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Abstract

Background: Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in humans and the
first cancer with comprehensive genomic profiles mapped by The Cancer Genome Atlas (TCGA) project. A central challenge
in large-scale genome projects, such as the TCGA GBM project, is the ability to distinguish cancer-causing ‘‘driver’’ mutations
from passively selected ‘‘passenger’’ mutations.

Principal Findings: In contrast to a purely frequency based approach to identifying driver mutations in cancer, we
propose an automated network-based approach for identifying candidate oncogenic processes and driver genes. The
approach is based on the hypothesis that cellular networks contain functional modules, and that tumors target
specific modules critical to their growth. Key elements in the approach include combined analysis of sequence
mutations and DNA copy number alterations; use of a unified molecular interaction network consisting of both
protein-protein interactions and signaling pathways; and identification and statistical assessment of network
modules, i.e. cohesive groups of genes of interest with a higher density of interactions within groups than between
groups.

Conclusions:We confirm and extend the observation that GBM alterations tend to occur within specific functional modules,
in spite of considerable patient-to-patient variation, and that two of the largest modules involve signaling via p53, Rb, PI3K
and receptor protein kinases. We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative
oncogene and an activator of the PI3K pathway; and, three additional significantly altered modules, including one involved
in microtubule organization. To facilitate the application of our network-based approach to additional cancer types, we
make the method freely available as part of a software tool called NetBox.
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Introduction

Glioblastoma multiforme (GBM) is the most common and

aggressive brain tumor in humans [1–3], and the first cancer type

to undergo comprehensive genomic characterization by The

Cancer Genome Atlas (TCGA) project [4]. Glioblastoma is

classified into two broad categories: primary and secondary.

Primary glioblastomas (accounting forw90% of cases and most of

the TCGA cases profiled) manifest de novo without prior evidence

of preexisting tumor; secondary glioblastomas develop through

malignant progression from lower grade astrocytomas [3].

Prognosis for glioblastoma patients remains dismal, as most

patients die within one year after diagnosis [3] and generally

respond poorly to current therapeutic approaches [4,5].

High-throughput cancer genomic studies, such as those being

organized by the TCGA and the International Cancer Genome

Consortium (ICGC) [6], are now enabling the research commu-

nity to examine the cancer genome in a comprehensive and

unbiased manner [7]. These efforts will soon lead to a

comprehensive catalog of altered genes, altered biological

processes and, by implication, therapeutic vulnerabilities in

cancer. For example, the TCGA GBM project has cataloged

somatic mutations and recurrent copy number alterations in

GBM, and has identified frequent alterations in the p53, RB, PI3-

kinase (PI3K) and receptor tyrosine kinase (RTK) signaling

pathways [4].

A fundamental and open challenge in cancer genomics is the

ability to distinguish ‘‘driver’’ from incidental ‘‘passenger’’

mutations. To first approximation, driver mutations are those

that confer the tumor with some selective advantage in growth and

contribute to tumorigenesis, whereas passenger mutations do not

[8]. A number of approaches have been developed to distinguish

drivers from passengers, including those that examine the rate of

synonymous versus non-synonymous mutations [8], those that
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predict the functional consequence of mutations [9], and newer

approaches that assess the overall rate of recurrence, based on

combined rates of sequence mutation and copy number alteration

[10]. A more recent approach by Torkamani et. al. [11] sought to

identify cancer drivers by identifying an enrichment of rare cancer

mutations within network modules reconstructed from gene

expression studies. Here, we also present a network-based

approach to identifying driver mutations in cancer, apply this

approach to GBM, and discuss potential applicability to other

cancer types.

