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Abstract: Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging

systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide

range of civilian applications. Among these applications, UAV-based agricultural mapping and

monitoring have attracted significant attention from both the research and professional communities.

The interest in UAV-based remote sensing for agricultural management is motivated by the need to

maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based

on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral

imaging systems). Due to the data volume, RGB imaging is based on frame cameras, while

hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance

and payload constraints of low-cost UAVs, the agricultural research and professional communities

have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived

information from push-broom hyperspectral scanners is quite sensitive to the available position

and orientation established through a direct geo-referencing unit onboard the imaging platform

(i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS).

This paper presents an automated framework for the integration of frame RGB images, push-broom

hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric

rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together

with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the

identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification

takes into consideration the available direct geo-referencing information to improve the reliability of

the matching procedure in the presence of repetitive texture within a mechanized agricultural field.

Identified features are then used to improve the geometric fidelity of the previously ortho-rectified

hyperspectral data. Experimental results from two real datasets show that the geometric rectification

of the hyperspectral data was improved by almost one order of magnitude.

Keywords: automated image registration; ortho-rectification; hyperspectral push-broom scanners;

phenotyping; SURF; UAV-based agricultural management

1. Introduction

Precision agriculture has become an important activity for: (1) optimizing crop yield given

diminishing resources; (2) increasing the reliability of crop-yield prediction; and (3) reducing

the agricultural impact on the environment through efficient use of fertilizers and pesticides [1].
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Technologies are also being adapted for advanced plant breeding where phenotypic data are obtained

to quantify plant growth, structure and composition at multiple scales over the growing season [2].

Traditional phenotyping has primarily been conducted in field-based plots, which is time-consuming,

labor-intensive and includes destructive sampling. Phenotypic data are also acquired in research

environments via proximal sensing in controlled environments, such as greenhouses and growth rooms,

which unfortunately are restricted in both extent and capability to emulate field-based conditions. Thus,

phenotyping is a significant bottleneck in advancing plant breeding. Novel phenotyping techniques,

which can be utilized to acquire relevant data over extended areas, are crucial [2,3]. Remote sensing

systems onboard satellite, airborne and wheel-based platforms can play an important role in high

throughput phenotyping. With the ever-increasing technological developments in Mobile Mapping

Systems (MMS) on different platforms, remote sensing-based phenotyping has become an attractive

option [4]. Improved performance of integrated Global Navigation Satellite Systems (GNSS) and

Inertial Navigation Systems (INS) together with the reduced cost of imaging sensors operating in

different portions of the electromagnetic spectrum are among the main reasons for the growing interest

in MMS for high throughput phenotyping. Among the possible MMS platforms, UAVs are now

becoming competitive platforms for remotesensing-based phenotyping, as they can be easily and

cost-effectively deployed while collecting geospatial data with higher temporal and spatial resolution

than other platforms [5–8]. Thus, UAVs equipped with directly geo-referenced imaging sensors are

also being used for these applications [9].

To obtain a rich set of structure and chemistry-based traits, the UAV platforms are being equipped

with RGB cameras and hyperspectral scanners. RGB cameras guarantee high geometric resolution

for accurate localization and estimation of important plant traits, such as height, canopy closure

and leaf structure. Hyperspectral scanners with fine spectral resolution [10,11] provide useful data

for the estimation of canopy nitrogen, chlorophyll content and various narrow-band vegetation

indices [12–16]. Due to the volume of collected data, in general, RGB cameras implement frame arrays,

whereas hyperspectral scanners are most commonly based on a linear array that captures scenes while

operating in a push-broom mode (i.e., the scene coverage is achieved through multiple exposures of the

linear array during the platform’s motion along its trajectory) [17]. To relate the sensory data from either

frame or push-broom imaging systems to spatial locations relative to a desired reference frame, some

sort of control is needed to define the datum for the derived information. This control can be established

using Ground Control Points (GCPs) and/or the implementation of an integrated GNSS/INS unit

onboard the mapping platform. The latter is the preferred option since GNSS/INS-based direct

geo-referencing can reduce or even eliminate the need for establishing GCPs, which is quite expensive

and operationally impractical for high throughput phenotyping over extended areas. Unfortunately,

the endurance and payload constraints are major factors that could impede the deployment of a

cost-effective and comprehensive UAV-based phenotyping platform. Therefore, the remote sensing and

agricultural communities mainly rely on UAVs equipped with consumer-grade direct geo-referencing

and imaging systems, which are relatively small and light weight, providing inaccurate position and

orientation information compared to those equipped with survey-grade GNSS/INS units. Modern

automated triangulation of overlapping frame imagery can be conducted while using minimal GCPs

and/or low-quality navigation information from consumer-grade GNSS/INS units [18]. However,

the inherent weaker imaging geometry of push-broom scanners due to their multiple exposures

of the linear array during the platform’s motion along its trajectory requires accurate navigation

data. A promising approach for improving the geometric fidelity of hyperspectral data while using

consumer-grade navigation systems uses frame camera imagery in the scene-to-ground transformation

of the hyperspectral-based information.

Few studies focus on the use of frame-based images to improve the geo-referencing information

of hyperspectral scanner scenes. Suomalainen et al. [19] compensated for the inferior quality of

direct geo-referencing information through simultaneous integration of captured frame images and a

Digital Elevation Model (DEM), which was derived from the frame images. Ramirez-Paredes et al. [20]
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presented a computer-vision approach for the indirect geo-referencing of the hyperspectral scenes,

which estimated a set of transformation parameters relating the reference frames of frame and

hyperspectral imagery. In [5], a methodology was presented for improving the ortho-rectification of

hyperspectral imagery in the presence of low-quality navigation information with the help of frame

imagery using tie points and linear features. In this approach, a transformation function is developed

to model the impact of residual artifacts in the direct geo-referencing information. The majority of

these approaches focus on the derivation of the mathematical transformation function between the

reference frames of frame and hyperspectral images. Unfortunately, time-consuming manual efforts

are needed to detect tie point/linear features that are used for the estimation of the parameters of the

transformation function. Therefore, automated identification of tie features among overlapping frame

and hyperspectral imagery is critical to the operational implementation of these approaches.

