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Mapping of structural and functional connectivity may provide deeper understanding

of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is

a powerful technique to non-invasively delineate white matter (WM) tracts and to

obtain a three-dimensional description of the structural architecture of the brain.

However, DMRI tractography methods produce highly multi-dimensional datasets whose

interpretation requires advanced analytical tools. Indeed, manual identification of specific

neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone

to operator-induced bias. Here we propose an automatic multi-subject fiber clustering

method that enables retrieval of group-wise WM fiber bundles. In order to account for

variance across subjects, we developed a multi-subject approach based on a method

known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The

intra-subject step allows us to reduce the complexity of the raw tractography data, thus

obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The

cross-subject step, characterized by a proper space-invariant metric in the original diffusion

space, enables the identification of the same WM bundles across multiple subjects

without any prior neuroanatomical knowledge. Quantitative analysis was conducted

comparing our algorithm with spectral clustering and affinity propagation methods on

synthetic dataset. We also performed qualitative analysis on mouse brain tractography

retrieving significant WM structures. The approach serves the final goal of detecting WM

bundles at a population level, thus paving the way to the study of the WM organization

across groups.

Keywords: clustering, dominant sets, fibers segmentation, white matter, tractography, multi-subject, diffusion

magnetic resonance imaging, DTI

1. INTRODUCTION

Diffusion magnetic resonance imaging (DMRI) permits non-

invasive investigation of the white matter (WM) structure based

on the diffusion profile of water molecules in the brain. This tech-

nique can be used to estimate the orientation of fibers at the voxel

level, which can in turn be used by a number of tractography algo-

rithms to build global fiber trajectories (Basser and Jones, 2002;

Tournier et al., 2004). One of the advantage of DMRI over other

methods is that it provides neuroscientists and neurosurgeons

with the possibility to non-invasively identify fiber bundles, i.e.,

groups of fibers belonging to the same anatomical regions. These

bundles represent major pathways in the overall physical connec-

tivity of the brain. All diffusion-based MRI techniques (e.g., DTI,

HARDY, Q-Ball) provide whole brain tractography datasets that

are large (typically more than 100,000 fibers), complex and multi-

dimensional, as well as artifact prone (e.g., crossing and broken

fibers, low fractional anisotropy near the cortex, etc.) thus greatly

complicating the description of large-scale WM structure and

limiting the clinical impact of this approach. In most instances,

the identification of relevant bundles is carried out via manual

identification of regions of interest (ROIs) corresponding to the

main known pathways (Mori et al., 2005; Wakana et al., 2007;

Catani and de Schotten, 2008). However, this analysis is strongly

affected by the prior knowledge used to identify the structures and

very much prone to operator bias.

Methods for the automatic decomposition of whole brain trac-

tography into fiber bundles could greatly help reduce complexity

and bias associated with manual segmentation. For this reason,

there is an urgent need for (semi)-automatic tools determining

the bundles within and across subjects with little or no human

intervention. This approach, frequently referred to as tractogra-

phy segmentation, aims at generating a simplified representation

of the WM structure, enabling easier navigation and improved

understanding of the structural organization of the brain and its

overall connectivity.

To automate bundles retrieval, various methods, based on dif-

ferent computational paradigms were proposed over the last few

years. For example, the solution proposed in Li et al. (2010) is an

evolution of the ROI-based technique that works directly on fiber

and applies prior knowledge to perform preliminary parcellation
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of the brain. Kernel-PCA and C-means are then used to clus-

ter the fibers. However, this approach is limited by the level of

detail of the brain atlases, which can prevent the retrieval of small

structures or suffer from cross-subject misalignments. Supervised

methods were also proposed to retrieve local WM bundles using

prior knowledge (Mayer et al., 2011; Olivetti and Avesani, 2011).

These approaches require a first manual intervention to select

tracts of interest in a subset of subjects and then retrieve the same

structure in other subjects, and making them unsuitable for a

global WM segmentation.

