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ARTICLE

Automated optimized parameters for T-distributed
stochastic neighbor embedding improve
visualization and analysis of large datasets
Anna C. Belkina 1,2*, Christopher O. Ciccolella3, Rina Anno4, Richard Halpert 5, Josef Spidlen 5 &

Jennifer E. Snyder-Cappione2,6

Accurate and comprehensive extraction of information from high-dimensional single cell

datasets necessitates faithful visualizations to assess biological populations. A state-of-the-

art algorithm for non-linear dimension reduction, t-SNE, requires multiple heuristics and fails

to produce clear representations of datasets when millions of cells are projected. We develop

opt-SNE, an automated toolkit for t-SNE parameter selection that utilizes Kullback-Leibler

divergence evaluation in real time to tailor the early exaggeration and overall number of

gradient descent iterations in a dataset-specific manner. The precise calibration of early

exaggeration together with opt-SNE adjustment of gradient descent learning rate dramatically

improves computation time and enables high-quality visualization of large cytometry and

transcriptomics datasets, overcoming limitations of analysis tools with hard-coded para-

meters that often produce poorly resolved or misleading maps of fluorescent and mass

cytometry data. In summary, opt-SNE enables superior data resolution in t-SNE space and

thereby more accurate data interpretation.
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V
isual exploration of high-dimensional data is imperative
for the comprehensive analysis of single cell datasets.
Fluorescence, mass and sequencing-based cytometric data

analysis requires tools that are able to reveal the combinations of
proteomic and/or transcriptomic markers that define complex
and diverse cell phenotypes in a mixed population. While tradi-
tional biaxial data presentation via expert-driven gating is still the
standard analysis method for cytometry data, with the advent of
the modern multi-parameter era an analysis tool that can accu-
rately and comprehensively visualize multi-dimensional data is
direly needed to relieve the current cytometry data-processing
bottleneck.

To date, multiple dimensionality reduction techniques have
been applied to cytometry data with variable success. Linear
methods, such as PCA, are mostly unsuitable for cytometry data
visualization as such techniques cannot faithfully present the
non-linear relationships. t-Distributed Stochastic Neighbor
Embedding (t-SNE) is a state-of-the-art dimensionality reduction
algorithm for non-linear data representation that creates a low-
dimensional distribution, or a ‘map’, of high-dimensional data1,2.
Conspicuous groupings of datapoints, or ‘islands’, correspond to
observations that are similar in the original high-dimensional
space and help to visualize the general structure and hetero-
geneity of a dataset. When t-SNE embeds single cell data, the
islands represent cells with similar phenotypes, as defined by a
cytometric or genomic signature, thereby allowing to reveal bio-
logical data structure and to surface important differences
between samples and/or subject groups3. In addition, t-SNE maps
are used to categorize single cell data into relevant biological
populations for downstream quantification, achievable through
expert-guided filtering (gating)4 or unsupervised clustering of the
map5–7. Visualizations of cytometry data produced with other
non-linear embedding algorithms, such as LargeVis8, UMAP9,
and EmbedSOM10, can be interpreted and interrogated in a
similar manner. Clustering algorithms that directly interrogate
high-dimensional data, such as FlowSOM11 and PhenoGraph12,
are often used in conjunction with 2D maps to present annotated
cell clusters to the viewer.

A limitation of t-SNE in its current form is its inability to scale
to datasets with large numbers of observations7,8. This restrains t-
SNE’s utility for cytometry datasets that often include millions of
observations (events) routinely collected for phenotypic analysis.
Unlike PCA, t-SNE learns the embedding non-parametrically,
and hence new pieces of data cannot validly be added to an
existing analysis, necessitating the whole dataset to be analyzed
within one computation. When the full dataset is comprised of
multiple samples, each representing a subject in a large cohort or
an independent experimental condition, retaining statistically
significant representation of small subpopulations in each sample
requires inflating the dataset size13. However, even within a single
measurement, subsampling the data risks preventing rare subsets
from being identified. These limitations cannot be overcome via
application of the currently understood best practices for t-SNE
use. Not only are large datasets computationally expensive to
analyze, but also the resulting t-SNE maps provide poor visuali-
zation and incomprehensive representation of high-dimensional
data. Consequently, researchers often resort to either subsampling
their data to the very limit of detection of rare populations14 or to
exporting specific populations from their dataset, thus compro-
mising the unbiased data analysis approach15,16.

Although t-SNE has been widely adopted by the scientific
community, to our knowledge no rigorous theoretical or
empirical testing of t-SNE for cytometry applications has been
performed. In 2013, Amir et al. first reported the use of Barnes-
Hut (BH) implementation of t-SNE (or viSNE, as it was
renamed3) on mass cytometry data; since then, BH-tSNE has

been integrated into the majority of commercial and open-source
platforms for cytometry analysis. In most implementations, few
or no adjustments were made to the Barnes-Hut t-SNE algorithm
for the requirements of cytometry datasets; the default and hard-
coded parameter settings that were originally tested and opti-
mized with non-cytometry datasets like CIFAR (image dataset) or
MNIST (handwritten digits) are retained in these cytometry
programs and hence are still widely used. Recently published
modifications of t-SNE, such as HSNE17 and FIt-SNE18, do not
fully address these limitations. Therefore, development of rigor-
ous methodology to release the full potential of t-SNE for single
cell data comprehension and provide clues for optimization of
second generation t-SNE-like algorithms is the primary motiva-
tion for this work.