Our network-based approach is based on the hypothesis that

cellular networks are modular, and consist of inter-connected

proteins responsible for specific cellular functions [12,13]. It is

further based on the hypothesis that the cancer phenotype is based

on the inability of multiple genetic functional modules to carry out

their basic functions, and that functional modules are critical to the

‘‘hallmarks of cancer’’, including self-sufficiency in growth signals,

evasion of apoptosis, sustained angiogenesis, tissue invasion and

metastasis [14]. Furthermore, different combinations of perturbed

genes can incapacitate each module [15], and each tumor can

perturb individual genes via multiple mechanisms including

sequence mutations, copy number alterations, gene fusion events,

or epigenetic changes. Evidence for such universality at the

module-level, but diversity at the genetic level can be seen in

multiple cancer types, including in glioblastoma. For example,

nearly all GBM tumors contain alterations in the p53 tumor

suppressor pathway, but individual tumors exhibit diverse

mechanisms for pathway alteration – mutation or homozygous

deletion of TP53, mutation or homozygous deletion of CDKN2A/

ARF, or amplification of MDM2/MDM4. If tumors frequently

target biological modules that execute key biological processes,

and network knowledge about such modules is available, we

hypothesized that it would be possible to algorithmically identify

frequently perturbed modules, and from these modules identify

candidate driver mutations.

Results and Discussion

A Network-Based Approach for Distinguishing Driver
from Passenger Mutations
We performed integrated network analysis to identify frequently

altered network modules and candidate driver mutations in

glioblastoma. The network analysis is summarized in Figure 1.

We began by constructing a global Human Interaction Network

(HIN). Due to the potentially high rate of false positives and false

negatives associated with high-throughput protein-protein inter-

action detection techniques [16] and natural language processing

(NLP) algorithms [17], we chose to construct the HIN of literature

curated data sources only (see Methods). To cover increased

network territory, we also chose to create a unified HIN consisting

of both protein-protein interactions and signaling pathways. The

final network consists of genes, represented as nodes, and

interactions, represented as edges. Interactions represent any

functional association between two genes, such as a direct protein-

protein interaction, membership in the same complex, or a state

change event, such as a phosphorylation event. Redundant edges

in this network may exist if multiple data sources have evidence for

the same interaction. Since the module detection algorithm

described below does not take into account multiple lines of

evidence or self-directed edges, all redundant edges were collapsed

into single edges, and all self-directed edges were pruned from the

network.

To gain a global view of genomic alterations occurring in

glioblastoma, we restricted our analysis to the 91 TCGA GBM

cases, for which both copy number and sequence mutation data

were available. Seven of these cases were treated with adjuvant

chemotherapy and classified as hypermutators, and were excluded

from the analysis. To focus on minimally recurrent alterations, we

also only included genes that were altered in two or more of the

final 84 cases. As was the case in the original TCGA pathway

analysis, only unequivocal genetic alterations were included [4].

This includes validated non-synonymous somatic nucleotide

substitutions, and likely homozygous deletions and multi-copy

amplifications, as determined by the RAE algorithm (see

Methods).

A total of 517 genes passed the frequency threshold. Of these,

274 genes had interactions in the human interaction network

(HIN). We next tried to connect these 274 genes into a network,

based on prior known interactions in the HIN. Our goal was to

include interactions between altered genes, and to simultaneously

identify biologically informative ‘‘linker’’ genes which were not in

the original altered list, but which were statistically enriched for

connections to member of the GBM gene list. By including such

linkers, we aimed to connect more genes in the original gene list,

and to provide greater biological context for module discovery and

interpretation. For each pair of genes, we found all shortest paths

of lengths 1 and 2 connecting the two genes in the HIN. If two

genes are connected via a shortest path of 1, they are directly

connected via an interaction. If two genes are connected via a

shortest path of 2, there may be multiple paths of length two, each

of which includes a unique linker gene. To retain information rich

linker genes only, we applied a statistical threshold test for local

enrichment. The statistical threshold uses the global degree of each

linker gene within the HIN and the hypergeometric distribution to

assess the probability that the linker gene would connect to the

observed number of altered genes by chance alone. After FDR

correction, linker genes which do not pass a p-value threshold of

0.05 were pruned from the network. Using a shortest path

threshold of 2 and a FDR-adjusted p-value cut-off of: 0.05, we

were able to connect 66 GBM altered genes and identify 6 linker

genes.

To assess the level of global connectivity in the observed GBM

network, we compared the size (number of nodes and edges) of the

largest component in the network to the largest component

generated by randomly selected sets of genes known to be present

in the HIN. At each of 1000 iterations, we randomly selected 274

genes from the HIN and connected them via the same shortest

path threshold and p-value cut-off parameters. This test showed

that the GBM network is highly connected, more so than expected

by chance (number of nodes = 55, p-value: 0.014; number of

edges = 135, p-value: 0.01).