Clustering approaches represent a logical alternative to super-

vised methods as they permit to discover bundle structures

without the need of prior anatomical knowledge. A common

clustering framework is based on the exploitation of the affinity

matrix of a single subject that indicates the similarity between

each pair of fibers (Brun et al., 2004; O’Donnell et al., 2006;

Zhang et al., 2008). A limitation common to all algorithms based

on affinity matrix is their propensity to suffer from computa-

tional load owing to the calculation of pairwise distances between

streamlines. Usually the complexity of these algorithms is O(N2),

where N is the total number of fibers. Approaches to reduce com-

putational complexity have been proposed like Quick Bundles

(Garyfallidis et al., 2012), on line agglomerative clustering (Demir

et al., 2013) and atlas-guided clustering with efficient implemen-

tation (Ros et al., 2013). A hierarchical clustering approach on

single subject (Guevara et al., 2011) was proposed to automati-

cally estimate the number of cluster from the dataset. However,

the results of this approach are strongly conditioned by the num-

ber of hierarchical steps and several input parameters are required

to carry out a comprehensive map of WM bundles.

Multi-subject spectral clustering (O’Donnell and Westin,

2007) was proposed to build a high dimensional WM atlas based

on multiple DTI images. One limitation of this approach is that it

needs prior information about the number of cluster to be seg-

mented, which is however often unknown. To circumvent the

problem of prior knowledge, multi-subject hierarchical clustering

was proposed (Guevara et al., 2012). All subjects are registered to

a common space but different manually agglomerative distance

thresholds, based on neuroanatomical information, are used to

retrieve the same WM bundles across different subjects.

A more advanced multi-subject clustering non-parametric

Bayesian framework based on a Dirichlet process (Wang et al.,

2011) was proposed to infer automatically the number of clus-

ters from the data without affinity matrix computation. However,

large datasets can dramatically decrease the quality of the results.

Recently (Tunç et al., 2014) proposed a multi-subject adaptive

clustering algorithm to build an atlas by using a subset of subjects

to segment new subjects. However, manual thresholds are used to

merge fibers and the atlas is strongly dependent of the number of

subjects used.

In an attempt to circumvent all these limitations, we present

a multi-subject clustering approach based on affinity matrices,

directly connected with Graph Theory and rooted in the Game

Theory. The method, based on the Dominant Set framework

benefits from three properties that make it appealing for the prob-

lem at hand: (i) it is robust to noise and to outliers (Pavan and

Pelillo, 2007); (ii) it is robust to parameters setting, generating

stable results across different dataset (Dodero et al., 2013b); (iii)

it automatically infers the number of clusters (Pavan and Pelillo,

2007). We tested our method on synthetic datasets comparing the

results with state-of-the-art solutions like spectral clustering (Ng

et al., 2002) and affinity propagation (Frey and Dueck, 2007). We

also tested our method on a mouse brain dataset with the trac-

tography inferred from DTI images, showing that it can reliably

identify neuroanatomically plausible WM bundles in the mouse

brain across multiple subjects without any prior neuroanatomical

knowledge.

2. MATERIALS AND METHODS

Our main goal was to identify WM bundles across multiple

subjects without prior registration of the raw diffusion data or

the tractography. The algorithm approaches this problem in two

steps. In the beginning, the tractography data-sets are segmented

in the original diffusion space to obtain WM bundles for each

subject, Dodero et al. (2013b). Subsequently, the bundles with

high intra-subject similarity are clustered across subjects, per-

forming all computations in the original space of the subjects

by defining a space-invariant set of landmarks (O’Donnell et al.,

2012). Figure 1 shows a schematic pipeline of the most important

steps of our methods.

Since unsupervised learning methods can be heavily affected

by the chosen similarity measure, and the two clustering levels use

different metrics, we investigated and compared different mea-

sures, with the aim of finding the encoding that better preserves

the relative similarities across metrics.

2.1. STANDARD FIBER SIMILARITIES

Each fiber is described by a sequence of points in 3D space.

To achieve a uniform representation across fibers with the same

number of equidistant points, each fiber was quantized using

B-spline interpolation and sampling it with k = 12 points, as pro-

posed in Garyfallidis et al. (2012). We thus coded the generic

i-th streamline Fi as a 3D curve described by a constant sequence

of points Fi =
[

pi
1...p

i
k

]

with pi
j ∈ R

3. Since fibers have no pre-

ferred orientation, also the flipped version of the streamlines

F′
i =

[

pi
k...p

i
1

]

was considered in each metric computation.

To cluster WM at single-subject level, we compared the sym-

metrized mean closest point distance (Guevara et al., 2011) and

symmetrized point to point distance.

