
Int J CARS (2017) 12:123–136

DOI 10.1007/s11548-016-1452-x

ORIGINAL ARTICLE

Automated multiple trajectory planning algorithm for the
placement of stereo-electroencephalography (SEEG) electrodes

in epilepsy treatment

Rachel Sparks1
· Gergely Zombori1 · Roman Rodionov2,3

· Mark Nowell2,3
·

Sjoerd B. Vos1
· Maria A. Zuluaga1

· Beate Diehl2,3
· Tim Wehner2,3

·

Anna Miserocchi2,3
· Andrew W. McEvoy2,3

· John S. Duncan2,3
·

Sebastien Ourselin1,4

Received: 17 December 2015 / Accepted: 17 June 2016 / Published online: 1 July 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

Purpose About one-third of individuals with focal epilepsy

continue to have seizures despite optimal medical manage-

ment. These patients are potentially curable with neuro-

surgery if the epileptogenic zone (EZ) can be identified and

resected. Stereo-electroencephalography (SEEG) to record

epileptic activity with intracranial depth electrodes may be

required to identify the EZ. Each SEEG electrode trajectory,

the path between the entry on the skull and the cerebral target,

must be planned carefully to avoid trauma to blood vessels

and conflicts between electrodes. In current clinical practice

trajectories are determined manually, typically taking 2–3 h

per patient (15 min per electrode). Manual planning (MP)

aims to achieve an implantation plan with good coverage of

the putative EZ, an optimal spatial resolution, and 3D distri-

bution of electrodes. Computer-assisted planning tools can

reduce planning time by quantifying trajectory suitability.

Methods We present an automated multiple trajectory plan-

ning (MTP) algorithm to compute implantation plans. MTP

uses dynamic programming to determine a set of plans. From

this set a depth-first search algorithm finds a suitable plan.

We compared our MTP algorithm to (a) MP and (b) an

automated single trajectory planning (STP) algorithm on 18

patient plans containing 165 electrodes.
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Results MTP changed all 165 trajectories compared to MP.

Changes resulted in lower risk (122), increased grey matter

sampling (99), shorter length (92), and surgically preferred

entry angles (113). MTP changed 42 % (69/165) trajectories

compared to STP. Every plan had between 1 to 8 (median 3.5)

trajectories changed to resolve electrode conflicts, resulting

in surgically preferred plans.

Conclusion MTP is computationally efficient, determining

implantation plans containing 7–12 electrodes within 1 min,

compared to 2–3 h for MP.

Keywords Computer-assisted planning · Epilepsy ·

Neurosurgery · Image-guided neurosurgery

Introduction

Between 20 and 40 % of focal epilepsy patients are refrac-

tory to antiepileptic medications [13]. Such patients are

candidates for curative surgery, which aims to resect the

epileptogenic zone (EZ) that generates seizures [3]. In about

25 % of surgical candidates, the EZ cannot be inferred

from noninvasive imaging data, and intracranial electroen-

cephalography (EEG) is needed to identify the EZ [7].

Stereo-EEG (SEEG) records EEG signals via depth elec-

trodes surgically implanted in the brain. SEEG electrodes

record from a 1-cm core around the cerebral entry to the

distal end (target) that may be placed in hippocampus, amyg-

dala, or midline or neo-cortex in temporal, frontal, parietal,

or occipital lobes. Electrode implantation carries a risk of

haemorrhage, neurologic deficit, and infection [4].

Preoperative planning of electrode trajectories, defined by

the target and the skull entry point, can minimise implanta-

tion risk by ensuring electrodes avoid critical structures (e.g.

arteries, veins, sulci) and conflicts between electrodes. Plan-
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ning may also improve the efficiency of the SEEG recording

by ensuring electrodes pass through the maximal amount

of grey matter (GM), GM being the component of brain

tissue that generates seizures. Current clinical practice for

planning electrode trajectories involves manual evaluation

of trajectories in series. This is a complex, time-consuming

task requiring:

1. Integrating information across imaging modalities to

locate critical structures, GM, and targets.

2. Optimising several criteria for each trajectory to sample

the target, avoid critical structures, and obtain a suitable

angle to traverse the skull.

3. Adjusting trajectories to maximise GM capture and avoid

electrode conflicts, whereby two electrodes may contact

each other. Placing a new electrode may require adjusting

previously planned trajectories.

Computer-assisted planning algorithms can reduce plan-

ning time by calculating quantitative measures of trajectory

suitability. These measures can be used to select the best

trajectory (automated planning) or inform manual trajectory

selection (assisted planning).

We present an automated multiple trajectory planning

(MTP) algorithm that calculates a combination of trajecto-

ries, or plan, for a set of targets. Trajectories are assessed

on proximity to critical structures (risk score) and sampling

of GM [GM-white matter (GM-WM) ratio]. Our MTP algo-

rithm uses dynamic programming to reduce the search space

and a depth-first search to find a plan whereby each elec-

trode trajectory is surgically feasible, does not interfere with

other trajectories, avoids critical structures, and maximises

GM sampling. MTP is integrated into the EpiNavTM software

platform [29] to enable manual trajectory assessment.

The remainder of the manuscript is organised as follows.

The third section describes the previous work in computer-

assisted trajectory planning. The fourth section describes our

MTP algorithm. The fifth section describes the evaluation of

our MTP algorithm. The sixth section discusses MTP, and

the seventh section provides concluding remarks.

Previous work in trajectory planning

Trajectory planning algorithms have been developed for deep

brain stimulation (DBS) electrodes [1,2,8,14], biopsy nee-

dles [11,16,20,23,24], or SEEG electrodes [5,6,26,27,29].