Finally, we partitioned the GBM network into network modules

or communities — clusters of network nodes joined together in

tightly knit groups, between which there are only looser

connections [18]. This community structure or network modular-

ity has been identified in diverse network systems, including social

[18,19], scientific collaboration [20], metabolic [21], and molec-

ular interaction networks [22–24]. Numerous network module

algorithms have been proposed, including those that take into

account network topology alone, and those that take into account

network topology plus additional biological information, such as

correlated gene expression or subcellular localization [23,25–27].

We chose to use the widely used edge betweenness algorithm by

Girvan and Newman [18] for modularity detection. In this final

step, we also calculated the modularity of the partitioned GBM

network. This is a well-defined measure in network analysis that

quantifies the extent of modularity seen in an observed network

(see Methods).

Network Analysis of GBM
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Using the Newman-Girvan module detection algorithm, we

detected a total of 10 modules, with an overall network modularity

of 0.519. Random graphs and scale-free graphs can exhibit a

relatively high degree of modularity [28]. We therefore chose to

assess the statistical significance of the observed network

modularity in relation to a null model of random networks of

the same size and same degree distribution. To do so, we

performed 1000 random simulations — in each simulation, the

observed GBM network was locally rewired, such that all genes

had exactly the same number of connections as before, but the

choice of interaction partners was random [29]. For each random

network, the network modularity score was recalculated, and the

observed modularity score was then converted to a z-score or a

scaled modularity score [30]. One thousand local rewiring

simulations found an average network modularity of 0.296, with

a standard deviation of 0.058. This resulted in a scaled modularity

score of: 3.84, providing evidence that the GBM network is more

modular than random.

Properties of the GBM Network
The main set of network modules identified in glioblastoma is

shown in Figure 2. From these modules, we can make two initial

observations. First, the network-based approach identifies many of

the same driver candidates as the original TCGA frequency-

based approach used to assess mutational significance. The

original TCGA approach (with false discovery rate v10
{3)

initially identified eight genes as significantly mutated. Notably,

seven of these genes appear within the GBM network, and all

seven appear within the two largest modules (NF1 does not appear

within the network). Additional, while no strict statistical cut-off

was used to assess genes individually altered by copy number

alteration in the original analysis, many of the genes that are

Figure 1. Overview of the network approach for identifying oncogenic processes and candidate driver genes in GBM. We began by
creating a literature curated Human Interaction Network (HIN) derived from protein-protein interactions and signaling pathways (A), and assembling
genomic alterations in GBM (B). We then extracted a GBM-specific network of altered genes (C), which was then partitioned into network modules
(D). We assessed the level of connectivity seen within the GBM network by using (E1) a global null model to compare the size of the largest
component in the observed network v. networks arising from randomly selected gene sets; and (E2) a local null model to compare network
modularity of the observed network to locally rewired networks.
doi:10.1371/journal.pone.0008918.g001

Network Analysis of GBM
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targets of high-level focal amplification or homozygous deletions,

including EGFR, CDK4, CDKN2A/B, PTEN, MDM2 and MDM4

are all also identified within the GBM network.

Second, the two largest modules identified by network analysis

correspond very closely to the three critical signaling pathways

identified in the original TCGA pathway analysis. These modules

also correspond well to genetic and pathway alterations known to

GBM biology prior to TCGA analysis [2]. For example, the p53

tumor suppressor pathway, which prevents the propagation of

unstable genomes, is frequently altered in glioblastoma [2].

Alterations within the p53 pathway include mutations and

deletions of TP53, homozygous deletion of CDKN2A, and

amplifications of MDM2 and MDM4 [2,4]. The algorithmically

identified RB1 module contains all of these known genetic

alterations (Figure 3A). Glioblastomas also nearly universally

circumvent cell cycle inhibition through genetic alterations to the

RB pathway [2]. These alterations include mutations in RB1

[31,32], amplifications of CDK4 [33], CDK6 [34] CCND1 or

CCND2; and homozygous deletions of CDKN2A, CDKN2B, or

CDKN2C [4]. All of these alterations, with the exception of CCND1,

which did not meet our frequency threshold, are also clustered

together within the RB1 module identified by network analysis

(Figure 3A). Notably, CDK6 was not included in the original input

list, but was identified as a statistically significant linker gene.

