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Abstract We present the program package GOSAM which

is designed for the automated calculation of one-loop ampli-

tudes for multi-particle processes in renormalisable quan-

tum field theories. The amplitudes, which are generated in

terms of Feynman diagrams, can be reduced using either

D-dimensional integrand-level decomposition or tensor re-

duction. GOSAM can be used to calculate one-loop QCD

and/or electroweak corrections to Standard Model processes

and offers the flexibility to link model files for theories Be-

yond the Standard Model. A standard interface to programs

calculating real radiation is also implemented. We demon-

strate the flexibility of the program by presenting examples

of processes with up to six external legs attached to the loop.
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1 Introduction

The Standard Model is currently being re-discovered at the

LHC, and new exclusion limits on Beyond the Standard

Model particles—and on the Higgs mass—are being deliv-

ered by the experimental collaborations with an impressive

speed. Higher order corrections play an important role in ob-

taining bounds on the Higgs boson and New Physics. In par-

ticular, the exclusion limits for the Higgs boson would look

very different if we only had leading order tools at hand.

Further, it will be very important to have precise theory pre-

dictions to constrain model parameters once a signal of New

Physics has been established. Therefore it is of major impor-

tance to provide tools for next-to-leading order (NLO) pre-

dictions which are largely automated, such that signal and

background rates for a multitude of processes can be esti-

mated reliably.

The need for an automation of NLO calculations has been

noticed some time ago and lead to public programs like Fey-

nArts [1] and QGraf [2] for diagram generation and Form-

Calc/LoopTools [3] and GRACE [4] for the automated calcu-

lation of NLO corrections, primarily in the electroweak sec-

tor. However, the calculation of one-loop amplitudes with

more than four external legs were still tedious case-by-case

calculations. Only very recently, conceptual and technical

advances in multi-leg one-loop calculations allowed the cal-

culation of six-point [5–24] and even seven-point [25, 26]

processes at all, and opened the door to the possibility of

an automated generation and evaluation of multi-leg one-

loop amplitudes. As a consequence, already existing excel-

lent public tools, each containing a collection of hard-coded

individual processes, like e.g. MCFM [27, 28], VBFNLO

[29, 30], MC@NLO [31, 32], POWHEG-Box [33, 34],

POWHEL [35–37], can be flanked by flexible automated

tools such that basically any process which may turn out to

be important for the comparison of LHC findings to theory

can be evaluated at NLO accuracy.

We have recently experienced major advances in the ac-

tivity of constructing packages for fully automated one-

loop calculations, see e.g. [38–43]. The concepts that

lead to these advances have been recently reviewed in

[44]. Among the most important developments are the

integrand-reduction technique [45, 46] and the general-

ized n-dimensional unitarity [47]. Their main outcome is

a numerical reconstruction of a representation of the tensor

structure of any one-loop integrand where the multi-particle

pole configuration is manifest. As a consequence, decom-

posing one-loop amplitudes in terms of basic integrals be-

comes equivalent to reconstructing the polynomial forms of

the residues to all multi-particle cuts. Within this algorithm,

the integrand of a given scattering amplitude, carrying com-

plete and explicit information on the chosen dimensional-

regularisation scheme, is the only input required to accom-

plish the task of its evaluation. In fact, the integration is

substituted by a much simpler operation, namely by polyno-

mial fitting, which requires the sampling of the integrand on

the solutions of generalised on-shell conditions.

In this article, we present the program package GOSAM

which allows the automated calculation of one-loop ampli-

tudes for multi-particle processes. Amplitudes are expressed

in terms of Feynman diagrams, where the integrand is gen-

erated analytically using QGRAF [2], FORM [48], spin-

ney [49] and haggies [50]. The individual program tasks

are steered via python scripts, while the user only needs to

edit an “input card” to specify the details of the process to

be calculated, and launch the generation of the source code

and its compilation, without having to worry about internal

details of the code generation.

The program offers the option to use different reduc-

tion techniques: either the unitarity-based integrand reduc-

tion as implemented in SAMURAI [40] or traditional tensor

reduction as implemented in Golem95C [51, 52] interfaced

through tensorial reconstruction at the integrand level [53],

or a combination of both. It can be used to calculate one-

loop corrections within both QCD and electroweak theory.

Beyond the Standard Model theories can be interfaced using

FeynRules [54] or LanHEP [55]. The Binoth-Les Houches-

interface [56] to programs providing the real radiation con-

tributions is also included.

The advantage of generating analytic expressions for the

integrand of each diagram gives the user the flexibility to

organize the computation according to his own efficiency

preferences. For instance, the computing algorithm can pro-

ceed either diagram-by-diagram or by grouping diagrams

that share a common set of denominators (suitable for a

unitarity-based reduction), and it can deal with the evalu-

ation of the rational terms either on the same footing as

the rest of the amplitude, or through an independent rou-

tine which evaluates them analytically. These options and

the other features of GOSAM will be discussed in detail in

the following.

In Sect. 2, after giving an overview on the diagram gen-

eration and on processing gauge-group and Lorentz algebra,

we discuss the code generation and the reduction strategies.
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The installation requirements are given in Sect. 3, while

Sect. 4 describes the usage of GOSAM, containing all the

set-up options which can be activated by editing the input

card. In Sect. 5 we show results for processes of various

complexity. The release of GOSAM is accompanied by the

generated code for some example processes, listed in Ap-

pendix A.

2 Overview and algorithms

2.1 Overview

GOSAM produces, in a fully automated way, all the code

required to perform the calculation of one-loop matrix el-

ements. There are three main steps in the process of con-

structing the code: the generation of all contributing dia-

grams within a process directory, the generation of the For-

tran code, and finally compiling and linking the gener-

ated code. These steps are self-contained in the sense that

after each step all the files contained in the process directory

could be transfered to a different machine where the next

step will be carried out.

In the following sections we focus on the algorithms that

are employed for the construction of the code to produce and

evaluate matrix elements.

The first step (setting up a process directory), which con-

sists in the generation of some general source files and the

generation of the diagrams, is described in Sect. 2.2. The

second step (generating the fortran code) is carried out by

means of advanced algorithms for algebraic manipulation

and code optimization which are presented in Sects. 2.3

and 2.4. The third step (compilation and linking) is not spe-

cific to our code generation, therefore will not be described

here.

The practical procedures to be followed by the user in

generating the code will be given in Sect. 4, which can be

considered a short version of the user manual.

2.2 Generation and organisation of the diagrams

For the diagram generation both at tree level and one-loop

level we employ the program QGRAF [2]. This program al-

ready offers several ways of excluding unwanted diagrams,

for example by requesting a certain number of propagators

or vertices of a certain type or by specifying topological

properties such as the presence of tadpoles or on-shell prop-

agators. Although QGRAF is a very reliable and fast gener-

ator, we extend its possibilities by adding another level of

analysing and filtering over diagrams by means of Python.

This gives several advantages: first of all, the possibilities of-

fered by QGRAF are not always sufficient to distinguish cer-

tain classes of diagrams (see examples in Fig. 1); secondly,

Fig. 1 Two examples for diagrams which are difficult to isolate using

QGRAF. The diagram in Fig. 1(a) is zero in dimensional regularisation.

However, in QGRAF there is no operator to identify this type of dia-

grams. In Fig. 1(b) the Z boson is emitted from a closed quark line.

These diagrams form a separate gauge invariant class and could be

treated separately from diagrams where the Z boson comes from an

external quark line

QGRAF cannot handle the sign for diagrams with Majorana

fermions in a reliable way; finally, in order to fully optimize

the reduction, we want to classify and group diagrams ac-

cording to the sets of their propagators.

Within our framework, QGRAF generates three sets of

output files: an expression for each diagram to be processed

with FORM [48], Python code for drawing all diagrams,

and Python code for computing the properties of each dia-

gram. The information about the model for QGRAF is either

read from the built-in Standard Model file or is generated

from a user defined LanHEP [55] or Universal FeynRules

Output (UFO) [54] file.

The Python program automatically performs several

operations:

– diagrams whose color factor turns out to be zero are

dropped automatically;

– the fermion flow is determined and used to compute an

overall sign for each diagram, which is relevant in the

presence of Majorana fermions;

– the number of propagators containing the loop momen-

tum, i.e. the loop size of the diagram, the tensor rank and

the kinematic invariants of the associated loop integral are

computed;

– diagrams with an associated vanishing loop integral (see

Fig. 1(a)) are detected and flagged for the diagram selec-

tion;

– all propagators and vertices are classified for the diagram

selection; diagrams containing massive quark self-energy

insertions or closed massless quark loops are specially

flagged.

Any one-loop diagram can be written in the form

D =
∫

dnq

iπn/2

N (q)
∏N

l=1[(q + rl)2 − m2
l + iδ]

, (1)
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where the numerator is a polynomial of tensor1 rank r .

N (q) = C0 + C
μ1

1 qμ1
+ · · · + C

μ1...μr
r qμ1

· · ·qμr , (2)

and the N × N kinematic matrix is defined as

Sij = (ri − rj )
2 − m2

i − m2
j . (3)

All masses can be either real or complex. Important infor-

mation about the integrals that will appear in the reduction

of each one-loop diagram is contained in the tensor rank r

of the loop integral and its kinematic matrix Sij .

We define a preorder relation on one-loop diagrams, such

that D1 � D2 if their associated matrices S(D1) and S(D2)

are related by a finite (not necessarily unique) chain of trans-

formations

S(D2)
T1−→ S′ T2−→ · · · Tm−→ S(D1), (4)

where each transformation is one of the following:

– the identity,

– the simultaneous permutation of rows and columns,

– the simultaneous deletion of the row and column with

the same index, which corresponds to pinching the cor-

responding propagator in the diagram.

The relation “�” can be read as “appears in the reduc-

tion of”. Our algorithm groups the one-loop diagrams

D1, . . . , DD of a process into subsets V1, . . . , VG such that

– V1, . . . , VG form a partition of {D1, . . . DD} and

– each cell Vi contains a maximum element maxVi ∈ Vi ,

such that D � maxVi,∀ D ∈ Vi .

The partitioning procedure provides an important gain in ef-

ficiency, because while carrying out the tensor reduction for

the diagram maxVi , all other diagrams in the same cell Vi

are reduced with virtually no additional computational cost.

The gain in efficiency can be observed when reducing the di-

agram using the OPP method [45] and its implementations

in CutTools [57] and SAMURAI [40], as well as in classi-

cal tensor reduction methods as implemented e.g. in Go-

lem95C [51, 52], PJFRY [58] and LoopTools [3, 59].

In order to draw the diagrams, we first compute an order-

ing of the external legs which allows for a planar embedding

of the graph. Such ordering can always be found for a tree

or a one-loop graph since non-planar graphs only start to ap-

pear in diagrams with two or more loops. After the legs have

been assigned to the vertices of a regular polygon, we use

our own implementation of the algorithms described in [60]

for fixing the coordinates of the remaining vertices; the al-

gorithm has been extended to determine an appealing lay-

out also for graphs containing tadpoles. Starting from these

1Index contractions in (2) are understood in n-dimensional space.

coordinates and using the package Axodraw [61], GOSAM

generates a LATEX file that contains graphical representations

of all diagrams.

2.3 Algebraic processing

2.3.1 Color algebra

In the models used by GOSAM, we allow one unbroken

gauge group SU(NC) to be treated implicitly; any additional

gauge group, broken or unbroken, needs to be expanded ex-

plicitly. Any particle of the model may be charged under the

SU(NC) group in the trivial, (anti-)fundamental or adjoint

representation. Other representations are currently not im-

plemented.

For a given process we project each Feynman dia-

gram onto a color basis consisting of strings of generators

T
A1

ii1
T

A2

i1i2
· · ·T Ap

ip−1j
and Kronecker deltas δij but no contrac-

tions of adjoint indices and no structure constants f ABC .

Considering, for example, the process

u(1) + ū(2) → Z(3) + g(4) + g(5)

GOSAM finds the color basis

|c1〉 = q
(1)
i1

q̄
(2)
j2

g
A4

(4)g
A5

(5)(T
A4T A5)j2i1 ,

|c2〉 = q
(1)
i1

q̄
(2)
j2

g
A4

(4)g
A5

(5)(T
A5T A4)j2i1 ,

|c3〉 = q
(1)
i1

q̄
(2)
j2

g
A4

(4)g
A5

(5)δj2i1 tr{T A5T A4},

where q
(•)
i• and g

A•
(•) are the color parts of the quark and gluon

wave functions respectively. The dimension of this color ba-

sis for Ng external gluons and Nqq̄ quark-antiquark pairs is

given by [62]:

d(Ng,Nqq̄) =
Ng
∑

i=0

(−1)i
(

Ng

i

)

· (Ng + Nqq̄ − i)!. (5)

It should be noted that the color basis constructed in this

way is not a basis in the mathematical sense, as one can find

linear relations between the vectors |ci〉 once the number of

external partons is large enough.

