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Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for 
the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, 
including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these 
challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, 
which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel 
multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under 
a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the 
shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg 
net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, 
recall of 97.85%, �-score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs 
more efficiently, and robustly for automated pavement crack detection.

1. Introduction

Pavement crack detection plays an important role in the field 
of road distress evaluation [1]. Traditional crack detection 
methods depend mainly on manual work and are limited by 
the following: (i) they are time consuming and laborious; (ii) 
they rely entirely on human experience and judgment. 
�erefore, automatic crack detection is essential to detect and 
identify cracks on the road quickly and accurately [2]. �is 
procedure is a key part of intelligent maintenance systems, to 
assist and evaluate the pavement distress quality where more 
continual road status surveys are required. Over the past 
decade, the development of high-speed mobile cameras and 
large-capacity hardware storage devices has made it easier to 
obtain large-scale road images. �rough mobile surveying 
and mapping technology, integrated acquisition equipment 
is fixed to the rear of the vehicle roof frame to monitor both 
the road surface and the surrounding environment. �e 
images can be acquired by processing and storing pavement 
surface images that are realized [3]. Currently, many methods 

utilize computer vision algorithms to process the collected 
pavement crack images and then obtain the final maintenance 
evaluation results [4].

Automatic crack detection is a very challenging image 
classification task with the goal of accurately marking crack 
areas. Figure 1 shows examples of data acquisition by a 
mobile pavement inspection vehicle. In a few cases, the 
cracks have good continuity and obvious contrast, as shown 
in Figure 1(a). However, in most cases, there is a considerable 
noise in cracks, which leads to poor continuity and low con-
trast, as shown in Figure 1(b). �erefore, automatic crack 
detection mainly includes the following three challenges. (i) 
In a poorly lit environment and complex background, the 
texture, and linearity of interference (weeds, stains, etc.) have 
similar features, resulting in greater intraclass differences. 
(ii) Boundary blurring occurs between small cracks and local 
noises. (iii) Blurred low-quality images from crack data col-
lected at high speed are unavoidable. �ese three difficulties 
create considerable challenges in pavement crack 
detection.
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�e recent publications [5–7] assumed that the crack pix-
els are generally darker than their surroundings and then used 
the threshold method to extract the crack area. �ese methods 
lack the description of global information and are sensitive to 
noise. To improve the continuity of crack detection, research-
ers have attempted to detect cracks by introducing minimal 
path selection (MPS) [8–10], minimal spanning trees (MSTs) 
[11–13], and crack fundamental elements (CFEs) [14]. �ese 
methods can partially eliminate noise and improve crack 
detection continuity. However, only the low-level features can 
be roughly obtained, some complex high-level crack features 
may not be presented, and utilized correctly. A randomly 
structured forest-based method is presented in [15] to detect 
cracks automatically. �is method can effectively suppress 
noise by manually selecting crack features and learning inter-
nal structures. Although it improves the recognition speed 
and accuracy but does not perform well when dealing with 
complex pavement crack situations. �erefore, traditional 
machine learning methods simulate cracks by manually setting 
color or texture features. In these methods, the features cover 
only some specific real-world situations. �e set of crack fea-
tures is simplified and idealized, which cannot achieve the 
robust detection requirements for pavement diseases.

In recent years, deep learning methods have been widely 
used to solve complex problems through hierarchical con-
cepts. A deep convolutional neural network (DCNN) has 
shown great advantages in computer vision tasks, such as 
image classification [16–18], object detection [19], and seman-
tic segmentation [20, 21]. �e DCNN can acquire expressive 
features at different levels as it consists of several trainable 
layers [22]. �e rich hierarchical features of DCNN have made 
great progress in pixel-level semantic segmentation tasks 
[23–24] and crack detection. In [25], the AlexNet is used to 
extract the crack characteristics, and then crack detection is 
performed based on probability maps. However, the detailed 
division of the crack could not be completed. In [26] and [27], 
3D crack detection networks based on DCNN are proposed 

for automated pixel-level crack detection on 3D asphalt pave-
ment. In [28], an effective detection model for concrete cracks 
is proposed through two modules of multi-view image feature 
detection and multitask crack detection. A robust algorithm 
by postprocessing the output feature mapping is proposed in 
[31] to detect cracks. �e DeepCrack net is constructed based 
on the encoder-decoder architecture of the SegNet in [32], 
and the convolution features generated in the encoder network 
and decoder network are fused in pairs at the same scale to 
complete crack detection, but the width information of cracks 
may not be considered in the detection results.