• Symmetrized mean closest point distance

dsmp(Fi, Fj) =
1

2

(

dm(Fi, Fj) + dm(Fj, Fi)
)

(1)

defined as the average of the two directed (non-symmetric)

mean closest points distances between fibers Fi and Fj.

dm(Fi, Fj) =
1

k

∑

pi
k∈Fi

min
p

j
l∈Fj

‖pi
k − p

j
l‖2 (2)

where ‖ ∗ ‖2 is the Euclidean norm.

• Symmetrized Point to Point Distance
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FIGURE 1 | Pipeline of our proposed method. (A) Intra-subject

clustering through Dominant Sets. (B) Landmark extraction and centroids

encoding on the landmark space. Each centroids selected from

intra-cluster step was encoded on landmarks. (C) Cross-Subject clustering

through affinity block matrix and Dominant Set to find out same WM

bundles across multi-subject.

dpp(Fi, Fj) = min
(

dp(Fi, Fj), dp(Fi, F′
j )
)

(3)

defined as the minimum of the two directed mean points

distances between fibers Fi and Fj and its flipped version F′
j .

dp(Fi, Fj) =
1

k

∑

k

‖pi
k − p

j
k‖2 (4)

where pi
k and p

j
k are the corresponding points sampled in the

two fibers.

Regardless the chosen metric, the affinity matrix A = aij

encoding the fiber similarities was built:

aij =

⎧

⎪

⎨

⎪

⎩

e−
d(Fi,Fj)

σ if (i, j) ∈ E

0 otherwise.

(5)

where σ is a normalization term. We imposed

σ = maxi,j (d(Fi, Fj)) fixing a unique bound for aij, regardless of

the used dataset.

2.2. LANDMARK-BASED SIMILARITIES

Starting from the brain atlas registered to each diffusion space,

we define some landmarks (3D points in the volume), which have

different spatial locations in each subject but refer to the same

cortical structures across datasets. These points are used to rep-

resent the fibers with a cross-subject invariant descriptor, which

allows us to avoid space registration, handling the fiber segmen-

tation in the original space. More specifically, in our experiments

with mice tractography landmarks were defined from an anatom-

ical t2-weighted mouse brain atlas (Sforazzini et al., 2013) (139

brain regions) linearly registered to each subjects space, using

FSL’s FLIRT, v.5.0.6 (Smith et al., 2004). We next selected a subset

of symmetric cortical and sub-cortical areas (50 labels), covering

both hemispheres and including all the major cortical and subcor-

tical districts of the mouse brain (Paxinos and Franklin, 2004),
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and for each ROI we computed the center of gravity obtain-

ing fifty landmark points. We next tested two landmark-based

measures, defined as follow:

• Symmetrized Minimum Landmark Distance

Given the list of landmarks L = L1...Ln (with n = 50 in our

case) each one identifying a specific brain region, we built a cor-

responding feature vector F̃ (Dim. 1 × n) describing each fiber

as the list of minimum distances between all the landmarks and

the fiber itself. More specifically, each fiber was encoded as a

vector F̃i = {f i
1, ..., f i

n} such that:

f i
s = min

pi
k∈Fi

‖pi
k − Ls‖2 (6)

Then we define the similarity between fibers as:

dl(Fi, Fj) = ‖F̃i − F̃j‖2 (7)

and the affinity matrix was determined using Equation 5.

• Landmark Distance

An alternative and more selective encoding can be obtained

by employing a full landmark distance representation, where

each point in a fiber is mapped using all elements in the land-

mark space. In this case each fiber is encoded into a vector F̃i

of dimensions k × n, where k is the number of sample points

in a fiber and n is the number of landmarks and each entry

of this vector is the Euclidean distance between one fiber’s

point coordinate and one landmark coordinate. We define F̃i =

{f i
11, ..., f i

1n, ..., f i
k1, ..., f i

kn} such that:

f i
ks = ‖pi

k − Ls‖2 (8)

Equation 7 was then used to compute the similarity and

the corresponding affinity matrix was determined according

Equation 5.

2.3. METRIC COMPARISON

The above two groups of similarity measures were defined for

the two clustering steps in the light of their different require-

ments. Since the choice of the similarity measure can greatly

affect the clustering algorithms we compared the measures aim-

ing at selecting the two that produce most similar results. The

landmark measure is almost mandatory in order to avoid the

tractography alignment. However, being the landmarks-based

representation an approximation of the real fiber location, we

have to choose the similarity between elements able to preserve

the geometry and the shape of the subject bundles. We thus

pairwise compared all proposed measures computing each sim-

ilarity measure between each pair of fibers of a random subject.