Any Feynman diagram can be reduced to the form

D =
k

∑

i=1

Ci |ci〉 (6)

for the process specific color basis |c1〉, . . . , |ck〉 by applying

the following set of relations:

T A
ij T A

kl = TR

(

δilδkj − 1

NC

δij δkl

)

, (7)

f ABC = 1

iTR

(

T A
ij T B

jkT
C
ki − T A

ij T C
jkT

B
ki

)

. (8)
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The same set of simplifications is used to compute the ma-

trices 〈ci |cj 〉 and 〈ci |TI · TJ |cj 〉. The former is needed for

squaring the matrix element, whereas the latter is used to

provide color correlated Born matrix elements which we use

for checking the IR poles of the virtual amplitude and also

to provide the relevant information for parton showers like

POWHEG [33, 34, 63]. For the above example, GOSAM ob-

tains2

〈ci |cj 〉 = TRCF

⎛

⎜

⎝

(N2
C − 1) −1 NC

−1 (N2
C − 1) NC

NC NC N2
C

⎞

⎟

⎠
. (9)

Similarly, the program computes the matrices 〈ci |TI ·TJ |cj 〉
for all pairs of partons I and J .

If M(0) denotes the tree-level matrix element of the pro-

cess and we have

M(0) =
k

∑

j=1

C
(0)
j |cj 〉, (10)

then the square of the tree level amplitude can be written as

∣

∣M(0)
∣

∣

2 =
k

∑

i,j=1

(

C
(0)
i

)∗
C

(0)
j 〈ci |cj 〉. (11)

For the interference term between leading and next-to-

leading order we use a slightly different philosophy. First

of all we note that it is sufficient to focus on a single group

Vα as defined in Sect. 2.2,

(

M(1)
)†

M(0) + h.c.

=
∑

α

∫

dnq

iπn/2

Nα(q)
∏N

l=1[(q + rl)2 − m2
l + iδ]

+ h.c. (12)

In order to reduce the complexity at the level of the reduc-

tion, we perform the contraction with the tree-level already

at the integrand level,

Nα(q) =
k

∑

i,j=1

〈ci |cj 〉
(

C
(0)
i

)∗
C

(1)
j (q), (13)

where C
(1)
j is formed by the sum over the corresponding co-

efficients of all diagrams D ∈ Vα .

2.3.2 Lorentz algebra

In this section we discuss the algorithms used by GOSAM

to transform the coefficients C
(0)
i and C

(1)
i (q), as defined in

the previous section, such that the result is suitable for effi-

cient numerical evaluation. One of the major goals is to split

2In the actual code the results are given in terms of TR and NC only.

the n-dimensional algebra (n = 4 − 2ε) into strictly four-

dimensional objects and symbols representing the higher-

dimensional remainder.

In GOSAM we have implemented the ’t Hooft-Veltman

scheme (HV) and dimensional reduction (DRED). In both

schemes all external vectors (momenta and polarisation vec-

tors) are kept in four dimensions. Internal vectors, how-

ever, are kept in the n-dimensional vector space. We adopt

the conventions used in [49], where k̂ denotes the four-

dimensional projection of an in general n-dimensional vec-

tor k. The (n − 4)-dimensional orthogonal projection is de-

noted as k̃. For the integration momentum q we introduce in

addition the symbol μ2 = −q̃2, such that

q2 = q̂2 + q̃2 = q̂2 − μ2. (14)

We also introduce suitable projectors by splitting the metric

tensor

gμν = ĝμν + g̃μν, ĝμν g̃νρ = 0,

ĝ
μ
μ = 4, g̃

μ
μ = n − 4.

(15)

In the following, we describe the ’t Hooft algebra in de-

tail. For DRED, the only differences are that the numerator

algebra is performed in four dimensions for both external

and internal vectors (i.e. q ≡ q̂) and that in the very end all

appearances of q2 are replaced by q̂2 − μ2.

Wave functions and propagators GOSAM contains a li-

brary of representations of wave functions and propagators

up to spin two.3 The exact form of the interaction vertices is

taken from the model files.

The representation of all wave functions with non-trivial

spin is based on massless spinors. Each massive external

vector pi is replaced by its light-cone projection li with re-

spect to a lightlike reference vector k,

p
μ
i = l

μ
i +

p2
i

2pi · k kμ. (16)

For spin 1/2 particles we use the assignment of wave

functions as shown in Table 1; here, we quote the defini-

tion of the massive spinors from [49] assuming the splitting

of (16):

∣

∣p±〉

= |l〉 ±
√

p2

[lk] |k],
∣

∣p±]

= |l] ±
√

p2

〈lk〉 |k〉, (17a)

〈

p±∣

∣ = 〈l| ±
√

p2

[kl] [k|,
[

p±∣

∣ = [l| ±
√

p2

〈kl〉 〈k|. (17b)

3Processes with particles of spin 3/2 and spin 2 have not been tested

extensively. Furthermore, these processes can lead to integrals where

the rank is higher than the loop size, which at the moment are neither

implemented in SAMURAI nor in Golem95C.
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Table 1 Assignment of quark and lepton wave functions. We label the physical spin states by j3 = ±1, which is twice the 3-component of the

spin. The wave functions assigned in Table (a) are mapped onto the bracket notation used in spinney [49] as defined in Tables (b) and (c)

(a) Assignment of initial and final states for

quarks and leptons

l−, q l+, q̄

initial uα(k, j3) v̄α(k, j3)

final ūα(k, j3) vα(k, j3)

(b) Wave functions for massless fermions

uα(k,+1) = vα(k,−1) = |k〉
uα(k,−1) = vα(k,+1) = |k]

ūα(k,+1) = v̄α(k,−1) = [k|
ūα(k,−1) = v̄α(k,+1) = 〈k|

(c) Wave functions for massive fermions

uα(p,+1) =
∣

∣p+〉

ūα(p,+1) =
[

p+∣

∣

uα(p,−1) =
∣

∣p+]

ūα(p,−1) =
〈

p+∣

∣

vα(p,+1) =
∣

∣p−]

v̄α(p,+1) =
〈

p−∣

∣

vα(p,−1) =
∣

∣p−〉

v̄α(p,−1) =
[

p−∣

∣

In order to preserve the condition that for any loop integral

the tensor rank does not exceed the number of loop propa-

gators we fix all gauge boson propagators to be in Feynman

gauge. Their wave functions are constructed as [64]

εμ(p,+1) = 〈q|γμ|p♭]√
2〈qp♭〉

, εμ(p,−1) = [q|γμ|p♭〉√
2[p♭q]

,

(18)

where p♭ = p in the massless case and p♭ = l according to

(16) in the massive case. In the latter case the third polarisa-

tion is defined as

εμ(p,0) = 1
√

p2

(

2p♭
μ − pμ

)

. (19)

The wave functions and propagators for spin 3/2 and spin 2

particles correspond to those in [65].

Simplifications Once all wave functions and propagators

have been substituted by the above definitions and all ver-

tices have been replaced by their corresponding expres-

sions from the model file then all vector-like quantities

and all metric tensors are split into their four-dimensional

and their orthogonal part. As we use the ’t Hooft alge-

bra, γ5 is defined as a purely four-dimensional object, γ5 =
iǫμνρσ γ̂ μγ̂ ν γ̂ ρ γ̂ σ . By applying the usual anti-commutation

relations for Dirac matrices we can always separate the four-

dimensional and (n − 4)-dimensional parts of Dirac traces,

as we can use the fact that [49, 62]

tr(1) · tr(γ̂μ1
· · · γ̂μl

γ̃μl+1
· · · γ̃μl+p

)

= tr(γ̂μ1
· · · γ̂μl

) · tr(γ̃μl+1
· · · γ̃μl+p

). (20)

The same logic applies to open spinor lines such as [49]

tr(1) · 〈k1|γ̂μ1
· · · γ̂μl

γ̃μl+1
· · · γ̃μl+p

|k2〉

= 〈k1|γ̂μ1
· · · γ̂μl

|k2〉 · tr(γ̃μl+1
· · · γ̃μl+p

). (21)

While the (n − 4)-dimensional traces are reduced com-

pletely to products of (n − 4)-dimensional metric tensors

g̃μν , the four-dimensional part is treated such that the num-

ber of terms in the resulting expression is kept as small

as possible. Any spinor line or trace is broken up at any

position where a light-like vector appears. Furthermore,

Chisholm identities are used to resolve Lorentz contrac-

tions between both Dirac traces and open spinor lines. If

any traces remain we use the built-in trace algorithm of

FORM [48].

In the final result we can always avoid the explicit appear-

ance of Levi-Civitá tensors, noticing that any such tensor is

contracted with at least one light-like vector4 k̂μ, and we can

replace

k̂μǫμνρσ = − i

4

([

k|γ̂ν γ̂ρ γ̂σ |k
〉

−
〈

k|γ̂ν γ̂ρ γ̂σ |k
])

. (22)

Hence, the kinematic part of the numerator, at the end of our

simplification algorithm, is expressed entirely in terms of:

– spinor products of the form 〈kikj 〉, [kikj ] or [ki |γ̂ μ|kj 〉 ·
q̂μ,

– dot products k̂i · k̂j or k̂i · q̂ ,

– constants of the Lagrangian such as masses, widths and

coupling constants,

– the symbols μ2 = q̂2 − q2 and ε = (n − 4)/2.

Treatment of R2 rational terms In our representation for

the numerator of one-loop diagrams, terms containing the

symbols μ2 or ε can lead to a so-called R2 term [66], which

contributes to the rational part of the amplitude. In general,

there are two ways of splitting the numerator function:

N (q̂,μ2, ε) = N0(q̂,μ2) + εN1(q̂,μ2)

+ ε2 N2(q̂,μ2) (23a)

or, alternatively,

N (q̂,μ2, ε) = N̂ (q̂) + Ñ (q̂,μ2, ε). (23b)

It should be noted that in (23a) the terms N1 and N2 do

not arise in DRED, where only terms containing μ2 con-

tribute to R2. Instead of relying on the construction of R2

4Any external massive vector at this point has been replaced by a pair

of light-like ones. Contractions between two Levi-Civitá symbols can

be resolved to products of metric tensors.
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from specialized Feynman rules [67–70], we generate the

R2 part along with all other contributions without the need

to separate the different parts. For efficiency reasons, how-

ever, we provide an implicit and an explicit construction of

the R2 terms.

The implicit construction uses the splitting of (23a) and

treats all three numerator functions Ni on equal grounds.

Each of the three terms is reduced separately in a numeri-

cal reduction and the Laurent series of the three results are

added up taking into account the powers of ε.

The explicit construction of R2 is based on the assump-

tion that each term in Ñ in (23b) contains at least one power

of μ2 or ε. The expressions for those integrals are relatively

simple and known explicitly. Hence, the part of the am-

plitude which originates from Ñ is computed analytically

whereas the purely four-dimensional part N̂ is passed to the

numerical reduction.

2.4 Code generation

2.4.1 Abbreviation system

To prepare the numerator functions of the one-loop diagrams

for their numerical evaluation, we separate the symbol μ2

and dot products involving the momentum q̂ from all other

factors. All subexpressions which do not depend on either

q̂ or μ2 are substituted by abbreviation symbols, which are

evaluated only once per phase space point. Each of the two

parts is then processed using haggies [50], which gener-

ates optimized Fortran code for their numerical evalua-

tion. For each diagram we generate an interface to SAMU-

RAI [40], Golem95C [52] and/or PJFRY [58]. The two lat-

ter codes are interfaced using tensorial reconstruction at the

integrand level [53].

2.4.2 Reduction strategies

In the implementation of GOSAM, great emphasis has been

put on maintaining flexibility with respect to the reduction

algorithm that the user decides to use. On the one hand, this

is important because the best choice of the reduction method

in terms of speed and numerical stability can strongly de-

pend on the specific process. On the other hand, we tried

to keep the code flexible to allow further extensions to new

reduction libraries, such that GOSAM can be used as a lab-

oratory for interfacing future methods with a realistic envi-

ronment.

