
A Thesis

Entitled

Automated Pavement Distress Detection Using Advanced

Image Processing Techniques

By

Yao Sun

 Submitted as partial fulfillment of the requirements for

The Master of Science Degree in Engineering

Advisor: Dr. Ezzatollah Salari

College of Graduate Studies

The University of Toledo

December 2009

The University of Toledo

College of Engineering

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY Yao Sun

ENTITLED Automated Pavement Distress Detection Using Advanced Image

 Processing Techniques

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF Master of Science in Engineering

Thesis Advisor: Dr. Ezzatollah Salari

Recommendation concurred by

 Dr. Eddie Chou

 Dr. Mohsin Jamali

Dean, College of Engineering

Committee

On

Final Examination

iii

An Abstract of

Automated Pavement Distress Detection Using Advanced Image Processing Techniques

by

Yao Sun

Submitted as partial fulfillment of the requirements for

The Master Science Degree in Engineering

The University of Toledo

December 2009

In this thesis, a novel, fast and self-adaptive image processing method is proposed

for the extraction and connection of break points of cracks in pavement images. The

algorithm first finds the initial point of a crack and then determines the crack’s

classification into transverse and longitudinal types. Different search algorithms are

used for different types of cracks. Then the algorithm traces along the crack pixels to

find the break point and then connect the identified crack point to the nearest break point

in the particular search area. The nearest point then becomes the new initial point and

the algorithm continues the process until reaching the end of the crack. The

iv

experimental results show that this connection algorithm is very effective in maximizing

the accuracy of crack identification.

v

Acknowledgements

 Firstly, I am heartily thankful to my advisor Dr. Ezzatollah Salari, whose

encouragement, guidance and support from the initial to the final level enabled me to

develop an understanding of the subject. His comments on chapter drafts are

themselves a course in critical thought upon which I will always draw. His capacity to

combine critique with an immediate empathy and commitment towards students will

always inspire me.

 I am also indebted to Professor Eddie Yein Juin Chou whose work inspired me to

examine research adaptation. He firm belief that a better way can always be found has

influenced my approach to this research. His advice on interpreting the case study

results on an earlier draft directly contributed to this study. I cannot thank him enough.

 Many thanks to Nikhil Katakam whose editing suggestions and precise sense of

language contributed to the final copy. He provided decisive and energetic support

during the write-up stage, clearing the path towards thesis completion in his

solution-oriented way.

vi

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vi

List of Figures viii

Chapter 1 Introduction 1

1.1 Background 1

1.2 Outline of thesis 4

Chapter 2 Literature Review 7

Chapter 3 Image Segmentation Techniques 11

3.1 Image Improvement 11

3.2 Thresholding Using Fractal Theory 15

Chapter 4 Mathematical Morphology and Noise Removal Techniques 20

4.1 Closing Operation Techniques 20

4.2 Noise Removal 22

vii

Chapter 5 Break Points Connectivity Algorithm 29

5.1 Finding the Initial Pixels 31

5.2 Finding the Break Points 36

5.3 Connecting the Break Points 41

Chapter 6 Simulation Results and Analysis 48

6.1 The Transverse Crack 49

6.2 The Longitudinal Crack 54

Chapter 7 Conclusion and Futher Work 60

Reference 61

Appendix - Matlab Code 64

viii

List of Figures

Fig. Description Page

1-1 Roadware's Automatic Road Analyzer (ARAN) 4

1-2 Processing steps 6

3-1 Original pavement image 13

3-2 Image after improvement 13

3-3 Histogram of original image 14

3-4 Histogram of improvement image 14

3-5 Binary image 18

3-6 Image after improvement 19

3-7 Binary image 19

4-1 Disk structure element 22

4-2 A window median filter 23

4-3 Image after closing operation 23

4-4 Image after median filter 24

4-5 Crack pixel has been removed after median filter 25

4-6 Noise removal 26

4-7 Image after closing operation 27

4-8 Image after median filter 28

ix

4-9 Noise removal 28

5-1 Break points connectivity algorithm processing steps 30

5-2 Divide pavement image for searching the transverse initial pixels 32

5-3 To determine the transverse initial pixel 33

5-4 Divide pavement image for searching the longitudinal initial pixels 34

5-5 To determine the longitudinal initial pixel 35

5-6 Single pixel break point for transverse cracks 38

5-7 Multiple pixels break point for transverse cracks 39

5-8 Single pixel break point for longitudinal cracks 40

5-9 Multiple pixels break point for longitudinal cracks 40

5-10 Search area 1 42

5-11 Connect the Single pixel break point 42

5-12 Search area 2 43

5-13 Connect the multiple pixels break point 43

5-14 A transverse crack before connecting 44

5-15 A transverse crack after connecting 45

5-16 The break points connection on pixel level 46

5-17 A longitudinal crack before connecting 47

5-18 A longitudinal crack after connecting 47

6-1 Original pavement image 50

6-2 Enhancement image 50

x

6-3 Binary image 51

6-4 Image after closing operation 51

6-5 Noise reduction image 52

6-6 Median filter image 52

6-7 Connectivity image 53

6-8 Skeleton image 53

6-9 Image after connected component 54

6-10 Original pavement image 55

6-11 Enhancement image 55

6-12 Binary image 56

6-13 Image after closing operation 56

6-14 Noise reduction image 57

6-15 Median filter image 57

6-16 Connectivity image 58

6-17 Skeleton image 58

6-18 Image after connected component 59

1

Chapter 1

Introduction

This chapter presents a concise introduction about the development of pavement

crack detection. The outline of this thesis is also given in this chapter.

1.1 Background

Road networks play a vital part of our world nowadays because it makes an

important contribution to society. People cannot do their business and activities easily

without good road networks. Unfortunately, pavement systems deteriorate over time

primarily due to fatigue. This deterioration to pavement increases with the fourth power

of the axle load of the vehicles traveling on it [1]. Technically, early pavement

deterioration contains four different types of crack: transverse crack, longitudinal crack,

block crack and alligator crack. Potholes are formed making the road becomes more

dangerous if these early deteriorations are left untreated. Rehabilitation treatments, such

as fixing potholes will cost about 10 to 20 times more than the cost of resealing cracks [2].

Therefore, pavement detection and rating are so important to keep the cost of fixing the

road deterioration low and keep the road networks in good condition.

The United States Department of Transportation (DOT) is a federal Cabinet

department of the United States government who takes care of transportation systems.

2

Its mission is to “Serve the United States by ensuring a fast, safe, efficient, accessible and

convenient transportation system that meets our vital national interests and enhances the

quality of life of the American people, today and into the future.”[3] DOT needs to hire

lots of people to inspect road networks in order to know which roads should be repaired.

Usually, people watch the pavement with their eyes and rate them based on samples and

experience. So we can clearly find the shortcoming of this method. First, it is very

dangerous for people to watch cracks on the roads and takes a lot of time to watch and

evaluate pavements. Also the labor cost can be very high. Finally, there could be a large

differences between the actual condition and evaluation results because of the subjectivity

of the evaluation process.

Currently, several companies offer solutions to the problem of monitoring road

surface conditions. The solutions include CSIRO’s road crack detection vehicle, the

PAVUE system by OPQ systems, Roadware’s Wisecrax crack detection system and

Piccrack. With the help of the Roads and Traffic Authority of New South Wales,

Australia the CSIRO produced a system called the RoadCrack system. The CSIRO’s

road fault detection system uses a special modified van, with a series of scan line cameras

under a skirt in the middle of the vehicle, to acquire road surface footage. The cameras

are mounted perpendicular to the surface of the road, and other devices which create a

series of lights provide constant illumination to the road surface. Roadware Incorporate

has developed the WiseCrax system. High speed cameras are put on the back of a van

3

that can go up to 50 MPH. Video is recorded as a continuous series of non-overlapping,

high contrast images 4.9 ft by 13 ft [4]. The cameras have the synchronized strobe

lights to eliminate shadows from trees, buildings or any other overhead objects even in

bright sunlight. Images are processed off-line overnight at the office workstation by a

unique open architecture process using advanced image recognition software. Thus,

WiseCrax helps to remove the subjectivity and drudgery from pavement evaluation and

ensures more accurate, repeatable comparisons of road deterioration from year to year [4].

