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Automated Morphometry of the Visual Pathway in
Primary Open-Angle Glaucoma

Aditya T. Hernowo,1,2 Christine C. Boucard,3 Nomdo M. Jansonius,4

Johanna M. M. Hooymans,4 and Frans W. Cornelissen1

PURPOSE. To establish whether primary open-angle glaucoma
(POAG) is associated with a change in volume of the visual
pathway structures between the eyes and the visual cortex.

METHODS. To answer this question, magnetic resonance imag-
ing (MRI) was used in combination with automated segmenta-
tion and voxel-based morphometry (VBM). Eight patients with
POAG and 12 age-matched control subjects participated in the
study. Only POAG patients with bilateral glaucomatous visual
field loss were admitted to the study. The scotoma in both eyes
had to include the paracentral region and had to, at least
partially, overlap. All participants underwent high-resolution,
T1-weighted, 3-T MRI scanning[b]. Subsequently, VBM was
used to determine the volume of the optic nerves, the optic
chiasm, the optic tracts, the lateral geniculate nuclei (LGN),
and the optic radiations. Analysis of covariance was used to
compare these volumes in the POAG and control groups. The
main outcome parameter of the measurement was the volume
of visual pathway structures.

RESULTS. Compared with the controls, subjects with glaucoma
showed reduced volume (P � 0.005) of all structures along the
visual pathway, including the optic nerves, the optic chiasm,
the optic tracts, the LGN, and the optic radiations.

CONCLUSIONS. POAG adversely affects structures along the full
visual pathway, from the optic nerve to the optic radiation.
Moreover, MRI in combination with automated morphometry
can be used to aid the detection and assessment of glaucoma-
tous damage in the brain. (Invest Ophthalmol Vis Sci. 2011;52:
2758–2766) DOI:10.1167/iovs.10-5682

In the developed world, glaucoma is one of the most notori-
ous causes of visual field defects.1 Typically, over the course

of the disease, the visual field becomes narrower, but foveal
vision remains relatively intact. The pathogenesis of the disease
is not well understood, and that hampers early diagnosis and
advances in treatment.

Degeneration of retinal ganglion cells (RGCs) is currently
thought to play a key role in the pathogenesis of glaucoma.2–22

The resulting damage to the RGC axonal projections2,22–25 is
reflected by thinning of the retinal nerve fiber layer (RNFL).26

Analysis of RNFL thickness has thus become a primary tool for
investigating volumetric changes in the most anterior part of
the visual pathway.27–37

Moreover, growing evidence suggests translation of the
RGC degeneration to more distal parts of the visual path-
way.25,38–41 In mice, the loss of RGCs is followed by a reduc-
tion in the thickness and area of the optic tract.38 In nonhuman
primates, an experimentally induced increase in intraocular
pressure led to RGC loss and to the degeneration of the lateral
geniculate nucleus (LGN) cell layers.25 In humans, magnetic
resonance (MR) studies have shown that patients with glau-
coma, compared with healthy individuals, have smaller optic
nerves, a smaller optic chiasm,40 and smaller LGNs.41 A diffu-
sion tensor imaging (DTI) study found marked, disease-stage–
correlated changes in the optic nerves and weak changes in the
optic radiations when comparing glaucoma patients and
healthy controls.42 Finally, the visual cortex was shown to
decline in volume in glaucoma, as revealed in one postmortem
study by Gupta et al.43 and in a recent in vivo MR study from
our group.44 The degeneration in these central portions of the
visual pathway in humans may also be a sign of transsynaptic
neuronal degeneration, which is provoked by the death of the
RGCs.

Thus far, MR-based measurements of the size of the human
precortical portion of the visual pathway have all been per-
formed manually.39–41,45 Besides being time consuming, this
manual assessment can result in subjective measurement bias.
To overcome these disadvantages, in a recent study, our group
used an automated morphometric technique that can objec-
tively compare anatomic changes at all locations in the brain
simultaneously. Using this new approach, we found MR evi-
dence of gray matter density loss in the primary visual cortex
in individuals with a long-standing visual field defect due to
primary open-angle glaucoma (POAG).44 This, together with
the DTI findings mentioned earlier,42 implies that the optic
radiation that carries visual information from the LGN to the
visual cortex may also be affected in POAG. To our knowledge,
morphologic changes have not yet been reported for these
structures.

