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Abstract. Markov chains (and their extensions with rewards) have been
widely used to determine performance, dependability and performability
characteristics of computer communication systems, such as throughput,
delay, mean time to failure, or the probability to accumulate at least a
certain amount of reward in a given time.

Due to the rapidly increasing size and complexity of systems, Markov
chains and Markov reward models are difficult and cumbersome to spec-
ify by hand at the state-space level. Therefore, various specification for-
malisms, such as stochastic Petri nets and stochastic process algebras,
have been developed to facilitate the specification of these models at a
higher level of abstraction. Up till now, however, the specification of the
measure-of-interest is often done in an informal and relatively unstruc-
tured way. Furthermore, some measures-of-interest can not be expressed
conveniently at all.

In this tutorial paper, we present a logic-based specification technique
to specify performance, dependability and performability measures-of-
interest and show how for a given finite Markov chain (or Markov re-
ward model) such measures can be evaluated in a fully automated way.
Particular emphasis will be given to so-called path-based measures and
hierarchically-specified measures. For this purpose, we extend so-called
model checking techniques to reason about discrete- and continuous-time
Markov chains and their rewards. We also report on the use of techniques
such as (compositional) model reduction and measure-driven state-space
generation to combat the infamous state space explosion problem.

1 Introduction

Over the last decades many techniques have been developed to specify and solve
performance, dependability and performability models. In many cases, the mod-
els addressed possess a continuous-time Markov chain as their associated stochas-
tic process. To avoid the specification of performance models directly at the state
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level, high-level specification methods have been developed, most notably those
based on stochastic Petri nets, stochastic process algebras, and stochastic ac-
tivity networks. With appropriate tools supporting these specification methods,
such as, for instance, provided by TIPPtool [36], the PEPA workbench [23],
GreatSPN [13], UltraSAN [56] or SPNP [14], it is relatively comfortable to spec-
ify performance models of which the associated CTMCs have millions of states.
In combination with state-of-the-art numerical means to solve the resulting linear
system of equations (for steady-state measures) or the linear system of differen-
tial equations (for time-dependent or transient measures) a good workbench is
available to construct and solve dependability models of complex systems.

However, whereas the specification of performance and dependdability mod-
els has become very comfortable, the specification of the measures of interest
most often has remained fairly cumbersome. In particular, most often only sim-
ple state-based measures can be defined with relative ease.

In contrast, in the area of formal methods for system verification, in particu-
lar in the area of model checking, very powerful logic-based methods have been
developed to express properties of systems specified as finite state automata
(note that we can view a CTMC as a special type of such an automaton). Not
only are suitable means available to express state-based properties, a logic like
CTL [16] (Computational Tree Logic; see below) also allows one to express prop-
erties over state sequences. Such capabilities would also be welcome in specifying
performance and dependability measures.

To fulfil this aim, we have introduced the so-called continuous stochastic
logic (CSL) that provides us ample means to specify state- as well as path-
based performance measures for CTMCs in a compact and flexible way [1-5].
Moreover, due to the formal syntax and semantics of CSL, we can exploit the
structure of CSL-specified measures in the subsequent evaluation process, such
that typically the size of the underlying Markov chains that need to be evaluated
can be reduced considerably.

To further strengthen the applicability of the stochastic model checking ap-
proach we recently considered Markov models involving costs or rewards, as they
are often used in the performability context. We extended the logic CSL to the
continuous stochastic reward logic CSRL in order to specify steady-state, tran-
sient and path-based measures over CTMCs extended with a reward structure
(Markov reward models) [4]. We showed that well-known performability mea-
sures, most notably also the performability distribution introduced by Meyer
[61-53], can be specified using CSRL. However, CSRL allows for the specifica-
tion of new measures that have not yet been addressed in the performability
literature. For instance, when rewards are interpreted as costs, we can express
the probability that, given a starting state, a certain goal state is reached within
t time units, thereby deliberately avoiding or visiting certain immediate states,
and with a total cost (accumulated reward) below a certain threshold.

We have introduced CSL and CSRL (including its complete syntax and for-
mal semantics) in a much more theoretical context as we do in this tutorial paper

(cf. [2-5,33)).



The rest of the paper is organised as follows. In Section 2 and Section 3 we
present the two system evaluation techniques that will be merged in this paper:
performance and dependability evaluation and formal verification by means of
model checking. We then proceed with the specification of performance measures
using CSL in Section 4, and of performability measures using CSRL in Section

5. Section 6 addresses lumpability to combat the state space explosion problem;
Section 7 concludes the paper.

2 Performance modelling with Markov chains

2.1 Introduction

Performance and dependability evaluation aim at forecasting system behaviour
in a quantitative way by trying to answer questions related to the performance
and dependability of systems. Typical problems that are addressed are: how
many clients can this file server adequately support, how large should the buffers
in a router be to guarantee a packet loss of at most 107¢, or how long does it take
before 2 failures have occurred? Notice that we restrict ourselves to model-based

performance and dependability evaluation, as opposed to measurement-based
evaluation.
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Fig. 1. The model-based performance evaluation cycle

The basic idea of model-based performance and dependability evaluation is to
construct an abstract (and most often approximate) model of the system under
consideration that is just detailed enough to evaluate the measures of interest
(such as time-to-failure, system throughput, or number of failed components)



with the required accuracy (mean values, variances or complete distributions).
The generated model is “solved” using either analytical, numerical or simula-
tion techniques. We focus on numerical techniques as they pair a good mod-
elling flexibility with still reasonable computational requirements. Due to the
ever increasing size and complexity of real systems, performance and depend-
ability models that are directly amenable for a numerical solution, i.e., typically
continuous-time Markov chains (CTMCs), are awkward to specify “by hand”
and are therefore generated automatically from high-level description/modelling
languages such as stochastic Petri nets, stochastic process algebras or queueing
networks [30]. The steps in the process from a system to a useful dependability
or performance evaluation are illustrated in the model-based performance and
dependability evaluation cycle in Fig. 1.

It remains to be stated at this point that even though good support exists
for the actual model description, the specification of the measures of interest is
mostly done in an informal or less abstract way.

2.2 Discrete and continuous-time Markov chains

This section recalls the basic concepts of discrete- and continuous-time Markov
chains with finite state space. The presentation is focused on the concepts needed
for the understanding of the rest of this paper; for a more elaborate treatment
we refer to [21,43,47,48,59]. We slightly depart from the standard notations by
representing a Markov chain as an ordinary finite transition system where the
edges are equipped with probabilistic information, and where states are labelled
with atomic propositions, taken from a set AP. Atomic propositions identify
specific situations the system may be in, such as “acknowledgement pending”,
“buffer empty”, or “variable X is positive”.

Discrete-time Markov chains. A DTMC is a triple M = (S, P, L) where S
is a finite set of states, P : S x S — [0,1] is the transition probability matriz,
and L : S — 247 is the labelling function. Intuitively, P(s,s') specifies that
probability to move from state s to s’ in a single step, and function L assigns
to each state s € S the set L(s) of atomic propositions a € AP that are valid in
s. One may view a DTMC as a finite state automaton equipped with transition
probabilities and in which time evolves in discrete steps.