Our standard choice for the reduction is SAMURAI,

which provides a very fast and stable reduction in a large

part of the phase space. Furthermore, SAMURAI reports to

the client code if the quality of the reconstruction of the

numerator suffices the numerical requirements (for details

we refer to [40]). In GOSAM we use this information to

trigger an alternative reduction with either Golem95C [52]

or PJFRY [58] whenever these reconstruction tests fail, as

shown in Fig. 2. The reduction algorithms implemented in

these libraries extend to phase space regions of small Gram

determinants and therefore cover most cases in which on-

shell methods cannot operate sufficiently well. This combi-

nation of on-shell techniques and traditional tensor reduc-

tion is achieved using tensorial reconstruction at the inte-

grand level [53], which also provides the possibility of run-

ning on-shell methods with a reconstructed numerator. In

addition to solving the problem of numerical instabilities,

in some cases this option can reduce the computational cost

of the reduction. Since the reconstructed numerator is typ-

ically of a form where kinematics and loop momentum de-

pendence are already separated, the use of a reconstructed

numerator tends to be faster than the original procedure,

in particular in cases with a large number of legs and low

rank.

The flowchart in Fig. 2 summarizes all possible reduc-

tion strategies which are currently implemented. The strat-

egy in use is selected by assigning the variable reduc-

tion_interoperation in the generated Fortran

code. The availability of the branches is determined dur-

ing code generation by activating (at least one of) the ex-

tensions (samurai, golem95, pjfry) in the input card.

Fig. 2 Reduction strategies currently implemented in GOSAM: the

reduction algorithm is chosen by setting the variable reduc-

tion_interoperation in the generated Fortran code and can

be modified at run time. 0: SAMURAI only; 1: Golem95C only; 2:

SAMURAI with rescue option (Golem95C); 3: SAMURAI with numer-

ator from tensorial reconstruction; 4: same as 3 but with rescue option

(Golem95C). 11, 12 and 14 are the same as 1, 2, 3 (respectively) with

the difference that PJFRY is used instead of Golem95C.
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Switching between active branches is possible at run time.

In detail, the possible choices for the variable reduc-

tion_interoperation are the following:

0 the numerators of the one-loop diagrams are reduced by

SAMURAI, no rescue system is used in case the recon-

struction test fails;

1 the tensor coefficients of the numerators are recon-

structed using the tensorial reconstruction at the inte-

grand level, the numerator is expressed in terms of ten-

sor integral form factors which are evaluated using Go-

lem95C;

2 the numerators are reduced by SAMURAI; whenever the

reconstruction test fails, numerators are reduced using

the option 1 as a backup method;

3 tensorial reconstruction is used to compute the tensor co-

efficients; SAMURAI is employed for the reduction of

the reconstructed numerator, no rescue system is used;

4 as in option 3, SAMURAI is used to reduce the recon-

structed numerator, Golem95C is used as backup op-

tion;

11 same as 1 but PJFRY is used instead of Golem95C;

12 same as 2 but PJFRY is used instead of Golem95C;

14 same as 4 but PJFRY is used instead of Golem95C.

It is difficult to make a statement about the “optimal” re-

duction method because this depends on the process under

consideration. For multi-leg processes, e.g. bb̄bb̄ produc-

tion, we found that SAMURAI is clearly superior to tensor

reduction in what concerns timings and size of the code.

Concerning points which need a special treatment, we did

not make extensive studies using traditional tensor reduction

only, but one can certainly say that the combination of SA-

MURAI and tensorial reconstruction seems to be optimal in

what concerns the avoidance of numerical instabilities due

to inverse Gram determinants.

2.5 Conventions of the amplitudes

In this section we briefly discuss the conventions chosen for

the results returned by GOSAM. Depending on the actual

setup for a given process, in particular if an imported model

file is used, conventions may be slightly different. Here we

restrict the discussion to the case where the user wants to

compute QCD corrections to a process and in the setup files

he has put gs = 1. In this case, the tree-level matrix element

squared can be written as

|M|2tree = A
†
0 A0 = (gs)

2b · a0. (24)

The fully renormalised matrix element at one-loop level, i.e.

the interference term between tree-level and one-loop, can

be written as

|M|21-loop

= A
†
1 A0 + A

†
0 A1 = 2 · ℜ(A

†
0 A1)

= |M|2bare + |M|2ct,δmQ
+ |M|2ct,αs

+ |M|2wf,g + |M|2wf,Q

= αs(μ)

2π

(4π)ε

Γ (1 − ε)
· (gs)

2b ·
[

c0 + c−1

ε
+ c−2

ε2
+ O(ε)

]

.

(25)

A call to the subroutine samplitude returns an array con-

sisting of the four numbers (a0, c0, c−1, c−2) in this order.

The average over initial state colours and helicities is in-

cluded in the default setup. In cases where the process is

loop induced, i.e. the tree level amplitude is absent, the pro-

gram returns the values for A
†
1 A1 where a factor

(

αs(μ)

2π

(4π)ε

Γ (1 − ε)

)2

has been pulled out.

After all UV-renormalisation contributions have been

taken into account correctly, only IR-singularities remain,

which can be computed using the routine ir_subtrac-

tions. This routine returns a vector of length two, contain-

ing the coefficients of the single and the double pole, which

should be equal to (c−1, c−2) and therefore can be used as a

check of the result.

Ultraviolet renormalisation in QCD For UV-renormalisa-

tion we use the MS scheme for the gluon and all massless

quarks, whereas a subtraction at zero momentum is chosen

for massive quarks [71]. Currently, counterterms are only

provided for QCD corrections. In the case of electroweak

corrections only unrenormalised results can be produced au-

tomatically.

For computations involving loop propagators for mas-

sive fermions, we introduced the automatic generation of

a mass counter term needed for the on-shell renormalisa-

tion of the massive particle. Here, we exploit the fact that

such a counter term is strictly related to the massive fermion

self energy bubble diagrams (see Fig. 3). As described in

Sect. 2.2, the program GOSAM analyzes all generated di-

agrams. In that step also self-energy insertions of massive

Fig. 3 Feynman diagram of a

massive quark self energy in

QCD. For this type of diagram

GOSAM automatically

generates UV-counterterms
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quarks are detected, where we make the replacement

(/q + /r + m) · gμν

[(q + r)2 − m2]q2

→ (/q + /r + m) · gμν

[(q + r)2 − m2]q2
+ m

4

[

6q · r + 3(r2 − m2)

m2

+ 3(4 + 1HV)μ2

r2 − 3m2

]

gμν

[(q + r)2 − m2]q2
. (26)

The symbol 1HV is one in the ’t Hooft Veltman scheme and

zero in DRED.

Performing the integral, contracting the expression with

the QCD vertices at both sides and multiplying the miss-

ing factor of (2π)−1 we retrieve the expression for the mass

counter-term,

δm

m
= αs

2π

(4π)ε

Γ (1 − ε)

CF

2

(

μ2

m2

)ε [

3

ε
+ 5 − 1HV

]

. (27)

Furthermore, the renormalisation of αs leads to a term of

the form

|M|2ct,αs
= b · αs

2π

(4π)ε

Γ (1 − ε)
|M|2tree ·

[

−β0

ε

+ 2TR

3ε

Nf +Nf,h
∑

q=Nf +1

(

μ2

m2
q

)ε

+ CA

6
(1 − 1HV)

]

, (28)

with β0 = (11CA − 4TRNf )/6, Nf being the number of

light quark flavours, Nf,h the number of heavy flavours, and

b is the power of the coupling in the Born amplitude as de-

fined in (24). The last term of (28) provides the finite renor-

malisation needed to compensate the scheme dependence

of αs ,

αDR
s = αMS

s

(

1 + CA

6

αMS
s

2π

)

. (29)

A further contribution consists of the wave-function renor-

malisation of massive external quark lines. If we de-

note the set of external massive quark lines by Qh =
{Q1(m1), . . . ,Qp(mp)} we obtain

|M|2wf,Q = − αs

2π

(4π)ε

Γ (1 − ε)

CF

2

×
∑

Q(m)∈Qh

(

μ2

m2

)ε [

3

ε
+ 5 − 1HV

]

· |M|2tree.

(30)

Finally, also the wave function of the gluon receives a contri-

bution from the presence of heavy quarks in closed fermion

loops. If Ng is the number of external gluon lines, this con-

tribution can be written as

|M|2wf,g = − αs

2π

(4π)ε

Γ (1 − ε)
Ng

2TR

3ε

×
Nf +Nf,h

∑

q=Nf +1

(

μ2

m2
q

)ε

· |M|2tree. (31)

At the level of the generated Fortran code the presence

of these contributions can be controlled by a set of variables

defined in the module config.f90. The variable renor-

malisation can be set to 0, 1, or 2. If renormalisa-

tion=0, none of the counterterms are present. If renor-

malisation=2 only |M|2ct,δmQ
is included, which is the

counterterm stemming from all terms of the type of (27) con-

tributing to the amplitude.

In the case where renormalisation=1 a more fine-

grained control over the counterterms is possible.

renorm_logs: if set to false, in all counterterms the gen-

eration of logarithms is disabled, i.e. factors of the form

(•)ε in (27) to (31) are replaced by one.

renorm_beta: if set to false, the counterterm |M|2ct,αs
is

set to zero.

renorm_mqwf: if set to false, the counterterm |M|2wf,Q is

set to zero.

renorm_mqse: if set to false, the counterterm |M|2ct,δmQ

is set to zero.

renorm_decoupling if set to false, the counterterm

|M|2wf,g is set to zero.

The default settings for renormalisation=1 are true

for all the renorm options listed above.

Finite renormalisation of γ5 in QCD In the ’t Hooft Velt-

man scheme, a finite renormalisation term for γ5 is required

beyond tree level. The relevant terms are generated only if

fr5 is added in the input card to the list of extensions be-

fore code generation. Currently, the automatic generation of

this finite contribution is not performed if model files dif-

ferent from the built-in model files are used. In agreement

with [72] and [73] we replace the axial component at each

vertex,

γ μγ5 → 1
2
Zaxial

(

γ μγ5 − γ5γ
μ
)

, (32)

with

Zaxial = 1 − 2
αs

2π
CF · 1HV. (33)

Once it is generated, this contribution can be switched on

and off at run-time through the variable renorm_gamma5,

which is defined in the module config.f90.
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Conversion between the schemes In GOSAM we have

implemented two different schemes, the ’t Hooft Veltman

scheme and dimensional reduction. By default, the former

is used, while the latter can be activated by adding the ex-

tension dred. If a QCD computation has been done in di-

mensional reduction the result can be converted back to the

’t Hooft Veltman scheme by adding a contribution for each

external massless parton,

∣

∣MCDR
∣

∣

2

1-loop
=

∣

∣MDR
∣

∣

2

1-loop

− αs

2π

∣

∣MDR
∣

∣

2

tree

Next
∑

I=1

γ̃ DR
I , (34)

with γ̃ DR
q = γ̃ DR

q̄ = CF /2 and γ̃ DR
g = CA/6. This conver-

sion can be switched on by setting convert_to_cdr to

true in the module config.f90. At one-loop level, the

’t Hooft Veltman scheme and conventional dimensional reg-

ularisation (CDR) are equivalent in the sense that γ̃
′t HV
I = 0

for all partons.

3 Requirements and installation

3.1 Requirements

The program GOSAM is designed to run in any modern

Linux/Unix environment; we expect that Python (≥ 2.6),

Java (≥1.5) and Make are installed on the system. Further-

more, a Fortran 95 compiler is required in order to com-

pile the generated code. Some Fortran 2003 features are

used if one wants to make use of the Les Houches inter-

face [56]. We have tried all examples using gfortran ver-

sions 4.1 and 4.5.

On top of a standard Linux environment, the programs

FORM [48], version ≥ 3.3 (newer than Aug. 11, 2010) and

QGRAF [2] need to be installed on the system. Whereas

spinney [49] and haggies [50] are part of GOSAM and

are not required to be installed separately, at least one of the

libraries SAMURAI [40] and Golem95C [52] needs to be

present at compile time of the generated code. Optionally,

PJFRY [58] can be used on top of Golem95C.

3.2 Download and installation

QGRAF The program can be downloaded as Fortran

source code from

http://cfif.ist.utl.pt/~paulo/qgraf.html.

After unpacking the tar-ball, a single Fortran77 file

needs to be compiled.

FORM The program is available at

http://www.nikhef.nl/~form/

both as a compiled binary for many platforms and as a tar-

ball. The build process, if built from the source files, is con-

trolled by Autotools.

SAMURAI and Golem95C These libraries are available as

tar-balls and from subversion repositories at

http://projects.hepforge.org/samurai/

and

http://projects.hepforge.org/golem/95/

respectively. For the user’s convenience we have pre-

pared a package containing SAMURAI and Golem95C to-

gether with the integral libraries OneLOop [74], QCD-

Loop [75] and FF [59]. The package gosam-contrib-

1.0.tar.gz containing all these libraries is available for

download from:

http://projects.hepforge.org/gosam/

GOSAM The user can download the code either as a tar-

ball or from the subversion repository at

http://projects.hepforge.org/gosam/.

