
Automated Mosaicing with Super-resolution Zoom

David Capel and Andrew Zisserman

Robotics Research Group

Department of Engineering Science

University of Oxford

Oxford OX1 3PJ, UK.

Abstract
We describe mosaicing for a sequence of images acquired

by a camera rotating about its centre. The novel contributions
are in two areas. First, in the automation and estimation of
image registration: images (

�✂✁☎✄
) are registered under a full

(8 degrees of freedom) homography; the registration is auto-
matic and robust, and a maximum likelihood estimator is used.
In particular the registration is consistent so that there are no
accumulated errors over a sequence. This means that it is not
a problem if the sequence loops back on itself.

The second novel area is in enhanced resolution. A region
of the mosaic can be viewed at a resolution higher than any of
the original frames. It is shown that the degree of resolution
enhancement is determined by a measure based on a matrix
norm. A maximum likelihood solution is given, which also
takes account of the errors in the estimated homographies. An
improved MAP estimator is also developed.

Results of both MLE and MAP estimation are included for
sequences acquired by a camcorder and a CCD camera.

1 Introduction
Mosaicing involves registering a set of images to form a

larger composition representing a portion of the 3D scene [16,

19, 21, 22]. Such mosaicing is possible for any images re-

lated to each other by a global mapping such as a planar ho-

mography (a plane projective transformation). There are two

common situations in which images are related by homogra-

phies: images obtained by rotating the camera about its centre

(a motion constraint); images of a plane from any viewpoint

(a structure constraint). Here we concentrate on sequences

obtained from a rotating camera.

There are two strands to this paper. The first is the automa-

tion of mosaicing under a full, eight degrees of freedom (dof),

homography. Section 2.1 describes a maximum likelihood es-

timate (MLE) [13] for this homography between image pairs.

Mosaicing is then described in section 3. Particular attention

has been paid to estimating consistent homographies through-

out the image sequence to avoid the accumulation of registra-

tion error.

The second strand is on super-resolution enhancement, and

is described in section 4. In essence the aim is to produce a

“still” from the sequence at a higher resolution than any of the

individual frames. Super-resolution techniques treat images

as degraded observations of a real, higher-resolution texture.

The degradations include optical blur and spatial sampling.

Given several such observations (images), an estimate of the

high-resolution texture is obtained such that when reprojected

back into the images it minimizes the difference between the

actual and “predicted” observations.

Early super-resolution work by Irani and Peleg considered

images undergoing similarity [11] and affine [12] transforma-

tions. Mann and Picard [15] extended this work to include

projective transformations. The image degradations modelled

included both optical blur and spatial quantization, and the

transformation estimation algorithm was based on scale-space

registration. The techniques were extended by Bascle et al. [1]

to include motion blur, and an estimation algorithm involving

registration by a combined region and contour tracker [2].

Here we again consider degradation due to spatial quanti-

zation, with the transformation extended to a general (8 dof)

homography. ML estimation is compared to maximum a pos-
terior (MAP) estimation, and a method is given for choosing

an optimal enhancement resolution. We also discuss how reg-

istration errors may be accounted for in the estimation proce-

dure. Finally, these techniques are applied to produce a blow-

up of a planar mosaic — any region of interest of the mosaic

can be artificially zoomed and viewed at a higher resolution.

2 Automatic image registration
In this section we describe the principal methods of regis-

tering views of a planar scene, or equivalently, views obtained

by a camera rotating about its optical centre.

Some authors have restricted the estimated transformation

to a 6 dof affinity [3], or used an approximation such as the 12

dof biquadratic transformation [14], but neither of these map-

pings correctly models perspective effects. Here the full 8 dof

homography is estimated — under general imaging conditions

this is the only way to accurately model the mapping between

views.

Common methods for estimating homographies fall into

two categories: correlation based methods and feature based

methods. Most authors have chosen to use correlation meth-



ods based on Gaussian pyramids/multi-scale approaches [10,

16, 19, 21]. These methods have several drawbacks, most no-

tably the computational expense of computing the cost func-

tion gradient. Difficulties also arise when the homography is

sought over the entire image (as in image mosaicing) since

only the overlapping parts may be correlated. This can cause

the algorithm to return a false minimum simply by reducing

the area of overlap [3].