Although most of the published methods have achieved 
ideal results, automated pavement crack detection in the com-
plex backgrounds is still demanding. In this paper, we propose 
an end-to-end trainable deep convolutional neural network, 
called the CrackSeg, for pixel-wise crack detection from a 
complex scene. First, a multiscale dilated convolution module 
is proposed to obtain more abundant crack texture informa-
tion. Additionally, to satisfy networks with a larger receptive 
field and spatial resolution, multiscale context information is 
captured by different dilated rates. Second, a pixel-level dense 
prediction mapping is generated by fusing the upsampling 
module of low-level features to recover the crack boundary 
details. Finally, the model is systematically evaluated in three 
crack data sets by quantitative evaluation methods, including 
comparing the results with manual marking. �e results show 
that the proposed crack detection method can accurately 
extract cracks in different pavement types and complex 
backgrounds.

�e contributions of this paper mainly include three 
aspects as follows:

(1) A novel trainable end-to-end crack segmentation net-
work, the CrackSeg, is designed to detect road cracks at 
the pixel level. �e network makes full use of the seman-
tic information of hierarchical convolution features and is 
very effective for crack detection under a complex scene.

(a)

(b)

Figure 1: Crack detection challenges. (a) �e crack images in the ideal case. (b) Poor lighting conditions, stains, small cracks, and the occlusion 
of branches increase the difficulty of crack recognition.
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(2)  A crack feature detection network based on a joint 
multiscale dilated convolution module is proposed. 
While the computational cost is controlled, the mul-
tiscale semantic information is fused to obtain more 
abundant features. In the upsampling stage, the high 
spatial resolution features of the shallow network 
are fused to obtain more refined crack segmentation 
results.

(3)  A multisource pavement distress labelling dataset, the 
CrackDataset, is established that reflects the overall 
situation of road diseases in China.

�e rest of this paper is organized as follows. Section 2 
describes crack detection based on deep learning semantic 
segmentation. Section 3 demonstrates the effectiveness of the 
proposed scheme through comparative analyses of experi-
ments. Section 4 discusses the detailed design of the two mod-
ules proposed in this paper. Finally, Section 5 concludes the 
paper.

2. Materials and Methods

In this section, we introduce a novel end-to-end trainable 
crack detection DCNN structure based on multiscale features, 
which is divided into three parts. In the first part, the overall 
structure of the crack detection network is introduced. In the 
second part, a multiscale dilated convolution module is intro-
duced to obtain more abundant context information in the 
crack image, and feature mapping a²er crack detection fusion 
is preliminarily obtained. In the third part, we propose a new 
upsampling scheme based on different resolution feature 
maps.

2.1. �e Structure of CrackSeg. �e crack detection network 
is proposed based on a multiscale dilated convolution module 
and an upsampling module, as shown in Figure 2. �e ResNet 
[31] pretraining model with a dilated network strategy is used 
to extract the crack characteristics. In the traditional CNN 
network structure, the use of a down-sampling layer can 
effectively increase the receptive field, and reduce the number 
of calculation parameters but also reduce the spatial resolution 
of learning features, making the final feature mapping size 
smaller. A²er final feature representation, multiscale crack 
semantic information is obtained by using a multiscale 
dilated convolution module, and global prior information is 
captured by fusing different levels of semantic information. 
Finally, the shallow and deep semantic information is fused 
by the upsampling module so that the network output feature 
mapping size is consistent with the input image size, and the 
probability that each pixel belongs to cracks or noncracks is 
calculated by the so²max function. �e vector value [0, 1] 
generated by the so²max function represents the probability 
distribution of a class, and the so²max function can be 
expressed as:

(1)�̂� = softmax(�,��) =
��
���

∑��=1��
���
,

where �� and �represent the weights of the network and input 
data, respectively. In the task of pixel-wise prediction loss, 
different pixels are divided into different categories by 
cross-entropy loss [32] and can be expressed as:

where �� ∈ [0, 255] is the input pixel value, �� ∈ {0, 1} is the 
ground truth label, �̂� ∈ {0, 1} is the prediction probability, �
is the network weight matrix, and � is the loss function.