These methods provide either: (1) assisted planning to aid

manual trajectory selection [11,16,20]; (2) automated plan-

ning for a single trajectory planning [1,2,8,10,14,24,25,29];

or (3) automated multiple trajectory planning [5,6,26,27].

Assisted planning methods aim to reduce the time and

complexity of manual trajectory selection by displaying mea-

sures of risk for potential trajectories [11,16,20,22]. [16]

displayed a heat map corresponding to the minimum distance

to critical structures for potential entry points. Similarly, [11]

displayed an entry point safety map, safety being related to

distance from critical structures. [20] reduced computation

time for safety maps using graphical processing units (GPUs)

to enable real-time user interaction. [22] displayed a cumu-

lative risk, the summation of distance from critical structures

along the trajectory.

Single trajectory planning algorithms automatically deter-

mine the best trajectory for one electrode given a specific

quantitative measure. [25] assessed trajectories using a risk

score calculated by summing traversal costs, where regions

to be avoided had a high traversal cost, along the trajectory.

Similarly, [10] summed traversal costs along the trajectory

but added a penalty for trajectories near blood vessels to

reduce the risk of haemorrhage. [1] assessed trajectories by

first removing potential trajectories that were an unsafe

distance from critical structures. The remaining trajectories

were assessed by a weighted sum of (1) the minimum dis-

tance to critical structures and (2) the cumulative distance

from all critical structures. [23] calculated a traversal cost

by first computing a per pixel risk score, based on distance

to critical structures. They then determined two risk scores:

(1) maximum risk along the trajectory and (2) a summation

of the risk along the trajectory. The user could select which

of these two risk scores to use. [8] developed a generic opti-

misation algorithm for trajectory planning, allowing a user

to define a set of hard constraints, rules that must not be vio-

lated, and soft constraints, rules that could be minimised.

The generic optimisation eliminates trajectories that violate

the hard constraints and then finds the trajectory which min-

imises the summation of soft constraints. [2] used a similar

approach, defining hard constraints, specific entry points and

avoiding critical structures (ventricles, blood vessels, sulci),

and soft constraints, minimising overlap with the caudate

and GM. [14] combined 6 soft constraints and 2 hard con-

straints to define a weighted cost function that determined

the best trajectory for targeting the subthalamic nucleus. [26]

developed an algorithm that maximises distances from criti-

cal structures and GM sampling. [24] developed an algorithm

that optimises a weighted sum of the trajectory distance to

critical structures so that blood vessels, with a high weight,

are always avoided, while WM tracts and regions of cortical

function, with a low weight, may be traversed if no other path

exists. Constraints in [24] are specific to placing electrode

for DBS and may not be generalisable to SEEG electrode

implantation.

Multiple trajectory planning algorithms determine the best

combination of trajectories, or plan, for multiple electrodes.

Multiple trajectory planning not only takes into account the

quantitative measures for individual electrodes but also that

electrodes must not contact each other. [26] optimised three
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electrodes with targets in the amygdala, anterior and pos-

terior hippocampus so that risk was minimised and there

were no conflicts between electrodes. In [26] potential entry

points were constrained by the use of target specific entry

map priors. A more extensive evaluation of this method on

37 patients was presented in [27] in which increased GM

sampling by optimising the number of electrode contacts in

GM was demonstrated.

[5] presented a multiple trajectory planning algorithm that

operates serially. The algorithm sets the first electrode to the

best trajectory, and additional electrodes are set by removing

trajectories that interfere with existing electrodes, and then

selecting the best trajectory. This algorithm is dependent on

trajectory order and may not find an optimal plan. [6] over-

came these limitations by evaluating all potential plans and

returning the best plan. However, enumerating all potential

plans is computationally expensive when evaluating many

targets or many potential trajectories per target. To reduce

the number of potential plans, [6] reduced potential entry

points by randomly sampling within a user-specified region.

Previous work from our group presented an automated

entry point search algorithm [29] in which all points on the

skull were potential entry points, removing the need to manu-

ally specify entry regions or define entry map priors for each

target. All points on the skull result in 2000–10,000 poten-

tial entry points, and for eight targets this corresponds to a

minimum of 1E26 potential plans.

We present a MTP algorithm that combines dynamic

programming to reduce the number of potential plans, and

depth-first searching, to find a suitable plan. Trajectories are

assessed by risk score, measured as the cumulative distance

to blood vessels from the trajectory [29], and GM sampling,

measured as the proportion of electrode contacts that are

in GM. Our algorithm is an improvement over the current

state of the art in that it: (1) finds a combination of electrode

trajectories with no limitations on the number or order of

electrodes and (2) is computationally efficient, finding a plan

with 7 to 12 electrode in under one minute, and (3) is inte-

grated in the EpiNavTM software platform to enable manual

assessment.

Multiple trajectory planning algorithm

A trajectory is defined as v = {T, E, R, G} where T is the

target in the brain, E is the entry on the skull, R is the risk

score, and G is the GM-WM ratio. For a set of N targets

a plan is defined as V (N ) = {v1,a1 , . . . , vN ,aN
} : ai ∈

{1, . . . , Mi }, i ∈ {1, . . . , N } where Mi is the number of

potential trajectories for the i th target. The plan V (N ) is

defined such that each trajectory attains one of N targets.

MTP finds a plan Vmin(N ) that attains all targets, minimises

R, maximises G, and avoids conflicts between electrodes.

Prior to trajectory planning, segmentation of the skull

and critical structures is performed as described in the sec-

tion “Critical structure extraction”. For each target Ti , a risk

score Ri,ai
, that quantifies proximity to blood vessels, and

a GM-WM ratio Gi,ai
, that quantifies GM sampling, are

calculated as described in the section “Single trajectory plan-

ning algorithm”. The MTP algorithm described in the section

“Multiple trajectory planning algorithm” calculates Vmin(N ).