Piccrack is Samsung’s pavement crack detection system which is similar to Roadware’s

WiseCrax crack system. It also processes the pavement images offline. The images

are collected by the data collection subsystem. It can automatically measure pavement

crack type, extent, and severity [5]. The PAVUE system is a new system that has been

developed in Sweden and is used to detect road surface faults. The system uses a series

of four cameras with the synchronised flashing lights to capture the road surface data.

Reports are then generated offline with the road surface data [6]. Unfortunately,

because of the commercial nature information on these systems is limited and few

published papers and documents could be found. Figure 1-1 shows one of the WiseCrax

system carriers Automatic Road Analyzer.

4

Figure 1-1 Roadware's Automatic Road Analyzer (ARAN)

1.2 Outline of Thesis

The demand for automated inspection, monitoring, and pattern recognition for

transportation applications are increasing. This increasing demand is partly driven by

the decreasing costs of imaging technologies. A typical inspection process, including

pavement distress inspection, can be divided into three stages: preprocessing,

segmentation, and classification and measurements. Preprocessing is used to improve

the quality of the input image in order to facilitate the analysis and interpretation at

subsequent stages. Important tasks in preprocessing can include filtering for noise

removal, deblurring the image, and the highlighting of specific features, e.g., cracks on

the pavement. Image segmentation is the process of dividing an image into meaningful

5

regions, such as objects of interest and background. The main parameters concerning

pavement management are the pattern classification and measurement of various

parameters from crack features. In this thesis, advanced image processing techniques

are used to deal with pavement pictures. Although this method can obtain no more

pavement parameters than the commercial systems, it will reduce the hardware cost.

In this thesis, several methods are used to detect cracks in the pavement image, for

example, enhancement, threshold, dilation, erosion, and connection method as shown in

Figure 1-2. For every given image, enhancement improves the contrast, making the

conversion from grayscale image to binary image easier through thresholding method.

Morphology methods help to make the cracks look better. Noise removal is a very

common step for image processing. The break points connectively algorithm is the

main part of this thesis. Image skeletonization is a step for rating the cracks.

The rest of this thesis is organized as follows: Chapter 2 is the literature review.

Chapter 3 proposes crack image segmentation using fractal theory. Preprocessing,

including closing operation and noise removal, is explained in Chapter 4. In Chapter 5,

the break points connectivity algorithm is introduced. Chapter 6 presents several

computer simulation results and analysis. Finally, conclusions are given in Chapter 7.

6

Figure 1-2 Processing steps

Input pavement image

Obtain enhanced image by nonlinear filtering

Obtain binary image by thresholding

Apply to fill gaps closing operation

Eliminate isolated noise

Connect break points

Skeletonized the cracks

Eliminate noise

7

Chapter 2

Literature Review

This chapter introduces several related works about road inspection done by other

people. These people proposed many aspects of road inspection by using different

techniques. They make an effort to find a fast, objective, and relatively inexpensive

automated road inspection method. It is hard to finish this thesis without their documents.

Mature production of road inspection is developed by some companies. However, few

published papers and documents about their production could be found.

Li, Chan and Lytton [7] proposed a method for detecting thin cracks on noisy

pavement images. The mean width of a thin crack is less than 0.25 inch. This method

is described below: First, the edges of a grey level image are extracted with the Sobel

edge operators in the image statistics acquisition. The method will calculate the

threshold level. After the pavement image is segmented into a binary image, this

method will eliminate noisy spots, scan the crack segment, trace the boundary of the

crack segment and determine the orientation of the segment. Finally, the length and

width of the crack are calculated. The threshold T is calculated by the grey level of each

pixel multiplied by its gradient and weighted with the corresponding gradient.

Some researchers have used wavelet transform methods as a crack detection tool.

8

The advantage of the wavelet transform is its multi-resolution property, which allows

efficient identification of local features of the signal [8]. The wavelet transform has

been successfully applied for crack localization in beam structures [9, 10]. The

Lipschitz exponent is used to estimate the size of the crack [11]. Douka, Loutridis and

Trochidis [12] proposed a method for estimating both the location and size of the crack

by defining an intensity factor which relates the size of the crack to the coefficients of the

wavelet transform. Although cracks in beam structures are different from those in

pavement, we can use these methods as a source of reference in pavement crack

detection.

Leontios, Douka and Athanasios [13] proposed an algorithm for crack detection

called the Kurtosis Crack Detector (KCD). They analyzed the fundamental vibration

mode of a cracked cantilever beam and estimated both the location and size of the crack.

The location of the crack is determined by the abrupt change in the spatial variation of the

analyzed response, while the size of the crack is related to the kurtosis estimate. The

proposed technique forms a Kurtosis-based crack detector, which takes into account the

non-Gaussianity of the vibration signal in order to efficiently detect both the location and

the size of the crack. They found that the proposed technique is more robust against

noise or measurement errors compared to other techniques such as the wavelet analysis.

Huang and Xu [14] proposed the crack cluster connection method. First, this

method finds verified seeds of a crack and then connects the individual seeds into seed

9

clusters. Starting from one seed, a crack cluster grows by accepting adjacent seeds one

at a time until no nearby seeds can be found.

Cheng et.al [15] proposed a novel pavement cracking detection algorithm based on

fuzzy logic. First, they eliminate the non-uniform background intensity effect, which

uses unsharp masking methods, by subtracting a blurred image from the original image

and adding a positive constant to avoid negative values. Second, they determine the

brightness membership function for the image in the difference domain which is the

result of the first step. The brightness membership function denotes the degree of

brightness possessed by the gray level. They transform the image from the difference

domain to the brightness domain, creating a fuzzy image. Third, they transform the

image from the brightness domain to the crack domain. The method is used as a

transformation function which means that pixels having brightness less than a certain

value are classified as crack pixels. Then, they check the connectivity of pixels in the

crack domain because the crack has a certain length, and isolated darker pixels are

considered as noise. Finally, they classify the type of cracks based on information from

the four direction projections.

Li [16] proposed a robust and high-efficiency model for segmentation and distress

statistics of massive pavement images which is based on multi-scale space. First, they

used multi-scale based image segmentation to remove the uneven elimination. Then

they used the multi-scale based distress statistics to obtain the pavement cracking index

10

of each image. Finally, they used the distress index based pavement distressed images to

separate them from the massive pavement source images.

Zuo et.al [18] proposed a novel pavement image segmentation method based on

fractal theory. This method is compared with the classical Sobel filter and Otsu method.

Segmentation based on fractal properties provides better results with little influence from

noise, fast calculating speed and high accuracy. Their experimental results demonstrate

the fractal method can correctly identify tiny cracks even from noisy pavement images.

Li et.al. [19] proposed a pavement image thresholding method based on neighboring

differential histogram statistics. The distressed pixels in pavement images are darker

than their surroundings and continuous, and the thresholding value is strongly related to

the image standard deviation. So the principle of this method is that if the number of the

surrounding pixels are bigger than the object pixel in the grey-level image, then this pixel

has bigger probability to be a crack pixel.

Yan et.al. [20] proposed a pavement crack detection method for the high-grade

highway. This method reconstructs the median-filter algorithm with four structural

elements to enhance the gray-scale pavement images, and combines the morphology-

gradient operator with the morphology-close operator to extract the crack edges and fill

the gaps of the cracks. After obtaining skeletons, the length and width of cracks are

measured.

11

Chapter 3

Image Segmentation Techniques

This chapter introduces the pavement segmentation using the fractal theory. The

pavement images need to be enhanced before applying thresholding. A nonlinear filter

is used in this chapter in order to improve the contrast, which can make easily find the

thresholding. The fractal thresholding helps to obtain useful binary pavement images,

which is the foundation for the subsequent steps.

3.1 Image Improvement

The aim of preprocessing in pavement image inspection is to suppress the unwanted

information from the image data and enhance the desired image features important for

further processing. Preprocessing is an important step in the sense that, with an

effective process, much of the subsequent analysis will be simplified. Due to

non-uniform lighting or weather conditions, the contrast between distress and background

is often very low. In addition, the image is often corrupted with noise and undesired

features. Therefore, an image enhancement method capable of removing non-uniform

background illumination effects and noises is required.