Continuous-time Markov chains. A CTMC is a tuple M = (S, R, L) where
state space S and labelling function L are as for DTMCs, and R : Sx 5 — IRy is
the rate matriz. Intuitively, R(s, s’) specifies that the probability of moving from
state s to s’ within ¢ time-units (for positive ¢) is 1 — e Rt Alternatively,
a CTMC can be viewed as a finite state automaton enhanced with transition
labels specifying (in a certain way) the time it takes to proceed along them. It
should be noted that this definition does not require R(s,s) = =3, R(s,s'),
as is usual for CTMCs. In the traditional interpretation, at the end of a stay
in state s, the system will move to a different state. In our setting, self-loops at



state s are possible and are modelled by having R(s, s) > 0. We thus allow the
system to occupy the same state before and after taking a transition.

Let E(s) = >, cg R(s,5'), the total rate at which any transition emanating
from state s is taken.! More precisely, E(s) specifies that the probability of
leaving s within ¢ time-units (for positive t) is 1 — e £(5)'*. The probability of
eventually moving from state s to s’, denoted P(s,s’), is determined by the
probability that the delay of going from s to s’ finishes before the delays of
other outgoing edges from s; formally, P(s,s’) = R(s,s’)/E(s) (except if s is an
absorbing state, i.e. if E(s) = 0; in this case we define P(s, s’) = 0). The matrix
P describes an embedded DTMC of the CTMC.

Ezxample 1. As a running example we address a triple modular redundant system
(TMR) taken from [28], a fault-tolerant computer system consisting of three
processors and a single (majority) voter. We model this system as a CTMC
where state s; ; models that ¢ (0 < ¢ < 4) processors and j (0 < j < 1) voters are
operational. As atomic propositions we use AP = {up; |0 <i<4}U{down}.
The processors generate results and the voter decides upon the correct value by
taking a majority vote. The failure rate of a single processor is A and of the
voter v failures per hour (fph). The expected repair time of a processor is 1/
and of the voter 1/ hours. It is assumed that one component can be repaired
at a time. The system is operational if at least two processors and the voter
are functioning correctly. If the voter fails, the entire system is assumed to have
failed, and after a repair (with rate d) the system is assumed to start “as good
as new”. The details of the CTMC modelling this system are (with a clock-wise
ordering of states for the matrix/vector-representation, starting with sz 1):

ups 3\ up2
0320 0v 3A+v
w022 0v 2M+p+v
R=|0pg 0Av | and E=| A putv
00 poOv u+v
60000 )
upo A upi1

States are represented by circles and there is an edge between state s and state
s if and only if R(s,s’) > 0. The labelling is defined by L(s;1) = {up; } for
0 <i<4and L(sgp) = {down}, and is indicated near the states (set braces
are omitted for singletons). For the transition probabilities we have, for instance,
P(s21,83,1) = /(2 \+p+v) and P(so.1,50,0) = v/(pu+v).

State sequences. A path o through a CTMC is a (finite or infinite) sequence
of states where the time spent in any of the states is recorded. For instance,

! Note that R and E just form an alternative representation of the usual infinitesimal
generator matrix Q; more precisely, Q = R — diag(E). Note that this alternative
representation does not affect the transient and steady-state behaviour of the CTMC,
and is used for technical convenience only.



o = g, to, S1,t1, 82, t2, ... is an infinite path with for natural 7, state s; € S and
time t; € Rs¢ such that R(s;, s;4+1) > 0. We let o[i] = s; denote the (i+1)-st
state along a path, 6(o,4) = t;, the time spent in s;, and c@t the state of o at
time ¢. (For finite paths these notions have to be slightly adapted so as to deal
with the end state of a path.) Let Path(s) be the set of paths starting in s. A
Borel space (with probability measure Pr) can be defined over the set Path(s)
in a straightforward way; for details see [2].

Steady-state and transient measures. For CTMCs, two major types of state
probabilities are normally considered: steady-state probabilities where the sys-
tem is considered “in the long run”, i.e., when an equilibrium has been reached,
and transient probabilities where the system is considered at a given time instant
t. Formally, the transient probability

n(s,s',t) = Pr{o € Path(s) | cQt = s},

stands for the probability to be in state s’ at time ¢ given the initial state s. We
denote with z(s,t) the vector of state probabilities (ranging over states s') at
time ¢, when the starting state is s. The transient probabilities are then computed
from a system of linear differential equations:

(s, t) = m(s,t) - Q,

which can be solved by standard numerical methods or by specialised methods
such as uniformisation [45,26,25]. With uniformisation, the transient probabili-
ties of a CTMC are computed via a uniformised DTMC which characterises the
CTMC at discrete state transition epochs. Steady-state probabilities are defined
as
n(s,s’) = lim =(s,s’,t),
t—o0

This limit always exists for finite CTMCs. In case the steady-state distribution
does not depend on the starting state s we often simply write 7(s’) instead of
m(s,8'). For 8" C S, m(s,8") =), cq m(s,s") denotes the steady-state probabil-
ity for the set of states S’. In this case, steady-state probabilities are computed
from a system of linear equations:

m(s) - Q =0 with Zﬂ'(s,s') =1,

which can be solved by direct methods (such as Gaussian elimination) or iterative
methods (such as SOR or Gauss-Seidel).

Notice that the above two types of measures are truly state based; they con-
sider the probability for particular states. Although this is interesting as such,
one can image that for many performance and dependability questions, there
is an interest in the occurrence probability of certain state sequences. Stated
differently, we would also like to be able to express measures that address the
probability on particular paths through the CTMC. Except for the recent work
by Obal and Sanders [54], we are not aware of suitable mechanisms to express
such measures. In the sequel, we will specifically address this issue.



3 Formal verification with model checking

Whereas performance and dependability evaluation focusses on answering ques-
tions concerning quantitative system issues, traditional formal verification tech-
niques try to answer questions related to the functional correctness of systems.
Thus, formal verification aims at forecasting system behaviour in a qualitative
way. Typical problems that are addressed by formal verification are: (i) safety,
e.g., does a given mutual exclusion algorithm guarantee mutual exclusion? (ii)
liveness, e.g., does a routing protocol eventually transfer packets to the cor-
rect destination? and (iii) fairness, e.g., will a repetitive attempt to carry out a
transaction be eventually granted?

Prominent formal verification techniques are theorem proving and model
checking, as well as (but to a less formal extent) testing [17, 50,55, 8]. Impor-
tant to note at this point is that for an ever-increasing class of systems, their
“formal correctness” cannot be separated anymore from their “quantitative cor-
rectness”, e.g., in real-time systems, multi-media communication protocols and
many embedded systems.

3.1 Model checking

The model checking approach requires a model of the system under consider-
ation together with a desired property and systematically checks whether the
given model satisfies this property. The basic technique of model checking is a
systematic, usually exhaustive, state-space search to check whether the property
is satisfied in each state of the system model, thereby using effective methods to
combat the infamous state-space explosion problem.

