containing reports of cough, cold, and fever may be considered. However,

different symptoms have different prior probabilities of being reported (for example, a fever

may be more common than rash or a fever may be reported with less stigma as compared to

rash) and different seasonal appearances (for example, cold may be more common in winters

while dehydration may be more common in summers). Therefore, tweets reporting each of

these symptoms may have different time series behaviours in terms of magnitudes and trends.

In this regard, our paper differs from past work in social media-based infectious disease sur-

veillance. Specifically, we address the question:

“Since different symptoms of a disease may have different attributes, in what ways can tweets
that report each of these symptoms be combined to detect the disease?”

An investigation into this question is likely to impact social media-based syndromic surveil-

lance for other epidemics as well. Towards this, we adapt an architecture that we had previously

reported for early detection of disease events using social media[7]. The architecture takes as

input a set of tweets and returns a set of alerts, where an alert indicates the possibility of an unex-

pected behaviour, thereby indicating an epidemic. The original architecture handles only one

symptom at a time. To address the question above, we experiment with two variations of the

architecture. The first variation uses a combined stream of tweets reporting different symptoms.

The second variation obtains alerts from the architecture for each symptom separately and then

combines these alerts. We refer to the prior as ‘Data Aggregation’ because it provides the data for

different symptoms together as an input to the architecture, and to the latter as ‘Alert Aggrega-

tion’ because it collects the alerts generated by the architecture for each symptom. To the best of

our knowledge, this is the first study that examines whether the monitoring algorithm should

handle symptoms separately or together, for social media-based infectious disease surveillance. In

addition, it is the first automatic monitoring for the Ebola epidemic using symptomatic data.

The Ebola epidemic of 2014

The 2014–16 epidemic of Ebola Virus Disease (EVD) in West Africa highlighted the impor-

tance of Internet-based surveillance methods. The suspected index case for the epidemic was a
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2-year-old boy in Guinea who died on December 6, 2013. The Guinean Ministry of Health

first noted an unidentified disease on March 13, 2014. HealthMap retrieved the first public

notification on March 14, 2014 from a French news website with headlines reporting a strange

fever. Following laboratory confirmation, the WHO released a public statement confirming

Ebola on March 23, 2014. Table 1 summarises the timeline of alerts from different sources for

the Ebola epidemic of 2014.

The first ProMED report relevant to the Ebola outbreak was a request for information (RFI)

on an undiagnosed viral haemorrhagic disease. Hossein et al. [9] found that searching the key-

word ‘Ebola’ in ProMED reports show awareness of spread of Ebola in early April 2014. Similar

keyword searches in Google Trends revealed few initial results in March and April, 2014. Alicino

et al. [8] compared Ebola-related relative search volumes (RSVs) by regions reported by Google

Trends. The highest RSVs were from the three main affected countries. Liberia had the highest

score, followed by Sierra Leone and Guinea. However, the most searches for the keyword ‘Ebola’

occurred on October 16, 2014 when President Obama issued a press release calling National

Guard reserves to contain Ebola[8]. In contrast, the first tweet from affected countries mention-

ing ‘Ebola’ came as early as December 26, 2013. However, the content of the tweet–“This Ebola

of a virus come bad pass HIV . . .May God help us,” appeared ambiguous as the user typically

posted about football. The next tweet containing Ebola was on March 25th, 2014 –“Guinea has

banned the sale and consumption of bats to prevent the spread of the deadly Ebola virus,” show-

ing stronger relevance to the outbreak[10]. Different programs or algorithms have been used to

extract data from online sources, ranging from text parsing and using the Twitter API to using

Google Trends[9, 11, 12]. Some studies did not specify their methods or details relating to data

extraction and mining and extent of human moderation[8, 10, 13]. No literature to our knowl-

edge has yet analysed the utility of symptom data from tweets for the detection of EVD[14].

Thus, the aim of our study is to evaluate the value of symptomatic tweets for rapid infectious dis-

ease surveillance of the 2014 Ebola epidemic in West Africa, using automated monitoring.