In this study, we first assess the behavior of t-SNE computation
with routinely used settings that match commonly prescribed best
practices, and then iteratively modify parameters of embedding to
identify conditions that ensure improved visualization. As a
result, we propose a new method to automatically find dataset-
tailored t-SNE parameters via fine-tuning of the early exaggera-
tion phase of t-SNE embedding in real time. We call our
approach opt-SNE, for optimized t-SNE. opt-SNE adjustments
can greatly shorten the number of iterations required to obtain
visualizations of large cytometry datasets with superior quality.
Our approach also eliminates the need for trial-and-error runs
intended to empirically find the most favorable selection of t-SNE
parameters, potentially saving many hours of computation time
per research project. Finally, we implemented opt-SNE as an open
source fast multicore t-SNE C++ package which allows much
faster computation of t-SNE embeddings than original single-core
Barnes-Hut t-SNE implementation.

Results
The standard t-SNE fails to visualize large datasets. The t-SNE
algorithm can be guided by a set of parameters that finely adjust
multiple aspects of the t-SNE run19. However, cytometry data
analysis software often locks or severely restrains the tunability of
those parameters, likely to provide a simplified, ‘one-size-fits-all’
solution for t-SNE use in the software packages. Although each
software platform has a unique combination of possible adjust-
ments, most allow changes to both the number of iterations and
to the perplexity (a soft measure for the number of nearest
neighbors considered for each data point).

The datasets used throughout this study include at least 1
million datapoints of fluorescent or mass cytometry data and are
therefore considerably larger than the typical (<5 × 105) datasets
previously reported in benchmark studies of cytometry algorith-
mic tools20. Cytometry datasets larger than approximately 5 × 105

events are generally observed to produce poor quality t-SNE maps
and are therefore usually subsampled prior to analysis.

Empirically, analysts have observed that increasing the number
of iterations of t-SNE computation results in better quality
maps9,21. We hypothesized that the resolution of t-SNE maps
created from higher event counts could be dramatically improved
via fine-tuning of t-SNE parameters. We first directly tested the
relationship between iteration number and map quality by
running two datasets (mass41parameter and flow18parameter,
as described in Table 1) at the standard 1000 iterations per run
and with an extended 3000 iteration computation (Fig. 1). As
expected, 1000-iteration runs produced maps with poor visuali-
zation compared to 3000-iteration runs. Specifically, massive
overlaps and random fragmentation of populations were
observed. In contrast, the 3000-iteration runs resulted in maps
with defined islands comprised of clearly isolated populations and
no random fragmentations (Fig. 1a, b) The 1NN accuracy of
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embedding was also higher in 3000-iteration embeddings for both
datasets compared to the standard 1000-iteration t-SNE (Suppl.
Fig. 1). Therefore, these findings are in agreement with the
concept of a higher number of iterations resulting in higher
quality t-SNE maps.

KLD plateau phase resolves cluster structure in t-SNE. In order
to determine the cause of the difference in cluster resolution
between the “standard” and “extended” t-SNE runs, we examined
the behavior of KLD (Kullback-Leibler divergence, see Meth-
ods) over the duration of t-SNE embeddings (Fig. 1c). As
expected, the KLD value was inflated during the EE since EEF is
factored into gradient and KLD value calculation in BH-tSNE1.
We applied EE over 250 iterations in the standard t-SNE con-
figuration and over 750 iterations in the extended run with 3000
iterations since most platforms have EE scaled to 25% of total
iteration number. Notably, the KLD did not immediately start to
minimize at the beginning of the EE; instead, the graph of KLD
over time is a plateau that is followed by a curve that captures the

incremental decrease of KLD, indicating the gradient descent. In
the standard t-SNE run, the plateau was interrupted when the
EE was stopped, then continued with a non-exaggerated value
of KLD.

Van der Maaten and Hinton called EE a “trick” that improved
resolution of the global structure of the data visualization that
would not otherwise converge to separated clusters1. As the
suboptimal quality of the 1000-iteration t-SNE maps shown in
Fig. 1a, b demonstrated poor global structure resolution, we
hypothesized that increasing the total iteration number in
conventional cytometry analysis platforms would inadvertently
increase the number of EE iterations resulting in improvement in
map visualization. To test this hypothesis, we compared runs that
differed in timing of the EE stop by plotting the embedding at the
iteration when the EE stops and also at later iterations, thus
assessing the effects of EE and our perturbations on both flow
cytometry (Fig. 2a) and mass cytometry (Fig. 2b) data visualization.