Using model checking, the user specifies a model of the system (the “possible
behaviour”) and a specification of the requirements (the “desirable behaviour”)
and leaves the verification up to the model checker. If an error is found, the model
checker provides a counter-example showing under which circumstance the error
can be generated. The counter-example consists of an example scenario in which
the model behaves in an undesired way, thus providing evidence that the system
(or the model) is faulty and needs to be revised, cf. Fig. 2. This allows the user
to locate the error and to repair the system (or model specification). If no errors
are found, the user can refine the model description and continue the verification
process, e.g., by taking more design decisions into account, so that the model
becomes more concrete and realistic.

Typically, models of systems are finite-state automata, where transitions
model the evolution of the system while moving from one state to another.
These automata are usually generated from a high-level description language
such as Petri nets, Promela [41] or Statecharts [27]. At this point, notice the
similarities with the models used for performance and dependability evaluation.

Computational Tree Logic. Required system properties can be specified in
an extension of propositional logic called temporal logic. Temporal logics allow
the formulation of properties that refer to the dynamic behaviour of a system;
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it allows to express for instance the temporal ordering of events. Note that the
term “temporal” is meant in a qualitative sense, not in a quantitative sense. An
important logic for which efficient model checking algorithms exist is CTL [16]
(Computational Tree Logic). This logic allows to state properties over states,
and over paths using the following syntax:

State-formulas
@:::a‘ ﬂ@‘@\/@lﬂcp‘wo
a : atomic proposition
Jp : there FExists a path that fulfils ¢
Vo : All paths fulfil ¢

Path-formulas
pu=Xo | dUD

X & : the neXt state fulfils @

DPUWY : @ holds along the path, Until ¥ holds
OP : trueld D, i.e., eventually &
ag : =09, ie., invariantly @

The meaning of atomic propositions, negation (—) and disjunction (V) is stan-
dard; note that using these operators, other boolean operators such as conjunc-
tion (A), implication (=), and so forth, can be defined. The state-formula Jp
is valid in state s if there ezists some path starting in s and satisfying . The
formula ¢ deadlock, for example, expresses that for some system run eventually
a deadlock can be reached (potential deadlock). On the contrary, Ve is valid if
all paths satisfy ¢; YOdeadlock thus means that a deadlock is inevitable. A path
satisfies an until-formula @U ¥ if the path has an initial finite prefix (possibly



only containing state s) such that @ holds at all states along the path until a
state for which ¥ holds is encountered along the path.

Ezample 2. Considering the TMR system example as a finite-state automaton,
some properties one can express with CTL are:

— up; = ICdown:
if the system is fully operational, it may eventually go down.

— up; = VX (upy V down):
if the system is fully operational, any next step involves the failure of a
component.

— JO0-down:
it is possible that the voter never fails.

— 3((upg V upy) U down):
it is possible to have two or three processors continuously working until the
voter fails.

Model checking CTL. A model, i.e., a finite-state automaton where states are
labelled with atomic propositions, is said to satisfy a property if and only if all
its initial states satisfy this property. In order to check whether a model satisfies
a property @, the set Sat(P) of states that satisfy @ is computed recursively,
after which it is checked whether the initial states belong to this set. For atomic
propositions this set is directly obtained from the above mentioned labelling
of the states; Sat(® A ¥) is obtained by computing Sat(®) and Sat(¥), and
then intersecting these sets; Sat(—®) is obtained by taking the complement of
the entire state space with respect to Sat(®). The algorithms for the temporal
operators are slightly more involved. For instance, for Sat(3X @) we first compute
the set Sat(®) and then compute those states from which one can move to this
set by a single transition. Sat(3(PU ¥)) is computed in an iterative way: (i) as
a precomputation we determine Sat(®P) and Sat(¥); (ii) we start the iteration
with Sat(¥) as these states will surely satisfy the property of interest; (iii) we
extend this set by the states in Sat(®) from which one can move to the already
computed set by a single transition; (iv) if no new states have been added in step
(iii), we have found the required set, otherwise we repeat (iii). As the number of
states is finite, this procedure is guaranteed to terminate. The worst case time
complexity of this algorithm (after an appropriate treatment of the 30-operator
[16]) is linear in the size of the formula and the number of transitions in the
model.

Applications. Although the model checking algorithms are conceptually rel-
atively simple, their combination with clever techniques to combat the state-
space explosion problem (such as binary decision diagrams, bit-state hashing and
partial-order reduction) make model checking a widely applicable and successful
verification technique. This is illustrated by the success of model checkers such
as SPIN, SMV, Uppaal and Murg, and their successful application to a large set
of industrial case studies ranging from hardware verification (VHDL, Intel P7
Processor), software control systems (traffic collision avoidance and alert system



TCAS-II, storm surge barrier), and communication protocols (ISDN-User Part
and IEEE Futurebus+); see for an overview [18].

4 Stochastic model checking CTMCs

As has become clear from the previous section, the existing approaches for formal
verification using model checking and performance and dependability evaluation
have a lot in common. Our aim is to integrate these two evaluation approaches
even more, thereby trying to combine the best of both worlds.

4.1 A logic for performance and dependability

To specify and evaluate performance and dependability measures as logical for-
mulas over CTMCs, we describe in this section CSL [1, 2], a stochastic variant of
CTL, and explain how model checking this logic can be performed, summarising
work reported in [2, 3, 46].

Syntax. CSL extends CTL with two probabilistic operators that refer to the
steady-state and transient behaviour of the system being studied. Whereas the
steady-state operator refers to the probability of residing in a particular set of
states (specified by a state-formula) in the long run, the transient operator allows
us to refer to the probability of the occurrence of particular paths in the CTMC.
In order to express the time-span of a certain path, the path-operators until i/
and next X are extended with a parameter that specifies a time-interval. Let I
be an interval on the real line, p a probability and < a comparison operator, i.e.,
< € {<,>}. The syntax of CSL now becomes:

State-formulas
bi=al 0|2V |55@) | Payle)

S<p(P) : prob. that @ holds in steady state <p
Pap() : prob. that a path fulfils ¢ <p

Path-formulas
o= X' | oU'
X' & : the next state is reached at time ¢t € I and fulfils @
SUT W : P holds along the path until ¥ holds at time ¢t € 1

The state-formula Sq,(P) asserts that the steady-state probability for the set
of @-states meets the bound <p. The operator P«,(.) replaces the usual CTL
path quantifiers 3 and V. In fact, for most cases Jp can be written as Pso(p)
and Yo as Px1(p). These rules are not generally applicable due to fairness con-
siderations [6]. P<,(p) asserts that the probability measure of the paths sat-
isfying ¢ meets the bound <p. Temporal operators like <, O and their real-
time variants O or Of can be derived, e.g., P, (O @) = Poy(true U! ) and
Psp(0f @) = Pey_, (O =®). The untimed next- and until-operators are ob-
tained by X® = X! and &1 U Py = &1 U! &, for I = [0, 00).



Semantics. State-formulas are interpreted over the states of a CTMC. Let
M = (S, R, L) with labels in AP. The meaning of CSL-formulas is defined by
means of a so-called satisfaction relation (denoted by =) between a CTMC M,
one of its states s, and a formula &. For simplicity the CTMC identifier M
is often omitted as it is clear from the context. The pair (s,®) belongs to the
relation |=, usually denoted by s &= &, if and only if @ is valid in s. For CSL
state-formulas we have:

skEa iff a € L(s),

sE P iff s £ @,
Slidsl\/d)g lﬂ‘S':Qf)l\/S':Qf)Q,
s Sqp(P) it w(s, Sat(P)) < p,
s = Paplyp)  iff Prob(s,¢) <p,

where Prob(s, ¢) denotes the probability of all paths o € Path(s) satisfying ¢
when the system starts in state s, i.e.,

Prob(s,p) = Pr{o € Path(s) |o = ¢ }.