Figure 2. Network modules identified in GBM. (A) Modules are densely connected sets of altered genes that may reflect oncogenic processes. A
total of 10 modules were identified, the largest of which are shown. Linker genes, indicated in red, are not altered in GBM, but are statistically
enriched for connections to GBM-altered genes. (B) The observed modularity of the GBM network (0.519) is compared with 1000 randomly rewired
networks (average 0.296, standard deviation 0.058). This results in a z-score, or scaled modularity score, of 3.84.
doi:10.1371/journal.pone.0008918.g002

Network Analysis of GBM
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The largest and most densely inter-connected module identified

is the PIK3R1 module. This module contains many members of

the phosphatidylinositol 3-Kinase-AKT pathway, also a frequent

target of disruption in glioblastoma [2]. Major downstream effects

of PI3K/AKT activation include cell growth, proliferation,

survival and motility, all factors that drive tumor progression.

Known alterations in the pathway include frequent alterations to

receptor tyrosine kinases, homozygous deletion of PTEN, homo-

zygous deletion of NF1, mutations in AKT, and alteration to

components of the PI3K complex [2,4]. The PIK3R1 module

includes all of these alterations, with the exception of NF1 and

AKT. Identified members include PTEN, receptor tyrosine kinases:

EGFR, PDGFRA, and ERBB2. It also includes two subunits of the

Class I PI3K complex, including the p110 catalytic subunit

PIK3CA, and the p85 regulatory subunit PIK3R1 (Figure 3B).

To test the robustness of these initial observations, we

performed network analysis of mutated genes discovered in a

separate unbiased re-sequencing effort in GBM [35]. For this, we

used the set of 40 GBM candidate cancer genes (CAN-genes) that

are most likely to be cancer drivers. Using a shortest path

threshold of two and a linker p-value cut off of 0.001, we were able

to place 10 CAN genes into a network context and identify 9

significantly enriched linker genes. Network partitioning was then

able to identify two main modules, one corresponding to the

components of the PI3K pathway (including EGFR, PTEN,

PIK3CA, and PIK3R1), and one corresponding to the components

Figure 3. Automated network analysis approach is in close agreement with previous manually curated pathway analysis
approach. The original pathway analysis of TCGA glioblastoma datasets was derived by mapping observed gene alterations onto a manually
curated GBM-specific network, based on the glioblastoma literature. This non-algorithmic analysis identified driver alterations in the p53, RB and
PI3K pathways. Our automated network analysis approach is in close agreement with these results (top: P53/Rb; bottom: PI3K). The one main
exception is that network analysis does not identify NF1 as a participant in the PI3K module. Additional candidate driver genes identified by
network analysis, including AGAP2, are identified and annotated on the right. Percentage values after each newly identified candidate driver
indicate percent of cases with genetic alterations (sequence mutations, homozygous deletions, or multi-copy amplifications) across the 84 TCGA
GBM cases analyzed.
doi:10.1371/journal.pone.0008918.g003
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of the TP53/RB pathway (including TP53, CDKN2A, CDK4 and

RB1) (data not shown). Despite the much smaller sample size used

in the Parsons study, network analysis was also able to identify 6 of

the 8 genes identified as significantly mutated in the TCGA study,

and the main two-module signature is also present in the Parsons

data set. From this, we can conclude that the the module signature

is robust across both data sets and the modules are frequently

altered across patients profiled in both studies.

In summary, a network-based approach identifies many of the

same candidates as the original frequency-based approach used to

assess mutational significance. Furthermore, GBM alterations

cluster within non-random modules, and the modules are robust

across different studies; and a network-based approach can

automatically identify and extract biologically relevant GBM

modules, which correspond closely to prior known GBM biology.