The photogrammetric and computer vision research communities have investigated the

identification of conjugate features in imagery from different sensor modalities. The identification

of tie points in high resolution imagery, especially those exhibiting different geometric and spectral

characteristics, is mainly established by applying a feature-based approach. First, strong features

(e.g., points, lines and possibly regions) are detected. Then, a descriptor is derived for the detected

features and used for the identification of conjugate features in overlapping images. Scale-Invariant

Feature Transform (SIFT) [21], Speeded-Up Robust Feature (SURF) [22] and Harris corner detectors

and descriptors [23] are among the most commonly-used approaches. Feature-based approaches

have been implemented for the registration of very high resolution images with the aim of extracting

well-distributed tie points [24–31]. Those approaches, however, might have poor performance for

scenes acquired over agricultural fields because of the large number of similar features, which are not

necessarily conjugate, arising from the repetitive plant patterns.

The objective of this paper is to introduce an automated approach for improving the geometric

rectification of hyperspectral images in the presence of low-quality navigation data through the

incorporation of frame images. The suggested procedure, which is presented in the remainder of this

paper, is based on the following processing framework.

1. Manipulate the frame imagery while using minimal control to produce a geometrically-accurate

orthophoto, which will be denoted as the RGB-based orthophoto.

2. Utilize the low-quality navigation data for ortho-rectifying the hyperspectral data. Since the

navigation data are based on a consumer-grade GNSS/INS unit, the rectified scenes will be

denoted as partially-rectified hyperspectral orthophotos. In other words, residual errors in

the navigation data are expected to have a negative impact on the ortho-rectification process;

thus, we use the term “partially-rectified”.

3. Develop a matching strategy that relies on the available navigation data to identify conjugate

features among the partially-rectified hyperspectral and RGB-based orthophotos to minimize

mismatches arising from the repetitive pattern in a mechanized agriculture field.

4. Use the matched features to derive the parameters of a transformation function that models the

impact of residual errors in the navigation data on the partially-rectified hyperspectral orthophoto.

5. Incorporate the transformation parameters in a resampling procedure that transforms the

partially-rectified hyperspectral orthophoto to the reference frame of the RGB-based one.

2. Methodology

The proposed methodology is based on the assumption that a consumer-grade GNSS/INS unit

has been used to provide the direct geo-referencing information for frame-based and hyperspectral

push-broom scanner imagery. Thanks to recent advances in the automated triangulation of frame

imagery, photogrammetric processing from an RGB camera can be carried out using minimal control,

which could be either in the form of a few GCPs and/or derived from a consumer-grade navigation unit.

The geo-referencing parameters together with the DEM are used to produce a geometrically-accurate
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RGB-based orthophoto. The hyperspectral data together with the DEM and GNSS/INS-based

geo-referencing information are also processed to produce a partially-rectified hyperspectral-based

orthophoto, which suffers from the impact of residual errors in the push-broom scanner position and

orientation information. The geometric fidelity of the partially-rectified hyperspectral orthophoto can

be improved through its co-registration with the RGB-based orthophoto. This registration process

can be achieved automatically through three main steps: (1) automated identification of conjugate/tie

point features among the RGB-based and partially-rectified hyperspectral orthophotos; (2) derivation

of a set of parameters that describe the transformation function relating the reference frames of these

orthophotos; and (3) resampling the partially-rectified hyperspectral orthophotos to the reference

frame of the RGB-based orthophoto.

Due to the limited angular field-of-view of the push-broom hyperspectral scanner, the area of

interest is covered through several flight lines with some side lap. In this paper, the automated

identification of conjugate points between the RGB-based orthophoto and the partially-rectified

hyperspectral orthophotos is facilitated through a two-faceted matching strategy. The first aims at

modifying the SURF-based matching of key features to impose constraints that compensate for the fact

that the repetitive patterns within the covered area are conducive to establishing false correspondences.

The second facet uses the GNSS/INS-based position and orientation information to limit the search

space for conjugate features. More specifically, the modified SURF-based matching is used to identify

conjugate features among neighboring partially-rectified hyperspectral orthophotos to improve the

relative alignment among these rectified scenes. In other words, the matching procedure is used to

derive a set of approximate geometric transformation functions among neighboring partially-rectified

hyperspectral orthophotos. Then, these approximate transformation functions are used to identify

conjugate features among the RGB-based and partially-rectified hyperspectral orthophotos. Finally,

the conjugate features are employed to derive the parameters of the transformation function relating

the reference frames of these orthophotos. The processing workflow of the proposed procedure is

summarized in Figure 1. The remainder of this section covers the modification of the SURF-based

feature matching to mitigate the problems arising from having a repetitive pattern within the covered

area. Then, we explain how the modified SURF is used to identify conjugate features among the

partially-rectified hyperspectral and RGB-based orthophotos. Finally, we introduce the theoretical

background for using the identified tie points to derive the parameters of a transformation function

that considers the impact of residual errors in the GNSS/INS navigation data on the quality of the

derived hyperspectral orthophotos.

 

Figure 1. Flowchart of the proposed methodology for the automated registration of RGB-based and

partially-rectified hyperspectral orthophotos.
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2.1. Speeded-Up Robust Feature Algorithm

This section provides a brief overview of the Speeded-Up Robust Feature (SURF) algorithm [22],

which is a scale- and rotation-invariant feature detector and descriptor for identifying corresponding

points (i.e., tie points) in overlapping images. These images will be denoted as template and query

images. The template is the image where the feature of interest is located. The query image is the

overlapping image where we seek to identify features corresponding to the ones in the template.

Within the feature detection stage, the SURF algorithm uses a Hessian matrix approximation, which

calculates the second-order partial derivative of an image, to locate feature points through the estimated

local curvature. SURF constructs a scale space through image convolution with rectangular masks of

different sizes. The convolution results in a series of blob response maps at different scales. In contrast

to the Scale-Invariant Feature Transform (SIFT) that uses a Gaussian pyramid for constructing the

scale space, SURF employs an integral image, which leads to a faster feature detection process [22].

A blob response threshold is applied to select feature points with high-contrast relative to their local

neighborhoods. Once the features are detected, 3D non-maximum suppression is performed to identify

the location and scale of prominent features with subpixel accuracy. To achieve rotation invariance, the

main orientation of detected features is calculated using the sum of all Haar wavelet responses within

a circular neighborhood. The detected features thus far are characterized by a 4D vector (x, y, σ, θ),

where x and y are the location of the feature within the image in question, σ is the scale where this

feature is defined and θ is its main orientation. The SURF approach then defines a square region,

which has been rotated according to the feature orientation, centered on the detected feature point to

generate its descriptor. The elements of the descriptor vector are based on the sums of Haar wavelet

responses. Each feature has a 64D descriptor vector, which is used for the identification of conjugate

features in overlapping images. In other words, conjugate features in overlapping images are expected

to exhibit minimal Euclidean distance between the respective descriptors. For reliable identification of

the feature in a query image corresponding to a selected feature in the template image, the minimum

Euclidean distance should be significantly smaller than the second shortest distance when considering

all of the features in the query image. Therefore, a match will be accepted when the ratio between the

minimum and next smallest Euclidean distances is less than a user-defined threshold Tr. Additional

details related to SURF are contained in [22].