The EpiNavTM software platform enables manual assessment

of Vmin(N ) as described in the section “Plan visualisation and

assessment”.

Critical structure extraction

Automated trajectory planning is dependent on accurately

segmenting critical structures (arteries, veins, and sulci), GM,

and the skull surface. Algorithms chosen for these tasks are

currently being used in the clinic to generate 3D models for

manual trajectory planning and have been used in presurgical

patient evaluation for over 4 years [19,21]. Blood vessels are

segmented with a customised vessel extraction tool [30] from

CT angiography, 3D phase contrast MRI, or T1-weighted

MRI with gadolinium enhancement. GM and the cortex were

segmented using FreeSurfer [9]. Sulci were extracted from

the cortex surface. Figure 1c illustrates an example segmen-

tation for veins (cyan), arteries (red), and sulci (peach).

Skull segmentation with template registration constrains

entry points to regions suitable for implantation. A patient-

specific skull is segmented from a CT scan using thresholding

Fig. 1 Example study displaying a skull segmentation (white), b skull template (yellow) that excludes surgically infeasible regions, and c veins

(cyan), arteries (red), and sulci (peach) with skull (semi-transparent white) and skull template (semi-transparent yellow)
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and morphologic dilation to ensure a fully connected sur-

face. The template skull is aligned to the patient skull using

Iterative Closest Points (ICP) [28] to minimise the dis-

tance between the two surfaces. The template skull excludes

regions inappropriate for implantation such as the face, ears,

and regions inferior to the transverse sinus. Figure 1 shows

an example patient (white) and template (yellow) skull.

Single trajectory planning algorithm

Previous work from our group [29] presented real-time auto-

mated single trajectory planning (STP) for a target Ti . STP

calculates potential entry points Êi,ai
: ai ∈ {1, . . . , Mi } by

considering trajectory length and entry angle (described in

the section “Entry point search”). Next trajectories, defined

as Êi,ai
Ti , that intersect critical structures (arteries, veins, or

sulci) are removed from consideration. Then at evenly spaced

points along each trajectory x ∈ Ei,ai
Ti the distance to the

nearest blood vessel fcrit(x) is found (described the section

“Bounding volume hierarchy (BVH) for trajectory evalua-

tion”). Finally for Ei,ai
Ti a risk score Ri,ai

, computed from

fcrit(x), and a GM-WM ratio Gi,ai
are calculated (described

in the section “Trajectory ranking”). A stratified ranking

algorithm sorts trajectories by first minimising Ri,ai
and then

maximising Gi,ai
.

Entry point search

Potential entry points Êi,ai
: ai ∈ {1, . . . , Mi } are identi-

fied by considering all vertices in the template skull mesh.

Êi,ai
are removed from consideration based on the following

criteria:

1. Trajectory length The length of Êi,ai
Ti must be shorter

than dlength, the maximum electrode length.

2. Entry angle The angle between Êi,ai
Ti and the skull

normal must be less than dangle, the angle that can be

accurately drilled.

Calculating these exclusion criteria for Êi,ai
Ti is computa-

tionally inexpensive; hence, it is practical to remove Êi,ai

that do not meet these criteria first.

Bounding volume hierarchy (BVH) for trajectory evaluation

Each trajectory Êi,ai
Ti is tested for intersection with critical

structures (arteries, veins, sulci) using a bounding volume

hierarchy (BVH) to enable real-time calculation. Trajectories

that intersect these structures are removed from considera-

tion. All remaining trajectories are sampled at 128 evenly

spaced points x such that x ∈ Ei,ai
Ti . For every x , the

distance to the nearest blood vessel (arteries, veins) fcrit(x)

is calculated. BVH construction and traversal are described

below.

Bounding volume hierarchy construction For each critical

structure (arteries, veins, and sulci) a BVH is constructed as in

[12]. Each triangle in the surface is assigned a 30-bit Morton

code [15], calculated by combining the 10-bit Morton code of

each triangle vertex coordinate. An efficient bit-wise sorting

of the triangles is performed using the Morton codes. The

BVH is created by iteratively splitting triangles according

to the highest different bit between Morton codes. This is

repeated until each leaf node contains one triangle. Finally,

for every node a bounding box is calculated. For each leaf

node the bounding box is calculated as the smallest rectangle

that contains the triangle. The bounding box for all other

nodes is the union of the bounding boxes of their children

nodes.

Bounding volume hierarchy traversal BVH traversal detects

collision of Êi,ai
Ti with each critical structure. Initially the

top BVH node is added to the queue. If Êi,ai
Ti intersects the

bounding box of the first node in the queue, its children nodes

are added to the queue. Once a leaf node is reached Êi,ai
Ti

is removed from consideration if it intersects the triangle of

the leaf node.

For the remaining trajectories, the closest distance bet-

ween each point x ∈ Ei,ai
Ti and the j th critical structure

f j (x) is calculated. For this computation sulci are not

included. Initially the top BVH node is added to the queue

and f j (x) = ∞. The first node in the queue is removed,

and the distance between each child node and its bounding

box fbb(x) is calculated. For a point inside the bounding box

fbb(x) = 0. If fbb(x) < f j (x) the node is added to the

queue so that the first node corresponds to the smallest value

of fbb(x). For a leaf node the distance between x and the tri-

angle is computed, if ftr i (x) < f j (x), then f j (x) = ftr i (x).

This is repeated until no nodes are in the queue. After all

critical structures have been evaluated, the closest distance

is calculated as fcrit(x) = arg min j ( f j (x)).

Trajectory ranking

Entry points that meet all hard constraints, Ei,ai
: ai ∈

{1, . . . , Mi }, are ranked by risk score Ri,ai
, a measure of

cumulative distance from blood vessels, and GM-WM ratio

Gi,ai
, a measure of GM capture.