If morphologic changes in the visual pathway can be reli-
ably measured, it could assist a clinician in deciding on the
diagnosis, prognosis, and further management of individual
patients. In the present study, we investigated volumetric
changes along the entire afferent visual pathway in individuals
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with POAG by using automated morphometric methods. Spe-
cifically, we addressed the following research questions: (1)
Compared with healthy controls, do subjects with glaucoma
exhibit changes in the volume of the visual pathway? (2) If
there are such changes, does the change in volume correlate
with changes in visual field sensitivity?

METHODS

Subjects

This study conformed to the tenets of the Declaration of Helsinki and

was approved by the medical review board of the University Medical

Center Groningen (Groningen, The Netherlands). All participants gave

their informed written consent before participation.

Patients with POAG were recruited from participants in the Gro-

ningen Longitudinal Glaucoma Study.46 Eight patients participated

(one woman and seven men; mean age, 72 years; range, 62–85). The

participant inclusion criteria were the following: (1) a glaucomatous

visual field defect of at least 10° in diameter in at least one quadrant,

affecting both eyes; (2) these visual field defects had to include the

paracentral regions in both eyes; (3) the defects had to have been

present for at least 3 years. The severity of the visual field loss was

determined by the mean deviation (MD) scores (Humphrey Field An-

alyzer; Carl Zeiss Meditec AG, Jena, Germany). Table 1 lists the char-

acteristics of the patients. Patients with any other ophthalmic or

neuro-ophthalmic disease that may affect the visual field were ex-

cluded.

For the control group, 12 healthy, age-matched subjects (three

women and nine men; mean age, 67 years, range 61–83) were re-

cruited from among the partners and unrelated acquaintances of the

visual field–impaired participants or by advertisements in a local news-

paper. Control subjects were required to have good best-corrected

visual acuity (logMAR � 0), not to have any visual field defects (ac-

cording to the Groningen Longitudinal Glaucoma Study),46 and to be free

of any ophthalmic, neurologic, or general health problems. Detection of

an abnormal visual field is explained in the Perimetry section.

This study involved participants reported in another study44; the

participants of our present study are the same as those listed in the

POAG group in that study; the healthy controls in that study were also

the same. The present study used the same MRI scans as those used in

the prior study44, but addressed volumetric changes along the visual

pathway, rather than being limited to gray matter changes in the visual

cortex.

Data Acquisition

Perimetry. The visual field was tested with a retinal perimeter

(HFA; Carl Zeiss Meditec AG, Jena, Germany). A standardized method

of examining the central visual field up to 30° eccentricity, the 30-2

Swedish interactive threshold algorithm (SITA-fast), was used. A visual

field defect was considered to be present if one of the glaucoma

hemifield tests was outside normal limits, if the pattern standard

deviation’s probability is �0.05, if there were at least three adjacent

non–edge points (with P � 0.05) in the pattern deviation probability

plot, with at least one point having a P � 0.01.47 This defect had to be

present on at least two consecutive, reliable tests in the same region of

the visual field (not including the first visual field measurement ever

made). A test result was considered unreliable if false-positive catch

trials exceeded 10%, or if both false-negative catch trials and fixation

losses exceeded 10% and 20%, respectively. Moreover, deficits had to

be compatible with glaucoma and have no other explanation.

T1-Weighted Image Acquisition. All participants were

scanned on the 3.0-T MRI scanner (Philips Intera; Eindhoven, The

Netherlands) located at the BCN Neuro-imaging Center of the Univer-

sity Medical Center, Groningen. For each participant, a high-resolution,

T1-weighted, anatomic scan was made using the magnetization se-

quence T1W/3D/TFE-2, 8° flip angle; repetition time, 8.70 ms, matrix

size, 256 � 256; and field of view, 230 � 160 � 180,; yielding 160

slices and a voxel dimension of 1 � 1 � 1 mm.