2.1 Estimation algorithm
The basic method used in this work for estimating homo-

graphies over entire images is a MLE of the homography

based on matched image features (in this case Harris cor-

ners [7].) The algorithm starts by matching corners between a

pair of images, searching in a window around each corner and

using a localized correlation score to discriminate between

possible multiple matches. This set of matches will contain

many outliers which are inconsistent with the desired homog-

raphy. The RANSAC [5] robust estimation algorithm is then

applied to simultaneously estimate a homography and a set of

matches consistent with the homography. The sample size is

four since only four matches are required to determine the ho-

mography. Finally the estimate is refined using a non-linear

optimizer where the cost function corresponds to the MLE.

This is now described.

It is assumed that the noise on the image feature positions

is Gaussian with mean zero and standard deviation ✆ . If the

true point is ✝✞ , the probability density function (pdf) of the

measured point ✞ is✟✡✠☞☛ ✞✍✌ ✝✞✏✎✡✑✓✒ ✔✕✗✖ ✆✙✘✛✚✢✜✂✣✙✤✦✥★✧✪✩☎✫✭✬✩✯✮✱✰✲✧ ✘✴✳ ✥✴✮ (1)

where ✵ ☛ ✞✷✶✹✸✺✎ is the Euclidean image distance between the

points ✞ and ✸ . Given a measured image correspondence✞✼✻✾✽✿✞✼❀✻ , we seek “corrected” image measurements which

play the rôle of the true measurements. Thus the ML estimate

of the homography ❁ and the correspondences ❂ ✞✼✻✡✽❃✞✏❀✻❅❄ , is

the homography ❆❁ and corrected correspondences ❂ ❆✞✼✻✏✽ ❆✞ ❀✻ ❄
which minimize❇ ✑❉❈ ✻ ✵ ✘ ☛ ❆✞❊✻❅✶✹✞✼✻❋✎ ✄ ✵ ✘ ☛ ❆✞ ❀✻ ✶✹✞ ❀✻ ✎ (2)

under the constraint that ❆✞ ✻ ✑ ❆❁ ❆✞ ❀✻ ✶❅●■❍ .
The derivation here also applies to a minimum variance es-

timator, and so the noise model is slightly more general than

just a Gaussian error. It also applicable to any class of error

whose log likelihood takes the form given above.

The cost function is minimized using the Levenberg-

Marquardt algorithm with the efficient matrix implementation

as described by Hartley [8].

3 Image mosaicing
In this section we describe the principal steps involved in

building a mosaic, and also address one of the more diffi-

cult problems - that of avoiding cumulative registration errors

when building a mosaic from an image sequence.

Choosing a reprojection surface After alignment, the sur-

face onto which the images are reprojected to form the mo-

saic may be freely chosen. The simplest and most com-

mon approach is to warp all the images onto the same plane.

A panoramic mosaic (rotating camera) created using these

method is shown in figure 1. The gross projective distortion

at the periphery of the mosaics may be eliminated by instead

projecting the images onto a cylinder centred on the camera

centre, and aligned with the dominant axis of rotation. This

requires partial knowledge of the internal camera parameters,

which is automatically obtained at very little extra cost using

the self-calibration method described by Hartley [9]. Such a

projection produces mosaics like that shown in figure 2. With

a cylinder it is possible to build a full ❏ �❑✁❑▲ panoramic mosaic.

These ideas are developed in detail by Szeliski et al. [20].

Combining the images The overlapping portions of the re-

projected images may simply be averaged together. However,

Irani et al. [10] suggest using a temporal median filter on each

mosaic pixel. This tends to eliminate independent moving ob-

jects which would otherwise appear blurred in the mosaic.

The problem of global brightness changes caused by auto-

matic gain control is addressed by Peleg and Herman [17]. In

their method, the images are decomposed into several band-

pass levels, corresponding levels are integrated, and the re-

sulting levels are recombined to form the blended image. The

application of super-resolution techniques to the overlapping

images is discussed in section 4.

Aligning the images Consecutive images in the sequence

are registered using the methods described in section 2.1. One

of the images serves as the reference frame (say frame 0) and

the others are aligned with it by appropriately concatenating

the computed homographies. For example, the homography▼❖◆ ✫ P between images 0 and 3 is calculated by concatenating

the intervening H matrices,
▼❖◆ ✫ P ✑ ▼❖◆ ✫ ✘ ▼ ✘ ✫ ◗ ▼ ◗★✫ P .3.1 Ensuring consistency

By concatenating homographies we are allowing registra-

tion errors to accumulate. The effect is notable when a se-

quence of images “loops-back” on itself, revisiting parts of

the scene acquired earlier (see figure 3). The accumulation of

errors may be so great that the first and last images are very

poorly registered. In other words, the homographies are not

consistent with registration to a common frame. This can be

seen in figure 4.