2.2. Multiscale Dilated Convolution. Using a top-down 
convolutional neural network can identify the target region 
with strong discrimination, but for the target region with 
weak discrimination, the classification performance is 
reduced [33]. In DCNNs, the size of the receptive field 
represents the amount of available information. Increasing the 
receptive field of convolution kernels can effectively mix the 
semantic information around the target, thus improving the 
classification ability of regions with weak discrimination [34]. 
Dilated convolution is a special form of standard convolution. 
Zero values are inserted between the pixels of the convolution 
kernel to increase the image resolution of intermediate feature 
maps, thus enabling dense feature extraction in DCNNs with 
an enlarged convolution kernel field:

where �� represents the dilated rate of convolutional kernel 
�� to specify the number of zeros placed between pixels. 
Because of the dilation, only � × � pixels are involved in con-
volution calculation, which increases the receptive field, and 
reduces the computational cost, thus increasing the receptive 
field without losing resolution.

Inspired by the mentioned findings, a novel classification 
network with multiple dilated convolution blocks is proposed 
to generate dense localization. To capture the multiscale 
semantic crack information, the features of three different 
scales are fused. A multiscale dilated convolution module is 
constructed by combining multibranching with different ker-
nels and dilated convolution layers, which forms a merged 
feature representation for different locations. A²er fusing dif-
ferent sizes and levels of feature, the 1 × 1 kernel size convo-
lution operation is carried out to reduce the dimension of 
semantic features to 1/�. �e network structure and param-
eter details of the multiscale dilated convolution module are 
shown in Figure 3.

In the multiscale dilated convolution module, two main 
convolution operations are used: (i) obtaining accurate loca-
tion mapping through standard convolution kernels to high-
light the target areas with strong discrimination; (ii) 
introducing multiple dilated rates to expand the convolution 
kernel receptive fields to improve the target areas with weak 
discrimination. �us, discriminant features from adjacent 
salient regions are transformed into target-related regions 
that have not been found. We find that convolution blocks 
with a large dilation rate introduce some irrelevant regions, 
such as some true-negative regions, which would be 

(2)�(�) = − 1�
�
∑
�=1
��log�̂(��,�) + (1 − ��)(1 − log�̂(��,�)),

(3)���� = � + (� − 1) × (�� − 1),
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multiscale dilated convolution four times and then fuses with 
the low-level features with the same spatial resolution in the 
network. To reduce the dimension of low-level features and 
convolute them by 1 × 1, three convolution operations with 

highlighted by adjacent discriminant objects. �erefore, a 
multiscale dilated convolution network with a small dilation 
rate is proposed.

2.3. Up-Sampling Module. �e multiscale dilated convolution 
module in the encoding stage can transform the input image 
into rich semantic visual features. However, these features have 
a rough spatial resolution [35]. �e purpose of upsampling is 
to restore these features to the input image resolution and then 
predict the crack spatial distribution.

�e proposed upsampling module contains mainly two 
inputs: the low-resolution features with high-level semantic 
information and the high-resolution features on the bottom 
of the network that use features extracted at different scales to 
aggregate local and global context information. As shown in 
Figure 4, the features of the shallower encoding layer retain 
more spatial details, which helps to obtain sharper boundaries; 
the deeper features have stronger representation ability. �e 
upsampling module first samples the output features of the 

Conv1
+

pool1 Block1 Block2 Block3 Block4

1 × 1 Conv/resize

3 × 3
Conv

3 × 3
Conv

3 × 3
Conv

Resize

Multiscale dilated
convolutional module

+ concat

+ Concat
1 × 1 conv

+ Concat

Figure 2: Illustration of the crack detection network, CrackSeg. �e multiscale dilated convolution module is used to capture abundant crack 
features. A²er fusing with the lower level crack features in the network, three 3 × 3 convolution operations are used continuously to improve 
the feature expression ability. �e output feature of the last convolution layer is the crack feature maps, which is the input into the binary 
classifier for crack pixel-wise prediction.

Table 1: Details of upsampling module units.