Detected features and their descriptor vectors might not be conducive for the identification

of reliable matches in imagery acquired over agricultural fields (refer to Figure 2 that shows an

example of a partially-rectified hyperspectral orthophoto from a given flight line where repetitive

patterns are quite obvious). Therefore, the SURF-based matching procedure should be adapted to

consider the challenging nature of such data. The following paragraph emphasizes some of the

characteristics of SURF that could be relevant for improving the reliability of the identification of

conjugate features between the partially-rectified hyperspectral and RGB-based orthophotos. It should

be noted that the modified SURF algorithm can also be used for scenes without repetitive patterns if

direct geo-referencing information (i.e., position and orientation information of the used sensors) and

spatial resolution of the considered scenes are known.

One should note that the scale domain defines the scale range within which the feature is

detected and described. A feature having a small scale signifies that such a feature and its descriptor

vector are derived at a fine resolution while considering a small neighborhood around that feature.

A feature having a large scale means that it is defined at a coarse resolution while considering a large

neighborhood centered at that feature. Figure 3a illustrates features having a small scale, where the

crosshairs denote the locations of the different features, while the circles denote the scale range for

defining the respective descriptors. The lines within the circles denote the main orientation of the

different features. As can be seen in Figure 3a, derived features at a fine scale are not unique. That is,

several features in the query image could have similar descriptors while not being really conjugate to a

selected feature in the template image. Features derived at a coarse scale, as can be seen in Figure 3b,

have a higher probability of being unique, thus leading to more reliable matches in the presence of
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repetitive pattern, which is the case for agricultural scenes. Therefore, for reliable matching, one could

only consider features having scale values that are larger than a predefined threshold Tσ. To increase

the reliability of the matching process, it is usually performed in both forward and backward directions

(i.e., by reversing the roles of the template and query images). This process is commonly known as

cross-matching. A match is considered correct only if it is accepted by both the forward and backward

matching procedures.

 

Figure 2. Portion of a partially-rectified hyperspectral orthophoto that shows a repetitive pattern

within an agricultural field (RGB bands are displayed).

 
(a) (b)

Figure 3. Extracted features over an agricultural field at different scales: (a) fine-scale features;

and (b) coarse-scale features.

2.2. Modified SURF Algorithm

The generated descriptors for repetitive features observed in row crops might be quite similar

to each other, leading to false matching results. We propose to constrain the solution to minimize

the probability of wrongly matching non-corresponding features that exhibit similar descriptors by

considering the spatial location, scale and main orientation of the detected features.

Regarding the feature location, one should note that even though the GNSS/INS navigation

data are not as accurate as needed for this application, the information can be used to filter out

improbable matches. We implement a search space, which is commensurate with the quality of the

GNSS/INS navigation data, to constrain the spatial extent of the search space for conjugate features

in the query image. We also include an orientation constraint because truly corresponding features

should exhibit similar orientation (once again, this characteristic is attributed to the fact that we

are dealing with partially-rectified data, i.e., the ortho-rectified images are approximately aligned
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to the GNSS/INS-based reference frame). Finally, the matching process uses the known Ground

Sampling Distances (GSDs) in the RGB-based and partially-rectified orthophotos to limit the scale

range where conjugate features can be identified. Thus, the SURF-based matching is modified to

limit the spatial search space for conjugate features while considering the scale and orientation of

potential candidates in the query image. Specifically, rather than simply using the Euclidean distance

between the descriptors for the features in the template and query images as the matching criterion,

we also use the spatial location, scale and orientation of the detected features. Utilizing the GNSS/INS

data to constrain the spatial location of the search space is discussed in Section 2.3. The following

paragraphs deal with the orientation and scale consideration for improving the performance of the

matching process.

As a result of the repetitive row pattern within a mechanized agriculture field, considering

orientation during the descriptor vector generation might lead to truly corresponding features being

deemed non-conjugate or vice versa. The feature descriptor is evaluated using a region aligned

along the rows and columns of the respective images. Thus, the descriptor vectors are derived while

assuming that truly conjugate features should have a similar orientation. As for considering the scale

of the feature, we rely on the GSDs of the template and query images. For example, assume that σi

and σj are scales of the extracted features i and j from the template and query images, respectively.

Feature j in the query image can be considered as a matching candidate to feature i in the template

image if the constraint in Equation (1) is satisfied.

Ts ≤
GSDqσi

GSDtσj
≤

1

Ts
(1)

where Ts denotes a scale ratio threshold and GSDq and GSDt denote the GSDs of the query and

template images, respectively. Figure 4 shows an example of the proposed search space constraint in

the spatial and scale domains. A comparison of the matching performance of the original and modified

SURF approaches when dealing with imagery covering a mechanized agricultural field is presented in

Figure 5, where the identified conjugate points in the template and query images are connected with a

white line. As expected, the modified SURF procedure (Figure 5b) shows superior performance when

compared to the original SURF matching strategy (Figure 5a).

1

 

Figure 4. Search space constraints in the spatial and scale domains. The radius and the height of

the cylinder represent the extent of the search space in the spatial and scale domains, respectively,

for a feature in the template image (i.e., marked white circle).
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(a)

 
(b)

Figure 5. Comparison of the matching performance for acquired imagery over an agricultural field: (a)

SURF and (b) modified SURF strategies.

2.3. Spatial Search Space Consideration in the Matching Process

As noted previously, we also limit the spatial search space for the identification of conjugate

features. Some studies have focused on minimizing the spatial-domain search space to reduce

the probability of having false matches that are not compatible with the imaging geometry of the

template and query images [32–34]. In this research, we use the positional characteristics of the

partially-rectified hyperspectral and RGB-based orthophotos to limit the spatial extent of the search

space while considering the respective geometric fidelity of these orthophotos. More specifically,

we use a two-step procedure; (1) establish an approximate geometric transformation to better describe

the relative alignment between the partially-rectified hyperspectral orthophotos from different flight

lines; and (2) establish an approximate geometric transformation to reduce the search space when

matching the partially-rectified hyperspectral and RGB-based orthophotos.