A promising technique would be to use a nonlinear filter which takes the mean and

variance of local gray values into account. Other techniques, such as median filtering

12

can be used to reduce the noise while preserving much of the detail in the image. To

remove the non-uniform background intensity effect, the following nonlinear filter is

used, as show in (1),

 (1)

where , ,and are respectively the filtered, original and blurred

images of the pavement, m is the mean value of the original image, and is a local

gain factor sensitive to local variations which is 1. The blurred image is obtained by

convoluting a low-pass filter [15] with the original image. Some low-pass filters

can be used to calculate the blurred image such as ideal low-pass filter, Butterworth

low-pass filter and Gaussian low-pass filter. After many experiments, the Gaussian

low-pass spatial filter has been chosen because it avoids a bright ringing effect. The

Gaussian transfer function, as shows in (2):

 (2)

 is cut-off frequency. Thus, the blurred image can be obtained by (3):

 (3)

Figure 3-1 shows an original pavement image. Figure 3-2 shows the same image

with contract enhanced by applying the nonlinear filter. Figure 3-3 and Figure 3-4 are

the histograms of the previous two images respectively.

13

Figure 3-1 Original pavement image

Figure 3-2 Image after improvement

14

Figure 3-3 Histogram of original image

Figure 3-4 Histogram of improvement image

15

3.2 Thresholding Using Fractal Theory

Thresholding is a widely used technique for image segmentation and feature

extraction. For a given image, most of thresholding techniques involve creating a

histogram of the gray level values to be used to find the peaks that exist in the image. A

threshold is then chosen according to the valley between these peaks or modes (usually

two prominent peaks are assumed). Adaptive thresholding applies a different threshold

to different regions of the image and results in better segmentation. Pavement cracks

usually involve abrupt changes in the gray level of two adjacent regions of variant gray

levels. With an appropriate threshold that is extracted from the block and lies

somewhere between the means of the two regions, the block can be converted into a

binary form.

In this thesis, a segmentation method based on fractal theory is used to segment the

pavement image. A fractal is generally a rough or fragmented geometric shape that can

be split into parts, each of which is (at least approximately) a reduced-size copy of the

whole, a property called self-similarity. The term was coined by Benoît Mandelbrot in

1975 and was derived from the Latin fractus meaning “broken” or “fractured.” A

mathematical fractal is based on an equation that undergoes iteration, a form of feedback

based on recursion [17]. Pavement crack image is composed of single crack which

shows self-similarity. The property of self-similarity, or scaling, is one of the central

http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Self-similarity
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Latin
http://en.wiktionary.org/wiki/fractus
http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Recursion

16

concepts of fractal geometry. Cracks are effectively represented by fractals and

pavement crack images can be segmented by fractal method. It is noteworthy that the

self-similarity of cracks only can exist on a small scale since there is no pure fractal

image in the world.

First, the concept of upper surface and lower surface are

introduced. Given, the gray level function , the upper

surface for various values of and lower surface are defined as follows:

 (4)

 (5)

Where the point (m, n) is an immediate neighbor of (i, j). So the distance between point

(m, n) and (i, j) is less than one. A covering blanket is defined by its upper surface and

its lower surface. A point is located such that .

The volume of the blanket is computed from u and b by

 (6)

As the surface area is measured with radius , the volume is divided by

 (7)

The area of a fractal surface behaves according to the expression:

 (8)

17

After taking a logarithm of expression (8), we get the equation:

 (9)

According to the expression (9), the slope D can be calculated by least-square fitting

and the values of k are calculated.

When a pure fractal image is analyzed, the value of k is a constant. However, for

images of different textures, the value of k changes on a scale, so the parameter k reflects

the change of the surface area on different scales. Obviously, when the surface is

smooth, the value of k is small. On the contrary, when the surface is rough, the value of

k is bigger. Thus, we can set the parameter k as a local threshold to segment the image

[18].

The algorithm can be presented as the following:

Step 1: Identify a window of size in the image of size and calculate every

k of each window.

Step 2: Find the minimum of the k value such that and . Set the threshold

 to segment the image.

After many tests, , , and are selected.

Figure 3-5 shows the pavement image after applying fractal thresholding base to Figure

3-2.

18

Figure 3-5 Binary image

Another example of using fractal thresholding is described. The pavement image

after improvement is shown in Figure 3-6. The cracks are distinguished from pavement

after applying fractal thresholding as shown in Figure 3-7. Only a few noise points are

left in the image which can be removed in the following step.

In general, this chapter presents the first part of the pavement images processing.

After enhancement, the gray scale image can be transformed to binary image by the

fractal thresholding. However, some crack pixels are removed and some noise pixels

remain irrespective of the thresholding method. Although there are many methods to

compensate the crack and remove the noise, a good thresholding method is needed to

obtain a clear binary image.

19

Figure 3-6 Image after improvement

Figure 3-7 Binary image

20

Chapter 4

Mathematical Morphology and Noise Removal Techniques

This chapter introduces the mathematical morphology and noise removal techniques.

The closing operation, which is a common mathematical morphology operator, is used to

fill the gaps between cracks. Two noise removal methods are also compared in this

chapter. The results show that median filtering is not efficient enough for noise

removal.

4.1 Closing Operation Techniques

Mathematical morphology is a technique for analysis and processing of geometrical

structures based on set theory, lattice theory, topology, and random functions.

Mathematical morphology is an important tool for low-level image processing [21].

Most morphological transforms are constructed from elementary morphological

operations such as dilation, erosion, hit-or-miss transform, morphological skeleton,

filtering by reconstruction and granulometry. This operation is guided by structural

elements. A structural element is a shape used to probe or interact with a given image

with the purpose of drawing conclusions on how this shape fits or misses the shapes in

the image [21].

Morphological transforms such as dilation and erosion are used in this thesis. The

http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Lattice_theory
http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Random_function
http://en.wikipedia.org/wiki/Hit-or-miss_transform
http://en.wikipedia.org/wiki/Morphological_skeleton
http://en.wikipedia.org/w/index.php?title=Filtering_by_reconstruction&action=edit&redlink=1
http://en.wikipedia.org/wiki/Granulometry_%28morphology%29

21

dilation of by the structuring element is defined by (10):

 (10)

Where denotes the symmetric of .

The dilation of by can be understood as the locus of the points covered by

when the center of moves inside . Formula (10) can be written as (11) according

to this explanation.

 (11)

The erosion of by the structuring element can be understood as the locus of

points reached by the center of when moves inside . The definition is given by

(12):

 (12)

Dilation and erosion can be cascade connected because they are not inverse

operations. Applying dilation before erosion is called a closing operation which can fill

the holes in a binary image. The closing operation is a very important operation of

mathematical morphology, and the definition is given by (13):

 (13)

After many tests, a morphological structure element “disk” for both dilation and

erosion has been chosen. The structure element creates a flat, disk-shaped with the

radius is 5. This structure element is described in Figure 4-1.

http://en.wikipedia.org/wiki/Dilation_%28morphology%29
http://en.wikipedia.org/wiki/Rotational_symmetry

22

 Figure 4-1 Disk structure element

4.2 Noise Removal

Noise reduction is one of the most significant steps of image processing along with

crack detection. Median filtering is an example of many noise removal techniques.

The median filter is a non-linear digital filtering technique, often used to remove noise

from images or other signals. The idea is to examine a sample of the input and decide if

it is representative of the signal. This filter is performed using a window consisting of

an odd number of samples. The values in the window are sorted in a numerical order

and the median value is selected as the output. The oldest sample is discarded, a new

sample acquired, and the calculation repeats. [21]

Median filtering is one of the most commonly used techniques for noise removal.

It usually is used on gray scale images. In this thesis, median filter is used on binary

images following the same principle. In this process, a window pixels is selecetd

as shown in Figure 4-2.

http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Signal_noise
http://en.wikipedia.org/wiki/Median

23

Figure 4-2 A window median filter

In the simulation result, a pavement image has almost no “salt and pepper” noise

after applying median filter. Figure 4-3 shows the image after the closing operation.

Figure 4-4 shows the image after the median filter is done. However, some crack pixels

are also removed after the median filter. Comparing Fig 4-4 to Fig 4-3 shows three

additional gaps have been generated after applying the median filter. This problem may

influence the following steps.

Figure 4-3 Image after closing operation

24

Figure 4-4 Image after median filter

Comparing Figure 4-3 and Figure 4-4 carefully, we can find that the disappeared

crack pixels occur in the thin part of the crack. The median value has more probability

to be a background pixel than an object pixel in the thin areas. As a result, these useful

pixels are removed as noise pixels after median filtering. Figure 4-5 shows the process

of crack pixel removal. As seen in Figure 4-5 (a), the original crack has oen pixel in the

middle. Figure 4-5 (b) shows the filter window, and as seen in Figure 4-5 (c), the

median value pixel has been changed to a background pixel. The gap generated after

median filtering is shown in Figure 4-5 (d).