Identification of AGAP2 and Additional Candidate Drivers
in the PIK3R1 Module
As has been noted by others, clustering of networks into modules

can be used to direct experimental research by providing a

functional context for previously uncharacterized genes [23]. In our

case, network module analysis identifies new candidate driver genes

within previously identified p53/RB and PI3K signaling modules,

and within newly identified modules in glioblastoma. For example,

within the PIK3R1 module, the most notable new driver candidate

is AGAP2, a gene which has been previously implicated in human

glioblastoma [36], but was not reported in the first TCGA pathway

analysis [4]. AGAP2, also known as PIKE and CENTG1, is amplified

in 19% of the GBM cases, and is is frequently co-amplified with

Cyclin-dependent kinase 4 (CDK4) in a variety of human cancers,

including sarcoma, glioblastoma, and neuroblastoma [37]. As

CDK4 is known to phosphorylate Rb, and is a known oncogene,

the independent oncogenic role of AGAP2 is in question. However,

recent evidence indicates that PIKE-A, one of the three isoforms of

AGAP2, specifically binds to active AKT [37], and that PIKE-A is a

proto-oncogene capable of promoting cell proliferation and

invasion [38]. AGAP2 may therefore indeed be a driver in GBM

oncogenesis, and may represent an alternative or additional means

by which glioblastoma tumor cells activate the PI3K pathway, and

its downstream effects, including cell proliferation, inhibition of

apoptosis, and tumor invasiveness. However, as with all such

predictions regarding driver genes, definitive evidence can only be

provided by further functional studies.

Other new candidate driver genes altered in at least 5% of

GBM cases, but not detected by a previous frequency-based

mutation significance test or previous pathway analysis include:

AVIL, KIT, TEK, FRS2, and KDR. AVIL is implicated primarily by

multi-copy amplifications (18% of cases), is in the shoulder of the

CDK4/AGAP2 amplicon, and may play a role in the development

of neuronal cells that form ganglia [39]. KIT and KDR are both

located in the shoulder of the PDGFRA amplicon, which may

represent the true target of amplification. However, these genes

may represent additional drivers and targets of amplification. For

example, KIT has been identified as a proto-oncogene, and has

been previously implicated in glioblastoma [40–42]. KDR encodes

one of the two receptors of the Vascular Endothelial Growth

Factor (VEGF), and maintains a key role in regulating angiogen-

esis-related functions [43]. Notably, the TEK receptor tyrosine

kinase (located in the shoulder of the CDKN2A deletion), is also

involved in angiogenesis, and is the receptor for angiopoietin-1

[44]. As is the case with AGAP2, and all other predictions

regarding driver genes, definitive evidence regarding the role of

these genes in GBM oncogenesis can only be provided by further

functional studies.

Identification of Additional Modules and Candidate
Drivers
In addition to the two main modules, network analysis also

identified eight additional modules. Three of these modules

contained four or more genes, and are briefly summarized below

and in Figure 4.

The DCTN2 module is altered in 17% of all GBM cases, and

includes four genes: DCTN2, TUBGCP2, TUBGCP6, and

FGFR1OP. All four of the genes are located in the centrosome

and microtubule organizing center (FDR adjusted p-value:

0:0012). Centrosomes are critical to organizing the interphase

cytoskeleton and the bipolar mitotic spindle, both of which are

critical to ensuring the correct segregation of chromosomes during

cell division. Centrosomes also serve as a ‘‘command center’’ for

integrating multiple cell cycle and repair signals, including

CHEK1, CHEK2, ATM, BRCA1, and ATR in response to

DNA damage [45]. We hypothesize that alteration of centrosome-

related genes cause dysregulation of chromosomal segregation

and/or normal DNA damage response, either of which could lead

to increased genomic instability in GBM.

The NUP107 module is altered in 19% of all GBM cases, and

includes four genes: SNRPE, THOC4, NUP107, NUP50. The

module is not enriched for any GO processes, but two of the genes,

NUP50 and NUP107 are components of the nuclear pore complex.

The IFNAR1 module is altered in 25% of all GBM cases, and

includes four altered genes: IFNA1, IFNA2, IFNB1, and IFNW1

and one linker gene: IFNAR1. Notably, all four of the genes are

involved in interferon-alpha/beta receptor binding (FDR adjusted

p-value: 1:0|10
{7), but all genes are also located on chromosome

9p, proximal to CDKN2A, which is a clear target of focal deletion.

The genes could therefore be passenger deletions and deleted as a

consequence of their proximity to CDKN2A.