The satisfaction relation for the path-formulas is defined by a satisfaction relation
(also denoted by =) between paths and CSL path-formulas as follows. We have
that o = X1 @ iff

o[1] is defined and o[1] E® A 6(0,0) € I,
and that o = @, U! &, iff
el (0Qt =Py A Yu€[0,t).0Qu = Pq).

Note that the formula @; U &, cannot be satisfied.

4.2 Expressing measures in CSL

What types of performance and dependability measures can be expressed using
CSL? As a first observation, we remark that by means of the logic one does
not specify a measure but in fact a constraint (or: bound) on a performance or
dependability measure. Four types of measures can be identified: steady-state
measures, transient-state measures, path-based measures, and nested measures.
Assume that for each state s, we have a characteristic atomic proposition in(s)
valid in state s and invalid in any other state.

Steady-state measures. The formula Sqp,(in(s)) imposes a requirement on the
steady-state probability to be in state s. For instance, S¢yo-5(in(s2,1)) is valid
in state s, (cf. the running example) if the steady-state probability of having
a system configuration in which a single processor has failed is at most 0.00001
(when starting in state sg,0). This can be easily generalized towards selecting sets
of states by using more general state-formulas. The formula Sq,(®) imposes a
constraint on the probability to be in some @-state on the long run. For instance,
the formula S>0.99(ups V up,) states that on the long run, for at least 99% of
the time at least 2 processors are operational.



Transient measures. The combination of the probabilistic operator with the
temporal operator O can be used to reason about transient probabilities since

n(s,s',t) = Prob(s, Ot in(s")).

More specifically, P, (O in(s')) is valid in state s if the transient probability
at time ¢ to be in state s’ satisfies the bound <p. For instance, P o(OH in(sy 1))
is valid in state sg ¢ if the transient probability of state sp 1 at time ¢ is at most
0.2 when starting in state sg o. In a similar way as done for steady-state measures,
the formula Psg.09(O1H upy V upy) requires that the probability to have 3 or
2 processors running at time t is at least 0.99. For specification convenience, a
transient-state operator

T3, (9) = Poy(0lH1 9)

could be defined. It states that the probability for a @-state at time t meets the
bound <p.

Path-based measures. The standard transient measures on (sets of) states are
expressed using a specific instance of the P-operator. However, by the fact that
this operator allows an arbitrary path-formula as argument, much more general
measures can be described. An example is the probability of reaching a certain
set of states provided that all paths to these states obey certain properties. For
instance,

[0,10]

P<o.01((ups V upy)U down)

is valid for those states where the probability of the system going down within
10 time-units after having continuously operated with at least 2 processors is at
most 0.01.

Nested measures. By nesting the P- and S-operators more complex measures
of interest can be specified. These are useful to obtain a more detailed insight
into the system’s behaviour. We provide two examples. The property

S<0.9(P50.8(0 ) ~down))

is valid in those states that guarantee that in equilibrium with probability at
least 0.9 the probability that the system will not go down within 10 time units
is at least 0.8. Conversely,

Po.5((~down) U201 S50 5((upy V upy)))

is valid for those states that with probability at least 0.5 will reach a state s
between 10 and 20 time-units, which guarantees the system to be operational
with at least 2 processors when the system is in equilibrium. Besides, prior to
reaching state s the system must be operational continuously.

To put it in a nutshell, we believe that there are two main benefits by using
CSL for specifying constraints on measures-of-interest. First, the specification is



completely formal such that the interpretation is unambiguous. Whereas this is
also the case for standard transient and steady-state measures, this often does
not apply to measures that are derived from these elementary measures. Such
measures are typically described in an informal manner. A rigorous specification
of such more intricate measures is of utmost importance for their automated
analysis (as proposed in the sequel). Furthermore, an important aspect of CSL
is the possibility to state performance and dependability requirements over a
selective set of paths through a model, which was not possible previously. Finally,
the possibility to nest steady-state and transient measures provides a means to
specify complex, though important measures in a compact and flexible way.

4.3 Model checking CSL-specified measures

Once we have formally specified the (constraint on the) measure-of-interest in
CSL by a formula @, and have obtained our model, i.e., CTMC M, of the system
under consideration, the next step is to adapt the model checking algorithm for
CTL to support the automated validation of @ over a given state s in M. The
basic procedure is as for model checking CTL: in order to check whether state
s satisfies the formula @, we recursively compute the set Sat(®) of states that
satisfy @, and check whether s is a member of that set. For the non-probabilistic
state-operators this procedure is the same as for CTL. The main problem we
have to face is how to compute Sat(®) for the S and P-operators. We deal with
these operators separately.

Steady-state measures. For an ergodic (strongly connected) CTMC:

s € Sat(S<p(P)) iff Z n(s,s’) < p.
s'eSat(®)

Thus, checking whether state s satisfies S<, (&), a standard steady-state analysis
has to be carried out, i.e., a system of linear equations has to be solved.

In case the CTMC M is not strongly-connected, the approach is to determine
the so-called bottom strongly-connected components (BSCCs) of M, i.e., the
set of strongly-connected components that cannot be left once they are reached.
Then, for each BSCC (which is an ergodic CTMC) the steady-state probability
of a P-state (determined in the standard way) and the probability to reach any
BSCC B from state s is determined. To check whether state s satisfies S, (D)
it then suffices to verify

Z Prob(s,OB) - Z B ()| < p,

B s'eBnSat(®)

where 75(s’) denotes the steady-state probability of s’ in BSCC B, and
Prob(s,OB) is the probability to reach BSCC B from state s. To compute
these probabilities, standard methods for steady-state and graph analysis can
be used.



Path-based measures. In order to understand how the model checking of the
path-based operators is carried out it turns out to be helpful to give (recursive)
characterisations of Prob(s, ¢):

s € Sat(P<p(p)) iff Prob(s, ) < p.

— Timed Next: For the timed next-operator we obtain that Prob(s, X! ®)

equals
(e—ﬁ(s)»infl - e—E(s)‘supI) . Z P(S,S/), (1)
s'eSat(®)

i.e., the probability to leave state s in the interval I times the probability
to reach a @-state in one step. Thus, in order to compute the set Sat(X! @)
we first recursively compute Sat(®) and add state s to Sat(X! @) if it fulfils
(1); this check boils down to a matrix-vector multiplication.

— Time-Bounded Until: For the sake of simplicity, we only treat the case
I = [0,t]; the general case is a bit more involved, but can be treated in a
similar way [3]. The probability Prob(s, #U 1 &) is the least solution of the
following set of equations: (i) 1, if s € Sat(¥), (ii) 0, if s & Sat(P) U Sat(¥),
and

t
/ Z R(s,s') - e £ prob(s’, oY1 @) du (2)
0 ges

otherwise. The first two cases are self-explanatory; the last equation is ex-
plained as follows. If s satisfies @ but not ¥, the probability of reaching a
VU-state from s within ¢ time-units equals the probability of reaching some
direct successor state s’ of s within x time-units (x < t), multiplied by the
probability to reach a W-state from s’ in the remaining time-span t—z.