Risk score The risk score Ri,ai
measures cumulative distance

to blood vessels. The trajectory Ei,ai
Ti has a high risk if

the nearest critical structure is less than a “Safety Margin”,

determined by the user-defined value dsafety. If Ei,ai
Ti has a
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Fig. 2 Entry point search algorithm. Critical structures are arteries

(red), veins (cyan), and sulci (not shown). The lowest risk trajectory

is displayed in purple (arrow indicating entry and sphere indicating tar-

get). a Initial set of potential entry points Êi,ai
obtained from the skull

template (semi-transparent white). b Opaque white patch corresponds

to Êi,ai
after excluding trajectories due to length or angle. c Opaque

white patch corresponds to Êi,ai
after excluding trajectories due to crit-

ical structure intersection. d Coloured patch corresponds to risk scores

Ri,ai
with low (0—green) to high (1—red) risk

distance to the nearest critical structure greater than a “Risk

Zone”, determined by the user-defined value drisk , it has no

potential risk.

The cumulative distance of risk along Ei,ai
Ti is calculated

as,

Scrit =

∫ Ti

Ei,ai

drisk − ( fcrit(x) − dsafety)dx, (1)

where fcrit(x) is the distance between x and the nearest crit-

ical structure. For normalisation purposes if fcrit(x) > drisk ,

then fcrit(x) = drisk so that the final value the x contributes to

the risk score is zero. If fcrit(x) < dsafety, then automatically

Ri,ai
= 1, representing the highest risk.

The final risk Ri,ai
is normalised to the range [0, 1], where

0 corresponds to no risk and 1 corresponds to the highest risk.

Ri,ai
is calculated as,

Ri,ai
=

Scrit

(drisk − dsafety) ∗ length
, (2)

where length is the length of Ei,ai
Ti . Figure 2d displays Ri,ai

as a heat map from low (0-green) to high (1-red) risk.

Grey matter-white matter ratio GM-WM ratio measures the

proportion of electrode contacts in GM. GM-WM ratio cor-

responds to the SEEG efficiency for each trajectory as GM

generates seizures. For each trajectory Ei,ai
Ti a set of J con-

tact points, c j : j ∈ {1, . . . , J } each with a sampling radius

cr are defined. Each contact point is assessed if c j ± cr is

located in GM. GM-WM ratio is calculated as,

Gi,ai

=

∑J
j=1(H [ fgm(c j −cr )]+H [ fgm(c j )]+H [ fgm(c j +cr )]

3 ∗ J
,

(3)

where fgm(·) is the signed distance at c j from the GM sur-

face, H [·] is the Heaviside function, and J is the number of

contact points. H [·] is defined so negative values, locations

inside GM, are 1 and positive values, locations outside GM,

are 0. Similar to fcrit(x) a BVH is used to calculate fgm(·).

Stratified ranking Trajectories are first ranked by Ri,ai
so

that vi,1 has the lowest risk. Next trajectories are placed into

K histogram bins so the kth bin contains vi,ai
: (k − 1)/K ≤

ai < k/K . Within each bin trajectories are ranked according

to Gi,ai
so vi,1 has the highest GM-WM ratio.

Multiple trajectory planning algorithm

MTP aims to find the best plan Vmin(N )=[v1,a1, . . . , vN ,aN
] :

ai ∈ {1, . . . , Mi }, i ∈ {1, . . . , N } with no electrode conflict.

Electrode conflict occurs when two trajectories are closer

than a user-defined value dtraj. Vmin(N ) is defined as,

Rtotal = arg minVmin(N )

(

1

N

N
∑

i=1

Ri,ai

)

s.t. D(Ei,ai
Ti , E j,a j

T j ) > dtraj : ∀i,

∀ j ∈ {1, . . . , N }, i �= j, (4)

where D(·, ·) is the minimum Euclidean distance between

two line segments. A depth-first search with dynamic pro-

gramming to limit potential plans is used to calculate

Vmin(N ) as described in the sections “Depth-first search

algorithm” and “Dynamic programming for determining

potential combinations”.

Depth-first search algorithm

Algorithm 1 iteratively (1) calculates V̂min(n), a suitable

plan for n trajectories and (2) rejects V̂min(n) if electrodes
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Initialise n = 1, Vmin(n) = ∅.

while n ≤ N do
Update Vp(n).

V̂min(n) ←− min(Vp(n)).

if Dall(V̂min(n)) > dtra j then

Vmin(n − 1) ←− V̂min(n).

n ←− n + 1.
end

end

return Vmin(N ).

Algorithm 1: Depth-first search to find the optimal plan

for N targets.

conflict. At each iteration of Algorithm 1 a set of low risk

plans, defined as Vp(n) = [V1(n), . . . , Vq(n)], is calcu-

lated. For the lowest risk plan V̂min(n) ∈ Vp(n) the function

Dall(·) detects conflict between electrodes by finding the

minimum Euclidean distance between all pairs of trajec-

tories in V̂min(n) (i.e. min(D(Ei,ai
Ti , E j,a j

T j ) : ∀i,∀ j ∈

{1, . . . , n}, i �= j)). When an electrode conflict is detected

Vp(n) is updated as described in the section “Dynamic pro-

gramming for determining potential combinations”. Once

V̂min(n) has no conflicts, n ←− n + 1 and the algorithm

continues until Vmin(N ) is found.

Dynamic programming for determining potential

combinations

For each target Ti , trajectories are ranked so vi,1 is the best

trajectory (in the section “Trajectory ranking”). Initially,

Vp(n) ←− [V1] where V1 = {v1,1} which corresponds to

adding a potential plan containing the best trajectory for

the 1st electrode. At the next step, n = 2, Vp(n) ←−

[{Vmin(n − 1), vn,1}], which corresponds to adding the best

trajectory for the 2nd electrode. Algorithm 1 proceeds in this

manner until electrode conflict is detected.