Availability of Software
To facilitate the application of our network-based approach to

additional cancer types, we have made our software freely

available as part of a command line tool, called NetBox. NetBox

is pre-loaded with the Human Interaction Network (HIN) defined

above, and provides a simple command line interface for

connecting genes into a network, identifying linker genes,

partitioning the network into modules, and executing the random

background models. Results are then made available to the end

user as an HTML web page and a series of network and attribute

files, which can be loaded into Cytoscape [46] for visualization and

further analysis. The NetBox software, user guide, and GBM data

sets are available for download at: http://cbio.mskcc.org/netbox.

Conclusions
One of the central challenges confronting high-throughput

cancer genomics is the ability to sift through the deluge of

genomic profiling data and discern the true cancer signals from a

general background of overall genomic instability. One of the

most successful approaches to discerning the signal in mutation

data or in copy number alteration data is to seek out those genes

or regions which are altered at a frequency above a background

random model. However, such an approach may only identify

the most prominently altered genes, many of which may have

already been known prior to the large investment in resequen-

cing. And, while the focus on frequent regions of copy number

alteration identifies many narrowly defined regions with few

target genes, many regions contain dozens, if not hundreds of

potential targets, and it is difficult to determine which of these

represent the true targets.

Network Analysis of GBM
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In contrast to a purely frequency based approach to identifying

cancer signals and candidate drivers, we and others [11] have

proposed a network-based approach to the problem. Our

approach is based on the hypothesis that tumors target specific

biological modules of critical importance, and that such modules

can be algorithmically identified based on network topology alone.

Such an approach does, however, have certain drawbacks. First,

network analysis is only as good as the network itself. Human

interaction and pathway data remain sparse and fragmented, and

we must assume that the Human Interaction Network (HIN) used

here represents a small portion of the full human interactome [47].

Furthermore, interactions and pathways in our network are

completely devoid of the context in which they were originally

described, and we can only use the HIN as an approximate model

for in vivo interactions. As a quality filter, we have also specifically

chosen to include literature-curated interactions and pathways, but

this may bias the network towards disease-associated genes.

Second, distinguishing genes implicated by copy number alter-

ations remains problematic, even when candidate genes are

filtered through a network. For example, KIT, KDR and PDGFRA

are all located at 4q12, a region of frequent amplification in GBM,

and it is difficult to determine which one(s) are the true targets.

Despite these challenges, our network-based approach is able to

automatically identify the main p53, Rb and PI3-kinase signaling

modules, providing support for our hypothesis and our approach. It

also identifies new candidate drivers, including AGAP2/CENTG1, a

putative oncogene and an activator of the PI3K pathway, and three

new modules of potential interest. Unlike the network-based

approach proposed by Torkamani [11], our approach is based

specifically on integrating mutation and copy number data, uses a

Figure 4. Network analysis identifies three additional altered modules, including the DCTN2 module, which is involved in
microtubule organization. Each of the altered modules is implicated by homozygous deletions or multi-copy amplifications across the 84
analyzed GBM cases. Each module is annotated with Gene Ontology enrichment, chromosome location, statistical significance of copy number
alteration against a background model of random aberrations, as determined by RAE copy number analysis; assessment of correlation between copy
number and mRNA expression, and genomic signature across 84 GBM cases.
doi:10.1371/journal.pone.0008918.g004

Network Analysis of GBM
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high-quality literature curated network (as opposed to a network

inferred from gene expression studies), and is not focused

exclusively on rare mutations alone. We have also made our

approach freely available within the NetBox software tool.

Future Directions
We anticipate several possible future directions for our work. (1)

More alteration data: the next phase of the TCGA GBM project

will be sequencing over 6,000 gene and microRNA targets in

several hundred additional GBM cases, as well as a number of

tumor and paired normal complete genome sequences. This will

provide much higher resolution, and a much broader coverage of

genes, both of which will enable us to more effectively perform

higher confidence network analysis and identify new candidate

drivers and modules. (2) Larger network: we aim to broaden our

network coverage by integrating the currently used literature

curated networks with those derived from high-throughput

protein-protein detection methods and microRNA prediction

target programs, with appropriate quality filters. (3) Epigenetic

data: we aim to integrate methylation, histone modification and

unexpected expression changes into our analysis. (4) Quality of

mutations: we plan to weight non-synonymous mutations with the

likely functional impact based on analysis of residue conservation

patterns and protein 3D structures. (5) Correlated events:

correlation and anticorrelation between alteration events within

and between modules can provide clues as to oncogenic history

and as to likely vulnerabilities to targeted intervention. (6) Tumor

subtypes: module alteration patterns, and possibly module

structure is likely to differ between different tumor subtypes, such

as the EGFR, PDFGRA and NF1 subtypes of GBM. (7) Diverse

cancers: it will be of particular interest to investigate the common

module features and characteristic differences for different cancer

types, starting with the next two TCGA target cancers, ovarian

and lung cancer. The extensions may provide additional insights

into the nature of altered molecular processes in cancer.