We found notable differences in map quality between the
runs with shorter and longer EE. Although the map after

Table 1 Datasets used in this paper

Dataset Data type Details References

Mass41parameter Mass

cytometry

41 parameter dataset (14 lineage parameters used for

embedding) of 1 million datapoints concatenated from

5 samples of human bone marrow cells

46

Flow18parameter Flow

cytometry

18 parameter dataset (11 lineage parameters used for

embedding) of 1 million datapoints concatenated from

2 samples of human PBMC

25,47

Flow20M Flow

cytometry

18 parameter dataset (15 lineage parameters used for

embedding) of 20 million datapoints concatenated from

27 samples of human PBMC

25,47

10X Genomics scRNA-seq Single cell gene expression data of E18 mouse brain pre-

processed into 20 PCA projections used for t-SNE embedding

https://support.10xgenomics.com/single-cell-

gene-expression/datasets and ref. 26

van Unen et al. Mass

cytometry

32 parameter dataset (26 lineage parameters used for

embedding) of 5.22 million datapoints concatenated from

104 samples of PBMC and gut biopsy cells
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EE200/total3000 iterations may appear visually more appealing
than previously shown EE250/total1000 map, ground-truth
labeling indicated that phenotype-defined clusters are fragmen-
ted in both flow and mass cytometry maps. When cluster
fragments were plotted on a biaxial plot against parameters that
were used in the t-SNE dimension reduction, we were not able
to identify protein marker expression patterns that immediately
contributed to their fragmentation (Suppl. Fig. 2). Conversely,
tight clusters that form at the end of the plateau remain mostly
unchanged as long as the EE is being applied to the computation
(Fig. 2a, b). The KLD minimization in that case could be
explained by the gradual shrinking of the 2D space. Once EE is
removed, the attractive forces within each cluster are weakened
and the local structure of the data is fully resolved within each
cluster.

Overall, our observations suggest that the EE phase of the
gradient descent is essential for data clustering while the non-
exaggerated descent results in the resolution of local structures.

When the EE is too short, the cell clusters continue to be resolved
simultaneously with the local structure of each cluster being
unfolded, leading to fragmented, overlapped or deformed islands
in the resulting map (Fig. 2, Suppl. Fig. 2). To locate the
timepoint when to end EE once the plateau phase is completed,
we tracked the relative rate of KLD change (KLDRCN= 100% ×
((KLDN−1−KLDN)/ KLDN−1) where N is the iteration number)
and then identified the local maximum of KLDRC (maxKLDRC)
(Fig. 2c). Since KLD is computed at each iteration, the
maxKLDRC sensor can be added to the algorithm program-
matically and would stop EE at the next iteration past
maxKLDRC. For both datasets the maxKLDRC was detected at
about 700–720 iterations (Fig. 2c), and, when the EE phase was
followed by 300–1300 iterations without EE, the resulting
visualization was similar to the EE750/3000 map at Fig. 1a and
no cluster fragmentations were observed (Suppl. Fig. 3),
demonstrating more relevant visualization of cytometry data
compared to standard t-SNE settings.
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EE factor, perplexity tuning does not impact visualization.
Once we found EE to be crucial for map optimization, we next
examined if the value of the EE factor α (EEF) can also be tuned
to improve the results of t-SNE. We made α user-accessible in our
C++ t-SNE code since it is hard-coded in the original Barnes-
Hut C++ t-SNE implementation and all aforementioned results
were obtained with default value of α= 12. First, we tested how
the optimization would proceed without EE (α= 1). We expected
the run to fail or produce extremely crowded results as explained
in the original t-SNE report;1 however, we did not see much
overlap in cluster positioning, likely due to the substantial
number of map iterations run (Fig. 3a). Nevertheless, the
resulting map showed considerable fragmentation, reflecting an
extreme case of an interrupted plateau phase. Even when run for
as many as 3000 iterations, the fragmentation could not be
remedied, again demonstrating the necessity of EE. As expected,
higher values of α lead to much higher KLD during EE, however,
the KLD values were similar at 2000 iterations when α varied
between 4 and 60 (Fig. 3b) and EE was stopped at the max
KLDRC iteration. Larger α prolonged the plateau phase and
became detrimental for KLD values when over 100. Visually α=
200 resulted in a distorted map with smaller populations lost.
Therefore, we suggest that for cytometry applications the α

parameter may remain unchanged and set to 12, as hard-coded in
BH-tSNE2, or reverted to α= 4, as originally proposed by van der
Maaten and Hinton1 since per our results any value between 4
and 20 leads to similar outcomes.

Increased perplexity has been proposed to be an intuitively
beneficial method for visualization improvement since it
translates to a larger number of considered nearest neighbors
and hence a more accurate approximation of attractive forces,
while decreased perplexity can completely fail the visualization19.
KLD values for runs with varying perplexity cannot be directly
compared since the KLD value is related to perplexity; however,
KLD records over time do not show that increased perplexity
results in visibly improved data visualization (Fig. 3c) or faster
resolution of clusters (Fig. 3d). However, while changing α does
not affect t-SNE computation time, perplexity is linearly related
to the time required to create the embedding in both
implementations of BH-tSNE that we tested. Although we and
others have found some benefits of perplexity increases to map
quality in otherwise suboptimal t-SNE runs, optimizing the EE

step as described above and further in this work does not leave
much space for improvement with perplexity tuning.