In Figure 2 are depicted the distributions of all pairwise compar-

isons. Comparing the the similarities with Pearson correlation we

found that symmetrized point to point distance and landmark

distance are the most correlated presenting the closest corre-

spondence (see Figure 2-Bottom Left). Based on these results, we

adopted the symmetrized point to point distance for intra-subject

clustering and the landmark distance for cross-subject clustering.

2.4. DOMINANT SETS CLUSTERING

Dominant Sets framework (Pavan and Pelillo, 2007) is a graph-

theoretic method that generalizes the maximal clique problem to

weighted graphs. It finds a compact, coherent and well-separated

subset of nodes into a graph, i.e., the dominant set (DS). This

framework defines the correspondence between clique, DS and

cluster using a graph-theoretic perspective, and provides an opti-

mization algorithm used to extract all DSs in a graph. Formally,

a dataset is represented as a weighted undirected graph G =

(V, E, φ) with no self-loop in which the vertices V are the data

points and the edges E ⊆ V × V represent neighborhood rela-

tions among pairs of nodes, quantified by the weighting function

φ : E → R+. A DS formalizes two crucial properties of all clus-

tering techniques: the intra-cluster homogeneity and inter-cluster

inhomogeneity.

A graph is compactly represented by its weighted adjacency

matrix A (the affinity matrix in our approach), which is defined

by Equation 5 . In our setting, each fiber corresponds to a node

in the graph and the weighting function φ provides a measure of

the similarity between pairs of fibers. Evaluating these two prop-

erties in all the possible subset of V is obviously unfeasible, for

this reason the problem is casted into the following optimization

task:

maximize xTAx (9)

subject to x ∈ △n

where x lies in the standard n-dimensional simplex △n, or equiv-

alently,
∑

i xi = 1,∀i xi ≥ 0. In the DS framework, x is called the

weighted characteristic vector and it quantifies the degree of par-

ticipation of the i-th component in the DS. If x is a strict local

solution of (9) then its support, defined as δ(x) = {i | xi > 0}, is

a DS (Pavan and Pelillo, 2003) and thus a cluster. A local max-

imizer of (9) is found using the replicator dynamics(Pavan and

Pelillo, 2003), a result from the evolutionary game theory mim-

icking the temporal changes in a population, based on the fitness

of its individuals:

xi(t + 1) = xi(t)
(Ax(t))i

x(t)TAx(t)
(10)

The optimization starts with a point x(t0), sited in the barycen-

ter of the simplex
(

xi(t0) = 1
n ,∀ i

)

. Equation (10) is iterated until

stability which is guaranteed to be reached if the matrix A is

non-negative and symmetric. Theoretical stability condition is

achieved when x(t + 1) = x(t), i.e., when the distance between

two consecutive steps ||x(t + 1) − x(t)|| is lower than a thresh-

old ǫ (in our setting ǫ = 10−7). Equation (10) also guarantees

the satisfaction in time of constraint in Equation (9) (Pavan and

Pelillo, 2003). In practice, the algorithm operates a selection pro-

cess over the components of vector x driven by the affinity matrix

A. At convergence some elements of x will emerge (xi > 0) and

others will become extinct (xi = 0). In order to extract multiple

clusters a peeling-off strategy is applied: once a DS is determined,

it is removed from the whole set of vertices V , and the process is

iterated on the remaining nodes, until all elements are clustered.
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FIGURE 2 | 2-D Histograms of affinity matrices using different similarity

measure. Top-Left symmetrized minimum landmark distance vs. symmetrized

point to point distance. Top-Right symmetrized minimum landmark distance

vs. symmetrized mean closest point distance. Bottom-Left landmark distance

vs. symmetrized point to point distance. Bottom-Right: landmark distance vs.

symmetrized mean closest point distance.

Applying the method in practical cases rarely produces a vec-

tor x whose certain elements are equal to zero and this is mainly

due to the numerical approximation or premature stopping of the

dynamics. Thresholding over x is thus integrated into the support

calculation:

δ̃(x) = {i | xi > θ ∗ max (x)} θ ∈ [0, 1] (11)

Small θs act as noise reducer, while higher values guarantee

a greater number of clusters, each one having higher internal

compactness. We fixed the coherence threshold according to the

findings in a previous work (Dodero et al., 2013b), which needs

to be very small to make the model stable (θ = 10−5) .