Methods

GBM Mutation Data and Copy Number Analysis
Sequence mutation and DNA copy number alteration data for all

TCGA GBM cases was obtained from the TCGA data portal [48].

Mutation data is only available for the 601 genes selected for

resequencing in Phase 1 of the GBM project, and only for 91 GBM

cases. For copy number data, 216 glioblastoma tumors were

analyzed with RAE, as previously described [4,49]. For all isoforms

of autosomal genes in RefSeq (hg18), we discretized copy number

using the multi-component model in RAE. We assign one of five

putative aberration states to each isoform and tumor from

overlapping regions of the unified breakpoint profile: (i) homozygous

deletion (D1§0.9), (ii) heterozygous loss (D0§0.9 and D1v0.9), (iii)

copy-neutral (D0 and A0v0.9), (iv) single-copy gain (A0§0.9 and

A1v0.5), and (v) multi-copy amplification (A0§0.9 and A1§0.5).

In the event of discontinuous coverage of a coding locus by regions

that harbor intragenic breakpoints in copy-number segmentation,

the region of extreme value in Ax and Dx respectively determines

the assigned state. Statistical significance of genomic alteration was

assigned to genes as the minimum q-value from the one to many

genomic regions that span each coding locus as determined by RAE.

These include significance levels determined either by a model of

total genomic gain/loss or a model designed to detect uncommon

amplification and homozygous deletion events with little evidence of

low-level changes (for details refer to [4,49]).

An alteration frequency score for each gene was calculated,

based on the 84 GBM cases with both sequence mutation and

copy number data (hypermutators excluded). Each gene was

considered altered if modified by a validated non-synonymous

somatic nucleotide substitution, a homozygous deletion or a multi-

copy amplification; all other copy number events were ignored, as

was originally done in the original TCGA pathway analysis [4].

Network results were compared to the manually curated GBM

network, as obtained from Figure S8 of the TCGA manuscript [4].

Individual gene and gene set alteration frequencies were obtained

from the cBio Cancer Genomics Data Portal [50].

Creation of the Human Interaction Network (HIN)
Interaction data from HPRD (Release 8: July 6, 2009) was

obtained from the HPRD web site (http://www.hprd.org/) on

Monday, September 28, 2009. Pathway data sets for Reactome

(Release 29: June 24, 2009), NCI/Nature Pathway Interaction

Database (November 12, 2008 Release), and the MSKCC Cancer

Cell Map (May 19, 2006 Release) were downloaded in BioPAX

format from Pathway Commons (http://www.pathwaycommons.

org) on Monday, September 28, 2009.

Pathways in BioPAX are represented as sets of biochemical

processes with inputs, outputs, and catalysts. A protein is often

represented in multiple post-translational states, complexes, or

cellular locations. However, most module discovery algorithms

were developed for binary association networks where each

biological entity is represented by a single node. To address this

mismatch, we developed a set of rules for mapping subgraphs of

biochemical networks to binary interactions. For example a

phosphorylation reaction in BioPAX would be recognized as a

‘‘state change’’ interaction by the simple interaction rules

(Figure 5). Similar reductions have been described by different

groups in the past [51,52] but these were limited to a single rule

per study. Our current set of rules covers molecules participating

in the same reaction or complex, and molecules catalyzing

consecutive reactions, or co-controlling the same set of processes.

The full list of rules and their explanations can be found at the

Pathway Commons web site [53]. Rules were implemented in Java

within a flexible and expandable framework and are available as a

part of the open-source Paxtools library [54]. We have also made

binary networks for each of the data sources in Pathway Commons

available for download at: http://www.pathwaycommons.org.