T-SNE learning step size must scale to dataset size. The step size
in t-SNE gradient descent is updated at each iteration per Jacobs
adaptive learning rate scheme22. This method increases the
learning rate in directions in which the gradient is stable. A
conservative initial value of 200 is hard-coded into most plat-
forms. We hypothesized that larger datasets may stay longer on
KLD plateau due to the number of iterations it takes to build up a
sufficient learning rate step size. To evaluate this possibility, we
titrated the step size η while observing the KLD with fixed EE=
1000 iterations in the mass41parameter dataset. In agreement
with our hypothesis, η= 25 and η= 50 runs failed to resolve from
KLD plateau within 1000 iterations of EE (Fig. 4a) and η= 200
finished the plateau in ~700 iterations as previously shown. With
further increases in η, we found that not only were progressively
fewer iterations required to complete the plateau, but also that the
final KLD of the maps scored at lower values. KLD is directly
related to the quality of visualization since it reflects the faith-
fulness of representation of high-dimensional data in t-SNE
space; therefore, lower KLD values indicate superior visualization
quality.

We continued to see improvement in plateau duration and
KLD values with higher η values up to η ~ 64,000, a value that is
drastically far from the default η= 200 setting (in most platforms,
η is restricted to ranges below 3000) (Fig. 4b). At η ~ 256,000 we
observed irregular peaks in the KLD graph indicating that the
prescribed step size rendered gradient descent ineffective.
However, using lower values of η we were able to create the
map with the lowest KLD values at a fraction of time when
limiting the EE step to 200 and even 100 iterations despite the 106

size of the dataset (Fig. 4c). Visual inspection of the embedded
maps over the range of η values agrees with the KLD values
(Fig. 4d).

In a recent publication, Linderman and Steinerberger23 prove
that in general t-SNE embedding will not converge if a product of
EE factor α and of fixed learning rate step size η is larger than the
number of datapoints n (i.e., if αη > n). Since we employ an
adaptive learning rate, our selection of initial η value is more
forgiving; however, we found the most efficient settings of η to be
close to η = n/12 for computations where α= 12. Therefore, we
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propose to initiate the gradient descent with η= n/α to create t-
SNE visualization (Fig. 4e).

opt-SNE creates fast high quality embedding of cytometry data.
The standard C++ BH-tSNE implementation that we used to
optimize t-SNE parameters only utilizes a single processor core
and requires considerable computation time. We thus adopted a
recently developed multicore modification of Barnes-Hut t-SNE24

to implement our proposed optimization techniques into a single
workflow labeled ‘opt-SNE’ that includes KLD plateau monitor-
ing and dataset size-specific learning rate step scaling (Table 2).
To compare opt-SNE to standard t-SNE and individual t-SNE
parameter tuning results, we generated embeddings that were

automatically finalized when (KLDN−1–KLDN) < KLDN/5000 (i.e.,
when each new iteration only improved KLD by less than 0.05%).
When we moved from original C++ BH-tSNE to multi-core BH-
tSNE24, we observed a 2–3× boost in computation speed with no
penalty in embedding quality, endpoint KLD values, or total
number of iterations to reach endpoint KLD (Suppl. Fig. 4A).
When compared with standard a t-SNE run in multicore
enviroment, opt-SNE visualizations of both flow and mass cyto-
metry data exhibited an additional 2× or greater speedup due to
the smaller number of iterations needed to complete the data
embedding (Fig. 5b, Suppl. Fig. 4B). This improvement in com-
putation time scaled with dataset size, and almost no variation
was observed when runs initiated from various random seeds
were compared (Suppl. Fig. 4B-E). As discussed above, opt-SNE
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Table 2 Summary of t-SNE optimizations proposed in opt-SNE workflow

Parameter opt-SNE setup Suggested use with

cytometry data

Gradient descent learning rate Adaptive learning rate with initial value η= n/α, where n is the number of

datapoints and α is the early exaggeration factor

Automated per dataset

Early exaggeration factor Standard t-SNE setup considerations apply 4–12

Perplexity Standard t-SNE setup considerations apply 30–50

Early exaggeration termination KLD value (cost function) is monitored in real time, and early exaggeration is

removed at maxKLDRC

Automated per dataset

t-SNE termination KLD value (cost function) is monitored in real time and the embedding is finalized

when (KLDN−1−KLDN) < KLDN/X

X= 5000
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maps demonstrated superior quality compared to standard t-SNE
embeddings when visually inspected. We also assessed the quality
and accuracy of the embeddings quantitatively by comparing
their endpoint KLD values and 1NN accuracy scores. opt-SNE
embeddings achieved values of endpoint KLD that were sig-
nificantly lower than in standard t-SNE (Fig. 5a, b) and such
values were not reached by the standard t-SNE calculation even
after 20,000 iterations, indicating better retention of multi-
dimensional data structure. When compared on 1NN classifier
accuracy, opt-SNE embeddings achieved better scores than
embeddings produced with standard t-SNE methodology
(Fig. 5c). Also, by the same metric, the KLDN/5000 endpoint
criterion has proven to mark sufficiently long opt-SNE runs since
no improvement of accuracy was observed when the embedding
calculation continued beyond that point (Suppl. Fig. 4E). For
further algorithm tuning at the discretion of the user, we incor-
porated automated opt-SNE termination as a tunable parameter
that sets a fraction of KLD minimization per iteration.