2.3.1. Approximate Evaluation of the Geometric Transformation Relating Partially-Rectified
Hyperspectral Orthophotos

To facilitate the identification of tie points among the partially-rectified hyperspectral and

RGB-based orthophotos, we first derive an approximate geometric transformation that describes

the relative alignment between neighboring hyperspectral orthophotos. As mentioned earlier, the

consumer-grade characteristic of the utilized GNSS/INS unit leads to misalignment among the

partially-rectified hyperspectral orthophotos. To this end, tie points between adjacent partially-rectified

hyperspectral orthophotos are extracted and used to derive a set of transformation parameters that

better describe the relative alignment of their reference frames. In this research, the modified

SURF-based matching approach is used to detect tie points while considering the impact of

GNSS/INS-based direct geo-referencing on the geometric quality of the partially-rectified hyperspectral

orthophotos. Having derived a set of tie points between neighboring partially-rectified hyperspectral

orthophotos, the parameters of an approximate transformation function that relates the reference
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frames of those orthophotos could be derived. Since we only seek to derive an approximate geometric

transformation, a global affine transformation, which considers possible shifts, rotation, shear and scale

variation, is used. Assuming that we have N partially-rectified hyperspectral orthophotos collected

from different flight lines (similar to those in Figure 6), one can sequentially evaluate the parameters of

the global affine transformation relating successive hyperspectral orthophotos. Tie points between the

orthophotos from the first and second flight lines are identified and used to estimate the parameters

of the affine transformation T1
2 relating the reference frames of these partially-rectified orthophotos.

The affine transformation parameters between the resulting orthophotos from the remaining flight

lines (i.e., T2
3 , T3

4 , . . . , Tn−1
n , . . . , TN−1

N , where Tn−1
n denotes the affine transformation relating the

reference frames of the n-th and (n − 1)-th orthophotos) can be estimated in a similar manner. Just for

visual illustration of the impact of such alignment, the established transformation functions can be used

to resample the different orthophotos to the reference frame of the first partially-rectified hyperspectral

orthophoto. For example, the n-th partially-rectified hyperspectral orthophoto can be transformed

to the reference frame of the first partially-rectified hyperspectral orthophoto through a sequence of

transformation multiplications (i.e., T1
n = T1

2 ·T
2
3 · . . . ·Tn−1

n ). Figure 6 represents the conceptual basis

of how to transform the partially-rectified hyperspectral orthophotos to the reference frame of the

first one. Error propagation is expected through this sequential transformation. However, this is not

a critical issue since this procedure only aims to derive an approximate geometric transformation

between neighboring partially-rectified hyperspectral orthophotos. These transformation functions

are then used to constrain the spatial search space when matching the partially-rectified hyperspectral

and RGB-based orthophotos.

Even though the tie points are extracted while using the modified SURF approach, they might

still include a few mismatched points (outliers). To reduce their impact, we apply the Least Median

Square (LMedS) approach to determine the parameters of the global affine transformation relating the

reference frames of two neighboring partially-rectified hyperspectral orthophotos [35].

, … , , … ,
−

= ∙ ∙ … ∙

 

Figure 6. Conceptual basis of the implemented procedure for describing the geometric transformations

between neighboring partially-rectified hyperspectral orthophotos.

2.3.2. Spatial-Search Space Constrained Identification of Tie Points among the RGB-Based and
Partially-Rectified Hyperspectral Orthophotos

The derived geometric relationship between neighboring partially-rectified hyperspectral

orthophotos can be used to constrain the spatial search space for the identification of tie points

among the RGB-based and partially-rectified hyperspectral orthophotos. The identification of tie
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points between the partially-rectified hyperspectral and RGB-based orthophotos proceeds sequentially

from the first hyperspectral flight line. Throughout this sequential procedure, the identified tie points

are used to derive an approximate geometric transformation between the hyperspectral flight line in

question and the RGB-based orthophoto. This transformation function is then used, together with the

derived transformation functions in the previous section, to produce a refined transformation function

for the next hyperspectral flight line.

The spatial extent of the search space for tie points between the RGB-based orthophoto and the first

partially-rectified hyperspectral orthophoto is initially based on the quality of the GNSS/INS-based

direct geo-referencing information. For example, in this research, the geometric accuracies of the

RGB-based and partially-rectified hyperspectral orthophotos are approximately ±0.04 m and ±5 m,

respectively. Therefore, the radius of the spatial search space is set to 6 m. The identified tie points

within the RGB-based and the first partially-rectified hyperspectral orthophotos are then used to derive

an initial transformation function, which is based on a global affine transformation, TRGB
1 (initial).

The locations of detected features in the first partially-rectified hyperspectral orthophoto are

transformed to the reference frame of the RGB-based orthophoto using TRGB
1 (initial), which is used

to define a reduced spatial search space to identify a new set of matched features. Those tie features

are then used to derive a refined set of the parameters defining the approximate transformation

between the first partially-rectified and RGB-based orthophotos, TRGB
1 (re f ined). Then, the search

space for the second hyperspectral flight line is evaluated while using a derived transformation

function, TRGB
2 (initial) = TRGB

1 (re f ined) T1
2 , where T1

2 is the estimated transformation function

relating the first and second partially-rectified hyperspectral orthophotos. TRGB
2 (initial) is used to

define a constrained search space for the identification of corresponding features between the second

partially-rectified hyperspectral and the RGB-based orthophotos. These tie points are then used to

derive a refined transformation function relating the second partially-rectified hyperspectral and the

RGB-based orthophotos, TRGB
2 (re f ined). This process is repeated for the subsequent partially-rectified

hyperspectral orthophotos to identify tie points and refine the approximate transformation functions

relating the partially-rectified hyperspectral and RGB-based orthophotos. A generalized form for the

initial transformation function relating the partially-rectified hyperspectral orthophoto from the n-th

flight line and the RGB-based orthophoto is derived according to Equation (2).

TRGB
n (initial) = TRGB

n−1 (re f ined) ·Tn−1
n (2)

where Tn−1
n denotes the established transformation function relating the reference frames of the

partially-rectified hyperspectral orthophotos from the (n − 1)-th and n-th flight lines. It should be

noted that such a transformation function is only used to constrain the spatial domain search space

for the identification of conjugate tie points. The extracted tie points among the partially-rectified

hyperspectral and RGB-based orthophotos are finally used to derive a more accurate transformation

function, as explained in the next section.