Mann and Picard [16] address this problem by splitting

the sequence of images into subsets which are mutually well-

registered. This produces sub-mosaics which are then glob-

ally registered to form the final mosaic. This technique is fast

and fairly straightforward to implement, but deciding how to

subdivide the image sequence can be problematic.

The solution we adopt is an extension of that proposed by

Hartley [9], extended via the use of Harris corners and fully

automated matching. It relies on the fact that the ML homog-

raphy estimator of section 2 may be generalized to handle



Figure 1. A planar mosaic of Keble College, Oxford automatically generated from 60 images captured
using a hand­held video camera. Four of the frames used to generate it are shown above. The severe
projective distortion at the periphery clearly illustrates the need for full homographies rather than an
approximation such as an affinity or quadratic transformation.

Figure 2. The Keble mosaic projected onto a cylinder. For very wide­angle panoramic mosaics this
projection is more practical than the planar projection. The disadvantage is that straight lines in the
world are curved, compared with the imaged straight lines in figure 1.

point matches over many images. Every true point may be

observed in several images. By maximizing the likelihood

function given in equation (2) over all the images we obtain

the ML estimate of the set of consistent homographies given

all the point matches.

Although this seems like a formidable optimization prob-

lem due to the very large number of parameters (8 ❘ the num-

ber of homographies
✄

the number of points) it may be noted

that adjusting the parameters of a particular homography can

only affect the error in the points lying in the corresponding

image. This gives the Jacobian a block structure, and the re-

sulting algorithm has a complexity linear in the number of

points and quadratic in the number of homographies. A mo-

saic generated using this method is shown in figure 5. Notice

how the first and last frames now match properly when com-

pared with the image shown in figure 4.

4 Super-resolution techniques
Here “super-resolution” enhancement refers to fusing in-

formation from several views of a planar surface in order to

estimate its “texture”, the albedo variation across the surface.

In the case of a camera rotating about its centre the planar sur-

face is the plane at infinity which represents the ray directions.

The choice of texture space is somewhat arbitrary, though

it is usually aligned with the most fronto-parallel image but

at a higher resolution (see section 4.3). The imaging model

here accounts for spatial sampling of the texture space on the

image plane by the CCD array.

4.1 The ML estimate
The simulation of a low-resolution image ❆❙❚✻ given a tex-

ture estimate ❆❯ may be written in matrix form as ❆❙ ✻ ✑❲❱ ✻ ❆❯ .
The vector ❆❙ ✻ contains the predicted intensities for each pixel



Figure 3. Outlines (every third frame) of the
frames used to create the mosaic shown in fig­
ure 5. This illustrates the motion of the cam­
era looping back to revisit previously captured
parts of the scene.

Figure 4. (Left) a section of a mosaic of Keble
College created before adjusting the homogra­
phies. The camera motion loops back on itself
as shown in figure 3. (Right) An actual image
of the door. Careful comparison reveals a hori­
zontal seam in the lefthand image along which
the first and last images in the input sequence
are misaligned. Examination of the corrected
mosaic (figure 5) shows that this problem has
been eliminated.

Figure 5. A mosaic created using a consistent
set of homographies which avoids accumula­
tion of registration errors. The first and last
frames are now correctly aligned.

Figure 6. Planar mosaic of the University Mu­
seum generated from 15 images captured using
a digital stills camera. A super­resolution blow­
up of the boxed region is shown in figure 11.

of the measured low resolution image, written ❙ ✻ . The vector❆❯ contains the sought texture intensities of the super-resolution

image. The matrix ❱ ✻ accounts for the geometric mapping be-

tween the super and low resolution images. It is computed

from the homographies which register the super resolution

texture to the measured image, and interpolation via area-

sampling — a low resolution pixel is a linear combination of

texture pixel (texel) values. The objective is to minimize the

‘difference’ between the measured image ❙❚✻ and the predic-

tion ❆❙❳✻ .
The matrix equations for all the images are stacked ver-

tically to produce the over-constrained system of equations,❱ ❆❯❳✑ ❆❙ , where ❆❙ is the stack of estimated low-resolution

vectors ❆❙ ✻ , and ❱ is the stack of weights matrices ❱ ✻ . The ma-

trix ❱ is large and very sparse, for example for the sequence

of figure 10 it is 40000 rows by 10000 columns with density✁✛❨ ✁❑✁ ✔ .
If the intensity image noise is assumed to be additive mean-

zero Gaussian and the registration perfectly accurate then the

ML estimate of ❯ is obtained by maximizing the likelihood

function ❩ ☛ ❆❯☞✎✡✑❭❬❫❪★❱ ❆❯❴❬❳❙❵❪ ✘ (3)