opt-SNE allows visualization of mega-scale single cell data. To
test the performance of opt-SNE on even larger datasets, we used
a 20.1 × 106 event fluorescent cytometry dataset concatenated
from two independent batches of peripheral blood mononuclear
cells (PBMC) samples (N= 27) stained with a variation of the
OMIP-037 fluorescent cytometry panel25 that allows detailed
assessment of multiple immune subsets including naïve
and memory CD4+and CD8+ T cells, NK cells, and γδ T cells
(Fig. 6a, b). The embedding completed in 770 iterations with only
73 iterations required to pass the EE step (Suppl. Fig. 5A) and
resulted in clear separation of cell clusters as evaluated by cell
type annotation (Fig. 6c). The majority of clusters appear to be
populated by cells from all subjects with the exceptions of several
populations that contained sample-unique debris features
(Fig. 6b, dashed arrows), confirming an absence of batch effects.
A detailed breakdown of identified populations is presented in
Fig. 6c that shows subsets of CD4+ and CD8+ T cells, NK cells,
γδ T cells, B cells, and monocytes. Importantly, B cell and
monocyte lineage markers were detected together with a viability
dye in a dump channel in this panel and therefore could not be
gated accurately via traditional biaxial plot analysis. However,
opt-SNE helped to visualize these populations as clear cell
groupings in the embedding analogously to their presence in the
original high-dimensional space defined by the combination of

several surface labels and light scatter characteristics, and the
resulting opt-SNE islands were minimally mixed with dead cells.
Use of the standard t-SNE algorithm on this dataset completely
failed to reveal its structure, even with several thousands of
iterations (Fig. 6d).

To test the suitability of opt-SNE for applications beyond flow
and mass cytometry, we analyzed a 1.3 × 106 cell single cell RNA-
seq dataset of mouse embryonic brain cells published by 10x
Genomics. We used pre-calculated PCA projections included in
the dataset to generate opt-SNE maps that we compared with
10x Genomics standard t-SNE embedding (Fig. 6e). 10x Genomics
used EE= 1000/total 4000 iterations of standard t-SNE while we
used opt-SNE settings with η= 97,959, EE= 66/total 885
iterations (Suppl. Fig. 5B). Non-immune single cell transcrip-
tomics data are more difficult to interpret with ground-truth
classes since much fewer scRNA-seq markers can be easily
interpreted for population identification. Therefore, we utilized
both single gene classification and classification through the
Louvain clustering algorithm using the Scanpy Python package26

to annotate the data. While opt-SNE and t-SNE both capture the
macro-structure illustrated by gene overlays, several Louvain
clusters (3, 18, 19, 25, 28) appear partially or completely
overlapped by other clusters in standard t-SNE but not in the
opt-SNE embedding. Therefore, opt-SNE allowed equivalent or
superior resolution of single cell transcriptomics data as with
standard t-SNE but with ~5× smaller iteration time (885
iterations of opt-SNE vs. 4000 iterations of standard t-SNE).

HSNE (hierarchical SNE) is a t-SNE adaptation that was
recently reported to facilitate analysis of large datasets by
constructing a hierarchy of embeddings that can be explored
from the overview of landmark populations up to a single cell
level or resolution7,17. To directly compare HSNE and opt-SNE,
we applied opt-SNE to the 5.2 million point dataset that was
reported in HSNE analysis of mass cytometry data7, and
compared opt-SNE visualization to the full resolution level of
HSNE embedding (Fig. 6g, Suppl. Fig. 6). In the CD4+ subset,
opt-SNE visualization revealed two groups of CD4+CD28− cells
likely representing terminally differentiated memory CD4+

T cells27 with different levels of CCR7 expression that may
reflect distinct differentiation states of the two populations. While
HSNE allowed identification of CD4+CD28−CCR7− cells, it was
unable to visualize the CD4+CD28−CCR7+ cells as a single
cluster and projected these cells sparsely in the CD4+ island
(Fig. 6i, left). Also, both algorithms projected heterogenous
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expression of CD56 in CD4+CD28−CCR7− cells, but HSNE
embedding did not resolve separate CD56+ and CD56− clusters
within CD4+CD28−CCR7− cells, loosely mapping them to the
poles of the single round cluster (Fig. 6i, right). However, opt-
SNE embedding visualized both the CD56+ and CD56− clusters
and the disparate CD45RA expression within each cluster,
revealing distinct phenotypes for the control and diseased
subject groups (Fig. 6h). Also, the opt-SNE maps revealed that
the CD56+CD45RA− cells in the cluster originate from several
subjects with Crohn’s disease (Fig. 6h). In summary, these results
confirm that opt-SNE embedding provides superior visualization
quality for complex cytometry data.