2.4. Registration of the RGB and Partially-Rectified Hyperspectral Orthophotos

The transformation function relating the partially-rectified hyperspectral and RGB-based

orthophotos is based on the proposed methodology in [5]. Following is a brief theoretical background

for such a transformation function. The derivation is based on the assumption that the hyperspectral

data are captured by a nadir-looking push-broom scanner mounted on a UAV to acquire data

perpendicular to the flight direction. The point positioning equation for a push-broom scanner

operating in such a manner is illustrated by the vector summation in Equation (3).

rm
I = rm

c + λiR
m
c rc

i (3)

where rm
I denotes the vector comprised of the object coordinates of point I relative to the mapping

reference frame; rc
i denotes the coordinates of the corresponding image point i relative to the
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scanner coordinate system; rm
c denotes the position of the scanner perspective center relative to the

mapping reference frame; Rm
c is the rotation matrix describing the attitude of the scanner coordinate

system relative to the mapping reference frame; and λi is the scale factor associated with image

point i. The position and orientation (rm
c , Rm

c ) of a push-broom scanner are time-dependent, i.e.,

these parameters change from one scan line to the next.

The GNSS/INS direct geo-referencing unit provides an estimate for rm
c and Rm

c at the epoch

when the object point I has been imaged. A consumer-grade GNSS/INS unit is expected to have

residual errors δrm
c and δRm

c in the scanner position and orientation information, which will lead to

biased object coordinates rm
I (biased) for point I, as shown in Equation (4). The scaling error δλi in

Equation (4) represents the cumulative impact of the erroneous scanner position and orientation on

the scale factor λi. Equation (4) can be expanded to the form in Equation (5). As can be derived from

Equation (3), λiR
m
c rc

i is equivalent to rm
I − rm

c . Therefore, Equation (5) can be simplified to the form in

Equation (6) after ignoring second order residual errors in the product δλiδRm
c (i.e., δλiδRm

c ≈ δλi I3,

where I3 is a 3 × 3 identity matrix).

rm
I (biased) = rm

c + δrm
c + (λi + δλi) δRm

c Rm
c rc

i (4)

where δRm
c =







1 −∆κ ∆ϕ

∆κ 1 −∆ω

−∆ϕ ∆ω 1






with ∆ω, ∆ϕ, ∆κ representing the residual errors in the

scanner orientation information:

rm
I (biased) = rm

c + δrm
c + λiδRm

c Rm
c rc

i + δλiδRm
c Rm

c rc
i (5)

rm
I (biased) = rm

c + δrm
c + (δRm

c +
δλi

λi
I3) (r

m
I − rm

c ) (6)

rm
I (biased) = rm

c + δrm
c +







δλi
λi

+ 1 −∆κ ∆ϕ

∆κ δλi
λi

+ 1 −∆ω

−∆ϕ ∆ω δλi
λi

+ 1













Xm
I − Xm

c

Ym
I − Ym

c

Zm
I − Zm

c






(7)

Equation (7) represents the impact of residual errors in the direct geo-referencing information on

the ground coordinates of object points. For the center of the scanner that encompasses the image point

i, the corresponding biased coordinates rm
center (biased) can be derived from Equation (6) to produce

the form in Equation (8). For a nadir-looking vertical scanner (refer to Figure 7), rm
center − rm

c will be

equivalent to (0, 0, −h)T , where h is the flying height above ground. Accordingly, Equation (8) reduces

to the form in Equation (9), which could be reformulated to the form in Equation (10), where one can

see that Xm
c = Xm

center (biased)− δXm
c + h∆ϕ.

rm
center (biased) = rm

c + δrm
c + (δRm

c +
δλc

λc
I3) (r

m
center − rm

c ) (8)

where rm
center − rm

c is equivalent to







Xm
center − Xm

c

Ym
center − Ym

c

Zm
center − Zm

c






:

rm
center (biased) = rm

c + δrm
c + (δRm

c +
δλc

λc
I3)







0

0

−h






(9)
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δXm
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δYm
c

δZm
c






+







−h∆ϕ
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−h( δλc
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Figure 7. Imaging geometry of a nadir-looking vertical push-broom hyperspectral scanner.

Equation (7) can be simplified to the form in Equation (11) while considering a nadir-looking

vertical scanner, i.e., Ym
I ≈ Ym

c , over a relatively flat object space, i.e., Zm
I − Zm

c = −h (refer to

Figure 7). For a partially-rectified hyperspectral orthophoto, we are only dealing with the planimetric

coordinates. Therefore, we are only concerned with the xy-coordinates in Equation (11). Since it has

been already established that Xm
c = Xm

center (biased)− δXm
c + h∆ϕ, the xy-coordinates in Equation (11)

can be rewritten as shown in Equation (12), and after ignoring higher-order residual terms, the latter

would reduce to the form in Equation (13).

rm
I (biased) = rm

c + δrm
c +







δλi
λi

+ 1 −∆κ ∆ϕ

∆κ δλi
λi

+ 1 −∆ω

−∆ϕ ∆ω δλi
λi

+ 1













Xm
I − Xm

c

0

−h






(11)

[

Xm
I (biased)

Ym
I (biased)

]

=

[

Xm
c

Ym
c

]

+

[

δXm
c

δYm
c

]

+

[

−h∆ϕ

h∆ω

]

+

[

δλi
λi

+ 1

∆κ

]

(Xm
I − Xm

c ) (12)

[

Xm
I (biased)

Ym
I (biased)

]

=

[

Xm
center (biased)− δXm

c + h∆ϕ

Ym
I

]

+

[

δXm
c − h∆ϕ

δYm
c + h∆ω

]

+

[

δλi
λi

+ 1

∆κ

]

(Xm
I − Xm

center (biased)) +

[

δλi
λi

+ 1

∆κ

]

(δXm
c − h∆ϕ)

(13)

[

Xm
I (biased)− Xm

center (biased)

Ym
I (biased)− Ym

I

]

=

[

δXm
c − h∆ϕ

δYm
c + h∆ω

]

+

[

δλi
λi

+ 1

∆κ

]

(Xm
I − Xm

center (biased)) (14)
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Equation (14) represents the transformation function relating the biased planimetric coordinates
(

Xm
I (biased) , Ym

I (biased)
)

and true coordinates
(

Xm
I , Ym

I

)

of an object point I in terms of the residual

errors in the direct geo-referencing information (δXm
c , δYm

c , ∆ω, ∆ϕ, ∆κ and δλi). For the problem

at hand,
(

Xm
I (biased) , Ym

I (biased)
)

correspond to the observed coordinates in the partially-rectified

hyperspectral orthophoto, which will be denoted as
(

Xhyper−o, Yhyper−o

)