If V̂min(n) = {v1,a1 , . . . , vn,an } has an electrode conflict

Vp(n) is updated by:

1. Finding trajectories i and j that violate D(Ei,ai
Ti ,

E j,a j
T j ) < dtraj. Note that i ∈ {1, . . . , n − 1} and j = n

otherwise an electrode conflict would have been detected

earlier.

2. Updating the i th trajectory Ṽi (n) = min(Vp(i)).

3. Updating the nth trajectory: Ṽn(n) = {v1,a1 , . . . ,

vi,ai
, . . . , vn,an+1}.

4. Adding Ṽi (n) and Ṽn(n) to Vp(n).

Algorithm 1 continues in this manner until Vmin(N ) is found.

Plan visualisation and assessment

Clinicians must be able to visualise and assess trajectory fea-

sibility. We have developed the EpiNavTM software platform

to aid manual assessment with: (1) quantitative measures

of trajectory suitability, (2) a trajectory profile, and (3) a

probe eye view. Figure 3 displays an example layout of the

EpiNavTM software platform.

Quantitative measures

Four measures of trajectory suitability, length, angle, risk

score, and GM-WM ratio, are displayed in the EpiNavTM

platform. Trajectory length is calculated as the length of ET ,

where E is the entry point and T is the target. Trajectory angle

is calculated as the angle of ET with respect to the skull

normal. Trajectory risk score is calculated as in Equation 2,

and GM-WM ratio is calculated as in Equation 3.

Trajectory profile

The trajectory profile provides a (a) risk profile and (b) GM

profile. The risk profile displays fcrit(x) (described in the

section “Trajectory ranking”) for x ∈ ET . The colour of

fcrit(x) corresponds to the closest blood vessel at x . The GM

profile displays the colour corresponding to the tissue type

(GM or WM) each electrode contact is located in. Regions

of the trajectory outside the cortex are shown in the electrode

colour.

Figure 3 displays the risk profile in the upper right panel.

Red corresponds to trajectory regions closest to an artery,

cyan to trajectory regions closest to a vein. The red line indi-

cates the “Safety Margin” (dsafety). The black line indicates

the position of the probe eye view (Fig. 3, bottom right panel),

black text shows the distance between the probe eye view

and T , and red text shows the distance to the nearest critical

structure ( fcrit(x)).

Probe eye view

The probe eye view displays an image perpendicular to the

trajectory. This allows the user to navigate along the trajec-

tory and assess proximity to critical structures. The probe eye

view is generated by finding the geometric plane perpendicu-

lar to x ∈ ET . Nearest neighbour interpolation calculates the

intensity value for each pixel in this plane. Figure 3 displays

a probe eye view in the bottom right panel.
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Fig. 3 EpiNavTM software platform. Upper panels (left to right) show

the axial and sagittal imaging planes and trajectory profile described in

the sections “Quantitative measures” and “Trajectory profile”. Lower

panels (left to right) show the coronal imaging plane, volumetric view,

and probe eye view (described in the section “Probe eye view”). The vol-

umetric view displays critical structures (veins in cyan, arteries in red),

skull template (transparent white), trajectory (purple), and entry points

coloured according to risk score from low (0—green) to high (1—red).

In this example, a trajectory with intermediate risk (Ri,ai
= 0.41—

orange) is selected. The risk information shows intermediate risk is due

to the trajectory traversing near an artery

Experimental design and results

Dataset description

Evaluations were performed on retrospective data from 18

patients with medically refractory epilepsy who underwent

SEEG implantation. All patients had unilateral implantations

with between 7 and 12 electrodes for a total of 165 electrodes.

All studies involving human participants were in accordance

with the ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki Declaration

and its later amendments or comparable ethical standards.

For this type of study formal consent is not required.

Experimental design

Each electrode target was manually determined by an expert

neurosurgeon relying on conventional 2D visualisation. Tar-

gets remained fixed across planning methods.

Parameters for STP and MTP were set as described in

Table 1. These parameters were determined according to a

panel of three expert neurosurgeons. dlength, dangle, and dtraj

are set according to surgically feasible approaches and avail-

able electrodes. dsafety is set to 3.0 mm corresponding to the

minimum accuracy achievable with the neuronavigation sys-

tem [18] as critical structures closer than 3.0 mm may be

compromised. drisk is set to 10 mm, a distance at which there

is no potential to compromise critical structures. J , c j , and

cr were determined by choosing a common SEEG electrode

configuration.

Trajectories were assessed by length, angle, GM-WM

ratio, and risk score as described in the section “Quantitative

measures”. Distance to the closest sulci was also calculated

in a similar fashion as distance to blood vessels described in

the section “Bounding volume hierarchy (BVH) for trajec-

tory evaluation”. These measures of trajectory suitability are

biased in that STP and MTP use these measures to calculate

electrode trajectories. Although the quantitative measures are

biased, they assess whether a method is able to optimise

multiple surgical constraints simultaneously. A qualitative

analysis by an expert neurosurgeon who was blinded to the

plan origin was used to complement the quantitative analy-
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Table 1 Parameter values determined from expert neurosurgeons.

dangle is the largest angle safely realised with a surgical drill

Parameter Value

dlength 80.0 mm

dangle 25◦

dsafety 3.0 mm

drisk 10.0 mm

J 10

c j 6 mm intervals from electrode tip

cr 1.2 mm

dtraj 10.0 mm

K 10

dlength is the longest electrode. dsafety is the “Safety Margin”, below

which trajectories have the highest risk (Ri,ai
= 1). drisk is the “Risk

Zone”, above which trajectories have no risk (Ri,ai
= 0). J , c j , and cr

are the number, position, and sampling radius of electrode contact points

for a commonly used SEEG electrode. dtraj is the minimum distance for

no electrode conflict. K is the number of histogram bins

sis. Qualitative analysis determined whether the implantation

plans were suitable for surgery and included expert clinical

knowledge that may not be captured in the quantitative mea-

sures.