Items Kernel size
Numbers of 
feature maps

Feature size

Input — — H, W

Low-level 
features

1 × 1 256 H/4, W/4

High-level 
features

1 × 1 512 H/16, W/16

Conv-1 3 × 3 256 H/4, W/4

Conv-2 3 × 3 256 H/4, W/4

Conv-3 3 × 3 256 H/4, W/4

Output 1 × 1 2 H, W
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3.1. Experimental Setup

3.1.1. Dataset. Our CrackDataset consists of pavement 
detection images of 14 cities in the Liaoning Province, China. 
�e data cover most of the pavement diseases in the whole road 
network. �ese images include collected images of different 
pavement, different illumination, and different sensors. �e 
real values in the dataset provide two types of labels, cracks, 
and noncracks. �e dataset is divided into three parts. �e 
training set and the validation set are composed of 4736 and 
1036 crack images, respectively. �e test set contains 2416 
images. In addition, two other crack datasets, CFD [15] and 
AigleRN [10], are used as test sets. �e details of the datasets 
are shown in Table 2.

3.1.2. Implementation Details. We implement our CrackSeg 
using the TensorFlow, which is an open source platform for 
deep learning. Because of the large image size, training the 
CrackSeg network requires a large amount of memory, which 
results in overburdening the training process. Additionally, 
the crack areas occupy a small proportion of the whole image, 
and many background areas are meaningless for the training 
process. �erefore, the original road crack images are divided 
into several small blocks with a size of 256 × 256. To improve 
the robustness of the model, several transformations are made 
to the data, including random flip, color enhancement, and 
enlargement. We utilize the Adam [36] algorithm to converge 
the network. �e network is trained with an initial learning 
rate of 0.0001. �e momentum and weight decay are set to 

3 × 3 kernel size are used to improve the feature expression 
ability a²er feature fusion. Because the upsampling module is 
learnable, it can recover the fine information lost in the bilin-
ear upsampling (BU) operation. Details of the parameters of 
the upsampling module are described in Table 1, where � and 
� are the height and width dimensions of the input features, 
respectively.

3. Experiments and Analysis

To verify the effectiveness of our scheme, extensive experi-
ments on pavement crack detection were conducted on vari-
ous images. In this section, we depict the experimental setup 
and analyze our experimental results.

Feature maps

Concat
+

1 × 1 Conv

Multi-scale dilated convolution

d = 1

d = 3

1 × 1
Conv

3 × 3
Conv

5 × 5
Conv

+

+

+

d = 5

256
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Figure 3: Multiscale dilated convolution module.

Table 2: �e details of datasets.

Datasets Training set Validation set Test set

Ours 4746 1036 2416

CFD [15] — — 118

AigleRN [10] — — 38

Input Conv1 Block1

Block2 Block3 Block4

Figure 4:  Visualization results of crack feature maps at different 
levels, in which the feature resolution of the shallow network is 
higher, retaining the crack characteristic details. �e deep features 
are more abstract and have strong discriminant power.
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precision, mIoU, and �-score. �e mIoU value of CrackSeg 
reached the highest 73.53%, followed by DeepCrack, and 
Deeplabv3+, with the mIoU of 72.04 and 71.77. �e mIoU of 
CrackForest, SegNet, U-Net, and PSPNet are 14.27%, 2.97%, 
2.04%, and 3.90% lower than the results of CrackSeg. �e per-
formance improvement is mainly due to the use of a multiscale 
dilated convolution module in the encoding stage, which cap-
tures a multiscale context for accurate semantic mining. On 
the basis of obtaining rich semantic information, the boundary 
information of the target is recovered by using low-level 
high-resolution features, and more accurate segmentation 
results are obtained by using continuous convolution 
operations.

Figure 5 describes the visual comparisons of the crack 
detection results using different methods. �e first row is the 
original image containing cracks, some of which are accom-
panied by noise such as shadows, oil spots, and watermarks, 
which are the main factors affecting the detection of cracks. 
�e experimental results show that the CrackForest method 
based on traditional machine learning features can extract 
cracks in a simple background, but it still retains more noise 
and cannot adapt to the automatic crack detection in complex 
scenes. For SegNet and U-Net, the detection results are accept-
able, but these methods produce many false detections in 
complex backgrounds. �e DeepCrack performs well in 
extracting the thin cracks in the complex backgrounds, how-
ever, some width information of cracks is lost in the detection 
results. �e DeepLabV3+ has good performance in detecting 
light cracks, but nonexistent cracks occur because of its large 
dilation rate. Furthermore, its single convolution kernel size 
causes the loss of crack information. Our CrackSeg integrates 
low-level and high-level features in convolution stages at dif-
ferent scales and can further improve the accuracy of crack 
detection and robustness of background artifact suppression, 
effectively eliminate the influence of oil pollution, shadow, and 
complex backgrounds, and extract various complex topolog-
ical crack relationships.