, while
(

Xm
I , Ym

I

)

correspond

to the true coordinates as represented in the RGB-based orthophoto, which will be denoted as

(XRGB−o, YRGB−o). Therefore, the final transformation function T
Hyperspectral
RGB can be represented by

Equation (15). Since the residual errors in the direct geo-referencing information change along the

system trajectory, they are time dependent, so Equation (15) is re-parameterized to the form in

Equation (16). Thus, the registration between the partially-rectified hyperspectral and the RGB-based

orthophotos requires estimation of the parameters [a0 (t) , b0 (t) , a1 (t) , b1 (t)]. It should be noted

that Yhyper−o can be used to represent the time of exposures for the different scan lines. Since it is

reasonable to assume that residual errors in the GNSS/INS position and orientation information

gradually change throughout the hyperspectral flight line, we use the concept of reference points

where we only solve for the transformation function parameters at their locations. The transformation

parameters at any epoch can be then derived through an interpolation function that depends on the

transformation parameters associated with the reference points. More details regarding the resampling

of the partially-rectified hyperspectral orthophotos to match the reference frame of the RGB-based

orthophoto can be found in [5].

[

Xhyper−o − Xhyper−o(center)

Yhyper−o − YRGB−o

]

=

[

δXm
c − h∆ϕ

δYm
c + h∆ω

]

+

[

δλi
λi

+ 1

∆κ

]

(

XRGB−o − Xhyper−o(center)

)

(15)

[

Xhyper−o (t)− Xhyper−o(center) (t)

Yhyper−o (t)− YRGB−o

]

=

[

a0 (t)

b0 (t)

]

+

[

a1 (t)

b1 (t)

]

[

XRGB−o − Xhyper−o(center) (t)
]

(16)

where



















a0 (t) = δXm
c (t)− h∆ϕ (t)

b0 (t) = δYm
c (t) + h∆ω (t)

a1 (t) =
δλi(t)
λi(t)

+ 1

b1 (t) = ∆κ (t)

3. Experimental Results

3.1. Test Site and Dataset Description

This section outlines the test site and data characteristics to confirm the effectiveness of

the proposed approach in automatically improving the geometric quality of partially-rectified

hyperspectral orthophotos. The agricultural test field, which is comprised of plots planted with

multiple varieties of sorghum, is located within the Agronomy Center for Research and Education

(ACRE) at Purdue University, Lafayette, IN, USA. The test field dimensions are approximately 100 m

(along the north-south direction) by 250 m (along the east-west direction). The plant rows are aligned

along the north-south direction with alleys separating the ranges between the plots along the east-west

direction. The datasets are comprised of hyperspectral and RGB scenes, which are captured by a

push-broom scanner (Figure 8a) mounted on a fixed-wing UAV platform (Figure 8b) and an RGB frame

camera (Figure 8c) mounted on a quadcopter (Figure 8d), respectively. Specifications of the utilized

RGB and hyperspectral sensors are illustrated in Table 1.
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Table 1. Specifications of RGB and hyperspectral imaging sensors

RGB Frame Camera Hyperspectral Push-Broom Scanner

Acquisition date 25 July 2015
4 August 2015

21 August 2015

Focal length 3 mm 17 mm

Spatial resolution
1.5 cm (frame image)

5 cm (partially-rectified orthophoto)
4 cm (generated orthophoto)

Geometric accuracy (orthophoto) ±0.04 m ±5 m

Spectral resolution 3 bands (RGB)
278 bands with a 2.2-nm width for

each band

 
(a) (b)

 
(c) (d)

Figure 8. Sensors and UAVs utilized for dataset acquisition: (a) hyperspectral push-broom scanner

mounted on (b) a fixed-wing UAV and (c) RGB frame camera mounted on (d) a quad copter UAV.

For the acquisition of RGB images, a GoPro Hero 3+ digital frame camera, which is easier to

handle and capable of providing stable high resolution images from a consumer-grade UAV platform,

is used. The GoPro camera, whose the lens has a 3-mm nominal focal length, was calibrated using

the USGS Simultaneous Multi-frame Analytical Calibration (SMAC) distortion model [36]. A DJI

Phantom 2 quadcopter, which is equipped with the GoPro camera mounted on a gimbal to ensure that

images are acquired with the camera’s optical axis pointing in the nadir direction, was flown over the

test field on 25 July 2015. It was flown along 11 flight lines at a data rate of two frames/s from a flying

height of roughly 15 m with the platform moving at a speed of 8 m/s and the camera operating at the

medium field-of-view mode. The forward overlap and side lap are 60%. During the total flight time of

about 25 min, 540 RGB images are captured over the sorghum field. This flight configuration resulted

in a 1.5-cm GSD. The RGB-based orthophoto was generated from the acquired frame images through

the following procedure. The whole process for the orthophoto generation used in-house developed

software coded in C++.

1. A Structure from Motion (SfM) approach [37] is applied to derive the Exterior Orientation

Parameters (EOPs) for the captured images and a sparse point cloud representing the field

relative to an arbitrarily-defined reference frame.

2. An absolute orientation process is then applied to transform the derived point cloud and

estimated EOPs to a global mapping reference frame. Signalized GCPs, whose coordinates

are derived through an RTK GPS survey (10 GCPs are measured), are used to estimate the
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absolute orientation parameters for the SfM-based point cloud and EOPs (refer to Figure 9 for

a close-up image of one of the targets). Then, a global bundle adjustment is carried out to

refine the EOPs of the different images and sparse point-cloud coordinates relative to the GCPs’

reference frame.

3. A DEM is interpolated from the sparse point cloud. The bundle-based EOPs and the camera

IOPs, as well as the DEM are finally used to produce an RGB-based orthophoto mosaic of the

entire test field (Figure 10). One should note that the color variation between the north and south

portions in the orthophoto is caused by illumination differences between the data acquisition

epochs. The RGB-based orthophoto has a 4-cm GSD with the Root Mean Square Error (RMSE) of

the X, Y and Z coordinates for 20 check points being 2 cm, 3 cm and 6 cm, respectively.

 

°

±

Figure 9. Sample RGB image over the test field with a close-up of one of the targets.

 

°

±

Figure 10. RGB-based orthophoto of the test field derived from the captured frame images

on 25 July 2015.

The hyperspectral data were acquired by a Headwall Nano-Hyperspec push-broom scanner.