The build process and installation of GOSAM is controlled

by Python Distutils, while the build process for the

libraries SAMURAI and Golem95C is controlled by Au-

totools.

Therefore the installation proceeds in two steps:

1. For all components which use Autotools, the follow-

ing sequence of commands installs them under the user

defined directory MYPATH.

./configure --prefix=MYPATH

make FC=gfortran F77=gfortran

make install # or sudo make install

If the configure script is not present, the user needs

to run sh ./autogen.sh first.

2. For GOSAM which is built using Distutils, the user

needs to run

python setup.py install \

--prefix MYPATH

If MYPATH is different from the system default (e.g. /us-

r/bin), the environment variables PATH, LD_LIBRA-

RY_PATH and PYTHONPATH might have to be set ac-

cordingly. For more details we direct the user to the GO-

SAM reference manual and to the documentation of the

beforementioned programs.

http://cfif.ist.utl.pt/~paulo/qgraf.html
http://www.nikhef.nl/~form/
http://projects.hepforge.org/samurai/
http://projects.hepforge.org/golem/95/
http://projects.hepforge.org/gosam/
http://projects.hepforge.org/gosam/
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4 Using GOSAM

4.1 Setting up a simple process

GOSAM is a very flexible program and comes with a wide

range of configuration options. Not all of these options are

relevant for simple processes and often the user can leave

most of the settings at their default values. In order to gener-

ate the code for a process, one needs to prepare an input file,

which will be called process card in the following, which

contains

– process specific information, such as a list of initial and fi-

nal state particles, their helicities (optional) and the order

of the coupling constants;

– scheme specific information and approximations, such as

the regularisation and renormalisation schemes, the un-

derlying model, masses and widths which are set to zero,

the selection of subsets of diagrams; the latter might be

process dependent;

– system specific information, such as paths to programs

and libraries or compiler options;

– optional information for optimisations which control the

code generation.

In the following we explain how to set up the required files

for the process qq̄ → gZ0 → g e−e+. The example com-

putes the QCD corrections for the uū initial state, where

me = 0 and Nf = 5 massless quarks are assumed. For our

example, we follow an approach where we keep the differ-

ent types of information in separate files—process.rc,

scheme.rc and system.rc—and use GOSAM to pro-

duce a process card for this process based on these files. This

is not required—one could also produce and edit the process

card directly—it is however more convenient to store sys-

tem specific information into a separate, re-usable file, and

it makes the code generation more transparent.

Process specific information The following listing con-

tains the information which is specific to the process. The

syntax of process cards requires that no blank character is

left between the equals sign and the property name. Com-

mentary can be added to any line, marked by the ‘#’ char-

acter. Line continuation is achieved using a backslash at the

end of a line.5

Listing 1 File ‘process.rc’

1 process_path=qqgz

2 in=u,u~

3 out=g,e-,e+

4 helicities=+-+-+,+---+,-++-+,-+--+

5 order=QCD,1,3

5The line numbers are just for reference and should not be included in

the actual files.

The first line defines the (relative) path to the directory

where the process files will be generated. GOSAM expects

that this directory has already been created. Lines 2 and 3

define the initial and final state of the process in terms of

field names, which are defined in the model file. Besides the

field names one can also use PDG codes [76, 77] instead.

Hence, the following lines would be equivalent to lines 2

and 3 in Listing 1:

2 in=2,-2

3 out=21,11,-11

Line 4 describes the helicity amplitudes which should

be generated. If no helicities are specified, the program de-

faults to the generation of all possible helicity configura-

tions, some of which may turn out to be zero. The differ-

ent helicity amplitudes are separated by commas; within one

helicity amplitude there is one character (usually ‘+’, ‘-’

and ‘0’) per external particle from the left to the right. In the

above example for the reaction

u(k1, λ1)ū(k2, λ2) → g(k3, λ3)e
−(k4, λ4)e

+(k5, λ5)

we have the following assignments:

Helicity λ1 λ2 λ3 λ4 λ5

0 + – + – +

1 + – – – +

2 – + + – +

3 – + – – +

With the above value for helicities we generate all

non-vanishing helicities for the partons but keep the lep-

ton helicities fixed. In more complicated examples this way

of listing all helicities explicitly can be very tedious. There-

fore, we introduced the option to generate sets of helicities

using square brackets. For example, if the gluon helicity is

replaced by [+-], the bracket is expanded automatically to

take the values +,-.

4 helicities=+-[+-]-+, -+[+-]-+

A further syntactical reduction can be achieved for the

quarks. The current expansion of a square bracket and its

opposite value can be assigned to a pair of variables as in

[xy=+-]. If the bracket expands to ‘+’ then x is assigned

‘+’ and y is assigned the opposite sign, i.e. ‘-’. If the bracket

expands to ‘-’ the assignments are x=- and y=+. Hence, the

helicity states of a massless quark anti-quark pair are gen-

erated by [qQ=+-]Q, and the selection of helicities in our

example can be abbreviated to

4 helicities=[qQ=+-]Q[+-]-+

which is equivalent to the version of this line in Listing 1.
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Finally, the order (power) of the coupling constants has

to be specified. Line 5 contains a keyword for the type of

coupling (QCD or QED), the order of this coupling constant

in the unsquared tree level amplitude (in our example: 1) and

the order of the coupling constant in the unsquared one-loop

amplitude (in our example: 3). One can also use GOSAM to

generate the tree level only, by giving only the power of the

tree level amplitude:

5 order=QCD,1

Conversely, GOSAM will generate the virtual amplitude

squared for processes where no tree level is present if the

tree level order is replaced by the keyword NONE.

5 order=QCD,NONE,3

Up to now, the file would generate all 8 tree level and

180 one-loop diagrams contributing to the process uū →
g e−e+, regardless of the intermediate states. Neverthe-

less, what we intended to generate were only those dia-

grams where the electron pair comes from the decay of a

Z → e−e+. GOSAM offers two ways of achieving this di-

agram selection, either by passing a condition to QGRAF

or by applying a filter written in Python. The first op-

tion would be specified by the option qgraf.verbatim,

which copies the argument of the option to the QGRAF input

file in verbatim. The following filter demands the appear-

ance of exactly one Z-propagator, leaving us with 2 tree-

level and 45 one-loop diagrams:

6 qgraf.verbatim= true=iprop[Z,1,1];

The alternative solution is the application of a Python fil-

ter using the options filter.lo for tree level and fil-

ter.nlo for one-loop diagrams. The current example re-

quires the two lines

6 filter.lo= IPROP([Z])==1

7 filter.nlo= IPROP([Z])==1

Scheme specific information For our example we put all

scheme specific definitions in the file scheme.rc. It con-

tains the choice of a suitable regularisation scheme and fixes

what types of UV counterterms are included in the final re-

sult.

Listing 2 File ‘scheme.rc’

1 extensions=dred

2 qgraf.options=onshell

3 zero=mU,mD,mC,mS,mB,me,wT

4 one=gs

In Listing 2, line 1 selects dimensional reduction as a reg-

ularisation scheme. If dred is not specified in the list of

extensions, GOSAM works in the ’t Hooft Veltman scheme

by default. Line 2 removes all on-shell bubbles on exter-

nal legs. This is, on the one hand, required to be consistent

with the renormalisation scheme. On the other hand, those

diagrams would lead to zero denominators at the algebraic

level. In line 3 all light quark masses, the mass of the elec-

tron and the width of the top quark are set to zero. Further,

as a convention rather than a scheme, the strong coupling

gs is set to one in line 4, which means that gs will not

occur in the algebraic expressions, assuming that the user

will multiply the final result by his desired value for the

strong coupling. If the option one=gs is not used, the de-

fault value contained in the file common/model.f90 will

be used. This default value of course can be changed by the

user.

System specific information In order to adapt the code gen-

eration to the system environment, GOSAM needs to find a

way of determining all relevant paths and options for the

programs and libraries used during generation, compilation

and linking of the code. Those settings are fixed in the file

system.rc in our example.6

Listing 3 File ‘system.rc’

1 system.extensions=samurai,golem95

2 samurai.fcflags=\

3 -I${PREFIX}/include/samurai

4 samurai.ldflags=\

5 -L${PREFIX}/lib -lsamurai

6 samurai.version=2.1.1

7 golem95.fcflags=\

8 -I${PREFIX}/include/golem95

9 golem95.ldflags=\

10 -L${PREFIX}/lib -lgolem95

11 form.bin=${PREFIX}/bin/tform

12 qgraf.bin=${PREFIX}/bin/qgraf

13 fc.bin=gfortran

Generating the code After having prepared the input files

correctly we need to collect the information distributed

over the three files process.rc, scheme.rc and sys-

tem.rc in one input file, which we will call gosam.in

here. The corresponding command is:

gosam.py --template gosam.in \

--merge process.rc \

--merge scheme.rc --merge system.rc

6In this example we assume that the user has defined an environment

variable PREFIX.



Eur. Phys. J. C (2012) 72:1889 Page 13 of 32

The generated file can be processed with gosam.py di-

rectly but requires the process directory to be present.

mkdir qqgz

gosam.py gosam.in

cd qqgz

All further steps are controlled by the generated make files;

in order to generate and compile all files relevant for the

matrix element one needs to invoke

make compile

The generated code can be tested with the program ma-

trix/test.f90. The following sequence of commands

will compile and run the example program.

cd matrix

make test.exe

./test.exe

The last lines of the program output should look as follows7

# LO: 0.3450350717601E-06

# NLO, finite part -10.77604823456547

# NLO, single pole -19.98478948141949

# NLO, double pole -5.666666665861926

# IR, single pole -19.98478948439310

# IR, double pole -5.666666666666666

The printed numbers are, in this order, a0, c0/a0, c−1/a0,

c−2/a0 and the pole parts calculated from the infrared inser-

tion operator [78, 79].

One can generate a visual representation of all generated

diagrams using the command

make doc

which generates the file doc/process.ps using a Py-

thon implementation of the algorithm described in [60] and

the LATEX package AXODRAW [61].

4.1.1 Further options

GOSAM provides a range of options which influence the

code generation, the compilation and the numerical evalua-

tion of the amplitude. Giving an exhaustive list of all options

would be far beyond the scope of this article and the inter-

ested user is referred to the reference manual. Nonetheless,

we would like to point out some of GOSAM’s capabilities

by presenting the corresponding options.

7The actual numbers depend on the random number generator of the

system because the phase space point is generated randomly; however,

the pole parts should agree between the matrix element and the infrared

insertion operator given that the matrix element is fully renormalised.

Generating the R2 term When setting up a process the user

can specify if and how the R2 term of the amplitude should

be generated by setting the variable r2 in the setup file.

r2=explicit

Possible options for r2 are implicit, which is the de-

fault, explicit, off and only. The keyword im-

plicit means that the R2 term is generated along with

the four-dimensional numerator as a function in terms of q̂ ,

μ2 and ε and is reduced at runtime by sampling different

values for μ2. This is the slowest but also the most general

option. Using the keyword explicit carries out the re-

duction of terms containing μ2 or ε during code generation

(see Appendix B). The keyword off puts the R2 term to

zero which is useful if the user wants to provide his own

calculation for these terms. Conversely, using r2=only

discards everything but the R2 term (reducing it as in the

case explicit) and puts GOSAM in the position of pro-

viding R2 terms for external codes which work entirely in

four dimensions.

Diagram selection GOSAM offers a two-fold way of se-

lecting and discarding diagrams. One can either influence

the way QGRAF generates diagrams or apply filters to the

diagrams after they have been generated by QGRAF or com-

bine the two methods. Let us assume that in the above exam-

ple we want to remove the third generation of quarks com-

pletely. Hence, all closed quark loops would be massless and

therefore the second generation is just an exact copy of the

first one. We can therefore restrict the generation of closed

quark loops to up and down quarks. GOSAM has a filter pre-

cisely for this purpose, which takes the field names of the

flavours to be generated as arguments.

filter.nlo=NFGEN(U,D)

This filter can be combined with the already existing filter

selecting only diagrams containing a Z-propagator using the

AND function:

filter.nlo=AND( NFGEN(U,D), \

IPROP([Z]) == 1 )

A further feature of the code generated by GOSAM is the

possibility of selecting diagrams at runtime. For example,

we would like to distinguish at runtime three different gauge

invariant sets of diagrams at one-loop level:

1. diagrams with a closed quark loop where the Z is at-

tached to the loop;

2. diagrams with a closed quark loop where the Z is emitted

from the external quark line;

3. diagrams without a closed quark loop.
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In order to provide the code for a diagram selection at run-

time one simply replaces the above filter by a list of filters

as follows

filter.nlo=[\

AND( NFGEN(U,D), IPROP([Z]) == 1, \

NF, LOOPVERTICES([Z],_,_) == 1), \

AND( NFGEN(U,D), IPROP([Z]) == 1, \

NF, LOOPVERTICES([Z],_,_) == 0), \

AND( NFGEN(U,D), IPROP([Z]) == 1, \

NOT(NF))]

The two new filters in use are NF which selects closed quark

loops only and LOOPVERTICES which counts the number

of vertices attached to the loop with the given sets of fields

running through the vertex (where _ replaces any field).