3.3. Network Robustness Analysis. To verify the stability of our 
proposed method, the other two datasets (CFD and AigleRN) 
are tested by CrackSeg. �e visual crack detection results are 
shown in Figure 6. It is noteworthy that this method does not 
use the crack images in these two datasets in the training phase. 
�e results show that the proposed method can extract most 
pavement cracks and that the model has strong robustness.

4. Discussion

In this section, to determine the optimal crack characteristics, 
we discuss the self-impact of the multiscale dilated convolu-
tion module. �en, the low-level feature selection and convo-
lution operation structure in the upsampling module are 
discussed.

4.1. Principle for Choosing Multiscale Dilated Convolution. To 
compare the effect of the multiscale dilated convolution 
module on crack detection more clearly, the features are 
sampled 16 times in the upsampling stage by BU, and the 

0.9997 and 0.0005, respectively. All experiments in our work 
are performed using an NVIDIA GTX 1080 GPU and 8 GB 
of on-board memory.

3.1.3. Evaluation Metrics. In the evaluation of crack detection 
accuracy, crack and noncrack pixels are considered as two 
categories. �e overall accuracy (OA), precision, recall, 
�-score, and mIoU are used as the metrics for the quantitative 
performance evaluation and comparison method in the 
experiment. �ese five indicators can be calculated as follows:

where �� represents the number of positive cases correctly 
divided, �� is the number of incorrectly classified positive 
pixels, �� is the number of incorrectly classified negative 
cases, OA, mIoU, and �-score are comprehensive indicators, 
and the larger the value is, the higher the accuracy.

3.2. Result and Analysis. To demonstrate the feasibility of the 
proposed scheme, we compare our CrackSeg with SegNet [38], 
U-Net [21], PSPNet [39], DeepCrack [31], and DeepLabv3+ 
[40]. In addition, to verify the advantages of the deep learning 
semantic segmentation model in crack detection, the nondeep 
learning method CrackForest is introduced to compare based 
on different comparative experiments.

�e quantitative comparison testing results in our 
CrackDataset are shown in Table 3, which shows that the crack 
detection accuracy based on the deep learning method in a 
complex background is higher and has good advantages. 
Compared with other segmentation methods based on deep 
learning, the CrackSeg achieves the highest OA, recall, 

(4)Overall accuracy = �� + ��
�� + �� + �� + �� ,

(5)Precision = ���� + ��,

(6)Recall = ���� + ��,

(7)�1score =
2 ⋅ Precision ⋅ Recall
Precision + Recall ,

(8)mIoU = Intersection areas of detected and reference crack

Union areas of detected and reference crack
,

Table 3: Comparisons of the proposed and other methods on the 
CrackDataset.

Method OA Precision Recall �-score mIoU

CrackForest [15] 87.04 86.28 85.46 85.86 59.26

SegNet [38] 96.64 96.86 97.08 96.97 70.56

U-Net [21] 96.58 96.99 97.09 97.04 71.49

PSPNet [39] 96.25 96.90 96.88 96.89 69.63

DeepLabv3+ [40] 96.83 97.01 97.64 97.32 71.77

DeepCrack [31] 97.14 97.33 97.72 97.52 72.04

CrackSeg 98.79 98.00 97.85 97.92 73.53
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convolution, different dilation rates were applied to the final 
Block4, and the receptive field size is increased. �e experi-
mental results show that the multiscale dilated convolution 
module with a large dilation rate and a small dilation rate 
increases by 1.47% and 2.05%, respectively. Although dilated 
convolution with a larger dilation rate has a larger receptive 
field, it introduces other unrelated regions while capturing 
crack characteristics, which affect the final crack identification. 
With the smaller dilation rate, better optimal convergence, 
and better detection effect can be obtained in model training. 
To explore the influence of different high-level features on the 
multiscale dilated convolution module, two high-level crack 
feature maps, Block3 and Block4, were fused in the experi-
ment, and the network performance improved by 0.82%. �e 
experimental results show that the high-level features fused at 
multiple levels have stronger representation ability, which 
helps locate crack pixels in the encoding process.

final prediction results are obtained. In the experiment, 
ResNet50 is used as the network backbone to validate the 
multiscale dilated convolution module. Figure 7 shows the 
change in mIoU of different dilated convolution modules 
a²er 20 epochs in the training stage. A²er 14 epochs, each 
method reaches a stable state. �e BaseLine has the lowest 
performance, and the purple polyline (fusion-S-dilated) 
represents the highest mIoU score compared with the other 
methods. In summary, the multiscale dilated convolution 
module with fusion features achieves the best results.