It is easy to check that for the untimed until-operator (i.e., I = [0,00))
equation (2) reduces to

Z P(s,s") - Prob(s',®U V).
s'esS

Thus, for the standard until-operator, we can check whether a state satis-
fies P<p(PU W) by first computing recursively the sets Sat(®) and Sat(¥)
followed by solving a linear system of equations.

Solution for time-bounded until. We now concentrate on numerical tech-
niques for solving the so-called Volterra integral equation system (2) arising in
the time-bounded until case.

As a first approach, numerical integration techniques can be applied. Exper-
iments with integration techniques based on equally-sized abscissas have shown
that the computation time for solving (2) is rapidly increasing when the state
space becomes larger (above 10,000 states), or when the required accuracy be-
comes higher, e.g., between 107¢ and 10~°. Numerical stability is another issue
of concern when using this method [37].



An alternative method is to reduce the problem of computing
Prob(s,®U 0.1 %) to a transient analysis problem for which well-known and ef-
ficient computation techniques do exist. This idea is based on the earlier obser-
vation that for a specific instance of the time-bounded until-operator we know
that it characterises a standard transient probability measure:

TSHP) = Pap(true™! @)

Thus, for computing Prob(s, true U [t @) standard transient analysis techniques
can be exploited. This raises the question whether we might be able to reduce
the general case, i.e., Prob(s,@b{[o*t] V), to an instance of transient analysis as
well. This is indeed possible: the idea is to transform the CTMC M under
consideration into another CTMC M’ such that checking ¢ = dULU & on
M amounts to checking ¢’ = true U ¥ on M’; a transient analysis of M’
(for time t) then suffices. The question then is, how do we transform M in
M'’? Two simple observations form the basis for this transformation. First, we
observe that once a W-state in M has been reached (along a &@-path) before
time ¢, we may conclude that ¢ holds, regardless of which states will be visited
after having reached W. Thus, as a first transformation we make all ¥-states
absorbing. Secondly, we observe that ¢ is violated once a state has been reached
that neither satisfies @ nor ¥. Again, this is regardless of the states that are
visited after having reached —(® A ¥). Thus, as a second transformation, all the
—(P A ¥)-states are made absorbing. It then suffices to carry out a transient
analysis on the resulting CTMC M’ for time ¢ and collect the probability mass
to be in a W-state (note that M’ typically is smaller than M):

Prob™ (s, o0 w) = Prob™ (s, true ylt1 w).

In fact, by similar observations it turns out that also verifying the general
U!-operator can be reduced to instances of (nested) transient analysis [3]. As
mentioned above, the transient probability distribution can be computed via a
uniformised DTMC which characterises the CTMC at discrete state transition
epochs. A direct application of uniformisation to compute Prob™ (s, U W)
requires to perform this procedure for each state s. An improvement suggested
in [46] cumulates the entire vector Prob™ (@UT ) for all states simultaneously.

For a single operator U! this yields a time complexity of O(|R|-N.), where
|R| is the number of non-zero entries in R, and N. is the number of iterations
within the uniformisation algorithm needed to achieve a given accuracy . The
value N, can be computed a priori, it linearly depends on the maximal diago-
nal entry of the generator matrix E and on the maximal time bound ¢ ax
occuring in P.

max?

In total, the time complexity to decide the validity of a CSL fomula @ on a
CTMC (S,R, L) is O(|®|(|R|-E yax tmax + |S]>31)), and the space complexity
is O(|R]) [5].



5 Stochastic model checking Markov reward models

5.1 Introduction

With the advent of fault-tolerant gracefully-degradable computer systems, the
separation between performance and dependability aspects of a system does not
make sense anymore. Indeed, fault-tolerant systems can operate “correctly” at
various levels of performance, and the dependability of a system might be ex-
pressed in terms of providing a minimum performance level, rather then in terms
of a certain amount of operational hardware resources. These considerations lead,
in the late 1970’a and the early 1980’s, to the concept of performability [51,52],
in which it is investigated how well a system performs over a finite time horizon,
provided (partial) system failures and repair actions are taken into account. As
it turned out later, the notion of performability also fits quite naturally to the
notion of quality of service as specified in ITU-T Recommendation G.106 [12].
Furthermore, as natural model for performability evaluations, so-called Markov
reward models have been adopted, as will be explained below; for further details
on performability evaluation, see [29].

Markov reward models. An MRM is a CTMC augmented with a reward
structure assigning a real-valued reward to each state in the model. Such reward
can be interpreted as bonus, gain, or conversely, as cost. Typical measures of
interest express the amount of gain accumulated by the system, over a finite
or infinite time-horizon. Formally, an MRM is a tuple M = (S, R, L, p) where
(S,R,L) is a CTMC, and p : S — IRx¢ is a reward structure that assigns to
each state s a reward p(s), also called gain or bonus, or dually, cost.

Ezample 3. For the TMR example, the reward structure can be instantiated in
different ways so as to specify a variety of performability measures. The simplest
reward structure (leading to an availability model) divides the states into opera-
tional and non-operational ones: p1(so,0) = 0 and p1(s;0) = 1 for the remaining
states. A reward structure in which varying levels of trustworthiness are repre-
sented is for instance based on the number of operational processors: pa(sg,0) =
0 and p2(s;,1) = 4. As a third reward structure, one may consider the mainte-
nance costs of the system, by setting: p3(so.0) = c2 and p3(s;1) = ¢1 - (3 — i),
where c; is the cost to replace a processor, and co the cost to renew the entire
system. As a fourth option (which we do not further consider here) one can also
imagine a reward structure quantifying the power consumption in each state.

Accumulating reward along a path. The presence of a reward structure
allows one to reason about (at least) two different aspects of system cost/reward.
One either may refer to the instantaneous reward at a certain point in time
(even in steady-state), or one may refer to the reward accumulated in a certain
interval of time. For an MRM (S,R, L, p), and o = sq,to, $1,t1, S2,t2,... an
infinite path (through the corresponding CTMC (S,R, L)) the instantaneuos
reward at time ¢ is given by p(c@t). The cumulated reward y(o,t) along o up



to time t can be formalised as follows. For ¢ = Z?;& t; +t with ¢/ <ty we

define y(o,t) = Zf;ol tj - p(s;) +t' - p(sk). For finite paths ending at time point
t the cumulated reward definition is slightly adapted, basically replacing ¢ by

-1
t— Yot

Measure specification. The specification of the measure-of-interest for a given
MRM can not always be done conveniently, nor can all possible measures-of-
interest be expressed conveniently. In particular, until recently it has not been
possible to directly express measures where state sequences or paths matter, nor
to accumulate rewards only in certain subsets of states, if the rewards outside
these subsets are non-zero. Such measures are then either “specified” informally,
with all its negative implications, or require a manual tailoring of the model so
as to address the right subsets of states. Below we will address a rigorous but
flexible way of expressing performability measures.