Experiment 1: trajectory ranking strategies

We compared trajectories determined by risk score [29] and

stratified ranking described in the section “Trajectory rank-

ing”. Risk score ranking finds the trajectory with the lowest

risk score, while stratified ranking finds a trajectory that min-

imises risk score while maximising GM-WM ratio. Stratified

ranking is expected to increase GM-WM ratio and risk score

compared to risk score ranking. A two-tailed Student’s t test

was used to compare trajectories between the two ranking

Fig. 4 a Risk score and b GM-WM ratio for trajectories calculate by

risk score ranking (plotted on the Xaxis) versus stratified ranking (plot-

ted on the Y axis). Points above the diagonal represent trajectories where

stratified ranking increased the value compared to risk score ranking.

For a risk score lower values (points below the diagonal) are preferred.

For b GM-WM ratio higher values (points above the diagonal) are pre-

ferred

methods, with the null hypothesis being that the methods

calculate similar trajectories.

Figure 4 displays GM-WM ratio and risk score for tra-

jectories calculated with the two ranking methods. Both

methods produced trajectories with similar risk scores,

and stratified ranking increased the risk score on average

0.02(0.0 − 0.13) and was not statistically significant (p =

0.497). Stratified ranking increased the GM-WM ratio by a

mean of 0.08(0.0 − 0.57) and in 22/165 trajectories by over

0.2. The difference in GM-WM ratio is statistically signifi-

cant (p = 5.5×10−7). Stratified ranking improved GM-WM

ratio with an insignificant increase in risk score.

Experiment 2: target order independence

We evaluated the effect of target order on MTP. For each

plan, target order was randomly selected 5 times and the

trajectories for each target were compared. The order targets

were considered did not change the final plan, and in all cases

the same trajectory was returned.

Experiment 3: planning strategies

We compared our MTP algorithm with (a) manual planning

(MP) by an expert neurosurgeon and (b) the STP algorithm

described in the section “Single trajectory planning algo-

rithm”

Quantitative assessment

A two-tailed Student’s t test was used to compare trajectory

measures between MTP and the other methods (MP, STP)

with the null hypothesis being the methods return similar

trajectories. To account for multiple comparisons (n = 2),

a Bonferroni correction is applied; hence, a statistically sig-

nificant value is α = 0.05/n = 0.025.

All 165 trajectories changed between MP and MTP. Fig-

ure 5 displays quantitative measures for each trajectory. MTP

reduced the length of 92/165 trajectories (p = 0.033),

reduced the angle with respect to the skull surface normal

in 113/165 trajectories (p = 2.7 × 10−8), increased GM-

WM ratio in 99/165 trajectories (p = 7.0 × 10−3), reduced

the risk score in 122/165 trajectories (p = 9.3 × 10−8),

and reduced the distance to the closest sulci in 70/165

trajectories(p = 0.50). For 7 trajectories MTP returned

trajectories with a risk score of 1, while MP returned

trajectories with a risk score <1; however, these MP tra-

jectories violated the angle constraint (angle > dangle)

(Fig. 6).

Between MTP and STP 69/165 trajectories, these changes

were not statistically significant for any measure (p between

0.03 and 0.60). Although changes in quantitative measure

of risk were not statistically significant, there were signifi-
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Fig. 5 Quantitative measures for trajectories determined by MP (plot-

ted on the Xaxis) versus automated planning (plotted on the Y axis)

for a angle, b length, c GM-WM ratio, d risk score, and e distance to the

closest sulci. Points below the diagonal line represent trajectories where

automated planning reduced the value compared to MP. For a angle, b

length, and d risk score lower values (points below the diagonal) are

preferred. For b GM-WM ratio and e distance to the closest sulci higher

values (points above the diagonal) are preferred

cant practical differences in that STP provided implantation

plans that could not be surgically implemented due to elec-

trodes being placed too close to each other. In contrast MTP

found implantation plans in which each electrode trajec-

tory was placed so that it could be implemented during

surgery. MTP calculated a higher risk score than STP in

38/69 trajectories. Additionally, GM-WM ratio decreased in

42/69 trajectories. For one trajectory MTP calculated a much

higher trajectory risk score (1 compared to 0.28); however,

no low risk trajectories were able to avoid conflicts with other

electrodes.

Clinical assessment

A clinical assessment of plan feasibility was performed by

a single neurosurgeon, blinded to plan origin. Plans were

assessed using EpiNavTM for:

1. Avascularity: each trajectory was assessed with the probe

eye view to confirm the absence of nearby blood vessels.

Each plan was scored as the ratio of safe, avascular tra-

jectories to all trajectories.

2. Conflicts: each plan was assessed in the volumetric view

for conflicts between electrodes, due to either contact or

Fig. 6 Quantitative measures of the 67 trajectories changed between

STP and MTP, for a risk score and b GM-WM ratio. For a risk score

lower values (points below the diagonal) are preferred, while for b GM-

WM ratio higher values (points above the diagonal) are preferred

inadequate spacing. Each plan was scored as the number

of conflicts.

3. Feasibility: each electrode was assessed on the feasibility

of surgical implementation taking into account the entry

point and trajectory. Each plan was scored as the ratio of

feasible electrodes to all electrodes.