As shown in Table 4, the experimental results are com-
pared and analyzed for the selection of high-level features. �e 
mIoU of the BaseLine model using ResNet50 as the feature 
detection network is only 65.07%. �e performance of the 
ASPP [33] module is 1.25% higher than that of the BaseLine, 
which shows that dilated convolution can improve the perfor-
mance of crack detection. To facilitate the effect of dilated 

Input

CrackForest [15]

SegNet [38]

U-Net [21]

PSPNet [39]

DeepLabv3+ [40]

DeepCrack [31]

CrackSeg

Figure 5: Comparison of results obtained by different methods on five sample images selected from our CrackDataset.



Journal of Advanced Transportation8

improve the crack detection accuracy, the features generated 
by the multiscale dilated convolution module are used as the 
high-level input feature of the upsampling module, which 
includes more discriminant semantic information. Low-
level features in the network have a high spatial resolution, 
which retains the details of the crack boundary. A²er the 
fusion of low-level semantic information and discriminative  
high-level features, the convolution operations are used in the 
upsampling module to obtain sharper detection results. Table 5  
shows the performance of the different upsampling features 
and structures. �rough comparative analyses of experiments, 
the choice of the number of convolutions has a great impact 

(a) (b)

Figure 6: �e results of crack detection on (a) CFD and (b) AigleRN datasets.
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Figure 7: �e curves of mIoU with different training stages.

Table 4: Comparisons of the results with different feature maps and 
dilation rates in the multiscale dilated convolution module.

Method
Features Dilation rate

OA mIoU
Block3 Block4 {1, 3, 5} {6, 12, 18}

BaseLine ✓ 97.29 65.07

ASPP ✓ ✓ 97.29 66.32

B-dilated ✓ ✓ 97.31 66.54

S-dilated ✓ ✓ 97.11 67.12

Fusion-S-
dilated

✓ ✓ ✓ 97.32 67.94

4.2. Performance Improvement when Using Different 

Upsampling Strategies. As shown in Table 4, only 67.94% of 
the mIoU is obtained by using the simple BU method. To 
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and 0.14%, respectively. Compared with the simple BU method, 
the mIoU values increased by 3.88%. Using the ResNet101 
network as the backbone for crack detection, the OA, and 
mIoU values reach 98.79% and 73.53%, respectively. �us, the 
use of the upsampling module in the CrackSeg network com-
bines shallow crack features with deep semantic information, 
which helps to aggregate multilevel features of cracks and 
improve the accuracy of crack detection.

5. Conclusions

In this paper, an end-to-end trainable pavement crack detec-
tion framework based on DCNN, CrackSeg, is proposed, 
which can automatically detect road cracks under complex 
backgrounds. First, a crack training dataset is established, 

on the final crack detection results of the model. A²er fixing 
the low-level features generated by Conv1, the best results are 
achieved by using three [3 × 3,256] convolution, compared 
with using one convolution operation and two convolution 
operations, and the mIoU values are increased by 0.85% and 
0.12%, respectively. When convolution operations are used 
four times, the accuracy of crack detection begins to decline.

To evaluate the effectiveness of low-level features on 
boundary restoration, the low-level features generated by 
Conv1 in the upsampling module of the network are changed 
to Block1 and the combination of the two modules (Conv1 and 
Block1). As shown in Figure 8, the features generated by the 
combination of Conv1 and Block1 can restore the best crack 
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Table 5: Comparisons of the results with different upsampling features and structures in the upsampling module.
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✓ (3 × 3, 256) × 2 97.55 71.16

✓ (3 × 3, 256) × 3 97.56 71.28

✓ (3 × 3,256) × 4 97.60 70.86

✓ (3 × 3, 256) × 3 97.68 71.68

✓ ✓ (3 × 3, 256) × 3 98.43 71.82

ResNet101 ✓ ✓ (3 × 3, 256) × 3 98.79 73.53

Input BU Conv1 Block1 Conv1 + Block1

Figure 8: Comparisons of the crack detection results with different low-level features in upsampling modules.