Finally, note that Obal and Sanders recently proposed a technique to specify
so-called path-based reward variables [54] by which the specification of measures
over state sequences becomes more convenient, because it avoids the manual
tailoring of the model. In the context of the stochastic process algebra PEPA,
Clark et al. recently proposed the use of a probabilistic modal logic to ease the
specification of reward structures of MRM [15], as opposed to the specification
of reward-based measures, as we do.

5.2 A logic for performability

The addition of rewards on the model level raises the question how they can be
reflected on the measure specification level, i.e., on the level of the logic. We re-
strict ourselves for the moment to consider the accumulation of reward, because
this turns out to be a conceptually interesting extension that fits very well to
the temporal logic approach. We shall later (in Section 5.6) return to the ques-
tion how to support other forms of reward quantification, such as instantaneuos
reward.

Since rewards are accumulated along a path, it appears wise to extend the
path formulas of CSL to account for the earning of reward, and this is what dis-
tinguishes CSRL from CSL. The state formulas of CSRL are unchanged relative
to CSL (until Section 5.6), whereas path formulas ¢ now become

o u= Xjo | dUP,

for intervals I, J C IR>¢. In a similar way as before, we define <>545 = true L{§ 7
and P<,(0)®) = =P, (OL—®). Interval I can be considered as a timing con-
straint whereas J represents a bound for the cumulative reward. The path-
formula X§ @ asserts that a transition is made to a $-state at time point ¢t € I
such that the earned cumulative reward r until time ¢ meets the bounds spec-
ified by J, i.e., » € J. The semantics of @; Llf &, is as for &; U $y with the
additional constraints that earned cumulative reward r at the time of reaching
some P,-state lies in J, i.e., r € J.



Ezample 4. As an example property for the TMR system, ’P>0_95(<>{8?2’38%true)
denotes that with probability of at least 0.95 the cumulative reward, e.g., the
incurred costs of the system for reward structure ps, at time instant 60 is at most
200. Given that the reward of a state indicates the power consumed per time-
unit, property P<o.os(ups U[[Sy’i?; (down V up,)) expresses that with probability
less than 0.08 within 30 time units at least 7 units of power have been consumed
in full operational mode before some component fails. A simpler property, that
only refers to reward accumulation, P>0,5(<>{8:(1>8]) down) would say that it is likely
(probability > 0.5) to spend less than 10 units of energy before a voter failure.

The semantics of the CSRL path-formulas is an extension of the CSL se-
mantics we introduced in Section 4.1. It differs from the latter in that additional
constraints are imposed reflecting that the accumulated reward on the path must
be in the required interval. We have that o = X} @ iff

o[1] is defined and o[1] E P A d(0,0) € I A y(o,6(0,0)) €
and that o |= &1 UL &, iff
el (oQtl=P; A (Vu€[0,t).0Qu =P1) A ylo,t) € J).

For the X/ case, the definition refines the one for CSL by demanding that the
reward accumulated during the time d(o,0) of staying in the first state of the
path lies in J, while for L{§ the reward accumulated until the time ¢ when
touching a ®»-state must be in J.

5.3 Expressing measures in CSRL

MRMs are an extension of CTMCs, and so is CSRL an extension of CSL.
Since CSL does not allow any reference to rewards, it is obtained by putting
no constraint on the reward accumulated, i.e., by setting J = [0,00) for all
sub-formulas:

xX'¢p — X[{)ﬁoo)é and o U By = glf’lu[{),oo) 3.

Similarly, we can identify a new logic CRL (continuous reward logic) in case I =
[0, 00) for all sub-formulas. In CRL it is only possible to refer to the cumulation
of rewards, but not to the advance of time. The formula ’P>0_5(<>{8:T8]) down)
is an example property of the CRL subset of CSRL. The CRL logic will play
a special role when describing the model checking of CSRL, and therefore we
will first discuss how model checking CRL can be performed, before turning our
attention to CSRL. Before doing so, we list in Table 1 a variety of standard
performance, dependability, and performability measures and how they can be
phrased in CSRL. Here F' is a generic formula playing the role of an identifier
of the failed system states of the model under study (in the TMR example, F'
would be downV up, ). These measures correspond to basic formulas in the logic,



performability measure formula logic

steady-state availability S<p(—F) CSL
instantaneous availability at time ¢ Pap(© [t ) CSL
distribution of time to failure Pap(~FUOIF) CSL
distribution of reward until failure Pap(~FU[o,r) F) CRL
distribution of cumulative reward until ¢ 73<1p( t t] true) CSRL

Table 1. Some typical performability measures

and it is worth to highlight that much more involved and nested measures are
easily expressible in CSRL, such as

S>0.3 <P<0,3(<>{g:§]5] upy) = P>o.1((~down) U [5’00)11193)) :

5.4 Model checking CRL-specified measures

This section discusses how model checking can be performed for CRL properties,
i.e., formulas which do only refer to the cumulation of rewards, but not to the
advance of time. We will explain how a duality result can be used to reduce
model checking of such formulas to the CSL model checking algorithm described
above.

The basic strategy is the same as for CSL, and only the path operators X,
U need specific considerations. To calculate the probability of satisfiying such
a path formula we rely on a general duality result for MRMs and CSRL [4].

Duality. Assume an MRM M = (S,R, L, p) with positive reward structure,
i.e., p(s) > 0 for each state s. The basic idea behind the duality phenomenon
is that the progress of time can be regarded as the earning of reward and vice
versa. This observation is inspired by [7]. To make it concrete, we define an MRM
M=t = (S,R/,L,p') that results from M by

— rescaling the transition rates by the reward of their originating state, i.e.,
R/(s,s') = R(s,)/p(s) and,
— inverting the reward structure, i.e., p'(s) = 1/p(s).

Intuitively, the transformation of M into M™! stretches the residence time in
state s with a factor that is proportional to the reciprocal of its reward p(s) if
p(s) > 1, and it compresses the residence time by the same factor if 0 < p(s) < 1.
The reward structure is changed similarly. Note that M = (M~1)~1,

One might interpret the residence of ¢ time units in M ™! as the earning of ¢
reward in state s in M, or (reversely) an earning of a reward r in state s in M
corresponds to a residence of r in M~!. As a consequence, the rdles of time and
reward in M are reversed in M~!. In terms of the logic CSRL, this corresponds



to swapping reward and time intervals inside a CSRL formula, and allows one
to establish that

Prob™ (s, X1 @) = ProbMil(s,XIJ @), and

Prob™ (s, &1 UL &) = Prob™ " (s, &1 U Bs).

As a consequence, one can obtain the set Sat’!(®) (comprising the states in M
—1
satisfying @) by computing instead Sat™M (@71), ie.,

SatM(®) = SatM (@1,

where &' is defined as @ where for each sub-formula in @ of the form X7
or U§ the intervals I and J are swapped. For the TMR example, for & =

7)20,9(ﬁFU[[fg,’fg F) we have @1 = P}Q_g(ﬁFu[[ég;;g]) F). We refer to [4] for a
proof of this property, and to extensions of this result to some cases with zero
rewards. Note that we excluded zero rewards here, since otherwise the model
inversion would imply divisions by zero.