Table 2 reports the plan feasibility measures. All three

methods were effective at finding avascular trajectories for

individual trajectories as determined by a neurosurgeon. This
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Table 2 Measures of plan

feasibility for MP, STP, and

MTP obtained by one

neurosurgeon blinded to plan

origin

Plan Number of

electrodes

Conflicts Avascularity Feasibility

MP STP MTP MP STP MTP MP STP MTP

1 12 0 3 0 12 9 10 12 10 10

2 11 0 3 0 11 10 9 11 9 9

3 7 0 2 0 7 5 6 7 5 6

4 7 0 1 0 7 6 6 7 6 6

5 9 0 2 0 9 9 9 9 8 8

6 12 0 3 0 12 11 11 12 11 11

7 7 0 5 0 7 6 6 7 7 7

8 8 0 2 0 8 7 7 8 6 6

9 7 0 1 0 7 7 7 6 7 7

10 8 0 1 0 8 6 6 8 5 6

11 8 0 2 0 8 8 7 8 5 5

12 11 0 3 0 11 11 11 11 9 9

13 10 0 5 0 10 8 9 10 9 9

14 12 0 4 0 12 12 12 12 10 10

15 8 0 3 0 8 6 6 8 7 7

16 10 0 1 0 10 10 10 10 9 9

17 11 0 2 0 11 11 11 11 10 10

18 7 0 3 0 6 7 7 7 5 5

All 165 0 67 0 164 149 150 165 138 140

Avascularity and feasibility are reported as the ratio of electrodes that meet the criteria to all electrodes.

Conflicts are reported as the number identified per plan

Bold values correspond to values where no conflicts between electrodes were found

is expected as both STP and MTP are optimised according

to risk score, a function of distance to critical structures. The

15 (16 for STP) trajectories that were determined to pass

an unsafe distance to blood vessels were caused by the ves-

sel segmentation algorithm not segmenting all of the small

blood vessels. Only MP and MTP were effective at avoid-

ing electrode conflicts, with the intertrajectory spacing being

deemed sufficient for implementation by a neurosurgeon.

Finally, all planning methods were reasonable at finding clin-

ically feasible trajectories, although STP (138/165) and the

MTP (140/165) were both inferior to MP (165/165). The

main reasons for STP and MTP trajectories to be deemed

not feasible were temporal electrodes not passing through

the medial temporal lobe or orbitofrontal electrodes passing

near or through the frontal sinus.

Experiment 4: computational time

Computational efficiency of STP and MTP was evaluated. To

enable a direct comparison between STP, which calculates

the best trajectory for one target, and MTP, which calculates

the best trajectories for N targets, the total time to determine

all N trajectories was recorded. For STP the computation

time is a summation of computation time for each target.

Calculations were performed on a computer with a

Intel(R) Xeon(R) 12 core CPU 2.10 with 64.0 GB RAM and

a single NVIDIA Quadro K4000 4 GB GPU. Table 3 reports

plan computation time. All plans were computed in less than

1 min, and in a clinical setting this will enable the user to make

manual adjustments to parameters and trajectories when nec-

essary. Longer computation times were observed for plans

with more electrodes (Plans 11 and 13) or electrodes that

were placed in close proximity (Plan 7).

Computation time for the preprocessing steps was recor-

ded. GM and cortex segmentation took ≈20 h, surface

extraction for the blood vessels and sulci took between 150

and 180 s per structure, and skull segmentation and template

registration took between 210 and 260 s. For SEEG elec-

trode implantation patient scans are typically acquired at least

1 week prior to implantation planning; hence, preprocessing

steps are not as time sensitive as MTP.

Discussion

Our MTP algorithm is computational efficient, using dynamic

programming to consider low risk plans in conjunction with

a depth-first search algorithm to find a suitable plan. All
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Table 3 Plan computation time

for STP and MTP reported in

seconds

Plan Number of electrodes Algorithm

STP time (sec) MTP time (sec)

1 12 3.62 8.77

2 11 21.68 21.72

3 7 25.83 25.85

4 7 14.70 14.71

5 9 11.18 19.41

6 12 13.68 14.17

7 7 22.32 28.43

8 8 13.87 25.60

9 7 11.31 11.75

10 8 4.19 4.21

11 8 20.03 20.05

12 11 43.68 57.38

13 10 11.95 21.00

14 12 18.22 19.11

15 8 11.39 24.14

16 10 3.85 3.86

17 11 3.15 4.96

18 7 9.22 9.23

median [range] 8.5 [7 − 12] 12.77 [3.15 − 43.68] 19.26 [3.86 − 57.38]

Plan computation time for STP is the summation of time to compute individual trajectories. The number of

electrodes N for each plan is between 7 and 12 as indicated in the table. The final row lists the median and

range of computation times for all 18 plans

plans evaluated containing between 7 and 12 electrodes were

calculated in under a minute. Our MTP algorithm resolved

electrode conflicts providing more feasible plans compared

to STP. Figure 7 displays two plans determined by MP,

STP, and MTP. Figure 7c displays a plan in which STP had

two electrode conflicts (yellow–blue and pink–purple con-

flict), and such conflicts prevent the plan being surgically

implemented. MTP had no conflicts as shown in Figure 7e.

Figure 7d, f illustrates STP and MTP for a plan where

one electrode was changed to resolve one electrode conflict

(yellow–purple).

Our MTP algorithm has several differences from pre-

viously reported multiple trajectory planning algorithms

[5,6,26,27]. In terms of target selection, [6] required the

user to select a target region from which potential target

points were drawn from. [27] constrained target selection

to three anatomic regions, amygdala, anterior, and posterior

hippocampus. Our MTP algorithm requires the user to spec-

ify the target point.