2.5. INTRA-SUBJECT CLUSTERING

DS clustering was first applied to single subject tractography vol-

ume to extract the WM bundles ( intra-subject clustering). To

reduce data dimensionality and thus computational complexity,

we split the whole brain into three smaller datasets: left hemi-

sphere, right hemisphere, and inter-hemispheric fibers, resulting

in approximately 15,000 fibers per sub-datasets. The quality of

retrieved bundles was then evaluated measuring the cohesiveness,

which is a quantitative index measuring the internal coherence of

each cluster δ as follows:

C(δ) = xTAx (12)

where x is the characteristic vector corresponding to δ and A is the

adjacency matrix. High values of cohesiveness are related to clus-

ters with high internal similarity between elements while clusters

with low cohesiveness aggregates fibers with little structural sig-

nificance. Hence, we used the cohesiveness index to remove the

less significant clusters. Figure 3-Left shows an example of cohe-

siveness determined for all iteratively generated clusters. Since the

last generated clusters are generally not significant (Pavan and

Pelillo, 2007), we removed the last 5% clusters which are mostly

the cluster with very low internal cohesivity.

Moreover, in order to select most representative WM struc-

tures, we normalized the cohesiveness curve subtracting a sec-

ond order polynomial curve fitted on the cohesiveness curve

itself. Assuming the data distributed according to a Gaussian

distribution N (0, σ ), with σ estimated from the data, we

decided to consider as outliers in term of cohesiveness all clus-

ters in the negative tail of the distribution with a level of

confidence p < 0.05. Figure 3-Right shows a plot of normal-

ized coherence with the confidence level below which clus-

ters are rejected. Once the set of cluster candidates were
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FIGURE 3 | Left: Example of Cohesiveness curve and polynomial fitting. Right: Strategy to remove outliers from intra-subject clustering using gaussian curve

and statical test. All positive peaks and negative above green line are considered as significant for multi-subject clustering.

generated for each subject, the medoids were determined for

each WM bundle and used as reference tracts in the next

step.

2.6. CROSS-SUBJECT CLUSTERING

In the proposed approach the bundles retrieved for all subjects

separately were then clustered together in a second step accord-

ing to the DS framework. To this purpose, clusters determined

in the first step were substituted by their representative fiber

(in our case the medoid) and then all dataset were joined into

a single dataset in such a way that the algorithm groups bun-

dles from different datasets while excluding pairs from the same

dataset. In this way coherent clusters of bundles, including no

more than one representative bundle from each dataset, were

generated.

In more detail, given n datasets of bundles D = {d1, . . . dn}

the extended dataset D̂ obtained as the union of the elements

in D, D̂ =
⋃n

i = 1 di is described by an affinity matrix. The graph

based representation was then generated over D̂ to avoid cliques

containing bundles from the same subject. This was obtained by

forcing the elements of the same subject to have zero similarity.

The set of edges Ê in the graph describing the new dataset D̂ is

thus defined as:

Ê(i, j) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
−

d(vi,vj)

σk,h if vi ∈ dk, vj ∈ dh and k �= h

0 otherwise.

(13)

where vi and vj are different elements in D̂, d(·, ·) is a measure of

distance between two elements, and σk,h is a normalization terms

between datasets h and k. To obtain a metric d(·, ·) invariant to

the different subject spaces, tracts where projected on the land-

mark space, and landmark distance was used to compare WM

structures. The feature vector in the new space was determined

FIGURE 4 | Cross Subject Adjacency Matrix: each non-zero block

represents the similarity between centroids across different subjects.

according Equation 8 and a new similarity matrix was built. The

resulting weighted adjacency matrix of D̂ exhibits a “block shape”

in which the main diagonal is composed of blocks of zeros ensur-

ing that no pair of bundles from the same subject will appear in

a cluster. Importantly, within this framework the algorithm can

allow for and easily manage differences in the size of individual

subject datasets.

Figure 4 shows an example of cross-subject affinity matrix,

where the diagonal blocks represent the intra-subject similarity

that we set to 0 to force a maximum of one bundle per subject

in each cluster. The off-diagonal blocks describe the similarity

between centroids of different subjects. We then applied DSs algo-

rithm to the new adjacency finding similar WM bundles across

multiple-subjects.
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Aiming at finding the most important WM bundles we

selected only significant bundles containing the maximum num-

ber of structures corresponding to the number of subjects. All

clusters with fewer structures than the number of subjects were

discarded, even if the internal cohesiveness was high. The analysis

could in any case be further extended to other clusters that were

currently rejected.