25

(a) original image (d) after removed

 (b) window (c) replace median value

Figure 4-5 Crack pixel has been removed after median filter

Based on the problem of resulting from using the median filter, a new noise removed

method is proposed. This method is designed according to the linearity of the cracks.

Median filter does not consider the connectivity of the cracks, so some gaps are generated

after median filtering. To remove isolated noise and retain crack pixels, this method

checks neighboring pixels of every bright pixel. The algorithm for noise removal is

summarized below:

26

The main idea of this method is to find adjacent background pixels for every

bright pixel. Each bright pixel has to be complimented by bright neighboring pixels

to exist. This method using neighborhood yields better results. Figure 4-6

shows the result using this method. Although some noise points are still in the

image, no crack gap is generated and almost no crack pixel is removed after using

this method compare to using the median filter. The remaining noise points can be

removed by the connected component method explained in the next chapter.

Figure 4-6 Noise removal

Another example of using this method is shown in Figure 4-7 to Figure 4-9. Figure

4-7 shows a pavement image after closing operation. Noise removal using a median

filtering is shown in Figure 4-8. Not only are all the noise points removed, many crack

pixels have also disappeared making it very hard to detect a crack in the image. Figure

27

4-9 shows the result of using the noise removal method introduced before. Crack

information is retained in Figure 4-9 compared to Figure 4-8. Therefore, this method is

better than median filtering for noise removal in images with cracks.

Figure 4-7 Image after closing operation

28

Figure 4-8 Image after median filter

Figure 4-9 Noise removal

29

Chapter 5

Break Points Connectivity Algorithm

After preprocessing, the cracks have some break points which influence rating of the

cracks. These break points are generated mainly because of discontinuity that occurred

in the previous steps due to some crack pixels changing into background after

thresholding or being removed after noise reduction. They may also be lost due to

objects such as little stones in the cracks even before processing. In order to obtain the

accurate rating results of the pavement images, a break points connectivity algorithm is

proposed in this thesis. This algorithm mainly contains three steps: finding initial pixel

of a crack, looking for the break points for every crack, and connecting the break points.

Figure 5-1 shows the algorithm to verify the connectivity of break points.

The input is a binary image. This algorithm searches the initial pixel of transverse

crack before longitudinal crack. The coordinate of two kinds of initial pixels are

recorded in two different matrices respectively. This algorithm then searches the break

points in horizontal direction from a transverse initial pixel. After finding a gap, this

algorithm will search the neighbor crack pixel in a defined area and connects them.

This algorithm searches the next break point along the same direction until the end of the

crack or image. This process is repeated from the next initial pixel. After dealing with

30

all the transverse initial pixels, this algorithm searches the break points in vertical

direction following the similar rule. The resultant output images are checked twice for

connectivity in horizontal and vertical directions.

Figure 5-1 Break points connectivity algorithm processing steps

Input pavement image

Finding the initial

pixels in transverse

direction

Finding the initial

pixels in longitudinal

direction

Looking for the break

points in transverse

direction based on the

initial pixels

Looking for the break

points in longitudinal

direction based on the

initial pixels

Connecting the break

points in specified

search area

Output pavement image

Connecting the break

points in specified

search area

End of crack

or image?

End of crack

or image?

Set another

initial pixel

Set another

initial pixel

No

Yes

No

31

5.1 Finding the initial pixels

The first step of of break points connectivity algorithm is finding the initial pixels.

A crack pixel need to be located so the break points could be found in the direction

specified. An initial pixel has no use for the first pixel of a crack. However, the initial

pixel should be on the left of a transverse crack and on top of a longitudinal crack in

order to find as many break points as possible. Otherwise, some break points before the

initial pixel cannot be found.

Four different types of cracks are introduced in Chapter 1. Two types of cracks

have been identified based on the direction of the crack: transverse and longitudinal.

Any other directions can be attributed to these two directions, which can make the

process easier. After preprocessing, binary pavement images contain bright pixels

which are crack and noise pixels and dark pixels which are background pixels. The

main idea of finding the initial pixels is to check the continuity of some bright pixels, so

that noise pixels cannot be set as the initial pixel.

For every input pavement image, the algorithm searches the initial pixel for

transverse cracks before the initial pixel for longitudinal cracks. Considering the

location of the cracks, the pavement image is longitudinally divided into two equal

segments. When the algorithm searches the transverse initial pixels, the initial pixel is

found in each half. The pavement image is further divided into some small parts along

the longitudinal direction. The size of each segment of the image is 20 pixels which is

32

an empirical value based on the distance between the transverse cracks. Figure 5-2

shows that all parts are divided in the pavement image for searching the initial pixel for

transverse cracks. After the pavement image is divided into twelve parts as shown in

Figure 5-2, the algorithm searches the initial pixel for transverse cracks in these twelve

parts one by one. Each transverse crack can be found using this method. In other

words, it is hard to miss the transverse cracks since this method guarantees finding all

break points.

Figure 5-2 Divide pavement image for searching the transverse initial pixels

All the coordinates of bright pixels including crack and noise pixels are recorded in

a matrix. The difference between crack and noise is continuity. Therefore, this

 20

 pixels

Half side length of image

33

algorithm checks for pixels with in the distance of 10 pixels for every bright pixel. If

more than one pixel is bright, the original bright pixel is set as the initial pixel and the

search for initial pixels is stopped. Otherwise, the next bright pixel is checked until the

algorithm finds an initial pixel. Figure 5-3 shows the searching method in one of the

segments. We can see that this algorithm checks five pixels for one bright pixel in

Figure 5-3. These five pixels are in the same row. The determined function is

summarized below:

Figure 5-3 To determine the transverse initial pixel

The procedure is repeated in the longitudinal direction. The pavement image is

34

divided in the transverse direction into two equal halves and the algorithm searches for

initial pixels in the longitudinal direction. The pavement image is further divided into

some smaller segments along the transverse direction. The distance between each small

segment is also 20 pixels. Figure 5-4 shows that all parts are divided in the pavement

image for searching the longitudinal initial pixels.

This algorithm mainly deals with the transverse cracks and longitudinal cracks on

the condition that the distance between cracks is not too less. A large area cannot be

searched for initial pixels easily. Therefore, the pavement images will further divided

into some smaller segment that can find all the cracks for block cracks or alligator cracks.

Figure 5-4 Divide pavement image for searching the longitudinal initial pixels

20 pixels

Half

Side

Length

Of

Image

35

This algorithm also checks five pixels with the distance of 10 pixels for every bright

pixel in each segment. Figure5-5 shows that these five pixels are below the bright pixel.

The determine function is summarized below:

Figure 5-5 To determine the longitudinal initial pixel

Block crack and alligator cracks consist of a combination of transverse and

36

longitudinal cracks. Therefore, every crack can be found with this method. The

coordinate of initial pixels found are recorded in a matrix. Searching the break points

starting from these coordinates is the next step of this algorithm.

5.2 Finding the Break Points

The connectivity analysis of the crack pixels is based on a depth-first searching

method. The method of searching the break points is composed of transverse searching

and longitudinal searching based on two different initial pixels respectively. This

method does not require checking every crack pixel, but only moving along the crack

with special rule to find the break points. In the following, a procedure for finding the

break points of the transversal cracks is described.

After finding the coordinates of the initial pixel of a transverse crack, three

prioritized directions are defined, namely, the right, up, and down directions to denote the

first, second, and third directions of the search, respectively. The basic rule of the

searching method is to follow the bright pixels in the first direction from the initial pixel

until there is no bright pixel in this direction. It will then continue along the second

direction and if no bright pixel is found in this direction, scanning changes to the first

direction to check for bright pixels. If a bright pixel exists, the algorithm will continue

in the first direction again, otherwise, scanning takes place in the third direction. In

37

searching for transverse cracks, the high priority level of searching is followed by the

second direction and then finally in the third direction with the lowest priority. If there

is no bright pixel within 4-neighbors, this method will check 8-neighbors and start

searching from the first direction again.

The search algorithm for connectivity analysis is summarized below:

1) Start from an initial crack pixel.