MR Data Analysis

The data analysis procedure involved the following steps: image pre-

processing, generation of study-specific tissue probability maps

(TPMs), segmentation, registration, modulation of the segments, and

finally a statistical comparison of differences in the volumes of different

tissue segments between the POAG and control groups within the

visual pathway. The process from the segmentation to the voxel-wise

statistical analyses is known as voxel-based morphometry or

VBM. We used the VBM that is part of the SPM8 software package

(Wellcome Department of Imaging Neuroscience, University College

London, London, UK; http://www.fil.ion.ucl.ac.uk/spm) to compare

the volume of subcortical structures between the glaucoma and control

groups.48 VBM statistically assesses local changes in gray and/or white

volumes between groups of anatomic scans. The steps in the data analysis

procedure are described in more detail in the following sections.

Image Preprocessing. Several preprocessing steps were per-

formed on the scanned images before the actual measurement and

statistical analyses. Image reorientation to the average image of all

subjects’ brains was applied, to ensure registration of the images.

Generating Study-Specific TPMs. One problem was that the

standard TPMs available in the SPM8 software did not facilitate the detec-

tion of diencephalic nuclei, including the LGN. As a solution, we gener-

ated our own TPMs. TPM generation began by extracting the brains using

the Brain Extraction Tool (BET),49 available within the FMRIB (Functional

MRI of the Brain) Software Library (FSL; http://www.fmrib.ox.ac.uk/

fsl). Next, for the segmentation, we used the FMRIB Automated Seg-

mentation Tool (FAST).50 However, instead of letting FAST segment

the extracted brains into the standard three tissue classes (gray and

white matter and cerebral spinal fluid [CSF]), we made it segment the

brains into six tissue classes. Next, we created average tissue class

images based on the data from all subjects from the POAG and the

control groups. After this, these average images were smoothed by

using a Gaussian kernel with a full-width half-maximum (FWHM) of 8

mm. In the SPM8 segmentation, the sixth tissue class image was used

as the TPM containing the prior for the optic nerves, chiasm, tracts,

and radiations. The fifth tissue class image was used as the TPM with

the prior for the thalamus and other diencephalic nuclei. The first to

fourth tissue classes were collated and used as the TPM with the prior

for other brain tissues.

Segmentation, Registration, and Modulation. We used

SPM8’s DARTEL (Diffeomorphic Anatomic Registration through Expo-

nentiated Lie Algebra) suite of tools.51,52 In short, the DARTEL tools

enabled us to create modulated gray and white matter images that

were registered to a common reference image specifically representing

our sample, instead of registering them to a more general template,

such as the MNI (Montreal Neurologic Institute) template that comes

with SPM8. The study-specific method we used enabled a more accu-

rate intersubject registration of brain images with improved localiza-

tion and sensitivity of the VBM.

The process began with SPM8’s segmentation, using the TPMs we

had created (as we explained in the prior paragraph). After all the

brains were segmented, a reference, or template, image was generated.

The first step in generating this reference image was averaging the

images of all brains. After this, the individual brains were deformed and

registered as closely as possible to this reference image. Next, using the

registered brain images, we created a new average reference image to

which the individual brain images were again registered. After six of

these averaging and registration cycles, the final reference image was

generated. The final reference image was then used as the template to

which the native segmentations of the individual brains in the study

were registered and modulated.

Smoothing. To increase the signal-to-noise ratio before statistical

testing, we smoothed the segmented images with a Gaussian kernel

(FWHM � 4 mm).
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Statistical Testing. Covariance analysis was used to examine

between-group differences in the segments, with age as the covariate.

Statistical testing was restricted to the visual pathway, which was

demarcated by using a mask that included the optic nerves up to the

white matter regions where the optic radiations can be expected to be

situated. The visual pathway mask was created manually, based on the

average brain image from all participants.