In the Fortran files one can access the diagram selec-

tion through the routine update_flags. The three selec-

tion criteria are stored in a derived data type virt_flags

which has fields eval_0, . . . , eval_2, in general ranging

from zero to the length of the list given in filter.nlo.

use groups

type(virt_flags) :: flags

flags%eval_0=.true. !first group only

flags%eval_1=.false.

flags%eval_2=.false.

call update_flags(flags)

Additional extensions Some of GOSAM’s functionality is

available through the extensions variable. On top of

the already presented options for selecting a regularisation

scheme (by adding the option dred) or for activating in-

terfaces to several different reduction libraries (samurai,

golem95, pjfry) the user can also add the following op-

tions:

fr5 adds and activates the relevant code for the compu-

tation of the finite renormalisation of γ5 required in the

’t Hooft Veltman scheme as described in (32).

powhegbox generates routines for the computation of the

color and spin correlated Born matrix elements as required

by POWHEG [34].

autotools uses make files which use Autoconf and Au-

tomake for compilation of the matrix element.

gaugecheck replaces the polarisation vectors of external

vector fields by

ǫμ(ki) → ǫμ(ki) + zik
μ
i (35)

where the variable zi defaults to zero and is accessible in

the Fortran code through the symbol gaugeiz.

4.2 Interfacing the code

The matrix element code generated by GOSAM provides

several routines to transparently access partial or full results

of the amplitude calculation. Here, we only present a mini-

mal set of routines which can be used to obtain the set of co-

efficients [a0, c0, c−1, c−2] for a given scale and a given set

of external momenta. The routines, which can be accessed

through the modules matrix8 are defined as follows:

initgolem This subroutine must be called once before

the first matrix element evaluation. It initializes all depen-

dent model parameters and calls the initialisation routines

of the reduction libraries.

subroutine initgolem(init_libs)

use config, only: ki

logical, optional, &

& intent(in) :: init_libs

end subroutine

end interface

The optional argument init_libs can usually be omit-

ted. It should be used only when several initialisation calls

become necessary, but the reduction libraries and loop li-

braries should be initialized only once. All model parame-

ters are accessible as global variables in the module model

and should be modified (if at all) before calling init-

golem.

samplitude This subroutine starts the actual calculation

of the amplitude for a given phase space point.

subroutine samplitude &

& (vecs,scale2,amp,ok,h)

use config, only: ki

use kinematics, only: num_legs

real(ki), dimension(num_legs,4),&

& intent(in) :: vecs

double precision, &

& intent(in) :: scale2

double precision, &

& intent(out) :: amp

logical, optional, &

& intent(out) :: ok

integer, optional, &

& intent(in) :: h

end subroutine

end interface

8If a process name was given all modules are prefixed by the name, e.g.

if process_name=pr01, the module matrix would be renamed

into pr01_matrix.
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The first mandatory arguments of this routine are the exter-

nal momenta vecs, where vecs(i,:) contains the mo-

mentum of the i-th particle as a vector [Ei,p
x
i ,p

y

i ,pz
i ],

and we use in-out kinematics, i.e. p1 + p2 → p3 + · · · +
pN . Maximal numerical stability is achieved if the beam

axis is chosen along the z-axis. The second argument,

scale2= μ2
R , is the square of the renormalisation scale.

As a third argument the routine expects a vector which ac-

cepts the result in the format [a0, c0, c−1, c−2] with the co-

efficients being defined in (24) and (25). The optional ar-

gument ok may be used in order to report the outcome of

the reconstruction tests in samurai if no rescue method has

been chosen (see Sect. 2.4.2). The last argument allows one

to select a single helicity subamplitude; the index h runs

from zero to the number of helicities minus one. The label-

ing of the helicities is documented for each process in the

file doc/process.ps.

exitgolem This routine should be called once after the

last amplitude evaluation in the program. It closes all open

log files and gracefully terminates the reduction and loop

libraries.

subroutine exitgolem(exit_libs)

use config, only: ki

logical, optional,

& intent(in) :: exit_libs

end subroutine

end interface

The optional argument exit_libs should only be set if

multiple calls to this routine (e.g. for different matrix ele-

ments) are necessary and the dependent libraries should be

terminated only once.

A small program which computes the amplitude for a set

of phase space points is automatically generated with the

amplitude code in the file test.f90 in the subdirectory

matrix. The script config.sh in the process directory

returns suitable compilation and linking options for the gen-

erated matrix element code.

4.3 Using the BLHA interface

The so-called Binoth Les Houches Accord (BLHA) [56] de-

fines an interface for a standardized communication between

one-loop programs (OLP) and Monte Carlo (MC) tools. The

communication between the two sides is split into two main

phases: an initialisation phase and a runtime phase. During

initialisation the two programs establish an agreement by ex-

changing a set of files and typically initiate the code gener-

ation. The OLP runtime code is then linked to the MC pro-

gram and, during the runtime phase, called through a well-

defined set of routines providing NLO results for the phase

space points generated by the MC. According to this stan-

dard, it is the responsibility of the MC program to provide

results for the Born matrix element, for the real emission and

for a suitable set of infrared subtraction terms. A schematic

overview on this procedure is shown in Fig. 4.

GOSAM can act as an OLP in the framework of the

BLHA. In the simplest case, the MC writes an order file—in

this example it is called olp_order.lh—and invokes the

script gosam.py as follows:

gosam.py --olp olp_order.lh

Further, GOSAM specific options can be passed either in a

file or directly at the command line. One can, for example,

use autotools for the compilation by modifying the above

line as follows.

gosam.py --olp olp_order.lh \

extensions=autotools

The contract file is given the extension .olc by default

and would be olp_order.olc in this example. Alterna-

tively, the name can be altered using the -o option.

If successful, the invocation of gosam.py generates

a set of files which can be compiled as before with a

generated make file. The BLHA routines are defined in

the Fortran module olp_module but can also be ac-

cessed from C programs.9 The routines OLP_Start and

OLP_EvalSubProcess are defined exactly as in the

BLHA proposal [56]. For convenience, we extended the in-

terface by the functions OLP_Finalize(), which termi-

nates all reduction libraries, and OLP_Option(char*,

int*), which can be used to pass non-standard options at

runtime. For example, a valid call in C to adjust the Higgs

mass would be

int ierr;

OLP_Options("mH=146.78", &ierr);

A value of one in ierr indicates that the setting was suc-

cessful. A value of zero indicates an error.

4.4 Using external model files

With a few modifications in the process description files,

GOSAM can immediately make use of model files generated

by either FeynRules [80] in the UFO format [54] or by

LanHEP [55]. In both cases, the following limitations and

differences with respect to the default model files, sm and

smdiag, apply:

9A header file is provided in olp.h.
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Fig. 4 Schematic overview

over the interaction between

Monte Carlo tool and one-loop

program in the Binoth Les

Houches Accord

– As usual, particles can be specified by their PDG code.

The field names, as used by QGRAF, are parti and

antii for the particles with the PDG code i and −i

respectively. For example, the W+ and the W− boson

would be called part24 and anti24.

– All model parameters are prefixed by the letters mdl in

order to avoid name clashes with existing variable names

in the matrix element code.

– The variable model.options and the extension fr5

are not guaranteed to work with models other than the

built-in models.

Importing models in the UFO format A model description

in the UFO format consists of a Python package stored in

a directory. In order to import the model into GOSAM one

needs to set the model variable in the input card to specify

the keyword FeynRules in front of the directory name,

where we assume that the model description is in the direc-

tory $HOME/models/MSSM_UFO.

model=FeynRules,$HOME/models/MSSM_UFO

Importing models in the LanHEP format LanHEP model

descriptions consist of a set of plain text files in the same

directory with a common numbering (such as func4.mdl,

lgrng4.mdl, prtcls4.mdl, vars4.mdl). A Lan-

HEP model can be loaded by specifying the path and

the common number in the model variable. Assuming

the files are situated in the directory $HOME/models/

MSSM_LHEP one would set the variable as follows.

model=$HOME/models/MSSM_LHEP,4

Details about the allowed names for the table columns are

described in the GOSAM reference manual. Precompiled

MSSM_UFO and MSSM_LHEP files can also be found in the

subdirectory examples/model.

5 Sample calculations and benchmarks

The codes produced by GOSAM have been tested on several

processes. In this section we describe some examples of ap-

plications. Additional results, whose corresponding code is

also included in the official distribution of the program, will

be reported in Appendix B.

5.1 pp → W− + j with SHERPA

In Sect. 4.3 the BLHA interface of GOSAM was presented.

This interface allows one to link the program to a Monte

Carlo event generator, which is, in general, responsible for

supplying the missing ingredients for a complete NLO cal-

culation of a physical cross section. Among the different

general purpose Monte Carlo event generators, SHERPA

[81] is one of those which offers these tools: computing the

LO cross section, the real corrections with both the sub-

traction terms and the corresponding integrated counterparts

[82–84]. Furthermore, SHERPA offers the possibility to

match a NLO calculation with a parton shower [85, 86]. Us-

ing the BLHA interface, we linked GOSAM with SHERPA

to compute the physical cross section for W−+1 jet at NLO.

The first steps to perform this linking is to write a SHER-

PA input card for the desired process. Instructions and many

examples on how to write this can be found in the on-line
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manual [87]. Running the code for the first time will pro-

duce an order file OLE_order.lh which contains all the nec-

essary information for GOSAM, to produce the desired code

for the loop part of the process. This includes a list of all par-

tonic subprocesses needed. In parallel to the production of

the needed SHERPA libraries with the provided script, one

can at this point run the gosam.py command with the flag

-olp and the correct path to the order file as explained in

Sect. 4.3. Further options may be specified. Among them it

is useful to have a second, GOSAM-specific, input card with

all the important GOSAM options. Since, at the end, SHER-

PA needs to be linked to a dynamic library, it is convenient

to run GOSAM with the autotools extension, which allows

the direct creation of both static and dynamic libraries, to-

gether with the test routine test. The gosam.py script

creates all the files needed for interfacing GOSAM with

the Monte Carlo event generator together with the code for

the one-loop computation of all needed subprocesses, and

a makefile to run them. The different parton-level subpro-

cesses are contained in different subdirectories. At this point

the user simply has to run the makefile to generate and com-

pile the code. Once the one-loop part of the code is ready, the

produced shared library must be added to the list of needed

libraries in the SHERPA input card as follows.

SHERPA_LDADD = LHOLE golem_olp;

With this operation the generation of the code is completed.

The evaluation of the process and the physical analysis can

then be performed at the user’s discretion following the ad-

vice given in the SHERPA on-line documentation [87].

We tested the BLHA interface by computing W− + 1 jet

and producing distributions for several typical observables.

In Figs. 5(a) and 5(b) the inclusive transverse momentum

and rapidity of the jets is shown. These distributions were

compared with similar ones produced using the program

MCFM [27, 28], and perfect agreement was found.

5.2 pp → W± + j , EW corrections

As a first example of an electroweak calculation, we com-

puted the virtual one-loop corrections to ud̄ → Wg. A com-

plete analytical calculation for this process was presented in

Ref. [88].

parameters

MZ 91.1876 MW 80.419

cos θw 0.88156596117995394232 μ MW

For the kinematic point given in Table 2 and the above pa-

rameters we obtain the following result:

result ud̄ → Wg

a0 2.812364835883295

c0/a0 unren. −94.52525523327047

c−1/a0 unren. 17.84240236996827

c−2/a0 unren. −0.5555555555555560

renormalized

GOSAM (67, 70) of Ref. [88]

c−1/a0 4.743825167813529 4.7438251678146885

c−2/a0 −0.5555555555555560 −0.5555555555555555

The poles have been renormalized using (49)–(64) in

Sects. 3.3 and 3.4 of [88]. Our result is agreement with (67),

(70) of Ref. [88] and with Ref. [89] for the infrared diver-

gences that remain after renormalisation.