For entry point selection [6] required the user to select an

entry region on the skull. [27] defined entry map priors for

each anatomic target to constrain potential entry points to sur-

gically feasible regions. Our MTP algorithm uses a generic

skull template to constrain entry points making it more flex-

ible in the types of electrode trajectories proposed compared

to other multiple trajectory planning algorithms. Constrain-

ing entry points may be desirable for some electrodes, for

example to sample a specific superficial gyrus; however, it

may be overly restrictive and result in nonoptimal trajectories

for other electrodes.

When calculating trajectories both [6] and [27] sample

target and entry regions to obtain a fixed number of trajectory

combinations that are then evaluated in terms of risk and

electrode conflicts. In contrast, our MTP algorithm considers

all possible entry points when determining the trajectories.

Critical structures used to compute the risk score Ri,ai
(in

the section “Critical structure extraction”) in this work were

blood vessels (arteries and veins). Trajectories that inter-

sected sulci were rejected, but sulci were not included in

calculating Ri,ai
. When analysing MP trajectories, it was

found that while blood vessels were avoided by at least

3 mm (median value 5.11 mm), sulci were often much closer

(median value 1.57 mm). Based on these results it was deter-

mined that maximising distance to sulci was not as important

criteria as maximising distance to blood vessels. However,

the algorithm presented to compute Ri,ai
is generalisable to

other structures, such as sulci or ventricles, without signifi-

cantly changing task complexity or expected results. Several
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Fig. 7 Two plans calculated

by: a, b MP; c, d STP; and e, f

MTP. Each plan shows the skull

template (semi-transparent

white), critical structures

(arteries in red, veins in cyan,

and sulci in peach). and

trajectories [different coloured

entry (arrow) and target

(sphere)]. In a, c, and e sulci are

not shown, so the electrode

configuration can be appreciated

other state-of-the-art methods have incorporated sulci avoid-

ance by either taking into account the trajectory angle with

respect to the cortex as in [6] or including sulci in the risk

metric [27].

The introduction of a skull template (in the section “Crit-

ical structure extraction”) allows for potential entry points

to be limited to surgically feasible regions. The face, ears,

and base of the skull are avoided for safety and cosmetic

reasons. Figure 8 provides an example where the use of the

skull template is necessary to obtain a surgically feasible

plan; without the skull template an electrode (orange) would

have traversed the posterior fossa inferior to the transverse

sinus and penetrated the tentorium cerebelli. However, the

skull template as currently implemented is limited. Due to

the variability in the position and size of the ears and forehead

ICP registration does not always match nonfeasible regions

between the patient and template skulls. Individually tailored

skull templates would reduce the number of nonfeasible entry

points but would increase planning time. Even with individ-

ually tailored skull templates our MTP algorithm would still
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suggest some nonfeasible trajectories. This is due to certain

targets having accepted trajectories that neurosurgeons are

reluctant to deviate from, even when these trajectories have

a higher risk score. In future work, our MTP algorithm will

be modified to enable the user to restrict specific electrodes

to surgically preferred regions, thereby reducing infeasible

trajectories.

In a clinical setting, individual electrode trajectories that

are not feasible can be manually adjusted to an appro-

priate trajectory. However, depending on the location of

trajectories, manually adjusting one trajectory may require

adjustment of other trajectories to resolve conflicts between

electrodes. The EpiNavTM software platform allows the user

to fix individual electrode trajectories and rerun MTP on the

remaining electrodes to find a suitable implantation plan as

described in [17]. Multiple runs of MTP may be required to

obtain an implantation plan in which all trajectories are safe

and surgically feasible.

A thorough evaluation of our automated multiple trajec-

tory planning algorithm for clinical use has been presented

in [17]. In this study, three neurosurgeons compared 18 plans

determined by MP and our MTP algorithm. All 18 plans were

found to be feasible for clinical implementation. Individual

trajectories were found to be safe for clinical implementation

in 77.1 %(128/166) of electrodes. 10 %(18/166) of trajecto-

ries were found to be unsafe due to incorrect critical structure

segmentation. To improve this performance, a more accurate

vessel extraction algorithm is necessary to find avascular tra-

jectories. 7 %(12/166) of trajectories were deemed unsafe

due to proximity to sulci or the midline, highlighting the need

to incorporate sulci for a clinically realistic MTP algorithm.

Stratified ranking allows for a low risk score to be priori-

tised with GM-WM ratio taken into consideration, provided

the risk score does not substantially increase. This additional

constraint is important as the goal of electrode implantation is

to record EEG signals from GM, which is the site of seizure

generation. Currently, the GM-WM ratio is calculated for

specific contact points on the electrode for a single-electrode

configuration. However, there are over a dozen different

configuration of contacts on SEEG electrodes that may be

implanted. Future work will include specifying the contact

configuration for specific electrodes.

Concluding remarks

We present an automated multiple trajectory planning (MTP)

algorithm using depth-first searching with dynamic pro-

gramming. Our algorithm was evaluated with 18 plans with

between 7 and 12 electrodes. Calculation of an implantation

plan took on average 19.26(3.86 − 57.38) s. Implantation

plans had a lower risk for 122/165 electrodes and higher grey

matter-white matter (GM-WM) ratio for 99/165 electrodes.

Fig. 8 Implantation plan where potential entry points (transparent

white) considered were the a patient skull or b skull template. Seg-

mented critical structures were vein (cyan). The orange electrode

trajectory has been altered, so it is above the tentorium cerebelli

The computational efficiency of our algorithm enables near

real-time planning of electrode implantations.

In this manuscript we focused on the development of our

MTP algorithm leveraging existing methods for extracting

the skull template, critical structures, and GM. Our algo-

rithm was integrated into the EpiNavTM software platform to

enable manual assessment of calculated trajectories. A larger,

prospective, comprehensive clinical study of EpiNavTM is

necessary to evaluate the utility of the software in planning

intracerebral electrode implantations.
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