Regarding statistical testing, no correction for multiple compari-

sons was used, because we only compared the groups within a well-

defined region (the visual pathway). Hence, our hypothesis was an

anatomically closed one, and no further correction for overall brain

volumes was necessary.

Region-of-Interest–Based Analysis. In addition to the VBM

analysis, we performed a region-of-interest (ROI)–based statistical anal-

ysis. For this analysis, we defined nine ROIs: the right optic nerve

(RON), the left optic nerve (LON), the optic chiasm (OC), the right

optic tract (ROT), the left optic tract (LOT), the right lateral geniculate

nucleus (RLGN), the left lateral geniculate nucleus (LLGN), the right

optic radiation (ROR), and the left optic radiation (LOR). The spatial

variation in the position and size of the optic radiations is less uniform,

and that is why we defined a relatively large region of interest to

capture the ROR and LORs in individual brains. Figure 1 shows these

latter two ROIs. In the ROI-based analyses, statistical comparison was

performed by using ANCOVA, with age as the covariate.

RESULTS

Groups Comparison

Patients’ characteristics are listed in Table 1. Statistical testing
(Mann-Whitney U test) revealed no significant difference in age
between the glaucoma and control groups (P � 0.13).

We then used automated voxel-based morphometry to exam-
ine differences along the visual pathway between the glaucoma
and control groups. Figure 2 depicts the region in the brain where
the white matter volume is reduced in the glaucoma group com-
pared with the control group (thresholded at P � 0.005, uncor-
rected). Significant reductions in volume are present bilaterally in
the optic nerves, the optic chiasm, and in both optic tracts.

The volumetric reductions extend beyond the optic tracts,
but this cannot be observed in Figure 2. For this reason, Figure 3
shows a series of axial slices that allow examination of reduc-
tions beyond the optic tract.

Compared to the age-matched controls, participants in the
glaucoma group had a reduced volume of the precortical visual
pathway structures, as shown in Figure 3. Marked changes to

the optic chiasm are visible in Figures 3F–H. Volumetric reduc-
tions in the lateral geniculate nuclei can be observed in Figures
3J and 3K, whereas changes in the optic radiations can be
observed in Figures 3I–L. We repeated the VBM analysis using
TPMs based on an independent set of brains. The results of this
analysis were highly comparable to those reported above (see
Supplementary Materials, http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.10-5682/-/DCSupplemental).

Figure 4 shows box plots for the ROI-based volumetric
measurements for the individual subjects in the control and
glaucoma groups. Table 2 lists the individual subject’s volumes,
as well as the relative volume loss, in each ROI. The final row
of Table 2 lists the values related to the statistical comparison.

Table 2 and Figure 4 indicate that the ROI-based compari-
sons of the glaucoma and control groups showed significant
volumetric differences in nearly all ROIs. With the exception of
the left optic radiation, the glaucoma group had an overall
lower volume along the full visual pathway.

Correlation Analyses

We determined the correlations between the binocular average
of the MD of visual field sensitivity and the volume of the ROIs

FIGURE 1. ROIs defining the possi-
ble locations of the optic radiations.
The optic radiation ROIs are shown
on the reference brain image created
for this study. The yellow ROI repre-
sents the right optic radiation,
whereas the cyan one represents the
left optic radiation.

TABLE 1. Baseline Patient Characteristics

Characteristics Values

Age, median (range), y 72.5 (62–85)
Male sex, % 87.5
Family history of glaucoma, % 85.7
Visual acuity in logMAR, median

(range) 0.1 (0.0–0.7)
IOP

Highest recorded, median (range),
mm Hg 30 (17–55) mm Hg

Treated, median (range), mm Hg 14 (12–16) mm Hg
Visual field MD

Right eye, median (range), dB �11.62 (�5.23 to �27.20)
Left eye, median (range), dB �15.30 (�3.67 to �24.59)

Scanning laser polarimetry (GDx*) NFI
Right eye, median (range) 63 (51–97)
Left eye, median (range) 61 (38–95)

Scanning laser polarimetry (GDx*)
ellipse average thickness

Right eye, median (range), �m 59 (45–69)
Left eye, median (range), �m 62 (46–72)

* Carl Zeiss Meditec, Dublin, CA.
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just described. Table 3 shows that none of the correlations
between the ROI volume and the MD of the glaucoma group
reached statistical significance. The scatter plots in Figure 5

show a relative change in volume for individual patients as a
function of the binocular average of the MD.