It can be proved that, if nodes m, n belong to the same dataset

and their similarity is forced to be amn = 0 we are sure that the

pair cannot be part of the same DS (cluster) and thus on each clus-

ters we will have only the relationship between different datasets

(the ones with positive weights).

2.7. MOUSE BRAIN DATASET

All procedures were carried out in accordance with the European

directive 86/609/EEC governing animal welfare and protection,

which is acknowledged by the Italian Legislative Decree no. 116,

27 January 1992. The protocol was reviewed and consented to by

the animal care committee of the Istituto Italiano di Tecnologia.

All surgical procedures were performed under anesthesia.

DTI volumes from adult male 8 ex vivo wild type mouse

brains (C57BL/6J, Charles River, Como Italy), an inbred strain

widely used in neuroscience research, were acquired as previously

described (Dodero et al., 2013a; Tucci et al., 2014). Briefly, sample

preparation for ex vivo mouse brain imaging has been recently

described in great detail (Dodero et al., 2013a; Tucci et al., 2014).

Briefly, ex vivo high-resolution DTI images were acquired on

paraformaldehyde fixed specimens and brains were imaged inside

intact skulls to avoid post-extraction deformations. Diffusion

tensor images (DTI) were acquired with 81 different gradient

orientations at a b-value of 1262 s/mm2 (σ =5 ms � =10 ms),

in-plane spatial resolution of 130 × 130 µm2, and slice thickness

of 350 µm in the coronal plane, using a 4-shot EPI sequence with

TR = 5500 ms and TE = 26 ms, 20 averages for a total acquisition

time of 10 h 52 min. For each specimen, 8 co-centered volumes

were acquired with no diffusion weighting (b = 0). Co-centered

T2 weighted images were also acquired with the same resolution

of the DTI volumes, using a 2-D fast spin-echo sequence.

Diffusion Tensor Tractography was performed by estimat-

ing the axonal fibers projections with the Fiber Assignment

FIGURE 5 | Top Evaluation and comparison of DS through Adjusted Rand

Index. Bottom: Evaluation and comparison of DS through Completeness.

Black curve shows Spectral Clustering performance and standard deviation.

Blue and Green Dots show Dominant Set and Affinity Propagation

performance. For all the boxes, x-axis represents the number of k clusters set

for spectral clustering and retrieved for Dominant Sets and Affinity Propagation.
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by Continuous Tracking (FACT) algorithm (Mori et al., 1999).

Fractional Anisotropy (FA) threshold (0.1) and angle threshold

(35°) were imposed to start and stop tracking. Fibers shorter

than 3 mm were filtered out leading to a set of about 80,000

streamlines. Anatomical brain atlas of a C57BL/6J mouse brain

(Sforazzini et al., 2013) was used to extract the landmarks needed

for mapping the WM bundles cross-subjects. Homemade FA tem-

plate was used to linearly register the mouse atlas in the subjects

space.

2.8. SYNTHETIC DATASET

Synthetic WM streamlines and the associated DW-MR images

were created using the numerical fibers generator software

package (Close et al., 2009). The synthetic data has spherical vol-

ume with a fixed radius and composed of a random number of

fibers and bundles. We used volumes released by the authors and

10 more volumes were generated in order to introduce more vari-

ability across dataset with an average of 41 ± 4 bundles and an 870

± 37 fibers. Since the synthetic dataset does not contain group

volumes, it was only used to compare our algorithm with the

other state-of-the-art methods, i.e., spectral clustering and affin-

ity propagation on the first step of the process, i.e., subject-wise

fiber segmentation.

In particular, to perform a statistically robust comparison, for

each of the above volumes we generated many trials randomly

selecting a number of bundles with k = {5, 10, 15, 20, 25, 30}.

This was repeated 5 time for each volume and for each cluster size.

The empirical evaluation was therefore performed on a total of

510 random volumes with different number of clusters and fibers.

We quantitatively evaluated the performance of all methods using

some common indexes like completeness and adjusted rand index

(Moberts et al., 2005).