Architecture

We adapt an architecture that has been reported for early detection of disease events using

tweets[7]. This architecture consists of four steps:

1. Initial selection: Tweets are selected based on location, date range and keywords. The key-

words are words indicating a symptom. The location is derived based on either the tweet

location, the author profile location or the location mention. The code is attached as a

python notebook, Step 1.ipynb. Please note that Twitter authorisation keys to access the

API have been removed since they are personal to this author.

2. Personal health mention classification: This step is necessary because a tweet containing a

symptom word may not be the report of a symptom. The classifier uses tweet vectors as the

Table 1. Comparing web-based sources on the West African Ebola epidemic detection and dissemination [8, 9].

Source Date of first detection Type of dissemination

Meliandou Health Post January 24, 2014 Internal alert

Guinea Ministry of Health March 13, 2014 Internal alert

HealthMap March 14, 2014 Textual and graphical alert

Bing March 20, 2014 No specific information given

ProMED-mail March 22, 2014 Textual alert, RFI

WHO March 23, 2014 Textual online statement

https://doi.org/10.1371/journal.pone.0230322.t001
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feature representation for a statistical classification algorithm. A tweet vector is the average

of word embeddings of content words in a tweet. The word embeddings used are pre-

trained on a large corpus. A word embedding is a distributional representation of a word

that is expected to capture the semantics of a word. The classification step uses support vec-

tor machines trained on a labelled dataset where each tweet is represented as its tweet vec-

tor. The code is attached as a python notebook, Step 2.ipynb.

3. Duplication removal: We retain the first tweet per day per user. This prevents multiple

reports by the same user from swamping the system. It must be noted that this step follows

the second step where a classifier has predicted a tweet as a health report. The code is

attached as a python notebook, Step 3.ipynb.

4. Monitoring algorithm: In this step, we use a monitoring algorithm based on time-

between-events[15]. Time-between-events corresponds to the duration between consecu-

tive events in a time series. Of relevance to our algorithm is the event of a tweet being

posted. Using in-control data, the algorithm fits a Weibull distribution and estimates its

parameters. During test time, the algorithm computes the expected duration between times

of posting for consecutive tweets. When the time between consecutive tweets is shorter

than an expected value, the tweet is flagged. When p such consecutive tweets are flagged, an

alert is generated. The detailed code of the monitoring algorithm has been implemented in

R, and is included in the appendix.

In the paper that reported the above architecture[7], we experimented with individual

symptoms related to asthma. Therefore, the four steps above were applied in sequence sepa-

rately for each symptom. Alerts for a symptom were used as a proxy for an alert of the disease.

In this paper, we adapt the architecture to be able to handle a collection of symptoms pertain-

ing to the disease being monitored. The two variations are called Data Aggregation and Alert

Aggregation.

Data aggregation

Fig 1 shows the architecture for Data Aggregation. In this case, we use two modules of the ini-

tial selection step, one for each symptom. The data is aggregated into a common pool, indi-

cated by the ‘+’. In other words, tweets for different symptoms are indistinguishable after this

stage. Following this, the three steps, namely personal health mention classification, duplica-

tion removal and monitoring algorithm, remain the same as in the original architecture.

Therefore, the monitoring algorithm works on tweets related to all symptoms of interest

together. Since steps 2, 3 and 4 are the same as the base 4-step architecture, data aggregation

closely resembles past architecture.

Fig 1. Adapted architecture using Data Aggregation.

https://doi.org/10.1371/journal.pone.0230322.g001
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Alert aggregation

Fig 2 shows the architecture for Alert Aggregation. In this case, we use multiple channels of

the four-step architecture, one channel for each symptom. The final step is a combination

where alerts from all channels are combined. This is indicated by the ‘+’. This combination

can be performed in two ways: (a) union, where an alert for a given day is generated by the

overall architecture if it was generated by one of the channels; and, (b) intersection, where an

alert for a given day is generated by the overall architecture if an alert was generated by all the

channels on that day. We refer to these as Alert Aggregation (union) and Alert Aggregation

(intersection), respectively.