DISCUSSION

Our results show that in comparison to healthy controls, sub-
jects with glaucoma exhibited significant reductions in the
volume of the visual pathway, including the optic nerves,
chiasm, tracts, LGN, and optic radiations. In subjects with
long-standing POAG, volumetric reductions were therefore
present in the visual pathway. Starting from the optic nerve,
we found that the intraorbital and intracranial optic nerve
volumes were markedly reduced in glaucoma.

These findings corroborate earlier reports on structural
damage to these sections of the visual pathway.38–40,42 The
volumetric reduction need not be symmetrical, as can be seen
in Figure 2. The reduction was most prominent in the distal
half of the right optic nerve and in the middle third of the left
nerve. Nonetheless, when we lowered the statistical threshold
(to P � 0.05), we observed the presence of POAG-associated
volumetric reductions along the entire length of the optic
nerve. This finding indicates that shrinkage may occur any-
where along the entire length of the optic nerve.

The volume of the optic chiasm and tracts was reduced in
glaucoma as well (Fig. 2). Shrinkage was present in the optic
chiasm and along the full length of the optic tracts, corrobo-
rating results from earlier studies.40,53 Since the latter two
structures are a direct continuation of the optic nerves, these
findings are perhaps less surprising. A more interesting neuro-
ophthalmologic finding is that the LGNs also showed volumet-
ric reductions in subjects with POAG. This corroborates an
earlier report by Gupta et al.,41 who used manual measure-
ments in their study. Our results also indicate that the optic
radiations were adversely affected. This result is more surpris-
ing, as the axonal projections in the optic radiations are not a
direct continuation of the RGC layer axons, but are projections

FIGURE 2. Reductions in volume along the pregeniculate visual pathway
in glaucoma, as determined by using VBM. Highlighted structures (includ-
ing the optic nerves, chiasm, and tracts) indicate regions with statistically
significant volumetric reductions in subjects with glaucoma, compared
with age-matched controls (thresholded at P � 0.005, uncorrected). The
LGNs and optic radiations are not shown in this rendering.

FIGURE 3. Axial slices indicating re-
ductions in volume along the visual
pathway in glaucoma, as found using
VBM. Compared with the age-
matched controls, subjects in the
glaucoma group had a reduced vol-
ume of the precortical visual path-
way structures (A–L). Statistically sig-
nificant volumetric reductions in the
lateral geniculate nuclei are indicated
by cyan arrowheads in (J) and (K).
Statistically significant changes in the
optic radiations are depicted (I–L).
Statistical maps are thresholded at a
level of P � 0.005 (uncorrected).
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from LGN relay neurons that transmit the visual information to
the visual cortex. The volumetric reduction of the optic radi-
ations complements the gray matter density reduction in the
visual cortex.44

The volumetric reduction of the optic radiations is also
related to the finding, based on DTI, that these structures
showed increased mean diffusivity and decreased fractional
anisotropy in glaucoma patients.42 This DTI finding implied
that the integrity of the optic radiation in glaucoma is compro-
mised. Our T1-weighted imaging and VBM results indicated
that there is also a reduction in the volume of this brain
structure in glaucoma. For future assessment of structural
changes in patients, DTI and T1-weighted imaging appear to be
techniques that provide distinct and complementary informa-
tion. Determining how these DTI and VBM results exactly
relate to each other, as well as to disease severity, would
require comparisons in the same group of patients.