2) Follow the crack pixels in three directions right, up and down until no crack pixel

is found.

3) Check 8-neighbors of the pixel visited last

4) Determine the presence of either a break point or a column of break points.

5) Look for the nearest crack pixel in a specific search area.

6) Connect them and repeat the process for the entire image.

In order to define the area to be searched in the following step, the break points are

divided into two types: single pixel break point and multiple pixels break point. These

two break points are explained in Case 1 and Case 2 as follows.

Case 1: Note that, when there is no bright pixel in any of the three directions, the

method will then check the upper right and bottom right pixels, i.e., diagonal pixel

elements. If neither pixel is bright, the final bright pixel is a break point. Otherwise,

the search algorithm will continue in the first direction from one of the right pixels.

Figure 5-6 shows the procedure of searching single pixel break point.

38

Figure 5-6 Single pixel break point for transverse cracks

Case 2: On the other hand, after continuing along the third direction, if there is no

bright pixel in the next column, multiple pixels break point is obtained. Figure 5-7

shows the procedure of searching multiple pixels break point. If there is no bright pixel

in the first direction after checking the third direction, this method will check every

adjacent right pixel of the pixels in previous column and the diagonal pixel elements of

this column. After finding a bright pixel, this algorithm starts searching from the first

direction again. Otherwise, multiple pixels break point is obtained.

These two cases explain the configuration of the break points on pixel level clearly.

The search areas are designed and directed towards the two cases. The search area for

multiple pixels break point is larger than the single pixel break point because the width of

multiple pixels break point corresponding to the cracks could be bigger. The details of

connection method are presented as follows.

39

Figure 5-7 Multiple pixels break point for transverse cracks

The process for obtaining a longitudinal crack is similar to the transverse; however,

the three prioritized search directions will change in the following way. The downward

direction is crucial for this case; therefore, it will be the first direction with high priority

to search for continuity. The second and the third directions are the right and left

directions, respectively. The priority level is the same as the transversal cracks. Note

that, the order of priority is very important and should be observed during the search

process. We cannot use the same search method for both transversal and longitudinal

cracks, because the tendency for transversal cracks is in the right direction, and the

tendency of longitudinal crack is in the downward direction.

Two different types of break points are identified in longitudinal cracks. As

mentioned above, the search directions are changed sequentially. Thus, the search way

for longitudinal cracks is a little different from transverse cracks. Break points for

40

single pixel and multiple pixels for longitudinal cracks are shown in Figure 5-8 and

Figure 5-9 respectively.

Figure 5-8 Single pixel break point Figure 5-9 Multiple pixels break point

for longitudinal cracks for longitudinal cracks

41

5.3 Connecting the Break Points

After the break points are found, this algorithm continues to search for crack pixels.

There are two steps to eliminate breaks in the cracks. First, this algorithm searches the

bright pixels within a given area according to break points for single and multiple pixels.

Then, this algorithm changes dark pixel to bright pixel in the break accordingly. This

algorithm deals with the pavement images on pixel level in order to connect the break

points smoothly. One loop of this algorithm is finished after connecting the first break

point. Since a crack has more than one break point, this algorithm continues to search

the next break point from another initial pixel until the end of the crack or the image.

The last findable bright pixel in the given area is set as the initial pixel and the procedure

is repeated.

The search areas for finding the nearest crack pixel would be different for the two

types of break points in order to obtain a connected set of crack points. The algorithm

will check pixels 4 rows above and below the initial point and the right 20 columns based

on the single pixel break point. If a bright pixel is found in the search area, the

algorithm changes the previous pixels in the row traversed before to a bright pixel.

Then all the bright pixels are adjacent so that a break point is connected. Figure 5-10

shows the search area corresponding to Case 1. The set of pixels within blue frame is

the search area. The white arrows show the direction of search for bright pixels. After

finding the bright pixel, this algorithm changes the previous pixels to the bright pixel.

42

Figure 5-11 shows the procedure of this step.

Figure 5-10 Search area 1

Figure 5-11 Connect the Single pixel break point

In a similar way, the algorithm finds a crack pixel in the search area and connects it

to the previous break point by backtracking for the multiple pixels break point. The

search area is expanded in this situation because this gap could be bigger than the single

pixel break point. Figure 5-12 shows the part of the search area corresponding to Case 2.

43

Figure 5-13 shows the procedure to connect the break point.

Figure 5-12 Search area 2

Figure 5-13 Connect the multiple pixels break point

The search area is also defined in the break points of longitudinal cracks. The dark

pixels are also changed to the bright pixels in order to connect the break points following

a similar procedure. After connecting one break point, this algorithm searches for the

next break point in the longitudinal crack with the longitudinal search procedure.

44

A transverse crack with four gaps after noise removal is shown in Figure 5-14.

After applying the break points connectivity algorithm, these four gaps are connected, as

shown in Figure 5-15. Figure 5-16 compare the image before connecting the break

points to the image after connecting on pixel level. A longitudinal crack with five gaps

after noise removal is shown in Figure 5-17. Figure 5-18 shows that these five gaps are

connected after applying the break points connectivity algorithm.

This chapter proposed a break points connectivity algorithm. This algorithm is

based on depth-first search method and is modified according to the orientation of cracks.

The remaining noise pixels are easily removed after skeletonization based on this

algorithm.

Figure 5-14 A transverse crack before connecting

45

Figure 5-15 A transverse crack after connecting

46

Figure 5-16 The break points connection on pixel level

47

Figure 5-17 A longitudinal crack before connecting

Figure 5-18 A longitudinal crack after connecting

48

Chapter 6

Simulation Results and Analysis

This chapter shows pavement images applying the algorithm introduced in this

thesis by Matlab©. According to the process explained in the previous chapters, the

process takes place in the following steps image enhancement, thresholding, closing

operation, noise removal and break points connection. The results of Image

skeletonization and connected components are shown in this chapter.

Skeletonization is a specific morphological operation to the binary image. It

removes pixels on the boundaries of objects but does not allow objects to break apart.

The pixels remaining make up the image skeleton. Matlab©, is used to perform this

operation but noise is still retained after skeletonization. Connected components

method checks the connectivity of bright pixels. The bright points whose connectivity

is less than 30 pixels are removed thereby removing the noise. Finally, the skeleton of

the crack is obtained free of noise.

The crack classification is the final step in the process. The coordinates of bright

pixels on the lines along horizontal and vertical directions are recorded. The maximum

amount of bright pixels in a line should be the number of the cracks. The vertical

coordinates and horizontal coordinates in the three lines are used to classify the cracks.

49

If the difference of vertical coordinates between the maximum and minimum is less than

45 pixels, then the crack is classified to the transverse crack. Similarly, if the difference

of horizontal coordinates between the maximum and minimum is less than 45 pixels, then

the crack is classified to the longitudinal crack.

6.1 The transverse crack

A pavement image with three transverse cracks is shown in Figure 6-1. The image

after enhancement is shown in Figure 6-2. In the following, the images fractal

thresholding is used. The binary image contains discontinuities in cracks and noise as

shown in Figure 6-3. The discontinuities are filled after applying closing operation, as

shown in Figure 6-4. Figure 6-5 and Figure 6-6 are two different methods of noise

reduction. It is evident that the method explained in this thesis has a better result than

the median filtering. Eight gaps on two cracks are connected after applying the

connectivity algorithm, as shown in Figure 6-7. Figure 6-8 shows the skeletonization

result. The noise points are removed after using the connected component method

except a large patch of noise because of the connection of crack pixels, as shown in

Figure 6-9.

50

Figure 6-1 Original pavement image

Figure 6-2 Enhancement image

In Figure 6-2, the background is changed to white, so that the cracks look more

obvious. A large contrast between background and distress makes thresholding easier.

51

Figure 6-3 Binary image

The pavement image is transformed to binary image in Figure 6-3. The integrity of

crack pixels are retained by fractal thresholding.

Figure 6-4 Image after closing operation

Compared to the binary image, Figure 6-4 shows that the cracks are smoothened

since many gaps are filled by the closing operation.

52

Figure 6-5 Noise reduction image

After noise reduction, many noise pixels are removed. However, the crack pixels

are retained, as shown in Figure 6-5.

Figure 6-6 Median filter image

In Figure 6-6, the median filter shows a bad result of noise reduction because

although the noise pixels are removed, many crack pixles have disappeared.