Discussion
Visual exploration of data drives hypothesis formation and/or
serendipitous discoveries; therefore, t-SNE is an extremely valu-
able tool for data comprehension. It is often used to facilitate data
perception when hypothesis generation is automated by robust
computational methods11,28. Comparison of t-SNE embeddings
from multiple experimental conditions, timepoints, or subjects is
invaluable to visualize sample-to-sample differences including
disease hallmarks and longitudinal observations29. t-SNE is also
valuable for quality assessment of data, when abnormal clustering
can be traced back to sample preparation, data acquisition, and
preprocessing artifacts30. Therefore, batch embedding of multiple
experimental points is essential for sample comparison and can
only be enabled when t-SNE accommodates large datasets.

t-SNE was first introduced in cytometry research as a tool to
visualize CyTOF data, since fluorescence-based high-parameter
datasets were less common at that time. With recent advances in
instrumentation and reagent availability, flow cytometry datasets
with >20 parameters are quickly becoming prevalent and even
standard in the field31–33, yet the proper data assessment tools are
lacking for general use. DNA-barcoded antibodies have been
recently utilized to allow simultaneous protein-epitope and
transcriptome measurements in single cells34 thus expanding the
repertoire of traditional cytometry methods that could employ t-
SNE as a staple method of data visualization and presentation.

One approach to large dataset t-SNE embedding is to model
visualization with a subset of datapoints curated7,17 or randomly
selected (as implemented in cytometry data analysis platforms
such as FCS Express and Gemstone) from the nearest neighbor
graph. Such techniques may fail to project extremely rare data-
points, as demonstrated by the CD4+CD28−CCR7+cells that
were identified via use of opt-SNE, but not HSNE, in the van
Unen et al dataset7 (Fig. 6g). This T cell subset was significantly
less abundant in subjects with severe inflammatory conditions
including Crohn’s disease as compared to controls (Suppl. Fig. 6).
However, the cells expressing the CD4+CD28−CCR7− pheno-
type, while also low in frequency in most PBMC samples (<1% of
all CD4+ cells), was likely successfully clustered by HSNE because
two of the 11 Crohn disease subjects in the dataset showed an
unusually high frequency of this population (40.7% and 31.0% of
all CD4+ cells), allowing it to be well represented in the kNN
graph of the full dataset.

Several attempts to successfully apply t-SNE-like methods to
massive datasets have been recently reported including afore-
noted HSNE7,17,35, LargeVis8, and net-SNE36. When applied to
large datasets, these methods often require and/or benefit from
considerable computational resources; for instance, the LargeVis
study was performed on a 512 GB RAM, 32 core station. How-
ever, it is ideal for such data analysis to be performed successfully
with the computational resources found in most laboratories.
We benchmarked our opt-SNE modification of multicore t-SNE
C++ implementation on a quad-core, 16GB RAM workstation

although even further improvement in computation speed would
occur if more cores were available. FIt-SNE, a recently published
alternative to Barnes-Hut t-SNE that uses fast Fourier transform
for much faster computation of repulsive forces approximation18,
renders opt-SNE even more feasible on personal computers.
Notably, we have not observed differences in quality between
embeddings generated with fast Fourier transform vs. Barnes-Hut
approximations when opt-SNE parameter adjustments were used
to compute the visualization (Suppl. Fig. 7). Therefore, we expect
opt-SNE to be applicable for existing or future adaptations of t-
SNE even if alternative methods of computation are utilized37,38

provided that they retain the core principles of t-SNE embedding.
A promising approach that may be integrated with opt-SNE is the
smart EE adjustment implemented in A-tSNE (approximated t-
SNE)35 algorithm where EE is removed gradually and on a per-
point basis. Cytosplore, a novel software platform that includes
HSNE and A-tSNE, allows the analyst to interactively initiate the
local refinement of the map, resulting in a significant improve-
ment in computation time7.

Often compared to t-SNE, Uniform Manifold Approximation
and Projection (UMAP) is a recently developed novel technique
for dimension reduction that can be successfully applied to
cytometry datasets9. As has been the case for other groups9,21, our
comparison of t-SNE and opt-SNE to UMAP generated mixed
results. Specifically, we found that UMAP parameter selection
had dramatic effects on UMAP computation performance and
embedding quality assessed by both human perception and 1NN
classifier accuracy (Supp. Fig. 8A-E). When benchmarked for
resource use in the Omiq cloud, UMAP consumed up to 128 GB
of RAM when embedding 5.2 million cell van Unen dataset, while
opt-SNE and FIt-SNE peaked at 16 GB RAM consumption; the
UMAP embedding took a comparable amount of time to com-
plete as opt-SNE. With careful parameter selection, UMAP
accuracy was approaching, but not surpassing, opt-SNE accuracy
(Supp. Fig. 8A, B).