The proportion of volume loss in the visual pathway ranges
from 78% in the optic chiasm to 16% in the optic radiation. A
trend in the data suggests that the glaucoma-associated volume
reduction decreases the farther away a structure is from the eye.
This would fit with the notion that that the pregeniculate volu-
metric reduction is transmitted trans-synaptically to the LGN
and beyond. Another explanation for the volume reduction
could be a change in metabolic activity due to the lack of RGC
input as shown in primate glaucoma54 and the visual cortex in
human glaucoma.55 However, it is beyond the capacity of the
VBM methodology to determine the exact mechanism under-
lying the volumetric reductions.

For the control participants, our estimate of the average
volume of the LGN (149 mm3) lies between previous estimates
based on a postmortem, MRI-registered histologic investigation
(182 mm3)56 and on another postmortem histologic study (118
mm3).57 The latter estimate is smaller than ours, but this may
be due to shrinkage as a result of formalin fixation. Our method
measures volume of (parts of) segmented images, so that the
specific choice of segmentation parameters may influence ab-
solute size estimates. However, this equally affects the mea-
surements in patients and controls.

In their combined MRI and histologic study, Burgel et al.56

estimated the average size of the optic radiations in healthy
individuals to be 6798 mm3. In this case, we got a larger
average optic radiation volume (11,297 mm3). This larger esti-
mate can be explained by us by deliberately defining a rela-
tively large region of interest to guarantee that we would
capture the ROR and LORs of all the individual brains. In the
future, DTI-guided segmentation of high-resolution anatomic
images of the brain may allow extraction of the optic radiation
in an automated manner and provide even more accurate in
vivo volumetric measurements.

Our analyses showed no significant correlation between the
visual field sensitivity (MD) and the volume of the visual pathway
structures (see Table 3 and Fig. 5). There may be several meth-
odological reasons for this finding. ROI-based analyses, as we used
here, are a relatively coarse measure in comparison to the reso-
lution offered by VBM. Future studies may explore the structure–
function relationship in a finer, voxel-wise manner. Investigators

FIGURE 4. Comparison of volumet-
ric measurements in ROIs along the
precortical visual pathway in glau-
coma patients and controls. Box
plots show the average and 25th and
75th percentiles for nine ROIs: RON,
LON, OC, ROT, LOT, RLGN, LLGN,
ROR, and LOR. (Abbreviations are
the same as in Table 2.) Data were
extracted from the unsmoothed
modulated segments of the T1-
weighted brain images.
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could also consider using more comprehensive visual field mea-
surements (for example, the full SITA method) to enable a more
precise determination of the relationship between the severity of

the reduction in visual field sensitivity and the volume of the
visual pathway. It may be possible to further improve on the
methods we used here by fine-tuning the registration parameters
so as to focus more on the visual pathway rather than the whole
brain, before performing the statistical analyses. With such tech-
nical refinements to the present technique and the inclusion of
more participants in various severity stages of glaucoma, it might
become feasible to determine how far along the pathway damage
is occurring and perhaps even the time sequence of the damage.
Such could be done through either longitudinal studies or by
finding patients in whom damage only extends to certain points
along the pathway.

Our study also showed that the combination of MRI and
automated morphometry can detect changes in the volume of
the visual pathway. Our study is the first to detect such
changes simultaneously using fully automated VBM. Standard
VBM is not very suitable for detecting changes in the subcor-
tical sections of the visual pathway. Moreover, to the best of
our knowledge, surface-based methods allow only investiga-
tion of cortical structures as well. To enable detection of
subcortical volumetric changes, we slightly modified the stan-
dard segmentation protocol of SPM by increasing the number
of tissue classes. This modification allowed better segmenta-
tion, especially of the optic radiations and the LGN and enabled
us to greatly improve our assessment of volumetric changes in
these structures using VBM.

The TPMs that we used incorporated all the subjects from
both groups in the study and, in principle, do not bias the
results in any direction. To verify the validity of this assump-
tion, we repeated our VBM analysis using TPMs based on an
independent set of brains. The results of this analysis are highly
comparable to the one reported in the main paper (see Sup-
plementary Materials, http://www.iovs.org/lookup/suppl/doi:
10.1167/iovs.10-5682/-/DCSupplemental). Using TPMs based
on the brains of the study participants has the advantage that it
results in more accurate registration and improved VBM sensi-
tivity.