53

Figure 6-7 Connectivity image

As mentioned above, the gaps on cracks are connected after applying the

connectivity algorithm. All the initial pixels are found according to Figure 6-7.

Figure 6-8 Skeleton image

After skeletonization, the noise points contain fewer noise pixels, as shown in Figure

6-8. As a result, these points are easily removed without tampering the cracks.

54

Figure 6-9 Image after connected component

A clear crack image is obtained in Figure 6-9. The final result for this pavement

image is easily calculated based on this image.

6.2 The longitudinal crack

A pavement image with two longitudinal cracks is shown in Figure 6-10. The

image after enhancement is shown in Figure 6-11. In the following images, fractal

thresholding is used. The binary image contains discontinuities in cracks and noise, as

shown in Figure 6-12. The discontinuities are filled after closing operation, as shown in

Figure 6-13. Figure 6-14 and Figure 6-15 are two different methods of noise reduction.

Three gaps on two cracks are connected after applying the connectivity algorithm, as

shown in Figure 6-16. Figure 6-17 shows the skeletonization result. The noise points

are removed after using the connected component method except one white patch

55

because of the connection of crack pixels, as shown in Figure 6-18.

Figure 6-10 Original pavement image

Figure 6-11 Enhancement image

56

Figure 6-12 Binary image

Figure 6-13 Image after closing operation

57

Figure 6-14 Noise reduction image

Figure 6-15 Median filter image

58

Figure 6-16 connectivity image

Figure 6-17 Skeleton image

59

Figure 6-18 image after connected component

The final result for this pavement image is two longitudinal cracks.

60

Chapter 7

Conclusion and Further Work

A novel algorithm for the extraction of both transverse and longitudinal cracks from

pavement images is presented in this thesis. The first step of the proposed method

involves pre-processing which consists of enhancement, thresholding, morphological

operations using dilation and erosion to fill in the discontinuities between cracks. Two

noise reduction methods are compared in this thesis. The result shows that median

filtering is ineffective for crack detection. One of the major components of the

algorithm is the determination of break points and their connection to extract the crack

features followed by skeletonization. The noise is easily removed by the connected

component because the crack pixels have much longer connection than the noise pixels.

Experimental results clearly demonstrate that the method can effectively and

efficiently extract the crack features from the pavement images. The results from the

preprocessing steps give a good usable input for the break points connectivity algorithm.

 Further work is needed to modify the break points connectivity algorithm so that it

can be able to segregate and classify transverse and longitudinal cracks in block cracks

and alligator cracks accordingly.

61

Reference

[1] Digital Systems Honors (1200), Research Proposal. Semi-automated Detection and

Measurement of Pavement Defects. School of Computer Science and Software

Engineering Monash University. Semester 1, 2004.

[2] http://www.vicroads.vic.gov.au/Home/

[3] http://www.dot.gov/about_dot.html#perfbudgplan

[4] http://www.roadware.com/_lib/pdf/datasheet.wisecrax.pdf

[5] Samsung, PicCrack User's Guide: Salt Lake City.

[6] http://www.opq.se/index.php/products

[7] L. Li, P. Chan and R. L. Lytton, “Detection of Thin Cracks on Noisy Pavement

Images,” Transportation Research Record, No. 1311, Pavement Management: Data

Collection, Analysis, pp. 131-135, 1991.

[8] D. E. Newland, “Wavelet analysis of vibration,” J Vib Acoust, vol, 116, pp.409–416,

1994.

[9] Q. Wang and X. Deng, “Damage detection with spatial wavelets,” Int J Solids Struct,

vol. 36, pp.3443–3468, 1999.

[10] S. Quek, Q. Wang, L. Zhang and K.Ang. “Sensitivity analysis of crack detection in

beams by the wavelet technique,” J Mech Sci, vol. 43, pp. 2899–2910, 2001.

62

[11] J. C. Hong, Y. Y. Kim, C. Lee and Y. W. Lee, “Damage detection using the Lipschitz

exponent estimated by the wavelet transform,” Int J Solids Struct, vol. 39,

pp.1803–16, 2002.

[12] E. Douka, S. Loutridis and A. Trochidis, “Crack identification in beams using

wavelet analysis,” Int J Solids Struct, vol. 40, pp. 3557–3569, 2003.

[13] J. Leontios, H. E. Douka and T. Athanasios, “Crack detection in beams using

kurtosis,” Computers and Structures, vol. 83, pp. 909–919, 2005.

[14] Y. Huang and B. Xu, “Automatic inspection of pavement cracking distress,” Journal

of Electronic Imaging, vol. 15, pp. 13-17, 2006.

[15] H. D. Cheng, J. R. Chen, C. Glazier and Y. G. Hu, “Novel Approach to Pavment

Cracking Detection Based on Fuzzy Set Theory,” Journal of Computing in Civil

Engineering, vol. 13, no. 4, 1999.

[16] Q. Li and X. Liu, “A Model for Segmentation and Distress Statistic of Massive

Pavement Images Based on Multi-scale Strategies,” presented at The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

vol. XXXVII, part. B5, Beijing, 2008.

[17] B. B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman, San Francisco,

ISBN 0-7167-1186-9, 1982.

[18] Y. Zuo, G. Wang and C. Zuo, “A Novel Image Segmentation Method of Pavement

Surface Cracks Based on Fractal,” presented at Theory 2008 International

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7167-1186-9

63

Conference on Computational Intelligence and Security 978-0-7695-3508-1/08,

2008.

[19] Q. Li and X. Liu, “Novel Approach to Pavement Image Segmentation Based on

Neighboring Difference Histogram Method,” Congress on Image and Signal

Processing, ISBN: 978-0-7695-3119-9, May, 2008.

[20] M. Yan, S. Bo, K. Xu and Y. He, “Pavement Crack Detection and Analysis for

High-grade Highway,” The Eighth International Conference on Electronic

Measurement and Instruments, ISBN: 978-1-4244-1136-8, Xi’an, 2007.

[21] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” third edition, Prentice

Hall, 2008.

64

Appendix- Matlab Code

clear all;

close all;

k=input('Enter the file name','s');

J=imread(k);

I=rgb2gray(J);

figure,imshow(I,[]);

title('Original Image');

[m,n] = size(I); % Image improvement

[f1,f2]=freqspace(size(I),'meshgrid');

D=100/size(I,1);

Hd=ones(9); %9*9 low pass filter

r=f1.^2+f2.^2;

for i=1:9

 for j=1:9

 t=r(i,j)/(D*D);

 Hd(i,j)=exp(-t);

 end

end

Y=fft2(double(I));

Y=fftshift(Y);

Ya=convn(Y,Hd);

Ya=ifftshift(Ya);

Ia=ifft2(Ya);

I_rz=imresize(Ia,[m,n]); % blurr image

I_rz=uint8(I_rz);

If=imsubtract(I,I_rz);

b=mean2(I);

I_aa=b*ones(size(I));

I_aa=uint8(I_aa);

Ip=imadd(If,I_aa);

figure,imshow(Ip,[]);

title('enhancement image');

L = size(Ip); % The fractal thresholding

Lseg=3;

max_row = floor(L(1)/Lseg);

65

max_col = floor(L(2)/Lseg);

seg1 = cell(max_row,max_col); %segment the image

r1 = 1;

for row = 1:max_row

 c1 = 1;

 for col = 1:max_col

 r2 = r1+Lseg-1;

 c2 = c1+Lseg-1;

 seg1(row,col) = {Ip(r1:r2,c1:c2,:)};

 c1 = c2 +1;

 end

 r1 = r2 +1;

end

kk=zeros(row,col);

for m=1:row

 for n=1:col

U=[0,0,0,0,0,0,0,0,0];

B=[0,0,0,0,0,0,0,0,0];

D1=zeros(size(Lseg,Lseg));

D2=zeros(size(Lseg,Lseg));

D3=zeros(size(Lseg,Lseg));

D4=zeros(size(Lseg,Lseg));

D5=zeros(size(Lseg,Lseg));

D6=zeros(size(Lseg,Lseg));

D7=zeros(size(Lseg,Lseg));

D8=zeros(size(Lseg,Lseg));