3. RESULTS

3.1. CLUSTERING ON SYNTHETIC DATASETS

For each method tested on synthetic dataset, we identified a set of

optimal parameters. Spectral clustering requires a prior definition

of the expected number of clusters k, which however is unknown

in the address problem. Hence to avoid a biased evaluation, the

algorithm was run with a varying number of clusters k ranging

from 1 to 40 allowing a fair comparison. A similar requirement

holds for both DS and affinity propagation. However, for both

approaches empirical methods exist to decide proper parame-

ter values required to obtain a number of clusters approximating

the ground truth. Once optimal parameters are fixed, both DS

and affinity propagation can then automatically find the optimal

number of clusters.

More specifically, affinity propagation requires the definition

of self-responsibility parameter, which according to the prac-

tice, if set p = min (ai, j) is known to generate a number of

cluster near the ground truth. DS framework instead requires

fixing θ as described in Section 2.4. We used the Adjusted-

Rand Index and Completeness indexes to evaluate the three

methods, which are frequently used to evaluate the perfor-

mance of clustering algorithms (Moberts et al., 2005). Higher

completeness means that fibers belonging to the same anatom-

ical bundle are clustered together. Rand index is defined as

the number of agreement pairs divided by the total number

FIGURE 6 | Example of intra-subject clustering results on two mouse

tractographies. Each color is associated to a cluster of fibers. The two

subjects have different color mappings because inter-subject clustering is

not yet performed at this stage. While being the intra-subject clustering

results different, there is a strong evidence of similarity in the

determined structures.
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of pairs. If the two partitions agree completely then the Rand

index returns a value of 1, otherwise the lower-limit of this

index is 0.

Figure 5 shows average results for spectral clustering, DSs,

and affinity propagation with various dataset. The figure reports

the results over the 6 groups of volumes, with varying amount

of clusters {k = 5, 10, 15, 20, 25, 30}. DS algorithm always iden-

tifies a slightly greater number of clusters than the ground

truth, an aspect that is not to be considered necessarily a

drawback for the WM fiber segmentation. In general, DS

and affinity propagation showed consistent output both in

terms of number of cluster retrieved and quality of results.

FIGURE 7 | Results of cross-subjects clustering on inter-hemispheric

fibers and magnification of some significant white matter bundles. For

each significant bundles, we show four random subjects. Red = Dorsal

Hippocampal Commissure, Green = Hippocampal Commissure, Cyan =

Corpus Callosum, Magenta = Forceps Minor, Yellow = Posterio Commissure,

Blue = Superior Rostro Caudal Tracts. Vis = Visual Cortex, Hp =

Hyppocampus, S2 = Somato-Sensory Cortex, Fro = Cerebral cortex: frontal

lobe, Crb = Cerebellum, M2 = Motor Cortex.
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However, DS algorithm consistently showed higher complete-

ness and adjusted rand index values. The results of spectral

clustering also show that prior knowledge of the exact num-

ber of clusters could in principle produce higher performance

(black curve). Affinity propagation exhibited similar perfor-

mance than DSs although this approach suffers higher vari-

ance than DSs in term of number of clusters generated. DS,

on the contrary, consistently yielded a solution approximating

FIGURE 8 | (A) Results of cross-subjects clustering on Left-Hemispheric

fibers with some magnifications of relevant bundles. For each significant

bundle we show four random subjects. (B) Results of cross-subjects

clustering on Right-Hemispheric fibers with some magnification of relevant

bundle. For each significant bundles we show four random subjects.

Hp = Hyppocampus, S1 = Somato-Sensory Cortex, M2 = Motor Cortex,

NACB = Nucleus Accumbens, Pir = Piriform Cortex, Rhinal = Rhinal Cortex,

OFC = Orbitofrontal Cortex.
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the optimal one and it was more reasonably stable across all

experiments.

3.2. CLUSTERING ON REAL DATASEST

The proposed approach was also tested on a real dataset.

Figure 6 shows two examples of qualitative results of

intra-subject clustering applied to two mouse tractographies. We

obtained different parcellation scheme for each subject and, at

this level, each color does not represent associations between

subjects.

Figure 7 shows some examples of common inter-hemispheric

WM bundles in 4 representative subjects (i.e., dorsal hippocampal

commissure, hippocampal commissure, forceps minor, corpus

callosum, and posterior commissure). Using the above restriction

the algorithm was able to match 70 cross-subject bundles with

significant inter-hemispheric commissure of multiple subjects

clustered together. Despite the intrinsic variability of tractogra-

phy across subjects, the algorithm automatically clustered bundles

from different subjects.