It has 278 spectral bands of approximately 2.2 nm in width over the range of 400–1000 nm. It acquires

640 pixels along the scan line and was operated at a scan rate of 330 lines/s with a lens that

has a 17-mm nominal focal length. For these experiments, the Nano-Hyperspec was equipped

with an Xsense MTi-G-700 navigation unit having a gyro bias stability of 10◦/h (orange box in

Figure 8a). The hyperspectral data were collected from the fixed-wing UAV while flying at a speed

of approximately 16 m/s from an altitude of roughly 120 m. The corresponding GSD for such a

flight configuration was roughly 5 cm. Software provided by Headwall was employed to generate

the partially-rectified hyperspectral orthophoto with the help of the generated DEM from the frame
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imagery. According to the Xsense’s specifications, the geometric accuracy of the partially-rectified

orthophotos is in the range of ±5 m.

Two hyperspectral datasets, each consisting of seven flight lines with 50% side lap, are acquired on

different dates (4 August 2015 and 21 August 2015). Figure 11 shows the mosaicked partially-rectified

hyperspectral orthophoto from the captured data on 21 August 2015. A closer visual inspection of this

orthophoto reveals geometric misalignments between neighboring partially-rectified hyperspectral

orthophotos. Figure 11 also shows a heading error, which is manifested in non-orthogonality between

the plant rows and alleys between the plots, as well as misalignment of the plant rows in neighboring

partially-rectified hyperspectral orthophotos.

 

( / )

Figure 11. Mosaicked partially-rectified orthophoto of hyperspectral data over the test field captured

on 21 August 2015 (only the RGB bands are displayed) showing heading errors and misalignment

between neighboring flight lines.

3.2. Results and Analysis

To illustrate the effectiveness of the proposed approach for improving the geometric quality of the

partially-rectified hyperspectral orthophoto, we implemented the modified SURF for the automated

extraction of tie points among the RGB and hyperspectral orthophotos. Three bands in the RGB

portion of the spectrum can be used for the identification of tie points. The red band generally showed

stable results for detecting tie points due to the enhanced contrast related to green vegetation and

was selected to detect tie points. The proposed procedure is based on some thresholds, which are set

according to the properties of the scenes and sensor characteristics. Specifically, the scale threshold

for accepting detected features as matching candidates, Tσ, was set to five (this scale corresponds to

an approximately 36 × 36 pixel window in the input images as per [22]). The radius of the spatial

search space varied according to the nature of the involved images within the different stages of

the proposed procedure. For the orthophotos where we relied on the GNSS/INS information as

the only source for constraining the spatial search space (i.e., identification of tie points between

neighboring partially-rectified hyperspectral orthophotos and between the RGB-based orthophoto and

the first partially-rectified hyperspectral orthophoto), the radius was set to 6 m, which is based on the

expected performance of the Xsense MTi-G-700 navigation unit. For tie point identification between

the partially-rectified hyperspectral and RGB-based orthophotos while considering the approximate

affine transformation function, the spatial search radius was set to 3 m. The scale ratio threshold, TS,

for determining the scale-domain search space was set to 0.8. The ratio threshold for the closest and

second closest Euclidean distance between the descriptors for the potential matching candidates in the
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template and query images, Tr, was set to 0.8, as suggested in [21]. The number of reference points

for the interpolation of the transformation function relating the RGB-based and partially-rectified

hyperspectral orthophotos was set to four, as proposed in [5]. The experiments are implemented in

MATLAB using a computer with 16 GB RAM and Intel(R) Core(TM) i7-6700 CPU @3.40 GHz. The

execution time of the whole process to generate the refined 3-band orthophoto in this environment is

around 3 min.

The number of extracted tie points between neighboring partially-rectified hyperspectral

orthophotos for the different dates is presented in Table 2, where one can see that a sufficient

number of tie points was detected. These tie points were used to evaluate the parameters of the

approximate transformation function relating the partially-rectified hyperspectral orthophotos (Tn−1
n ),

which was then used to evaluate the approximate transformation function between the RGB-based

and partially-rectified hyperspectral orthophotos (TRGB
n (initial/re f ined)).

Table 2. Number of identified tie point pairs between neighboring partially-rectified

hyperspectral orthophotos.

Flight Lines
Number of Extracted Tie Point Pairs

4 August 2015 21 August 2015

Pass 1–2 203 126
Pass 2–3 303 350
Pass 3–4 202 269
Pass 4–5 89 210
Pass 5–6 306 341
Pass 6–7 295 351

Refined hyperspectral orthophotos for both datasets are illustrated in Figure 12, which shows the

derived mosaic from the seven flight lines. This figure shows good alignment of the plant rows among

the different flight lines. Qualitative evaluation of the improvement in the geometric fidelity of the

partially-rectified hyperspectral orthophotos can be established by visually inspecting the alignment

between plant rows and alleys between plots following their resampling to the reference frame of

the RGB-based orthophoto. For illustrative comparison, some subareas of the partially-rectified

and refined hyperspectral orthophotos are presented in Figure 13. As indicated in Figure 13a, the

non-orthogonality between the plant rows and alleys separating the ranges in the partially-rectified

hyperspectral orthophoto is quite obvious. The corresponding areas in Figure 13b illustrate that

orthogonality between the plant rows and ranges has been successfully recovered. A further qualitative

evaluation is presented in Figure 14, which shows a chessboard orthophoto mosaic from the RGB-based

and refined hyperspectral orthophotos. Figures 12–14 clearly illustrate the capability of the proposed

procedure to automatically identify tie points and successfully evaluate the appropriate transformation

function that models the impact of residual errors in the GNSS/INS-based navigation information.

(a) (b)

Figure 12. Mosaicked refined hyperspectral orthophoto through the proposed approach: (a) acquired

data on 4 August 2015 and (b) acquired data on 21 August 2015.
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(a)

(b)

Figure 13. Subareas of the test field for visual inspection of the registration result: (a) partially-rectified

hyperspectral orthophoto and (b) refined hyperspectral orthophoto generated by the proposed approach.

(a) (b)

Figure 14. Close-up of chessboard orthophoto mosaics generated from the RGB-based orthophoto and

refined hyperspectral orthophoto through the proposed approach: (a) acquired hyperspectral data

on 4 August 2015 and (b) acquired hyperspectral data on 21 August 2015.