Experiment setup

Data

For our experiments, we created a dataset of tweets using the Twitter Premium Search API

(TPSA) (https://developer.twitter.com/en/docs/tweets/search/api-reference/premium-search.

html). TPSA allows two key advantages over the free API. It provides full access to historical

tweets, while the free API restricts the caller to tweets posted within the last 30 days. TPSA also

allows composite search queries that combine location, keyword and date range parameters,

while the free API allows calls restricted to one of the parameters (for example, either location

or keyword). We used TPSA to download tweets using the following parameters:

1. Date range: December 2011 to December 2014.

2. Locations: We search for locations in key locations in Liberia, Guinea and Sierra Leone.

The details are provided in the Appendix. TPSA searches for a location using three argu-

ments: latitude, longitude (indicating the location) and a radius (indicating the distance

from the location. This can be up to 40 km). We observed that TPSA returns significantly

higher number of tweets from Monrovia, the capital city of Liberia. Therefore, Monrovia is

the key location of our dataset. This is expected since, among Guinea, Sierra Leone and

Liberia, Liberia had the highest access to the Internet (16.5%, as against 1.6% and 1.7%)

during the outbreak[10].

3. Symptoms: For viral haemorrhagic fevers, systems of high sensitivity are expected. To

achieve high sensitivity, we use one early symptom: fever, and one late symptom of Ebola:

rash. (https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease). We also

experimented with muscle pain but the corresponding stream of tweets did not fit the dis-

tribution as required by the time-between-events algorithm. We experimented with bleed-

ing and red eyes but the number of tweets obtained were too few. Therefore, as a simplistic

Fig 2. Adapted architecture for Alert Aggregation.

https://doi.org/10.1371/journal.pone.0230322.g002
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setting, we stick to two symptoms: fever and rash. This also makes the union and intersec-

tion operations simpler. While the architecture could be applied to more than two symp-

toms in principle, we restrict to only two symptoms of Ebola.

As a limitation of the API, tweets from those accounts that have been made private or

deleted at the time of data collection cannot be accessed. Table 2 shows the number of tweets

corresponding to each symptom for the specific date range and locations. Only 24 tweets are

common to both the datasets, containing both fever and rash.

A common reluctance against using social media for surveillance stems from questions

over its popularity in the affected region. The mobile subscriber penetration rate in 2016 was

43% in Sub-Saharan Africa, lower than the global average of 66% [16]. Only 1.6% of people in

Guinea, 1.7% in Sierra Leone and 16.5% in Liberia had access to the Internet during the out-

break[10]. Hence, before we use the automated techniques, we wish to ascertain if there are

enough tweets from the locations of interest. Fig 3 shows the daily counts in the aggregated

dataset over the date range. We observe spikes in the counts around the period of the epi-

demic. This result encourages us to apply automated techniques for the Ebola epidemic. The

counts do not track the epidemic curve because, when the epidemic becomes known, corre-

sponding chatter is also observed on social media. It is not possible to break down over multi-

ple locations because the tweets returned may not have the exact city name as a text in any of

the fields but contain latitude/longitude parameters as present in the geolocation that is tagged

with the tweet. We reiterate that, in the rest of the paper, we use a combination of computa-

tional linguistics and time series monitoring, and do not rely on manual selection or counting

of either tweets or outbreak signals.

Methods

In our previous work [7], we used two false discovery rates in Step 4, namely the monitoring

algorithm: 1 in 1000 and 1 in 2000. The alerts for the false discovery rate of 1 in 2000 were far

too few and have not been reported. Similarly, they used two classifiers for the second step,

namely the personal health mention classification: SVM and SVM-Perf. We choose support

vector machines as the classifier training algorithms because they have shown to perform bet-

ter than decision trees and random forests for personal health mention classification [17]. For

alerts obtained using SVM, we point the reader to the Appendix. The results in the Appendix

show that the adapted architecture using SVM-Perf obtains more relevant alerts than the one

using SVM. Therefore, in the following section, we report results on SVM-Perf as the classifi-

cation algorithm and a false discovery rate of 1 in 1000.

Results

Table 3 shows the alerts generated by the three adapted versions of the architecture from

December 2013 to July 2014. In each of these cases, our architecture using social media-based

monitoring obtains alerts as early as December 2013. This lead time of three months for the

Ebola epidemic makes a case for social media-based infectious disease surveillance.