This is achieved by solving the equivalent system, ❱☎❛❜❱ ❆❯❝✑❱☎❛❜❙ . In the current implementation conjugate gradient de-

scent is used (iterative methods are necessary due to the very

large matrices involved) [4]. An initial estimate of ❯ is ob-

tained by warping the images into the texture space and aver-

aging them together. This is later referred to as the “averaged

image”.

Unfortunately, this system is extremely poorly conditioned

and hence very sensitive to noise in the observed images and

in the matrix
❱

(errors due to misregistration.) This is demon-

strated in the synthetic example of figure 7. A high-resolution

image ✝❯ is used to generate 10 synthetic low-resolution im-

ages ❙ . The low resolution images are at half resolution and

are synthesized using homographies generated by randomly

perturbing the corners of a square. In the first example, Gaus-



sian noise ( ✆ ✑❡❞ ) is added to the image intensity values,

and ❆❯ obtained using the ML estimator. In the second exam-

ple, registration error is simulated by adding Gaussian error of✆ ✑ ✁✛❨ ❞ to the coordinates of the 4 points used to generate the

homographies, and ❆❯ is obtained from the MLE using the per-

turbed ❱ and the original ❙ . Clearly, both texture estimates

are dominated by periodic noise.

4.2 MAP
This problem has commonly been addressed by adding

a quadratic regularizing term which penalizes high gradi-

ents in the estimated super-image (see [1, 3, 11, 16]). This

produces a MAP estimate since a probability is associated

with the estimated image (i.e. high gradients are improbable).

The objective is to find an ❯ which maximizes ❢❤❣❥✐ ❦ ✌ ❧✾♠♥✑❢❤❣❥✐ ❧❳✌ ❦ ♠ ❢❤❣❥✐ ❦ ♠ . Unfortunately, quadratic regularizers can eas-

ily suppress much of the interesting detail which we are hop-

ing to restore in the texture estimate. The prior used here is

based on two observations. Firstly, the averaged image is

highly robust to noise, both in image intensities and in reg-

istration. Secondly, the averaged image approximates the true

texture estimate very well in regions of low gradient. The

prior term therefore encourages the estimate to be much like

the averaged image when its gradient is low. The cost to be

minimized now becomes❩ ☛ ❆❯♦✎✡✑♣❪❜❱ ❆❯❴❬❳❙q❪ ✘ ✄❝r ❪★s✉t✇✈✹①✇② ☛ ❆❯③❬❳❯⑤④★⑥✦⑦✯✎✲❪ ✘ (4)

where ⑧ ⑦✦⑨✦④ ✤ ✑ ✵ ❍✇⑩❑❶ ☛ ✌ ❷ ❦ ④★⑥✦⑦❥✌ ✎ ✣✙◗ , the reciprocal of the image

gradient. This is minimized by solving the equation☛ ❱ ❛ ❱ ✄❝r s✉t✇✈✹①❅②✲✎ ❆❯❸✑❵❱ ❛ ❙ ✄❝r s✉t✇✈✹①❅②❜❯⑤④★⑥✦⑦ (5)

The resulting improvements in noise tolerance over the

MLE estimator under identical noise conditions are demon-

strated in figure 7. For this prior, values of
r

in the range✁✛❨ ✔❤❹ r ❹❺✔ ❨ ✁ give good results.

4.3 Choosing an optimal enhancement ratio
Excessively high values of the prior influence term

r
leads

to undesirably smooth texture estimates. We now propose a

method for choosing a texture space resolution and parameterr
which gives the optimal trade-off between restoration noise

and smoothness of the solution.

The sensitivity of the linear system is quantified by the con-
dition number of the matrix ❱ with respect to a matrix norm

(see [6]), defined as ❻✂❼ ✑❽❪✲❾❿❪✂❪✲❾ ✣✼◗ ❪ . A high condition

number indicates an ill-conditioned, noise-sensitive system.