Similar to other types of biological data, the structure of
cytometry data is difficult to project due to its mixed nature, often
comprised of cluster-like, manifold-like and/or hierarchical
components30,39. In this paper we propose multiple techniques
that are essential for superior quality t-SNE data projection and
are all germane to the fine-tuning of the early exaggeration phase
of t-SNE embedding. EE facilitates cluster formation on a 2D
plane1,40 and serves as a necessary compromise that allows
clusters to escape the crowding effect. We designed an efficient
measure to ensure that the cluster-like global structure of the data
is fully revealed during the EE phase by monitoring the KLD
output of the embedding in real time. As indicated by the lower
KLD values of opt-SNE embedding where EE was limited to fewer
iterations (Fig. 4e), prolonged amplification of the attractive
forces that drive tight cluster formation in EE may be detrimental
for the manifold-like local data structure represented by signal
distributions that are continuous with background signal. These
‘continuum expression’ molecules include proteins used to define
classic immune cell subsets as well as markers indicating disease
phenotypes, cell activation, and/or exhaustion state41. Conversely,
the non-exaggerated phase of t-SNE allows local data structures
to be revealed1. Therefore, cytometry data analysis would be
missing valuable information if we reduced t-SNE applicability to
finding only well separated clusters, especially since other tech-
niques would perform this task better and faster. However, some
workflows call for t-SNE pre-processing to facilitate extraction of
cluster features from multidimensional data5,42. In those cases, it
may be helpful to adapt the opt-SNE toolkit to terminate the
embedding calculation immediately at the EE stop iteration and
re-assess the high-dimensional structure within each cluster.
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Alternatively, a ‘late exaggeration’ approach21,38 can be cautiously
applied to create very tight clusters, although in our experience
this approach was only marginally beneficial for global structure
representation while detrimental for local structure (Suppl.
Fig. 9). Interestingly, UMAP embeddings also presented a chal-
lenge to perceive both cluster data structure and continuum
marker expression data structure within the same embedding,
as increasing the number of neighbors and decreasing the mini-
mum distance parameters seemed to benefit the former but
penalize the latter task (Suppl. Fig. 8C-E and21). These results
suggest that UMAP is highly promising but not yet readily
available to replace t-SNE as the state-of-the-art method for
cytometry data visualization.

It is advisable to note that certain data structures, such as
cluster hierarchy, cannot be revealed with t-SNE43,44. t-SNE
accessibility in cytometry analysis software lead to its not infre-
quent misuse with cytometry data, evident when the cluster-like
structure is not prominent in the map. Therefore, the features
identified from t-SNE embedding in its current form should be
verified with alternative methods when possible for confirma-
tional purposes. Im et al also suggest that if a continuous mani-
fold structure exists in the data, large perplexity values may cause
artificial breaks (overclustering)44. The perplexity values com-
monly used in cytometry analysis are on the lower end of the
suggested range for efficient clustering, as it is often advised to
scale the number of nearest neighbors to the average cluster
size45; however, if computationally feasible, higher perplexity
values might facilitate feature preservation for markers whose
expression is not bimodally distributed. To preserve global geo-
metry, Kobak et al21 propose to perform the embedding in two
steps and use the kNN-based extrapolation of a high-perplexity t-
SNE of a subset of the large dataset as initialization to run the t-
SNE of the whole dataset.

In summary, opt-SNE is a powerful optimization toolkit that
subverts major limitations of t-SNE for use with cytometric
datasets and thus enables novel data-driven findings in single cell
research.

Methods
Datasets. All datasets used in the study are summarized in Table 1.

Data pre-processing. Singlet events from several data recordings were digitally
concatenated and a randomly subsampled file of 1,000,000 mass46 or flow cyto-
metry47 events was created and used for analyses of the mass41parameter and
flow18parameter datasets. All observations from 27 recordings of flow cytometry
data were concatenated to generate the flow20M dataset. All observations from 104
recordings of mass cytometry data7 were concatenated to generate the van Unen
et al dataset.

All flow cytometry data were compensated with acquisition-defined
compensation matrices. Prior to t-SNE analysis, all cytometry data were
transformed using asinh (with cofactor 5 for mass cytometry data and with
cofactor 150 for flow14parameter data) or biexponential (flow20M)
transformation. Light scatter parameters were log-transformed.

The standard t-SNE configuration for cytometry applications. t-SNE computes
low-dimensional coordinates of high-dimensional data resulting in similar and
dissimilar data points in the raw data space placed proximally and at a distance,
respectively, in the dimensionally reduced map2. This map placement is achieved
via t-SNE modeling the probabilities as a Gaussian distribution around each data
point in the high-dimensional space and modeling the target distribution of
pairwise similarities in the lower-dimensional space using Cauchy distribution
(Student t-distribution with 1 degree of freedom). Then, the Kullback-Leibler
Divergence (KLD) between the distributions is iteratively minimized via gradient
descent. The gradient computation is essentially an N-body simulation problem
with attractive forces (approximated to nearest neighbors using vantage-point
trees) pulling similar points together and repulsive forces (approximated at each
iteration using the Barnes-Hut algorithm) pushing dissimilar points apart.