Figure 8 shows obtained results on left (A) and right (B)

hemispheres, where the algorithm found, respectively 70 and

74 common WM bundles. Although no symmetry constraints

were imposed, our method correctly identified inter-hemispheric

bundles and preserved symmetry even in presence of different

termination areas characterizing symmetric structures.

4. CONCLUSION AND DISCUSSION

We presented a new method to cluster multiple-subject trac-

tographies and to identify common bundles across subjects for

the characterization of WM structure in a population. The pro-

posed solution, based on DS can be used with diffusion MRI

methods that use tractography to generate WM streamlines.

We adopted DSs clustering to segment single subjects and we

extended the framework to multiple subjects without resorting to

spatial co-registration of the fibers, but using a landmark-based

configuration.

Indeed, projection on the landmarks space, through linear reg-

istration of anatomical atlas on subject spaces, enables clustering

of fibers in the original diffusion space, thus defining common

structures across subjects while preserving invariance with respect

to the intrinsic variability of each subject.

Clustering in the proposed multiple-subject framework

requires different metrics to built affinity matrix for either the sin-

gle or the cross-subject steps. Some similarity indexes in the space

of streamlines were tested suggesting to use the symmetrized

point to point distance (Equation 3) in the first stage and the

landmark distance (Equation 8) in the second stage. We could

have used the landmark projections for both steps, however, the

symmetrized point to point distance is more robust in case of

small fibers, while landmark distance, which is an approxima-

tion respect to the real distance between fibers, might fail in these

cases. At single subject level is preferable to adopt a distance met-

ric able to catch bundles characterizing the variability of each

subject (O’Donnell and Westin, 2007; Guevara et al., 2011). On

the other hand, the choice of landmark distance is mandatory

to cast many subjects in a common space without registering the

diffusion data.

We tested synthetic dataset for the proposed DS clustering

and compared it with other methods, similarly working with

adjacency matrix between fiber pairs, i.e., spectral clustering and

affinity propagation. As mentioned in Section 2.4 we set θ very

close to 0 according to our previous work (Dodero et al., 2013b).

θ works as noise reducer and it acts on the internal elements

of single cluster. With low values of θ we generally obtained

low number of clusters but preserving high internal similarity.

Conversely, higher values yielded over-segmentation, obtaining

many clusters with just few elements. Moreover, adopting the

fiber generator as ground truth and testing the performance of

DSs, we obtained better values of completeness and adjusted rand

index using θ very close to 0. From this indexes, we observed that

our method is more suitable than the other two methods for fiber

clustering. Indeed, unlike spectral clustering, our method does

not need to set the number of clusters in advance, and is more

stable than affinity propagation in terms of number of clusters

generated. If the number of cluster is known a priori, spectral

clustering works better than DS; however, the segmentation of

whole tractography is an open problem where the number of WM

bundles is typically unknown. In this framework, DS performs

better compared to the other algorithms in a fair condition, i.e.,

with all algorithms generating the same number of clusters.

On real dataset, our algorithm was able to segment single

subjects tractography generating anatomically plausible bundles.

We did not observe any significant variation of WM bundles

(also in the synthetic dataset) using various number of points

to describe the fibers. We therefore used 12 points as suggested

in Garyfallidis et al. (2012). According with DSs theory, the last

clusters are always meaningless and they can be considered as out-

liers. Indeed, the choice to discard the last 5% of clusters is mostly

empirical based on the data distribution.

In the cross-subject analysis, the number of landmarks has

little influence on the matching between subjects. Indeed very

few landmarks do not allow a proper representation of all fibers.

On the other side to many landmarks while allowing a nearly

perfect fiber representation induce an increased computational

complexity. Our choice regarding the number of landmarks rep-

resent a good trade-off since they cover all the cortical brain

regions, which represent the starting and end areas of the physical

connections, while being still computationally manageable.

The algorithm was able to group coherent WM bundles of dif-

ferent subjects in their own space while preserving the symmetry

of structures. Interestingly, this was obtained in presence of dif-

ferent shapes across subjects, demonstrating the robustness of the

method. In principle, our approach enables the characterization

of a population with significant bundles and could be applied

to human data-sets to build an atlas of WM bundles for clinical

applications.
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