Table 2. Dataset statistics.

Symptom # tweets

Fever 8507

Rash 743

https://doi.org/10.1371/journal.pone.0230322.t002
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Early alerts

As expected, Alert Aggregation (intersection) is restrictive. It only produces one alert: 27th

December, 2013. Data Aggregation produces alerts in early December 2013 (i.e., 2nd December

onwards), while Alert Aggregation (union) produces alerts in late December 2013 (i.e., 26th

December onwards).

Frequency of alerts

Data Aggregation results in many alerts, starting from early December 2013. In contrast, Alert

Aggregation (union) results in few alerts, but they are as early as December 2013 and January

2014. Alerts that are too frequent may not be desirable because they may tend to be ignored.

Table 3. Alerts generated by the three adapted versions of the architecture.

Alerts

Data Aggregation December 2013: 2, 4, 6, 7, 9, 10, 13, 14, 15, 16, 27, 28, 30

January 2014: 3, 4, 6, 10, 11, 13, 17, 18, 20, 24, 25, 27

February 2014: 21, 22, 23, 24, 28

March 2014: 1

April 2014: 24, 25

May 2014: 2, 3, 4, 5, 30

June 2014: 2, 5, 6, 7, 13, 14, 16, 18, 20, 21, 23, 24, 25

July 2014: 11, 12, 14, 15, 16,17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29

Alert Aggregation (Union) December 2013: 26, 27, 28, 30

January 2014: 3, 4

February 2014: None

March 2014: 31

April 2014: 1, 27

May-July 2014: None

Alert Aggregation (Intersection) December 2013: 27

January–July 2014: None

https://doi.org/10.1371/journal.pone.0230322.t003

Fig 3. Daily counts in the aggregated dataset for both the symptoms.

https://doi.org/10.1371/journal.pone.0230322.g003
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First alert after the official announcement

For Alert Aggregation (union), we observe an alert on 31st March 2014, soon after the official

announcement of the epidemic. However, in the case of Data Aggregation, the first alert after

the official announcement is on 24th April, 2014. Because the data streams are separate in the

Alert Aggregation architecture, the alert is sooner than in the case of Data Aggregation.

The complete list of alerts over the entire date range and the alert graphs for the three ver-

sions are in the Appendix.

Conclusions & future work

We adapt an architecture for social media-based infectious disease surveillance and compare

two variations: Alert Aggregation and Alert Aggregation. We perform our experiments on a

dataset of tweets posted by users in West Africa during the Ebola epidemic of 2014. We focus

on fever and rash, two symptoms of Ebola. Our results lead us to two key conclusions:

Social media provides an alert for the 2014 Ebola epidemic, three months

in advance

Using social media-based monitoring, we obtain the earliest alert in December 2013, three

months before the announcement. This holds true for all versions of our architecture. It must

be noted that the countries of interest have lower internet penetration and lower mobile sub-

scriber penetration than the world average. We show that, despite that, social media-based

infectious disease surveillance can lead to early alerts.

Data aggregation may result in more frequent alerts as compared to alert

aggregation

Most work in social media-based surveillance downloads tweets containing a set of keywords

and then applies monitoring algorithms (which we refer to as Data Aggregation). We compare

this with an approach where tweets related to each symptom are separately analysed using the

monitoring algorithm (we refer to this as Alert Aggregation). We observe that Alert Aggrega-

tion results in less frequent alerts than Data Aggregation. Therefore, depending on the desired

frequency of these alerts, one of the two strategies can be chosen for future work in social

media-based infectious disease surveillance.

As future work, our architecture could be adapted for other social media platforms or dis-

ease types. Our choice of Twitter as a social media platform is due to the availability of its API

for research purposes. The architecture may be applicable to other social media platforms with

usage frequency and content similar to Twitter. The architecture may need to be modified for

a social media platform that gets used less frequently or has longer posts. Also, we apply the

architecture for Ebola in this paper. This could be applied to unexpected diseases such as acute

disease events, or common diseases such as influenza.
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