D9=zeros(size(Lseg,Lseg));

for i=1:Lseg

 for j=1:Lseg

 U(1)=seg1{m,n}(i,j); %calculate the upper surface and lower surface

 B(1)=seg1{m,n}(i,j);

 for k=1:8

 if (i-1==0)

 ax1=0;

 else

 ax1=seg1{m,n}(i-1,j);

 end

 if (i+1>3)

 ax2=0;

 else

 ax2=seg1{m,n}(i+1,j);

66

 end

 if (j-1==0)

 ax3=0;

 else

 ax3=seg1{m,n}(i,j-1);

 end

 if (j+1>3)

 ax4=0;

 else

 ax4=seg1{m,n}(i,j+1);

 end

 ax=max(ax1,ax2);

 bx=max(ax,ax4);

 cx=max(bx,ax3);

 dx=max(cx,U(k)+1);

 U(k+1)=dx;

 an=min(ax1,ax2);

 bn=min(an,ax4);

 cn=min(bn,ax3);

 dn=min(cn,B(k)+1);

 B(k+1)=dn;

 end

 D2(i,j)=U(2)-B(2);

 D3(i,j)=U(3)-B(3);

 D4(i,j)=U(4)-B(4);

 D5(i,j)=U(5)-B(5);

 D6(i,j)=U(6)-B(6);

 D7(i,j)=U(7)-B(7);

 D8(i,j)=U(8)-B(8);

 D9(i,j)=U(9)-B(9);

v2=0;

v3=0;

v4=0;

v5=0;

v6=0;

v7=0;

v8=0;

v9=0;

for i2=1:size(D2,1) %calculate the D

 for j2=1:size(D2,2)

 v2=D2(i2,j2)+v2;

67

 end

end

for i3=1:size(D3,1)

 for j3=1:size(D3,2)

 v3=D3(i3,j3)+v3;

 end

end

for i4=1:size(D4,1)

 for j4=1:size(D4,2)

 v4=D4(i4,j4)+v4;

 end

end

for i5=1:size(D5,1)

 for j5=1:size(D5,2)

 v5=D5(i5,j5)+v5;

 end

end

for i6=1:size(D6,1)

 for j6=1:size(D6,2)

 v6=D6(i6,j6)+v6;

 end

end

for i7=1:size(D7,1)

 for j7=1:size(D7,2)

 v7=D7(i7,j7)+v7;

 end

end

for i8=1:size(D8,1)

 for j8=1:size(D8,2)

 v8=D8(i8,j8)+v8;

 end

end

for i9=1:size(D9,1)

 for j9=1:size(D9,2)

 v9=D9(i9,j9)+v9;

 end

end

a2=v2/4;

a3=v3/6;

a4=v4/8;

a5=v5/10;

68

a6=v6/12;

a7=v7/14;

a8=v8/16;

a9=v9/18;

aa=[log10(a2),log10(a3),log10(a4),log10(a5),log10(a6),log10(a7),log10(a8),log10(a9)];

ay=(log10(a2)+log10(a3)+log10(a4)+log10(a5)+log10(a6)+log10(a7)+log10(a8)+log10(

a9))/8;

at=(log10(2)+log10(3)+log10(4)+log10(5)+log10(6)+log10(7)+log10(8)+log10(9))/8;

x11=0;

x12=0;

for i0=1:8 % least-square fitting

 x11=(log10(i0+1)-at)*(aa(i0)-ay)+x11;

end

for j0=2:9

 x12=(log10(j0)-at)^2+x12;

end

x1=x11/x12;

x0=ay-x1*at;

kk(m,n)=10^x0;

 end

end

 end

end

kmin=min(min(kk));

ss=0.2247*kmin+40;

T=fix(ss);

Ib=zeros(size(Ip));

for i=1:size(Ip,1)

 for j=1:size(Ip,2)

 if Ip(i,j)>=T

 Ib(i,j)=0;

 else

 Ib(i,j)=255;

 end

 end

end

figure,imshow(Ib,[]);

title('Binary Image');

se=strel('disk',5);%closing operation

B=imdilate(Ib,se);

69

figure,imshow(B,[]);

title('Image after being dialated.');

se=strel('disk',5);

B_q = imerode(B,se);

figure,imshow(B_q,[]);

title('Image after being eroded');

B_c=B_q;

B_a=B_q;

[row,col]=find(B_a==255);%Noise removal

for i=1:size(row)

 for j=1:size(col)

 if (row(i)<size(B_a,1)-2 && col(j)<size(B_a,2)-2 && row(i)>2 && col(j)>2)

 if (B_a(row(i)+2,col(j))==0 && B_a(row(i),col(j)+2)==0 &&

B_a(row(i)+2,col(j)+2)==0 && B_a(row(i)-2,col(j))==0 && B_a(row(i),col(j)-2)==0

&& B_a(row(i)-2,col(j)-2)==0 && B_a(row(i)+2,col(j)-2)==0 &&

B_a(row(i)-2,col(j)+2)==0) %check the neighborhood

 B_a(row(i),col(j))=0;

 end

 end

 end

end

B_e=B_a;

 [row_e,col_e]=find(B_e==255);

for i=1:size(B_e,2)

 B_e(i,size(B_e,2))=0;

 B_e(size(B_e,2),i)=0;

end

figure,imshow(B_e,[]);

title('image after remove noise');

X=medfilt2(B_q);

figure,imshow(X,[]);

title('Image after median filter');

ih1=zeros(1,1);%finding the transverse initial pixels

ih2=zeros(1,1);

jih=1;

for k=0:40:size(B_e,1) %segment the image

 tt3=0;

 tt4=0;

 for ii=1:size(row_e,1) %check the neighborhood

 tt1=0;

 tt2=0;

70

 if (row_e(ii)>k && row_e(ii)<k+20 && col_e(ii)<size(B_e,2)/2)

 if (row_e(ii)+3<size(B_e,1) && col_e(ii)+11<size(B_e,2) &&

row_e(ii)-2>0)

 while (tt1==0 && tt3==0)

 if (B_e(row_e(ii)-2,col_e(ii)+10)==255 ||

B_e(row_e(ii)-1,col_e(ii)+10)==255 || B_e(row_e(ii),col_e(ii)+10)==255 ||

B_e(row_e(ii)+1,col_e(ii)+10)==255 || B_e(row_e(ii)+2,col_e(ii)+10)==255)

 ih1(jih)=row_e(ii);

 ih2(jih)=col_e(ii);

 jih=jih+1;

 tt1=1;

 tt3=1;

 else

 tt1=1;

 end

 end

 end

 end

 if (row_e(ii)>k && row_e(ii)<k+20 && col_e(ii)>size(B_e,2)/2)

 if (row_e(ii)+3<size(B_e,1) && col_e(ii)+11<size(B_e,2) &&

row_e(ii)-2>0)

 while (tt2==0 && tt4==0)

 if (B_e(row_e(ii)-2,col_e(ii)+10)==255 ||

B_e(row_e(ii)-1,col_e(ii)+10)==255 || B_e(row_e(ii),col_e(ii)+10)==255 ||

B_e(row_e(ii)+1,col_e(ii)+10)==255 || B_e(row_e(ii)+2,col_e(ii)+10)==255)

 ih1(jih)=row_e(ii);

 ih2(jih)=col_e(ii);

 jih=jih+1;

 tt2=1;

 tt4=1;

 else

 tt2=1;

 end

 end

 end

 end

 end

end

for l=1:size(ih1,2) %search transverse break points

 cont_j_1=1;

 while (cont_j_1==1 && ih1(l)<425 && ih2(l)<425)