Fig. 5 NLO calculation of W− + 1 jet production at LHC using GOSAM interfaced with SHERPA via the BHLA interface. The comparison to

MCFM is also shown
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Table 2 Kinematic point used in pp → W± + j , EW

E px py pz

u 500 0 0 500

d̄ 500 0 0 500

W 503.23360778049988 110.20691318538486 441.95397288433196 −198.26237811718670

g 496.76639221950012 −110.20691318538488 −441.95397288433202 198.26237811718664

5.3 γ γ → γ γ

The process γ γ → γ γ in the Standard Model first arises at

the one-loop order, and proceeds through a closed loop of

fermions and W bosons. Of the 16 helicity amplitudes con-

tributing to it, only three are independent and their analytic

expressions can be found in [90]. The pure QED contribu-

tion, involving a fermion loop, is contained in samurai-

1.0 [40] and will not be repeated here. Instead, we show the

results of the W -loop contribution to the independent helic-

ity amplitudes, as an example of EW corrections that can be

handled with GOSAM.

parameters

√
s 1000 μ

√
s

MW 80.376 e 1

With the above parameters and the kinematics of Table 3 we

obtain the following results.

result γ γ → γ γ (EW)

GOSAM (dred) Refs. [90]

|M++++| 12.02541904626610 12.025419045962

|M++−+| 7.380406043429961 7.3804060437434

|M++−−| 982.7804939723322 982.78049397093

5.4 pp → χ0
1 χ0

1 in the MSSM

As an example for the usage of GoSam with a model file

different from the Standard Model we calculated the QCD

corrections to neutralino pair production in the MSSM. The

model file has been imported via the interface UFO (Uni-

versal FeynRules Output) [54] which facilitates the im-

port of Feynman rules generated by FeynRules [80] to

programs generating one-loop amplitudes. To import such

files within the GoSam setup, all the user has to do is to

give the path to the corresponding model file in the input

card.

For this example, we combined the one-loop amplitude

with the real radiation corrections to obtain results for dif-

ferential cross sections. A calculation of neutralino pair pro-

duction for the LHC presenting total cross sections at NLO

is given in [91].

For the infrared subtraction terms the program Mad-

Dipole [92, 93] is used, the real emission part is calcu-

lated using MadGraph/MadEvent [94]. The virtual matrix

element is renormalized in the MS scheme, while massive

particles are treated in the on-shell scheme. The renormal-

isation terms specific to the massive MSSM particles have

been added manually.

In Fig. 6 we show the differential cross section for the

mχ0
1 χ0

1
invariant mass, where we employed a jet veto to sup-

press large contributions from the channel qg → χ0
1 χ0

1 q

which opens up at order α2αs , but for large p
jet
T belongs to

the distinct process of neutralino pair plus one hard jet pro-

duction at leading order. We used Nf = 5 massless quark

flavours and the MSTW08 [95] parton distribution func-

tions. For the SUSY parameters we use the modified bench-

marks point SPS1amod suggested in [96], and we use
√

s =
7 TeV.

For reference, we also give the result for the unrenor-

malised amplitude at one specific phase space point for

uū → χ0
1 χ0

1 in the DRED scheme, using the following pa-

rameters and momenta:

Table 3 Kinematic point used in γ γ → γ γ

E px py pz

γ 500 0 0 500

γ 500 0 0 −500

γ 500 436.6186300198938284 −59.1784256571505765 236.3516148798047425

γ 500 −436.6186300198938284 59.1784256571505765 −236.3516148798047425
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parameters

MZ 91.1876 ΓZ 0

MW 79.829013 sin2 θw 1 − M2
W /M2

Z

μ MZ Nf 1

gs 1 α−1
w 127.934

Mχ0
1

96.6880686 Mg̃ 607.713704

MũL
561.119014 MũR

549.259265

Mh0
110.899057 MH0

399.960116

All widths have been set to zero; for further settings we

refer to the model parameter files contained in the subdirec-

tory examples/model/MSSM_UFO. We have checked

that the pole terms of the renormalised amplitude cancel

with the infrared poles from MadDipole. For the phase

Fig. 6 Comparison of the NLO and LO mχ0
1 χ0

1
distributions for the

process pp → χ0
1 χ0

1 with a jet veto on jets with p
jet
T > 20 GeV and

η < 4.5. The band gives the dependence of the result on μ = μF = μR

between μ0/2 and 2μ0. We choose μ0 = MZ . The black line gives the

bin error for the value at the central scale

space point given in Table 4 we obtain the following num-

bers.

GOSAM result uū → χ0
1 χ0

1

a0 0.8680577964243597·10−3

c0/a0 −31.9136615197871

c−1/a0 13.4374663711899

c−2/a0 2.6666666666667

5.5 e+e− → e+e−γ

As an example of a QED calculation, we compared the vir-

tual QED corrections for the process e+e− → e+e−γ with

the results provided in [97]. The results compared in the ta-

ble are the bare unrenormalised amplitudes in the ’t Hooft

Veltman scheme. No counterterms or subtraction terms have

been added to the result.

parameters

√
s 1.0 α 7.2973525376 · 10−3

μ
√

s me 0.51099891 · 10−3

Using the parameters given above and the kinematics of

Table 5 we obtain the following results.

result e+e− → e+e−γ

GOSAM Ref. [97]

a0 0.7586101468103622 0.7586101468103619

c0/a0 0.5005827938274887 0.5005828268263969

c−1/a0 0.0474506407008029 0.0474506427003504

c−2/a0 0 0

Table 4 Kinematic point used in pp → χ0
1 χ0

1 in the MSSM

E px py pz

u 1000 0 0 1000

ū 1000 0 0 −1000

χ0
1 1000 42.3752677206678996 115.0009952646289548 987.7401101322898285

χ0
1 1000 −42.3752677206678996 −115.0009952646289548 −987.7401101322898285

Table 5 Kinematic point used in e+e− → e+e−γ

E px py pz

e+ (in) 0.5 0 0.4999997388800458 0

e− (in) 0.5 0 −0.4999997388800458 0

e+ (out) 0.1780937847558600 0.1279164180985903 0.05006809884093004 0.1133477415216646

e− (out) 0.3563944406457374 0.02860530642319879 0.1832142729949070 0.3043534176228102

γ 0.4655117745984024 0.1565217245217891 0.1331461741539769 0.4177011591444748
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5.6 pp → t tH

This process has been compared with the results given

in [39]. The partonic subprocesses uū → t t̄H and gg →
t t̄H where computed both in the ’t Hooft Veltman scheme

and in dimensional reduction and the fully renormalised

results were successfully compared as an internal consis-

tency check. Apart from wave function renormalisation and

mass counterterms, Yukawa coupling renormalisation is also

needed here. Yukawa coupling counterterms are in this case

equal to the wave function counterterms. The Yukawa top

mass is set equal to its pole mass.

parameters

√
s 500.0 Nf 5

μ mt Nf,h 1

mt 172.6 αs 0.1076395107858145

mH 130 v 246.21835258713082

The kinematics used to obtain the results below is given

in Table 6. The results are given in the ’t Hooft Veltman

scheme, and are fully renormalised.

result uū → t t̄H

GOSAM Ref. [39]

a0 · 104 2.200490364806190 2.2004904613782828

c0/a0 −15.29615178164782 −15.29615211731521

c−1/a0 −1.640361500121837 −1.640361536072381

c−2/a0 −2.666666666666666 −2.666666725182165

result gg → t t̄H

GOSAM Ref. [39]

a0 · 105 6.127399805961155 6.127400074872043

c0/a0 9.006680638719660 9.006680836410272

c−1/a0 2.986347664537282 2.9863477301662056

c−2/a0 −6.000000000000004 −6.000000131659877

On an Intel Core i7 950 at 3 GHz the evaluation of

a single phase space point took 44 ms in the uū channel

and 223 ms in the gg channel. The code was compiled with

gfortran without optimisations.

5.7 gg → t tZ

This amplitude, fully renormalised, has been compared with

the results given in [37].

parameters

gs 1 GF 0.0000116639

μ mt Nf 5

mt 170.9 MW 80.45

MZ 91.18

The kinematics used to obtain the results below is given in

Table 7.

result gg → t t̄Z

GOSAM Ref. [37]

a0 · 106 0.1531395190212139 0.1531395190212831

c0/a0 −204.9208290898557 −204.920829867328

c−1/a0 50.62939646427283 50.6293965717156

c−2/a0 −5.999999999999997 −6.00000000000003

Table 6 Kinematic point used in pp → t t̄H

E px py pz

u/g 250.0 0.0 0.0 250.0

ū/g 250.0 0.0 0.0 −250.0

H 136.35582793693018 15.133871809486299 27.986733991031045 26.088703626953386

t 181.47665951104506 20.889486679044587 −50.105625289561424 14.002628607367491

t̄ 182.16751255202476 −36.023358488530903 22.118891298530357 −40.091332234320859

Table 7 Kinematic point used for gg → t t̄Z

E px py pz

g 7000.0 0.0 0.0 7000.0

g 7000.0 0.0 0.0 −7000.0

t 6270.1855170414337 −4977.7694025303863 806.93726196887712 3725.2619580634337

t̄ 6925.5258180925930 5306.3374282745517 −1281.8763412410237 −4258.3185872039012

Z 804.28866486597315 −328.56802574416463 474.93907927214622 533.05662914046729
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The evaluation of a single phase space point took 1433 ms

on a 2 GHz processor. The code was compiled with gfor-

tran -O2.

5.8 pp → bbbb + X

A detailed discussion of this process can be found in

[98, 99]. In this section we focus on the parts that are rel-

evant in the context of the virtual corrections. In particular

we compared our result to the one given in [38], which is

the fully renormalised amplitude including the mass coun-

terterms for the top-quark contribution.

parameters

√
s 500 Nf 5

μ
√

s Nf,h 1

mt 174 mb 0

Γt 0 gs 1

The results below are obtained for the phase space point of

Table 8 using the above parameters.

result gg → bb̄bb̄

GOSAM Ref. [38]

a0 · 106 1.022839601391936 1.022839601391910

c0/a0 −36.97653243659754 −36.97653243473214

c−1/a0 −34.01491655155776 −34.01491655142099

c−2/a0 −11.33333333333512 −11.33333333333343

result uū → bb̄bb̄

GOSAM Ref. [38]

a0 · 109 5.753293428094349 5.753293428094391

c0/a0 −22.19223384585620 −22.19223384564902

c−1/a0 −20.89828996870689 −20.89828996857439

c−2/a0 −8.000000000000199 −8.000000000000037

On an Intel Xeon E7340 the running time for the calcu-

lation of a single phase space point was 19.6 s for the gluon

initiated channel and 440 ms for the quark channel.

5.9 pp → t tbb + X

This process has been compared with the results given

in [38]. We have set up the process both in the ’t Hooft Velt-

man scheme and in dimensional reduction and successfully

compared the fully renormalised results as an internal con-

sistency check. The results below are given in the ’t Hooft

Veltman scheme, and only the counterterms for |M|2ct,δmt

are included.

parameters

√
s 500.0 Nf 5

μ
√

s Nf,h 1

mt 174.0 mb 0.0

Γt 0.0 gs 1.0

Using the above parameters and the phase space point of

Table 9 we obtain the following results.

Table 8 Kinematic point used in pp → bb̄bb̄

E px py pz

u/g 250.0 0.0 0.0 250.0

ū/g 250.0 0.0 0.0 −250.0

b 147.5321146846735 24.97040523056789 −18.43157602837212 144.2306511496888

b̄ 108.7035966213640 103.2557390255471 −0.5484684659584054 33.97680766420219

b 194.0630765341365 −79.89596300367462 7.485866671764871 −176.6948628845280

b̄ 49.70121215982584 −48.33018125244035 11.49417782256567 −1.512595929362970

Table 9 Kinematic point used in pp → t t̄bb̄

E px py pz

u/g 250.0 0.0 0.0 250.0

ū/g 250.0 0.0 0.0 −250.0

t 190.1845561691092 12.99421901255723 −9.591511769543683 75.05543670827210

t̄ 182.9642163285034 53.73271578143694 −0.2854146459513714 17.68101382654795

b 100.9874727883170 −41.57664370692741 3.895531135098977 −91.94931862397770

b̄ 25.86375471407044 −25.15029108706678 5.981395280396083 −0.7871319108423604
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result uū → t t̄bb̄

GOSAM Ref. [38]

a0 · 108 2.201164677187755 2.201164677187727

c0/a0 8.880263116574282 8.880263117410131

c−1/a0 −4.730495922109534 −4.730495921691266

c−2/a0 −5.333333333333468 −5.333333333333190

result gg → t t̄bb̄

GOSAM Ref. [38]

a0 · 108 8.279470201927135 8.279470201927128

c0/a0 21.83922035777929 21.83922035648926

c−1/a0 −12.59181277770347 −12.59181277853837

c−2/a0 −8.666666666666764 −8.666666666666549

On an Intel Core i7 950 at 3 GHz the evaluation of a

single phase space point took 393 ms in the uū channel

and 12.3 s in the gg channel. The code was compiled with

gfortran without optimisations.