For quantitative evaluation of the refined hyperspectral orthophotos, the following measures were

employed: (1) the quality of fit between the automatically-extracted tie points used for the estimation

of the parameters of the transformation function, before and after improving the hyperspectral

orthophotos; (2) the quality of fit between the manually-extracted tie point and linear features while

using the derived transformation parameters from the automatically-extracted and manually-identified
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tie features. The quality of fit is based on the RMSE of the spatial separation between conjugate features

before and after refining the geometric quality of the RGB bands of the hyperspectral orthophotos.

Tables 3 and 4 present the derived statistics of the quality of fit for the RGB bands of the two

hyperspectral datasets. A closer inspection of the results in these tables reveals the following:

• Although the quality of fit for the manually-based transformation parameters is better than

the automatically-based ones, the proposed approach is capable of improving the quality

of partially-rectified hyperspectral orthophotos without the need for manual intervention.

The proposed automated approach has improved the quality of fit from roughly 5 m to almost

0.6 m. In this regard, one should note that the utilized quality of fit is biased towards the

manually-based transformation parameters, since the right half of Tables 3 and 4 is based on

the manually-identified features both for the estimation of the transformation parameters and

evaluating the quality of fit.

• The proposed approach tends to show better performance when the original direct geo-referencing

information is relatively accurate. In other words, whenever the quality of fit before the refinement

is relatively high (i.e., small RMSE value), the corresponding quality of fit after the refinement is

significantly improved.

• The number of automatically-identified tie points does not have a significant impact on the quality

of the hyperspectral orthophoto refinement. It can be seen from the accuracy assessment of the

quality of fit that the RMSE among the tie points using the estimated transformation parameters

showed similar values regardless of the number of identified tie points.

Table 3. Accuracy assessment of the quality of fit between the RGB-based and hyperspectral data

before and after the geometric refinement for the acquired hyperspectral data on 4 August 2015.

RMSE for the Automatically-Extracted
Features Using the Estimated Transformation

Parameters from the Proposed Procedure

RMSE for the Manually-Extracted Features
Using the Estimated Transformation Parameters

from the Manual and Proposed Procedures

Number of
Features

RMSE
(Before) (m)

RMSE
(After) (m)

Number of
Features

Transformation
Parameters from

Manual
Measurements (m)

Transformation
Parameters from

Automatically-Extracted
Features (m)

Pass 1 25 points 4.54 0.69
14 points and

25 lines
0.26 0.84

Pass 2 122 points 5.09 0.67 27 lines 0.29 0.67

Pass 3 95 points 4.57 0.46
14 points and

22 lines
0.21 0.36

Pass 4 94 points 4.27 0.63 26 lines 0.33 0.72

Pass 5 173 points 3.54 0.35
14 points and

33 lines
0.31 0.63

Pass 6 68 points 5.00 0.99 24 lines 0.28 0.96
Pass 7 178 points 2.75 0.55 28 lines 0.29 0.49

Table 4. Accuracy assessment of the quality of fit between the RGB-based and hyperspectral data

before and after the geometric refinement for the acquired hyperspectral data on 21 August 2015.

RMSE for the Automatically-Extracted
Features Using the Estimated Transformation

Parameters from the Proposed Procedure

RMSE for the Manually-Extracted Features
Using the Estimated Transformation Parameters

from the Manual and Proposed Procedures

Number of
Features

RMSE
(Before) (m)

RMSE
(After) (m)

Number of
Features

Transformation
Parameters from

Manual
Measurements (m)

Transformation
Parameters from

Automatically-Extracted
Features (m)

Pass 1 26 points 3.15 0.70
14 points and

25 lines
0.19 0.78

Pass 2 86 points 4.51 0.66 26 lines 0.19 0.78

Pass 3 64 points 2.08 0.51
14 points and

26 lines
0.19 0.37

Pass4 64 points 3.70 0.70 27 lines 0.18 0.77
Pass 5 117 points 1.80 0.58 26 lines 0.15 0.35
Pass 6 58 points 4.15 0.72 26 lines 0.22 0.70
Pass 7 101 points 1.42 0.62 26 lines 0.20 0.38
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4. Conclusions and Recommendations for Future Work

Low-cost UAVs equipped with RGB and hyperspectral imaging systems are promising remote

sensing platforms for high throughput phenotyping. However, the payload restriction and limited

endurance of those platforms impose the use of consumer-grade direct geo-referencing units with

moderate ability to determine the position and orientation of the associated sensors. For frame

cameras, recent advances in system calibration and triangulation procedures allow for the generation

of RGB-based orthophotos with high geometric fidelity using consumer-grade navigation data and/or

limited GCPs. For hyperspectral push-broom scanners, the derived geospatial data are quite sensitive

to the quality of the direct geo-referencing information. The integration of frame and push-broom

scanner imagery can help to mitigate the negative impact of the geo-referencing information while

improving the geometric quality of the rectified hyperspectral orthophotos.

The paper presented an automated approach for improving the ortho-rectification of hyperspectral

push-broom scanner imagery using RGB-based frame imagery. More specifically, an RGB-based

orthophoto is used to improve the geometric quality of a partially-rectified hyperspectral

orthophoto contaminated by the impact of residual errors in the direct geo-referencing information.

The paper proposed an approach that automatically detects tie points between the RGB-based and

partially-rectified hyperspectral orthophotos through a modified SURF procedure that can be used

when dealing with agricultural scenes exhibiting repetitive patterns of rows. The modified SURF

increases the reliability of the matching procedure by imposing constraints on the scale for the detected

features, the main orientation of such features, as well as the spatial extent of the search space.

The spatial extent of the search space is reduced through a two-step procedure that starts with

using an approximate geometric transformation to improve the alignment between neighboring

partially-rectified hyperspectral orthophotos. Then, these geometric transformation functions are used

to restrict the search space for the identification of tie points in the partially-rectified hyperspectral and

RGB-based orthophotos. The identified tie features are finally used to estimate the parameters of a more

appropriate transformation function relating the RGB and hyperspectral orthophotos in the presence of

residual errors in the GNSS/INS geo-referencing information. Experimental results from real datasets

have qualitatively and quantitatively demonstrated the feasibility of the proposed methodology in

improving the quality of fit between the RGB-based and refined hyperspectral orthophotos by one

order of magnitude from 5.0 m to almost 0.6 m.

To further improve the geometric quality of hyperspectral data, future work will focus on

improved identification of tie points between the original hyperspectral and frame scenes. Moreover,

automated identification of linear conjugate features, as well as tie points will be investigated.

These tie features will be used in a global bundle adjustment together with the GNSS/INS navigation

data to improve the geo-referencing quality of the whole dataset.
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