Journal of Advanced Transportation10

[2]  A. Cubero-Fernandez, F. J. Rodriguez-Lozano, R. Villatoro, 
J. Olivares, and J. M. Palomares, “Efficient pavement crack 
detection and classification,” EURASIP Journal on Image and 
Video Processing, vol. 2017, no. 1,  2017.

[3]  H. Zakeri, F. M. Nejad, and A. Fahimifar, “Image based 
techniques for crack detection, classification and quantification 
in asphalt pavement: a review,” Archives of Computational 
Methods in Engineering, vol. 24, no. 4, pp. 935–977, 2017.

 [4]  Y.-C. Tsai, V. Kaul, and R. M. Mersereau, “Critical assessment 
of pavement distress segmentation methods,” Journal of 
Transportation Engineering, vol. 136, no. 1, pp. 11–19, 2010.

 [5]  Q. Li, Q. Zou, D. Zhang, and Q. Mao, “FoSA: F* seed-growing 
approach for crack-line detection from pavement images,” 
Image and Vision Computing, vol. 29, no. 12, pp. 861–872, 2011.

[6]  Q. Li and X. Liu, “Novel approach to pavement image 
segmentation based on neighboring difference histogram 
method,” in 2008 Congress on Image and Signal Processing, pp. 
792–796, IEEE, Piscataway, NJ, 2008.

[7]  F. Liu, G. Xu, Y. Yang, X. Niu, and Y. Pan, “Novel approach 
to pavement cracking automatic detection based on segment 
extending,” in 2008 International Symposium on Knowledge 
Acquisition and Modeling, pp. 610–614, IEEE, Piscataway, NJ, 
2008.

[8]  R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, “A new 
minimal path selection algorithm for automatic crack detection 
on pavement images,” in 2014 IEEE International Conference 
on Image Processing (ICIP),  pp. 788–792, IEEE, Piscataway, 
NJ, 2014.

 [9]  Y. Xu, Y. Guizhen, W. Yunpeng, W. Xinkai, and M. Yalong, 
“Car detection from low-altitude UAV imagery with the faster 
R-CNN,” Journal of Advanced Transportation, vol. 2017, Article 
ID 2823617, 10 pages, 2017.

[10]  R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, “Automatic crack 
detection on two-dimensional pavement images: an algorithm 
based on minimal path selection,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 17, pp. 2718–2729, 2016.

[11]  Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “CrackTree: 
automatic crack detection from pavement images,” Pattern 
Recognition Letters, vol. 33, no. 3, pp. 227–238, 2012.

[12]  K. Fernandes and L. Ciobanu, “Pavement pathologies 
classification using graph-based features,” in 2014 IEEE 
International Conference on Image Processing (ICIP),  
pp. 793–797, IEEE, Piscataway, NJ, 2014.

[13]  H. Chen, H. Zhao, D. Han, and K. Liu, “Accurate and 
robust crack detection using steerable evidence filtering in 
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[16]  A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet 
classification with deep convolutional neural networks,” 
Advances in Neural Information Processing Systems, pp. 1097–
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which covers a wide range of data sources and reflects the 
overall situation of pavement distress in the Liaoning 
Province, China. Second, through the fusion of high-level 
features in the backbone network, we propose the multiscale 
dilated convolution module. By capturing the features of con-
text information at multiple scales, the crack detection net-
work can learn rich semantic information in a complex 
background. �erefore, based on the dilated convolution 
theory, we design a novel network structure that can be 
inserted into the existing semantic segmentation system to 
improve the accuracy of crack feature detection. Finally, 
through the upsampling module, the low-level features, and 
continuous convolution features are fused to realize the crack 
pixel-level prediction. �is feature aggregation, which com-
bines different levels of feature information, can not only fully 
mine the crack features in the image but also restore and 
describe the details of the object boundary information. �e 
experimental results of CrackSeg achieve high performance 
with a precision of 98.00%, recall of 97.85%, �-score of 
97.92%, and a mIoU of 73.53%, which are higher than those 
of other networks. Furthermore, the model has strong stabil-
ity and robustness to solve the noise interference caused by 
shadows, stains, and exposures in the process of data acqui-
sition. �e good performance of the CrackSeg network pro-
vides a possibility for large area automatic crack detection.
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