An important part of t-SNE gradient descent computation is the early
exaggeration (EE) that was proposed by van der Maaten and Hinton1 to battle the
so called overcrowding artifact of embedding. With EE, all probabilities modeling

distances in high-dimensional space are multiplied by a factor (early exaggeration
factor, EEF, or α) for the duration of the EE phase (typically 250, or 25% of the total
number of iterations). EE coerces data to form tight and widely separated clusters
in the map and is considered to enable the map to find a better global structure.

Multiple software platforms incorporate the BH-tSNE algorithm specifically for
analysis of cytometry data, including commonly used cytometry analysis desktop
packages (FlowJo, FCS Express), and the cloud-based analysis platform Cytobank.
Also, implementations of t-SNE are available as open-source packages in popular
programming languages such as R (rtsne) and Python (sci-kit learn). Most of
implementations wrap or re-write original C++ code of Barnes-Hut t-SNE2 and
produce comparable analysis results upon direct comparison. Here, we customized
the standard t-SNE C++ code to implement the parameter adjustments described
in this work and published this customization as an open source solution to enable
the research community to use this optimized t-SNE algorithm. Also, the
equivalent adjustments of t-SNE have been made available as a cloud application in
Omiq and integrated into FlowJo and SeqGeq programs.

Data analysis. A desktop C++ Barnes-Hut implementation of t-SNE for Mac OS
was used for t-SNE analyses2 with original implementation adapted to allow user
input for the early exaggeration stop iteration, perplexity, total number of itera-
tions, early exaggeration factor value, and learning rate value. A multicore mod-
ification of Barnes-Hut t-SNE24 was used as a source for building the opt-SNE
package with user-accessible parameters similar to listed above. The Kullback-
Leibler Divergence (KLD) value and t-SNE coordinates were reported during each
iteration or as frequently as requested. All datasets were embedded in 2D space.
Visually comparable t-SNE maps were generated with the same random seed
values used when permutations for specific parameters were tested and compared;
all experiments were repeated with several values of random seed. Benchmarking
data were generated on an iMac personal station with Intel Core i7 quad-core i7
processor and 16 GB of RAM. For cross-validation, we utilized cloud-based
Cytobank48, cloud-based Omiq, FlowJo V10.3–10.5 and FlowJo V9.9.6. R flowcore
package, Cytobank and FlowJo were used to generate FCS files and graphical
outputs from tabular data. Omiq platform was used for FlowSOM11, FIt-SNE (Fast
Fourier Transform-accelerated Interpolation-based t-SNE18) and UMAP (Uniform
Manifold Approximation and Projection)9 analyses. Also, the FIt-SNE plugin for
FlowJo and FIt-SNE prototype in FlowJo were used to ensure FIt-SNE compat-
ibility with opt-SNE. Logs of t-SNE runs were batch-processed with VBA scripts
and analyzed with GraphPad Prism. Expert-guided (manual) analysis of cell
populations was performed in FlowJo 10.3–10.5 as described previously for specific
datasets25,46 (Suppl. Figs. 10–11) and used for map annotations as cluster classes.

We used SeqGeq 1.3 for scRNAseq analysis and leveraged PCA projections
provided in the 10x Genomics dataset to calculate the t-SNE embedding and
annotated it using marker genes for major cell types. Louvain cluster classification
was adopted from the SCANPY data analysis study26.

The quality of embedding was assessed by a 1-nearest neighbor (1NN) classifier
based on previous reports on t-SNE accuracy evaluation1,2,8. The classifier was
written in R (version 3.5.0). For each invocation, the classifier was provided a
complete embedding and an accompanying array of assigned class values for each
observation in the embedding. Ten thousand cells were sampled from the
embedding as a training set using uniform pseudorandom sampling with the
“sample” function from base R. Next, a set of 50,000 cells disjoint to the training set
was sampled from the embedding as the test set. Each cell in the test set was then
mapped to its single nearest neighbor within the test set and assigned the class of
that neighbor using the “knn” function of the “FNN” R package (version 1.1.3,
available on CRAN). The number of correct class assignments in the test set was
calculated on a total basis and also on a per-class basis using the supplied class
values. This process was repeated five times for the provided embedding using
different seeds for the sampling step. Replacement was allowed for pseudorandom
sampling between the five internal repeat runs. The results were then presented as
the average of these five repetitions. The seeds used for the five repetitions were
kept consistent such that classification results between different embeddings of the
same dataset tested the same cells.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Open source multicore t-SNE C++ implementation and usage instructions are available

at https://github.com/omiq-ai/Multicore-opt-SNE. Cloud version of opt-SNE is available

at http://www.omiq.ai/opt-SNE. opt-SNE is natively supported within the FlowJo data

analysis software version 10.6 and later, and the SeqGeq version 1.5 or later, both

downloadable from http://www.flowjo.com. The code of modified van der Maaten BH-

tSNE C++ implementation with user-accessible parameters is available upon request.

Data availability
Flow18parameters and mass41parameters datasets are available via FigShare at https://

doi.org/10.6084/m9.figshare.9927986.v1. Van Unen et al. dataset7 is available at http://
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flowrepository.org/id/FR-FCM-ZYRM. 10XGenomics 1.3M scRNA-seq dataset is

available at https://support.10xgenomics.com/single-cell-gene-expression/datasets.
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