The duality result is the key to model check CRL on MRMSs (satisfying the
above restriction), since the swapping of formula implies that X ; turns into X7,
and Uy into U”. Hence, any CRL formula corresponds to a CSL formula inter-
preted on the dual MRM. As a consequence, model checking CRL can proceed
via the algorithm for CSL, with some overhead (linear in the model size plus the
formula length) needed to swap the model and swap the formula.

5.5 Model checking CSRL-specified measures

For the general case of CSRL, model checking algorithms are more involved, and
research on their effectiveness is ongoing [32,33]. In this section we describe the
basic strategy and sketch three algorithms implementing this strategy. A more
detailed comparison of the algorithmic intricacies can be found in [33].

Given an MRM M = (S, R, L, p) the model checking algorithm proceeds as
in the earlier considered cases: in order to check whether state s satisfies the
formula @, we recursively compute the set Sat(®) of states that satisfy @, and
check whether s is a member of that set. Most of the cases have been discussed
before in this paper, except for the handling of path operators with both time
and reward intervals. For the sake of simplicity, we do not consider the next
operator X, and we (again) restrict to formulas where all occurring intervals are
of the form [0, z], i.e., they impose upper bounds on the time or the cumulated
reward, but no lower bound.

So, the question is how to compute Prob(s,éﬁu[[g”:} V). Recall that in the
CSL case, the crucial step has been to reduce the computation to instances of
transient analysis. Indeed, it is possible to proceed in a similar way. In analogy
to the CSL strategy, we can show that the above probability agrees with the

probability Prob(s, trueu[[é’i]] V) on a transformed MRM where all ¥-states and

all = (P A ¥)-states are made absorbing, and have reward 0 assigned to them.
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Fig.3. Two-dimensional stochastic process ((X¢,Y:),t > 0) for model checking
Prob(s, 8Uly ] w).

The intuitive justification is as in the CSL setting. The rewards are set to 0 since
once a path reaches a W-state at time ¢’ < ¢, while not having accumulated more
than r reward, it suffices to be trapped in that state until time ¢ provided no
reward will be earned anymore, i.e., p(s) = 0 for U-state s. Note that we can
amalgamate all states satisfying ¥ and all states satisfying — (@ A &), thereby
making the MRM considerably smaller.

Thus, we can restrict our attention to the computation of
Prob(s, trueu[[é:i]] V). This probability, in turn, can be derived from the
transient accumulated reward distribution of the MRM. (Compare this to the
transient distribution used in the CSL case at this point.) To explain why this
is the case, we consider a two-dimensional stochastic process ((X¢,Y:),t > 0) on
S x IRx>o, as illustrated in Figure 3. Informally speaking, this stochastic process
has a discrete component that describes the transition behaviour in the original
MRM, combined with a continuous component that describes the accumulated
reward gained over time. For t = 0 we have Y; = 0, and for ¢ > 0 the value of Y;
increases continuously with rate p(X;). Hence, the discrete states of the original
CTMC become “columns” of which the height models the accumulated reward.
To take into account the reward bound (< r), we introduce an absorbing barrier
in the process whenever Y; reaches the level r. Actually, we are interested in



Pr{Y; < r, X; € S'}, i.e., the probability of being in a certain subset S’ of states
at time ¢, having accumulated a reward smaller than r. For our purposes, S’
shall be chosen to be the set Sat(¥) of states satisfying ¥ and we start the
process in state s under consideration. We have that

Prob(s,true U[[é:i]] V) =Pr{Y: <r,X; € Sat(¥)}
for the transformed MRM described above. This allows us to decide the satisfac-
tion of time- and reward-bounded until formulas via numerical recipes for cal-
culating Pr{Y; < r, X; € S’} on the two dimensional stochastic process (X, Y:).
It is worth to remark that similar processes (with mixed discrete-continuous
state spaces) also emerge in the analysis of non-Markovian stochastic Petri nets
(when using the supplementary variable approach, cf. [22]), Markov-regenerative
stochastic Petri nets [9], and in fluid-stochastic Petri nets [42]. We briefly sketch
three other approaches to compute Pr{Y; < r, X, € S’} here, which are more
directly applicable to the problem.

An Erlangian approximation. A first approach to compute
Pr{Y; <r,X; € S’} is to approximate the fixed reward bound r by a re-
ward bound that is Erlang-k distributed with mean r. One may view this as
some kind of discretisation of the continuous reward dimension into k steps.
The main advantage of this approach is that the resulting model is both
discrete-space and completely Markovian, and hence the techniques developed
for CSL properties (cf. Section 4.3) can be used to approximate the required
probabilities; reaching the reward bound in the original model corresponds to
reaching a particular set of states in the approximated model. As a disadvantage
we mention that an appropriate value for k (the number of phases in the
Erlangian approximation) is not known a priori. Furthermore, when CSRL
expressions are nested, it is yet unclear how the error in the approximation
propagates. Furthermore, the resulting Markov chain becomes substantially
larger, especially if k is large. On the other hand, the MRM can be described as
a tensor product of two smaller MRMs, which can be exploited in the solution
procedure (as far as the storage of the generator matrix is concerned).

With an Erlang-k distributed approximation of the reward bound together
with uniformisation, the space complexity of this method is O(|S|?-k?), and the
time complexity is O(Ng-|S|?-k?), where N, equals the number of steps required
to reach a certain accuracy & (which can be computed a priori). Note that N,
determines the accuracy of only the transient analysis; it does not account for
the (in-)accuracy of the approximation itself.

Discretisation. Recently, Tijms and Veldman [60] proposed a discretisation
method for computing the transient distribution of the accumulated reward in
an MRM. Their algorithm is a generalisation of an earlier algorithm by Goyal and
Tantawi [24] for MRMs with only 0- and 1-rewards. The basic idea is to discretise
both the time and the accumulated reward as multiples of the same step size d,
where d is chosen such that the probability of more than one transition in the



MRM in an interval of length d is negligible. The algorithm allows only natural
number rewards, but this is no severe restriction since rational rewards can be
scaled to yield natural numbers.

The time complexity of this method is O(|S|-t-|(t—7)|/d?) and the space
complexity is O(|S|-r/d). As the computational effort is proportional to d=2,
the computation time grows rapidly when a higher accuracy is required.

Occupation time distributions. In 2000, Sericola [57] derived a result for the
distribution of occupation times in CTMCs prior to a given point in time ¢t. The
approach is based on uniformisation, and (as with uniformisation) it is possible
to calculate an a priori error bound for the computed values. The distribution
of this occupation time can be used to derive Pr{Y; < r, X; € S}, based on
the observation that if O(s,t) is the occupation time of state s prior to ¢t then
p(s) - O(s,t) is the accumulated reward for this state prior to t. Summing over
all states leads to the accumulated reward required.

The computation of the occupation time distribution is an iterative proce-
dure, which in each iteration updates a linearly growing set of matrices. The
computational and storage requirements of the approach are therefore consider-
able. If we truncate after the N.-th iteration, we obtain an overall time complex-
ity of O(N3|S|?) and an overall space complexity of O(N2|S|?). Contrary to the
Erlangian approximation, N, determines the accuracy of the entire computation
procedure in this approach.