5.10 pp → W+W−bb

The subprocesses uū → W+W−bb̄ and gg → W+W−bb̄

have been calculated both in [38] and [39]. Accordingly,

the results below are given in the ’t Hooft Veltman scheme,

where only the counterterms for |M|2ct,δmt
are included.

parameters

√
s 500.0 Nf 5

μ
√

s Nf,h 1

mt 174.0 mb 0

Γt 0 gs 1

MZ 91.188 ΓZ 2.44140351

MW 80.419 ΓW 0

1/α 132.50686625

With the above parameters and the kinematics defined in Ta-

ble 10 we obtain the following results.

result gg → W+W−bb̄

GOSAM Ref. [39]

a0 · 108 1.549796787502985 1.549795815702494

c0/a0 −17.80558461276584 −17.80558440908488

c−1/a0 −19.61125131175888 −19.611251301307803

c−2/a0 −8.666666666666668 −8.66666666666661

result uū → W+W−bb̄

GOSAM Ref. [39]

a0 · 108 2.338048681706755 2.338048676370483

c0/a0 −5.936151367348438 −5.936151368788066

c−1/a0 −10.44868110371249 −10.44868110378090

c−2/a0 −5.333333333333312 −5.333333333333336

5.11 ud → W+ggg

The amplitude ud̄ → W+ggg is an important channel in the

calculation of the process pp → W+ +3 jets. The QCD cor-

rections to this process have been presented in Refs. [6–9].

The subprocess with one quark pair and three gluons con-

sists of more than 1500 Feynman diagrams. We have com-

puted the amplitude including the leptonic decay of the W -

boson and compared our result to [38].

parameters

√
s 500.0 Nf 5

μ
√

s Nf,h 1

mt 174.0 MZ 91.188

Γt ,ΓW ,ΓZ 0.0 MW 80.419

gs 1.0 GF 1.16639 · 10−5

Furthermore, the values for the dependent parameters are

cos2 θW = M2
W /M2

Z and α =
√

2GF M2
W sin2 θW /π . For the

phase space point of Table 11 we obtain the numbers below.

result ud̄ → W+ggg

GOSAM Ref. [38]

a0 · 107 8.552735739069321

c0/a0 −36.45372625230239 −36.4536949986367

c−1/a0 −34.70010131004584 −34.70007155977844

c−2/a0 −11.66666666666747 −11.666656664302845

Table 10 Kinematic point used in pp → W+W−bb̄

E px py pz

u/g 250.0 0.0 0.0 250.0

ū/g 250.0 0.0 0.0 −250.0

W+ 154.8819879118765 22.40377113462118 −16.53704884550758 129.4056091248114

W− 126.4095336206695 92.64238702192333 −0.4920930146078141 30.48443210132545

b 174.1159068988160 −71.68369328357026 6.716416578342183 −158.5329205583824

b̄ 44.59257156863792 −43.36246487297426 10.31272528177322 −1.357120667754454



Eur. Phys. J. C (2012) 72:1889 Page 23 of 32

Table 11 Kinematic point used in ud̄ → W+ggg

E px py pz

u 250.0 0.0 0.0 250.0

d̄ 250.0 0.0 0.0 −250.0

W+ 162.5391101447744 23.90724239064912 −17.64681636854432 138.0897548661186

g 104.0753327455388 98.85942812363483 −0.5251163702879512 32.53017998659339

g 185.8004692730082 −76.49423931754684 7.167141557113385 −169.1717405928078

g 47.58508783667868 −46.27243119673712 11.00479118171890 −1.448194259904179

On an Intel Core 2 i5 Laptop at 2.0 GHz the evaluation of a

single phase space point took about 2.5 s for ud̄ → e+νeggg

and about 7.5 s for on-shell W’s without decay. The code

was compiled with gfortran -02.

5.12 ud̄ → W+(→ νee
+)bb (massive b-quark)

The process ud̄ → W+bb, with an on-shell W -boson, has

been studied in [100], while the effects of the W -decay

have been recently accounted for in [101], and implemented

within MCFM. We consider the latter process, and com-

pare the renormalised amplitude evaluated by MCFM. The

b-quark is treated as massive in all diagrams except in the

vacuum-polarisation like contributions.

parameters

μ 80.0 gs 1

mt 172.5 mb 4.75

MZ 91.1876 MW 80.419

ΓW 2.1054 GF 0.0000116639

Vud 0.975

Using the above parameters and the kinematics given in Ta-

ble 12 we obtain the following results.

result ud̄ → νee
+bb̄

GOSAM MCFM-6.0

a0 · 107 1.884434667673654 1.88443466774536441

c0/a0 41.21712989438873 41.217129894410029

c−1/a0 26.60367070701196

c−2/a0 −2.666666666666624

IR−1 26.60367070701218

IR−2 −2.666666666666667

The evaluation of a single phase space point took 9.12 ms

on a 2 GHz processor. The code was compiled with gfor-

tran -O2.

6 Conclusions

We have presented the program package GOSAM which

produces, in a fully automated way, the code required to per-

form the evaluation of one-loop matrix elements for multi-

particle processes. The program is publicly available at

http://projects.hepforge.org/gosam/ and can be used to cal-

culate one-loop amplitudes within QCD, electroweak the-

ory, or other models which can be imported via an interface

to LanHEP and UFO, also included in the release. Monte

Carlo programs for the real radiation can be easily linked

through the BLHA interface.

GOSAM is extremely flexible, allowing for both unita-

rity-based reduction at integrand level and traditional ten-

sor reduction, or even for a combination of the two ap-

proaches when required. The amplitudes are generated in

Table 12 Kinematic point used in ud̄ → W+bb̄

E px py pz

u 76.084349979114506 0.0 0.0 76.084349979114506

d̄ 1998.0331337409114 0.0 0.0 −1998.0331337409114

νe −953.55303294091811 955.01676368653477 50.025808060592873 17.060211586132972

e+ −190.20402007017753 194.22279012023398 4.3588877692445251 39.063065018596490

b −417.39085287123652 468.23544715890415 208.22173996408185 40.625785184424117

b̄ −360.80087787946474 456.64248275435313 −262.60643579391922 −96.749061789153586

http://projects.hepforge.org/gosam/
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terms of Feynman diagrams within the dimensional regular-

isation scheme, and optionally the calculation can be car-

ried out either in the ’t Hooft Veltman or in the dimensional

reduction variant. The user can choose among different li-

braries for the master integrals, and the setup is such that

other libraries can be linked easily.

The calculation of the rational terms is very modular and

can proceed either along with the same numerical reduc-

tion as the rest of the amplitude, or independently, before

any reduction, by using analytic information on the integrals

which can potentially give rise to a rational part. In the cur-

rent version of the code, UV-renormalisation counterterms

are provided for QCD corrections only. Further improve-

ments concerning the full automatisation of electroweak cor-

rections are planned.

Different systems to detect and rescue numerical instabil-

ities are implemented, and the user can switch between them

without having to re-generate the source code. Due to a care-

ful organisation of the calculation both at the code genera-

tion stage and at the reduction stage, the runtimes for multi-

particle amplitudes are very satisfactory. Moreover, the GO-

SAM generator can also produce codes for processes that

include intermediate states with complex masses.

Within the context of the automated matching of Monte

Carlo programs to NLO virtual amplitudes, GOSAM can

be used as a module to produce differential cross sections

for multi-particle processes which can be compared directly

to experiment. Therefore we believe that GOSAM can con-

tribute to the goal of using NLO tools as a standard frame-

work for the LHC data analysis at the TeV scale.
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Appendix A: Examples included in the release

In the following we give results for the processes listed in

the examples directory. Unless stated otherwise, we as-

sume that the coupling constants (e and gs in the standard

model) have been set to one in the input card. The con-

ventions for the returned numbers (a0, c0, c−1, c−2) are as

stated in Sect. 2.5. Dimensionful parameters are understood

to be in powers of GeV.

As an illustration of the potential of GOSAM, we display

in Table 13 the timings required by a wide list of benchmark

processes. The first value provided in the table is the time

required for the code generation (Generation, given in sec-

onds): we remind the reader that this operation only needs

to be performed once per process. The second value is the

timing for the full calculation of the amplitude at one phase-

space point (Evaluation, in milliseconds). Results are ob-

tained with an Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz.

Table 13 Time required for code generation and calculation of

one phase-space point. The results were obtained with an Intel(R)

Core(TM) i7 CPU 950 @ 3.07 GHz. The time for the evaluation of

a phase space point is taken as the average of the time obtained from

the evaluation of 100 random points generated using RAMBO [102],

where the code was compiled using gfortran without any optimisa-

tion options. The generation of the R2 term was set to explicit

Process Generation [s] Evaluation [ms]

bg → Hb 236 2.49

dd̄ → t t̄ 341 4.71

dd̄ → t t̄ (DRED) 324 4.05

dg → dg 398 3.08

dg → dg (DRED) 402 3.28

e+e− → t t̄ 221 1.27

e+e− → t t̄ (LanHEP) 180 1.27

e+e− → uū 122 0.65

gg → gg 525 1.69

gg → gg (DRED) 428 1.66

gg → gg (LanHep) 1022 1.70

gg → gZ 529 15.18

gg → t t̄ 1132 24.65

gg → t t̄ (DRED) 957 30.13

gg → t t̄ (UFO) 1225 29.45

H → γ γ 140 0.24

gb → e−ν̄et 337 2.89

ud̄ → e−ν̄e 71 0.09

ud̄ → e−ν̄eg 154 1.15

uū → dd̄ 186 2.06

ūd → W+W+c̄s 1295 17.37

γ γ → γ γ 597 6.08
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A.1 How to run the examples

The example directories only define the system indepen-

dent part of the setup. All settings which are defined in the

file system.rc (see Sect. 4) must be put either in a file

called $HOME/.gosam or in the file setup.in in the

GOSAM examples/ directory. A script runtests.sh

is provided to generate, compile and run the test programs.

The names of the directories respectively examples to be run

should be specified at the command line, e.g.

./runtests.sh eeuu bghb

If the script is invoked without arguments it will loop over all

subdirectories. A second script, summarize.sh, can be

used in order to collect the test results and print a summary

to the screen. The command

./summarize.sh

will produce an output like the following one.

+ bghb (succeeded)

+ eeuu (succeeded)

grep: ./ddtt/...: No such file ...

The examples e+e− → t t̄ have an explicit dependence on

the Golem95C library and will therefore fail if the exten-

sion golem95 is not added.

A.2 e+e− → uu

The following parameters and momenta have been used to

produce the numerical result:

E px py pz

e+ E 0 0 E

e− E 0 0 −E

u E E sin θ sinφ E sin θ cosφ E cos θ

ū E −E sin θ sinφ −E sin θ cosφ −E cos θ

parameters

E 74.7646520969852 μ2 4E2

φ 2.46 θ 1.35

MZ 91.1876 ΓZ 2.4952

MW cos θw MZ sin θw 0.47303762

result e+e− → uu

GOSAM analytic

a0 3.7878306213027528

c0/a0 1.86960440108932 ×CF (π2 − 8) × CF

c−1/a0 −3.0000000000000 × CF −3 × CF

c−2/a0 −2.0000000000000 × CF −2 × CF

A.3 e+e− → t t

This example has been produced twice: once with the de-

fault model file and once with a model file imported from

LanHEP [55]. Thus it also can serve as an example of how to

import model parameters from LanHEP. The result is given

in dimensional reduction, and no renormalisation terms are

included.

parameters

MZ 91.1876 ΓZ 2.4952

MW cos θw MZ sin θw 0.47303762

mt 172.5 μ2 m2
t

The following results are obtained with the above parame-

ters and the kinematic point of Table 14.

result e+e− → t t

GOSAM analytic

a0 6.3620691850584166 6.3620691850631061

c0/a0 13.182472828297422 13.182472828302023

c−1/a0 12.211527682024421 12.211527682032367

c−2/a0 0 0

A.4 uu → dd

This example has been produced twice: once in the ’t Hooft

Veltman (HV) scheme and once with dimensional reduc-

tion (DRED). Only the result in the HV scheme will be

Table 14 Kinematic point used in e+e− → t t̄

E px py pz

e+ 74.7646520969852 0 0 74.7646520969852

e− 6067.88254935176 0 0 −6067.88254935176

t 5867.13826404309 16.7946967430656 169.437140279981 −5862.12966020487

t̄ 275.508937405653 −16.7946967430656 −169.437140279981 −130.988237049907
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listed below, for the DRED calculation see the directory

uudd_dred.

parameters

μ 91.188 Nf 2

Using the above parameters and the phase space point of

Table 15 we obtain the following numbers.