71

 cont_i=1;

 while (cont_i==1)

 breakdown3=1;

 while (breakdown3==1)

 breakdown1=1;

 while (breakdown1==1)

 if (ih2(l)+1<480)

 if (B_e(ih1(l),ih2(l)+1)~=0) %the first direction

 while (B_e(ih1(l),ih2(l))~=0 && ih2(l)<480)

 ih2(l)=ih2(l)+1;

 end

 ih3=ih1(l)-1; %set the searching pixel

 ih4=ih2(l)-1; %set the searching pixel

 else

 ih3=ih1(l)-1; %set the searching pixel

 ih4=ih2(l); %set the searching pixel

 end

 end

 if (B_e(ih3,ih4)~=0) %the second direction

 breakdown1=1;

 while (B_e(ih3,ih4)~=0 && ih3>2)

 ih3=ih3-1;

 end

 ih1(l)=ih3+1; %set the searching pixel

 ih2(l)=ih4; %set the searching pixel

 else

 breakdown1=0;

 end

 end

 ih5=ih3+1; %set the searching pixel

 ih6=ih4; %set the searching pixel

 if (B_e(ih5+1,ih6)~=0) %the third direction

 while (B_e(ih5,ih6)~=0 && ih5<479)

 ih5=ih5+1;

 end

 if (B_e(ih5-1,ih6+1)~=0)

 ih1(l)=ih5-1; %set the searching pixel

 ih2(l)=ih6+1; %set the searching pixel

 breakdown3=1;

 else %check next column pixels

 for i=0:ih5-ih3-2

72

 if (B_e(ih5-1-i,ih6+1)~=0)

 ih1(l)=ih5-1-i;

 ih2(l)=ih6+1;

 breakdown3=1;

 break

 else

 breakdown3=0;

 case_i=1;

 end

 end

 end

 elseif (B_e(ih5+1,ih6)==0)

 breakdown3=0;

 case_i=2;

 else

 breakdown3=0;

 case_i=2;

 end

 end

 if (case_i==2) %check diagonal pixels

 if (ih6~=size(B_e,1))

 if (B_e(ih5-1,ih6+1)~=0)

 cont_i=1;

 ih1(l)=ih5-1;

 ih2(l)=ih6+1;

 elseif (B_e(ih5+1,ih6+1)~=0)

 cont_i=1;

 ih1(l)=ih5+1;

 ih2(l)=ih6+1;

 else

 A=1;

 cont_i=0;

 end

 else

 breakdown1=0;

 breakdown3=0;

 cont_i=0;

 cont_j_1=0;

 end

 elseif (case_i==1) %check diagonal pixels

 if (ih4~=size(B_e,1) && ih6~=size(B_e,1))

73

 if (B_e(ih3,ih4+1)~=0)

 cont_i=1;

 ih1(l)=ih3;

 ih2(l)=ih4+1;

 elseif (B_e(ih5,ih6+1)~=0)

 cont_i=1;

 ih1(l)=ih5;

 ih2(l)=ih6+1;

 else

 A=2;

 cont_i=0;

 end

 else

 breakdown1=0;

 breakdown3=0;

 cont_i=0;

 cont_j_1=0;

 end

 else

 cont_i=0;

 end

 end

 if (A==1)%single pixels break point connection

 if (B_e(ih5-1,ih6+2)~=0) %search the bright pixels

 B_e(ih5-1,ih6+1)=255; %change the dark pixle to bright pixel

 ih1(l)=ih5-1;

 ih2(l)=ih6+2;

 cont_j_1=1;

 elseif (B_e(ih5-1,ih6+3)~=0)

 B_e(ih5-1,ih6+1)=255;

 B_e(ih5-1,ih6+2)=255;

 ih1(l)=ih5-1;

 ih2(l)=ih6+3;

 cont_j_1=1;

 elseif (B_e(ih5-1,ih6+4)~=0)

 B_e(ih5-1,ih6+1)=255;

 B_e(ih5-1,ih6+2)=255;

 B_e(ih5-1,ih6+3)=255;

 ih1(l)=ih5-1;

 ih2(l)=ih6+4;

 cont_j_1=1;

74

 elseif (B_e(ih5-1,ih6+5)~=0)

 B_e(ih5-1,ih6+1)=255;

 B_e(ih5-1,ih6+2)=255;

 B_e(ih5-1,ih6+3)=255;

 B_e(ih5-1,ih6+4)=255;

 ih1(l)=ih5-1;

 ih2(l)=ih6+5;

 cont_j_1=1;

 elseif (B_e(ih5-1,ih6+6)~=0)

 B_e(ih5-1,ih6+1)=255;

 B_e(ih5-1,ih6+2)=255;

 B_e(ih5-1,ih6+3)=255;

 B_e(ih5-1,ih6+4)=255;

 B_e(ih5-1,ih6+5)=255;

 ih1(l)=ih5-1;

 ih2(l)=ih6+6;

 cont_j_1=1;

 else

 cont_j_1=0;

 end

 elseif (A==2) %multiple pixels break point connection

 if (ih6+1<size(B_e,2))

 x=ih5-ih3-1;

 for i=1:x

 if (B_e(ih5-i,ih6+2)~=0) %search the bright pixels

 B_e(ih5-i,ih6+1)=255; %change the dark pixle to bright pixel

 ih1(l)=ih5-i;

 ih2(l)=ih6+2;

 cont_j_1=1;

 elseif (B_e(ih5-i,ih6+3)~=0)

 B_e(ih5-i,ih6+1)=255;

 B_e(ih5-i,ih6+2)=255;

 ih1(l)=ih5-i;

 ih2(l)=ih6+3;

 cont_j_1=1;

 elseif (B_e(ih5-i,ih6+4)~=0)

 B_e(ih5-i,ih6+1)=255;

 B_e(ih5-i,ih6+2)=255;

 B_e(ih5-i,ih6+3)=255;

 ih1(l)=ih5-i;

 ih2(l)=ih6+4;

75

 cont_j_1=1;

 elseif (B_e(ih5-i,ih6+5)~=0)

 B_e(ih5-i,ih6+1)=255;

 B_e(ih5-i,ih6+2)=255;

 B_e(ih5-i,ih6+3)=255;

 B_e(ih5-i,ih6+4)=255;

 ih1(l)=ih5-i;

 ih2(l)=ih6+5;

 cont_j_1=1;

 elseif (B_e(ih5-i,ih6+6)~=0)

 B_e(ih5-i,ih6+1)=255;

 B_e(ih5-i,ih6+2)=255;

 B_e(ih5-i,ih6+3)=255;

 B_e(ih5-i,ih6+4)=255;

 B_e(ih5-i,ih6+5)=255;

 ih1(l)=ih5-i;

 ih2(l)=ih6+6;

 cont_j_1=1;

 end

 end

 else

 cont_j_1=0;

 end

 else

 cont_j_1=0;

 end

 end

 end

 end

figure,imshow(B_e,[]);

title('connecting image');

[row_w,col_w]=find(BW==1);%rate the cracks

D1=zeros(1,1); %scane line

j1=1;

for i=1:size(col_w,1)

 if col_w(i)==20;

 D1(j1)=row_w(i);

 j1=j1+1;

 end

end

D2=zeros(1,1); %scane line

76

j2=1;

for i=1:size(col_w,1)

 if col_w(i)==220;

 D2(j2)=row_w(i);

 j2=j2+1;

 end

end

D3=zeros(1,1); %scane line

j3=1;

for i=1:size(col_w,1)

 if col_w(i)==420;

 D3(j3)=row_w(i);

 j3=j3+1;

 end

end

for k1=1:size(D1,2)

 D1(k1);

end

for k2=1:size(D2,2)

 D2(k2);

end

for k3=1:size(D3,2)

 D3(k3);

end

ak=min(k1,k2);

aj=min(ak,k3);

for j=1:aj %compare the coordinates

 at=max(D1(j),D2(j));

 ab=max(at,D3(j));

 au=min(D1(j),D2(j));

 as=min(au,D3(j));

 if (ab-as<45) && (ab-as~=0) && (k1<5) && (k2<5) && (k3<5)

 disp('in a transverse line');

 end

end

D4=zeros(1,1); %scane line

j4=1;

for i=1:size(row_w,1)

 if row_w(i)==20;

 D4(j4)=col_w(i);

77

 j4=j4+1;

 end

end

D5=zeros(1,1); %scane line

j5=1;

for i=1:size(row_w,1)

 if row_w(i)==220;

 D5(j5)=col_w(i);

 j5=j5+1;

 end

end

D6=zeros(1,1); %scane line

j6=1;

for i=1:size(row_w,1)

 if row_w(i)==420;

 D6(j6)=col_w(i);

 j6=j6+1;

 end

end

for k4=1:size(D4,2)

 D4(k4);

end

for k5=1:size(D5,2)

 D5(k5);

end

for k6=1:size(D6,2)

 D6(k6);

end

akk=min(k4,k5);

ajj=min(akk,k6);

for j=1:ajj %compare the coordinates

 att=max(D4(j),D5(j));

 abb=max(att,D6(j));

 auu=min(D4(j),D5(j));

 ass=min(auu,D6(j));

 if (abb-ass<45) && (abb-ass~=0) && (k4<5) && (k5<5) && (k6<5)

 disp('in a longitudinal line');

 end

end