General observations. We have implemented all three algorithms, and exper-
imented with them on a case study analysing the power consumption in ad-hoc
mobile networks [33]. We can report the following observations:

— The three computational procedures converge to the same value, however,
only for the occupation time distribution approach an a priori error bound
(and hence a stopping criterion) is available.

— The method based on occupation time distributions is fast and accurate. In
the current case study (which is small) we did not run into storage problems,
however, the cubic storage requirements will limit this method to relatively
small case studies.

— The discretisation method is slow when a fine-grain discretisation is used.
Unfortunately, we have no method available (yet) to get a hold on the re-
quired step size to achieve a certain accuracy.

— The Erlangian approach is fast (where we did not even exploit the tensor
structure in the generator matrix), but also here, we have to guess a reason-
able number of phases for the approximation.

— The discretisation method suffers particularly from large time-bounds and
large state spaces, as these make the number of matrices to be computed
larger.

— The method based on occupation time distributions becomes less attractive
when the time bound is large in comparison to the uniformisation rate. We
are currently investigating whether some kind of steady-state detection can
be employed to shorten the computation in these cases.



5.6 Extending CSRL with further reward operators

So far we have considered the accumulation of reward along paths, because as
this is the basic novelty we support via the enriched path operators X § and
L{f. In an orthogonal manner, it is possible to support further reward-based
measures, namely by allowing further state operators.

To do so, consider state s in MRM M. For time ¢ and set of states S’, the
instantaneous reward p™M (s, S',t) equals Y .o ™ (s,5',t) - p(s’) and denotes
the rate at which reward is earned in some state in S’ at time ¢. The expected
(or long run) reward rate p™ (s, S') equals 3, oo 7 (s,5") - p(s’). We can now
add the following state operators to our framework:

Expected reward rate £;: The operator £;(®) is true if the expected (long
run) reward rate is in the interval J, if starting in state s:

sk &) iff pM(s, Sat™ (D)) € J.

Expected instantaneous reward rate £%: The operator £4(P) states that
the expected instantaneous reward rate at time ¢ lies in J:

s = L) iff pM(s, Sat™M(D),t) € J.

Expected cumulated reward CJ: The operator C1(®) states that the ex-
pected amount of reward accumulated in @-states during the interval I lies
in J:
s | CL(®) iff /pM(s, SatM(P),u) du € J.
I

The inclusion of these operators in CSRL is possible because their model check-
ing is rather straightforward. The first two formulas require the summation of
the @-conforming steady-state or transient state probabilities multiplied with
the corresponding rewards. The operator Cf, (@) can be evaluated using a variant
of uniformisation [28,58]. Some example properties are now: £;(—F), which ex-
presses the expected reward rate, e.g., the system’s capacity, for an operational
system, & (true) expresses the expected instantaneous reward rate at time ¢ and

Cgo’t] (true) expresses the amount of accumulated reward up to time ¢.

The suggestion to include these operators into CSRL exemplifies how a prag-
matic approach (providing new algorithms for new measures) can be combined
with our logical approach, and can profit from the latter due to the ability of
nesting state and path formulas in an arbitrary manner.

6 Stochastic model checking and lumpability

This section is devoted to an important property that the CSRL logic fam-
ily possesses. The property relates the well-known concepts of lumpability and
bisimulation to the distinguishing power of the logic. We exemplify this property
for CSRL, since this includes the other logics as subsets.



Bisimulation (lumping) equivalence. Lumpability enables the aggregation
of CTMCs and MRMs without affecting performance properties [47, 10,40, 35].
We adapt the standard notion slightly in order to deal with MRMs with state-
labellings. We only sketch the concepts here, and refer to the papers [4,5] for
more details. For some MRM M = (S,R,L,p) we say that an equivalence
relation R on S is a bisimulation if whenever (s,s’) € R then

L(s) = L(s") and p(s) =p(s’) and R(s,C)=R(s',C) for all C € S/R,

where S/R denotes the quotient space under R and R(s,C) =, .~ R(s,s’).
States s and s’ are said to be bisimilar iff there exists a bisimulation R that
contains (s, s’). Thus, any two bisimilar states are equally labelled and the cu-
mulative rate of moving from these states to any equivalence class C is equal.
Since R is an equivalence relation, we can construct the quotient M /R, often
called the lumped Markov model of M.

Ezxample 5. The reflexive, symmetric and transitive closure of the relation
R =1{(0111,1011),(1011,1101), (0011, 0101), (0101, 1001) }

is a bisimulation on the set of states of the MRM depicted in Fig. 4. For conve-
nience, double arrows are used to indicate that there exists a transition from a
state to another state and vice versa. The lumped MRM M /R consists of five
aggregated states, yielding, in fact, the MRM of the TMR system discussed in
Example 1. For instance, state sz 1 of the original model can be considered as
the lumped state representing the three possible configurations in which, out of
three, a single processor has failed. These configurations are represented in the
detailed version of Fig. 4 by the states 0111, 1011, and 1101.

up2 upi
A

v down Y

Fig. 4. A detailed version of the TMR model

It is well known that the measures derived from M and its quotient M /R are
strongly related if R is a bisimulation. Without going into details, it is possible



to compute transient as well as steady state probabilities on the lumped MRM
M/ R if one is only interested in probabilities of equivalence classes. For a given
MRM it is therefore possible to establish the following property [4,19,5]:

sE® iff =& forall CSRL formulas &

if and only if s and s’ are bisimilar.

In other words, CSRL cannot distinguish between lumping equivalent states, but
non-equivalent states can always be distinguished by some CSRL formula. This
looks like a theoretical result, but it also has practical implications: it allows
one to carry out model checking of CSRL (and CSL, and CRL) on the quotient
state space with respect to lumpability. This lumped state space is often much
smaller than the original one. It can be computed by a partition refinement
algorithm [39, 20].

7 Conclusions and future outlook

In this paper we have tried to give a tutorial style overview on the model checking
approach to continuous time Markov chains and Markov reward models. While
the logics CSL and CRL can be model checked using well-known numerical
techniques to analyse Markov chains, more work is needed in the context of
model checking performability properties expressible with CSRL to make the
analysis effective.

Since the first paper on algorithms for CSL model checking has been pub-
lished in 1999 [2] the approach has been implemented in (at least) three research
tools, namely the ETMCC model checker [37], the model checker Prism, and the
APNN toolbox [11]. While ETMCC is a dedicated CSL model checker based on
sparse matrix data structures, Prism employs BDD based techniques to combat
the state space explosion problem. The APNN toolbox uses Kronecker represen-
tations to achieve better space efficiency.

So far, we (and others) have applied stochastic model checking to various
small and medium size case studies, including the analysis of a dependable work-
station cluster [31], the verification of the performance of the plain ordinary tele-
phone system protocol [3], the estimation of power consumption in mobile ad
hoc networks [33], and the assessment of the survivability of the Hubble space
telescope [34]. Among work that extends the basic stochastic model checking
approach to a broader context, we are aware of the extension of CSL to pro-
cess algebra specifications [38], to semi-Markov chains [44] and to random time
bounds [49].

More work is foreseen in many exciting areas extending what has been de-
scribed in this tutorial paper, ranging from research on the inclusion of non-
determinism, to efforts to improve the effectiveness of the algorithms described,
to the application of stochastic model checking to realistic case studies.
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