Previous reports on structural changes in glaucoma have
used different dimensions such as height, area, or thickness
of the structures of interest as their outcome parame-
ters.39,40,45,58 Often, these measures were determined manu-
ally. VBM, on the other hand, performs an automated statistical
comparison of volume on a voxel-by-voxel basis, thus allowing
an unbiased and comprehensive comparison. Moreover, it has
the ability to detect subtle differences that manual measure-
ments may not be able to detect.

In the present study, we used VBM primarily for its power
in performing group comparisons. However, we believe the
method and its components could have a more widespread
use. In a group-comparison study, all brain images and their
derivative gray and white matter segments necessarily have to
be normalized to allow any comparisons. However, one can
always opt not to do so, to simply obtain the derivative gray
and white matter segments, thereby preserving an individual’s

TABLE 3. Correlations between Visual Field Sensitivity and Volume of Visual Pathway Structure in the Glaucoma Group

ROI

RON LON OC ROT LOT RLGN LLGN ROR LOR

Mean deviation OD R � 0.24
P � 0.57

N/A — — — — — — —

Mean deviation OS N/A R � 0.58 — — — — — — —
P � 0.13

Binocular average of mean
deviation

— — R � 0.55
P � 0.16

R � 0.15
P � 0.73

R � �0.13
P � 0.76

R � 0.28
P � 0.49

R � 0.12
P � 0.77

R � 0.02
P � 0.97

R � �0.09
P � 0.83

Abbreviations are as in Table 2.

FIGURE 5. Scatter plots of volume reduction in visual pathway struc-
tures as a function of binocular visual field sensitivity deviation. The
volume reduction for individual patients is expressed as a percentage
compared with the average volume in control participants. Data were
extracted from the unsmoothed modulated segments of the T1-
weighted brain images. (Abbreviations are the same as in Table 2.)
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brain shape. For example, a clinician could then use the white
matter segment, which is virtually free from the other non–
white matter brain tissue, to precisely measure the dimensions
of the optic chiasm or the optic tracts. In this case, only the
accurate segmentation abilities of the VBM method are used to
improve the sensitivity of manual measurements.

In our view, a fully automated VBM approach could also be
applied at the individual patient level, although this would
require further research and development. Based on a large
number of images of normal, healthy brains, a normative data-
base of templates for subjects of various ages could be created.
After automated normalization and segmentation, the brain
images of an individual patient, could be compared, on a
voxel-wise basis, to the appropriate normal template in the
database. Deviant structures in the patient’s brain could be
highlighted. Such measurements and visualizations could assist
a clinician in deciding on the diagnosis, prognosis, and further
management of an individual patient. Potentially, multivariate
pattern classification techniques could be applied to improve
the sensitivity of such automated assistive measurements. In
the long run, volume reduction and other MR based assess-
ments could become additional indicators to assess glaucoma
progress.42

In the future, these new methods could also help to decide
whether a vision rehabilitation program for a patient is worth-
while, since a degenerated pathway may limit the efficacy of
rehabilitation and training programs59 and retinal prostheses.60

Furthermore, due to the potentially deteriorative effect of glau-
coma, physicians may also need to consider the prevention of
degeneration as a new goal. In addition to such clinical impli-
cations, our results indicate that the automated and objective
procedure of VBM can be applied in future research on the
visual pathway. Finally, the present approach need not be
restricted to the realms of neuro-ophthalmology. Automatic
detection of changes in subcortical structures may also be
useful in neurologic or psychiatric disorders.

In summary, compared with healthy individuals, glaucoma
patients show the presence of volumetric reductions that may
extend all the way from the optic nerve to the optic radiations.
Glaucoma, besides affecting the eye and optic nerves, may thus
also disrupt the central visual system. Despite the marked
changes observed in pregeniculate structures of the visual
pathway, more data are needed, to ascertain the extent of the
optic radiations’ involvement.
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