result uu → dd

GOSAM(HV) Ref. [103]

a0 0.28535063700913421 0.28535063700913416

c0/a0 −2.7940629929270155 −2.7940629929268876

c−1/a0 −6.4881359148866604 −6.4881359148866391

c−2/a0 −5.3333333333333 −5.3333333333333

A.5 gg → gg

This example has been produced both with the default model

file and with a model file imported from LanHEP. Fur-

ther, it has been calculated in the ’t Hooft Veltman scheme

and in the dimensional reduction scheme. Only the results

in the ’t Hooft Veltman scheme are listed below, for fur-

ther details please see the subdirectories gggg_dred and

gggg_lhep. The result is for the helicity configuration

g(+)g(+) → g(−)g(−), and pure Yang-Mills theory, i.e.

fermion loops are not included.

parameters

μ2 442 Nf 0

αs 0.13

Evaluating the amplitude for above parameters and the

phase space point given in Table 16 we obtain the follow-

ing results.

result gg → gg

GOSAM(HV) Ref. [104]

a0 14.120983050796795 14.120983050796804

c0/a0 −124.0247557942351 −124.02475579423495

c−1/a0 55.003597347101078 55.003597347101035

c−2/a0 −12.00000000000000 −12

A.6 gg → gZ

As this process has no tree level amplitude, the result is for

the one-loop amplitude squared.

parameters

μ2 s12 αs 1

MZ 91.1876 ΓZ 0

sin θw 0.4808222 MW cos θw MZ

Nf 2

With the above parameters and the kinematics given in Ta-

ble 17 we obtain the following result.

result gg → gZ

GOSAM Ref. [105]

a0 – –

|M|21-loop 0.1075742599502829 0.10757425995048300

A.7 dd → t t

This example has been calculated in the ’t Hooft Veltman

scheme and in the dimensional reduction scheme. Only the

Table 15 Kinematic point used in uū → dd̄

E px py pz

u 102.6289752320661 0 0 102.6289752320661

ū 102.6289752320661 0 0 −102.6289752320661

d 102.6289752320661 −85.98802977488269 −12.11018104528534 54.70017191625945

d̄ 102.6289752320661 85.98802977488269 12.11018104528534 −54.70017191625945

Table 16 Kinematic point used in gg → gg

E px py pz

p1 220.9501779577791 0 0 220.9501779577791

p2 220.9501779577791 0 0 −220.9501779577791

p3 220.9501779577791 119.9098300357375 183.0492135511419 −30.55485589367430

p4 220.9501779577791 −119.9098300357375 −183.0492135511419 30.55485589367430
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Table 17 Kinematic point used in gg → gZ

E px py pz

g 100 0 0 100

g 100 0 0 −100

g 79.2120540156 3.65874234516586 −25.1245942606679 75.0327786308013

Z 120.7879459844 −3.65874234516586 25.1245942606679 −75.0327786308013

results in the ’t Hooft Veltman scheme are listed below, for

the renormalised amplitude with Nf = 5 and the top mass

renormalised on-shell.

For further details please see the subdirectories ddtt and

ddtt_dred.

parameters

mt 172.5 μ2 m2
t

αs 1 Nf 5

With the above parameters and the kinematics given in Ta-

ble 18 we obtain the following results.

result dd → t t

GOSAM(HV) Ref. [27, 106] (MCFM)

a0 0.43024349783870747 0.43024349783867882

c0/a0 −22.526901042662193 −22.526901042658068

c−1/a0 10.579577611830414 10.579577611830567

c−2/a0 −2.6666666666666599 −2.666666666666721

A.8 gg → t t

The result is for the renormalised amplitude in the HV

scheme.

parameters

mt 171.2 Γt 0

Nf 5 μ 71.2

With the above parameters and the kinematics given in Ta-

ble 19 we obtain the following results.

result gg → t t

GOSAM(HV) Ref. [27, 106] (MCFM)

a0 4.5576116986983433 4.5576116986983424

c0/a0 15.352143751168184 15.352143750919995

c−1/a0 −27.235240992743407 −27.235240936279297

c−2/a0 −6.0 −6.0

A.9 bg → Hb

For this process the mass of the b-quark is set to zero. How-

ever, in order to have a coupling between the b-quark and

the Higgs boson, the following Yukawa coupling is imple-

mented in the model file:

Lyuk = YHb ψ̄LψR φ,YHb = m̄b(μ)

v
.

Table 18 Kinematic point used in dd → t t

E px py pz

d 74.7646520969852 0 0 74.7646520969852

d 6067.88254935176 0 0 −6067.88254935176

t 5867.13826404309 16.7946967430656 169.437140279981 −5862.12966020487

t 275.508937405653 −16.7946967430656 −169.437140279981 −130.988237049907

Table 19 Kinematic point used in gg → t t

E px py pz

g 137.84795086008967 0. 0. 137.84795086008967

g 3161.1731634194916 0. 0. −3161.1731634194916

t 3058.6441209877348 16.445287185144903 165.91204201912493 −3049.2945357402382

t 240.37699329184659 −16.445287185144903 −165.91204201912493 25.969323180836145
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parameters

mb 0 m̄b(μ) 2.937956

mH 120 v 246.2185

μ 91.188

With the above parameters and the kinematics given in Ta-

ble 20 we obtain the following results.

result bg → Hb

GOSAM(HV) Refs. [39, 107]

a0 · 107 2.09926265849001642 2.09926265848997195

c0/a0 −24.131948141318752 −24.131948141995107

c−1/a0 11.957924609547224 11.957924605423791

c−2/a0 −5.6666666666666643 −5.6666666666666670

A.10 H → γ γ

The decay width ΓH→γ γ of this loop induced process is

known analytically at lowest order. For comparison we used

the equations including the top loop and the bosonic con-

tribution given in [108, 109]. The decay width can be ex-

pressed as

ΓH→γ γ =
GF α2m3

H

128
√

2π3
· Γ̂ (τW , τt ), (A.1)

where τi = m2
H /(4m2

i ) for i = W, t .

parameters

mH 124.5 mt 172.5

mW 80.398

result H → γ γ

GOSAM Refs. [108, 109]

Γ̂ (τW , τt ) 3.366785118586698 3.36678512043889

A.11 ud → e− νe

This example has been calculated in the ’t Hooft Veltman

scheme and in the dimensional reduction scheme. Only the

results in the ’t Hooft Veltman scheme are listed below, for

the renormalised amplitude. In addition to a calculation with

the default model file, calculations using LanHEP [55] and

UFO [54] are also contained in the examples directory.

parameters

√
s 200 μ 91.1876

With the above parameters and the kinematics given in Ta-

ble 21 we obtain the following results.

result ud → e− νe

GOSAM(HV) Ref. [39]

a0 1.4138127601912656 1.4138127601912673

c0/a0 5.4861229357937624 5.4861229357937660

c−1/a0 0.18879169932851950 0.18879169932852413

c−2/a0 −2.666666666666667 −2.6666666666666665

A.12 ud → e− νe g

We list the renormalised amplitude in the HV scheme.

Table 20 Kinematic point used in bg → Hb

E px py pz

b 250 0 0 250

g 250 0 0 −250

H 264.4 −83.84841332241601 −86.85350630148753 −202.3197272300720

b 235.6 83.84841332241601 86.85350630148753 202.3197272300720

Table 21 Kinematic point used in ud → e− νe

E px py pz

u 100 0 0 100

d 100 0 0 −100

e− 100 75.541566535633046 30.240603423558878 −58.128974100026611

νe 100 −75.541566535633046 −30.240603423558878 58.128974100026611
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parameters

MW 80.398 ΓW 2.1054

sin θw 0.4808222 MZ MW / cos θw

Nf 5 Vud 0.97419

μ2 s12

With the above parameters and the kinematics given in Ta-

ble 22 we obtain the following results.

result ud → e− νe g

GOSAM(HV) Ref. [39]

a0 · 107 2.8398509625435832 2.8398509625435922

c0/a0 −8.6052919370147745 −8.6052919368774248

c−1/a0 −18.722010655600936 −18.722010655557121

c−2/a0 −5.6666666666666 −5.66666666666667

A.13 g b → e− νe t

We list the renormalised result in the dimensional reduction

scheme.

parameters

MW 80.4190 ΓW 2.04760

MZ 91.1876 ΓZ 2.49520

mt 171.2 Γt 0

μ 71.2 e 0.30794906326863203

With the above parameters and the kinematics given in Ta-

ble 23 we obtain the following results.

result g b → e− νe t

GOSAM Ref. [27, 106] (MCFM)

a0 · 102 8.52301540675800134 8.52301540708130106

c0/a0 −79.879718568538991 −79.879718569273024

c−1/a0 26.570185488790770 26.570185487963364

c−2/a0 −4.3333333333333401 −4.3333333331689596

A.14 ud → W+W+ c s

Results are given for the unrenormalised amplitude in the

dimensional reduction scheme.

parameters

μ 80 Nf 5

With the above parameters and the kinematics given in Ta-

ble 24 we obtain the following results.

result ud → W+W+ c s

GOSAM Ref. [20, v3]

a0

c0/a0 23.3596455167118 23.35965

c−1/a0 13.6255429251954 13.62554

c−2/a0 −5.333333333333 −5.33333

Table 22 Kinematic point used in ud → e− νe g

E px py pz

u 500 0 0 500

d 500 0 0 −500

e− 483.244841094218 −86.3112218694181 147.629518147233 −451.975082051212

νe 279.253370247231 6.62401666401929 −5.58083951102529 279.119009435087

g 237.501788658551 79.6872052053988 −142.048678636208 172.856072616124

Table 23 Kinematic point used in g b → e− νe t

E px py pz

g 1187.7086110647201 0 0 1187.7086110647201

b 2897.148136260289 −2897.148136260289

e− 2293.0435558834492 629.81047833131981 258.58120146220904 −2189.6399870328105

νe 509.48956356743611 144.72113807954338 19.883362437475 −488.098411670514

t 1282.3236278741238 −774.53161641086319 −278.46456389968404 968.29887350775562
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Table 24 Kinematic point used in ud → W+W+ c s

E px py pz

u 500 0 0 500

d 500 0 0 −500

c 54.2314070117999 −7.92796656791140 43.6912823611163 −31.1330162081798

s 214.488870161418 −98.5198083786150 188.592247959949 −27.0607980217775

e+ 85.5312248384887 36.1637837682033 −77.0725048002414 −8.22193223977868

νe 181.428811610043 −171.863734086635 −5.61185898481311 −57.8599829481937

μ+ 82.8493010774356 −49.8952157196287 5.51413360058664 −65.9095476235891

νμ 381.470385300815 292.042940984587 −155.113300136598 190.185277041519

Appendix B: Explicit reduction of R2 rational terms

In this Appendix we list all integrals which give rise to R2

terms as we use these expressions in their explicit construc-

tion. We use the definition

I
n,α;μ1...μr

N (S) =
∫

μ2εdnq

iπn/2

q̂μ1 · · · q̂μr (μ2)α

D1 · · ·DN

(B.1)

with

Dl = (q + rl)
2 − m2

l

and

Sij = (ri − rj )
2 − m2

i − m2
j . (B.2)

The integrals up to O(ε) are

ε · In,0
1 (S) = −1

2
S11, (B.3)

ε · In,0;μ1

1 (S) = 1

2
S11 · rμ1

1 , (B.4)

I
n,1
2 (S) = −1

6
(S11 + S12 + S22) , (B.5)

ε · In,0
2 (S) = 1, (B.6)

ε · In,0;μ1

2 (S) = −1

2

(

r
μ1

1 + r
μ1

2

)

, (B.7)

ε · In,0;μ1μ2

2 (S) = 1

6

(

2r
μ1

1 r
μ2

1 + r
μ1

1 r
μ2

2 + r
μ1

2 r
μ2

1

+ 2r
μ1

2 r
μ2

2

)

− 1

12
ĝμ1μ2 (S11 + S12 + S22) , (B.8)

I
n,1
3 (S) = 1

2
, (B.9)

I
n,1;μ1

3 (S) = −1

6

(

r
μ1

1 + r
μ1

2 + r
μ1

3

)

, (B.10)

ε · In,0;μ1μ2

3 (S) = 1

4
ĝμ1μ2 , (B.11)

ε · In,0;μ1μ2μ3

3 (S) = − 1

12

3
∑

l=1

[

ĝ••r•
l

]μ1μ2μ3 , (B.12)

I
n,1;μ1μ2

4 (S) = 1

12
ĝμ1μ2 , (B.13)

I
n,2
4 (S) = −1

6
, (B.14)

ε · In,0;μ1μ2μ3μ4

4 (S) = 1

4!
[

ĝ••ĝ••]μ1μ2μ3μ4 . (B.15)
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