We define the resolution enhancement ratio as the ratio of the

resolution of the input images to the resolution of the texture

space (the zoom factor.) As the ratio increases, the condi-

tion number, ❻ ❼ , increases rapidly. Figure 8 shows the con-

dition number of the MLE matrix equations plotted against

the enhancement ratio. Note that the condition number is on

a log scale, indicating how rapidly the system becomes ill-

conditioned. Two plots are shown, one for the case of 10 input

Figure 7. (Top) The original high­resolution im­
age and one of the synthetic low­resolution im­
ages. (Middle) The MLE super­resolution esti­
mates obtained after applying Gaussian noise
to the image intensities (left), and after per­
turbing the homographies (right). (Bottom) The
equivalent MAP estimates under identical noise
conditions (

r ✑ ✁➀❨ ❞ ).
images and the other for 20 images, demonstrating the condi-

tion improvement as the number of images is increased.

Writing noise in the images as ❙ ✄❿➁ ❙ and the correspond-

ing deviation from the correct texture estimate as ❯ ✄➂➁ ❯ , then

error in image intensities is related to error in the texture esti-

mate ❆❦ as ❪ ➁ ❯❑❪ ◗❪✲❯❑❪ ◗ ❹ ❻✂❼ ❪ ➁ ❙q❪ ◗❪✲❙q❪ ◗ (6)

However, this inequality is very pessimistic and in practice✔ ✁ ◆ ❹ ❻❑❼ ❹➃✔ ✁✯➄ produces visibly satisfactory texture esti-

mates. Using the graph of figure 8 an enhancement ratio can

be chosen such that the constraint on ❻ ❼ is satisfied. For ex-

ample, an enhancement ratio of 1.5 can be achieved with 10

images.

If it is not possible to achieve the desired enhancement us-

ing MLE then a MAP estimator can be used. Figure 9 shows

the variation of condition number with the parameter
r

for

enhancement ratios of 1.25, 1.5 and 2.0. Such a graph allows

a suitable choice of enhancement ratio and
r

to be selected

according to the required ❻✂❼ .
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Figure 8. As the resolution of the super­image is
increased, the linear system becomes more ill­
conditioned (top line). Doubling the number of
images used (from 10 to 20) improves the con­
ditioning (bottom line). The images are those
of figure 7.

4.4 Accounting for uncertainty in the homogra-
phies

Misregistration errors can have a dramatic effect on the

quality of the estimated texture as demonstrated in section 4.1.

These errors may be reduced by extending (3) to include the

homographies in the ML estimation. The aim is to estimate

both the texture and homographies such that the best predic-

tion is obtained. Note that the residuals being minimized are

still the squared intensity differences between the predicted

low-resolution images and the observed images. This prob-

lem is analogous to the feature-based bundle-adjustment pre-

viously described, and has a very similar sparsity structure. A

solution may be obtained by alternately estimating the homo-

graphies (maximizing a local correlation score) and estimating

the texels until convergence is achieved.

4.5 Examples
Plain text example Figure 10 shows a super-resolution

blow-up of a piece of text. The text was imaged 15 times

from camera positions spread over a wide viewing angle (ap-

proximately 120 degrees). An enhancement ratio of 2.0 was

chosen, requiring the MAP estimator to be used.

Museum mosaic blow-up Figure 6 shows a planar mosaic

of the University Museum generated from 15 images captured

with a digital stills camera. The indicated region was magni-

fied to 1.5 times the original resolution using the ML estimator

and is shown in figure 11.

5 Conclusions and Extensions
It has been shown that consistent sets of homographies may

be automatically and efficiently computed for long sequences

of images. The ML and MAP estimators for super-resolution

have been compared and methods proposed for choosing suit-

able enhancement parameters, and for reducing the effects of
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Figure 9. As the prior influence
r

is increased
from 0 to 0.5 the condition number improves.
The three lines correspond to enhancement ra­
tios of ✔ ❨ ✕ ❞ (bottom), ✔ ❨ ❞ (middle) and

✕❥❨ ✁
(top).

20 images were used.

misregistration. Finally the techniques have been used to pro-

duce a super-resolution blow-up of a mosaic.

It has not been necessary to incorporate image blur (optical

and motion) here for images acquired by a CCD camera, but

these degradations can be included in the same framework [1].

Minor perturbations such as the dead-space between pixels

can also be modelled.

A band limited texture model may have certain advan-

tages because the piecewise constant texture representation

used here is an unrealistic model of real texture. Such a

model might be provided by wavelets or chirping wavelets

(chirplets).

We are currently extending the mosaicing and super reso-

lution to other surfaces for which a global transformation is

available, such as quadrics [18].
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