Figure 5. BioPAX to binary interaction mapping: example
mapping rule. To integrate complex signaling pathway data into our
Human Interaction Network (HIN), we have developed a set of rules for
mapping subgraphs of biochemical networks to binary interactions. An
example rule for mapping state changes, such as phosphorylation
events, is shown.
doi:10.1371/journal.pone.0008918.g005
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All redundant edges were collapsed into single edges, and all

self-directed edges were pruned from the network. After edge

pruning, the final network consists of 9,264 genes and 68,111

interactions.
Identification of the GBM network and statistically

significant linker genes. To determine the network of GBM

altered genes, we began by creating an empty graph G. For each

GBM altered gene X, we queried the HIN for all neighbors of X

and placed these genes and interactions in G. Neighbor nodes of

degree 1 are connected to exactly one altered gene, but do not

inter-connect any altered genes, and are therefore immediately

pruned from the network. Remaining neighbor nodes of degree

$2 represent candidate linker genes, which connect two or more

altered genes within the network. To identify statistically

significant linker genes, we used the global degree of each linker

gene within the HIN and the hypergeometric distribution to assess

the probability that the linker gene would connect to the observed

number of altered genes by chance alone. After FDR correction

via Benjamini Hochberg [55], linker genes above a p-value

threshold of 0.05 were pruned from the network. Finally, we

queried the HIN for interactions between remaining linker genes,

and added these to G.

Module Detection
Modularity score. Modularity measures the fraction of edges

in a network that connect nodes within-modules minus the

expected value of the same quantity of edges in a network with the

same module divisions but random connections between nodes

[19]. It is measured by:

M~

X

NM

s~1

ls

L
{

ds

2L

� �2
" #

ð1Þ

where NM is the number of modules, ls is the number of edges

within module s, L is the total number of edges in the network,

and ds is the sum of the degrees of all nodes within module s

[19,56]. If the number of within module edges is no better than

random, the modularity value will approach 0; values approaching

1 indicate strong modular structure [19].
Module detection. We used the edge betweenness algorithm

originally proposed by Girvan and Newman [18] to detect network

modules, and implemented by the EdgeBetweennessClusterer in

the Java JUNG library [57]. The JUNG implementation is a slight

modification of the original algorithm and requires that one pre-

specify the number of edges to be removed. As recommended in

[19], we extended the JUNG implementation to sequentially

remove all edges, and recalculate the network modularity after

each edge removal, and automatically identify the number of edges

which results in the optimal / maximum network modularity.
Global random gene set null model. To assess the level of

global connectivity seen in the GBM network, we compared the

size (number of nodes and edges) of the largest component in the

network to the largest component generated by randomly selected

sets of genes known to be present in the HIN. At each of 1000

iterations, we randomly selected 274 genes from the HIN and

connected them via the original shortest path threshold and p-

value cut-off parameters. We then determined the size of the

largest component within this randomly generated network, and

determined an empirical p-value by keeping track of the number

of times this largest component equaled or exceeded the observed

largest component.

Local random rewiring null model. To assess the statistical

significance of the network modularity observed in the GBM

network, we used a local rewiring algorithm, such that random

networks maintain the same size and all genes maintain the same

degree, but the choice of interaction partners is random [29]. For

each random network, we calculate the network modularity, and

calculate the average and standard deviation for the entire set of

random networks. The observed modularity score is then converted

into a z-score, or scaled modularity score to measure the deviation

of the observed network from its random null model [30].

Network Visualization and Module Analysis
Networks were visualized in Cytoscape [46]. Modules were

visualized as discrete colors and gene alteration frequencies were

visually resized in proportion to alteration frequency across the 84

analyzed GBM cases. Gene Ontology (GO) enrichment analysis

was performed using DAVID [58,59], using a background

population of all genes in the Human Interaction Network

(HIN). Correlation between discretized copy number calls and

gene expression was assessed via ANOVA in R version 2.7.2.

NetBox Software
The NetBox software, available at http://cbio.mskcc.org/

netbox, is written in the Java and Python programming languages.

It uses the Java HyperSQL embedded database to store the

Human Interaction Network (HIN) and Entrez Gene information,

and the Java JUNG library for all graph operations. To run the

software, users must have Java 1.5 (or later) and Python 2.5 (or

later) installed.
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