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Abstract. We describe progress in the automatic detection and identi-
fication of humans in video, given a minimal number of labelled faces as
training data. This is an extremely challenging problem due to the many
sources of variation in a person’s imaged appearance: pose variation,
scale, illumination, expression, partial occlusion, motion blur, etc.
The method we have developed combines approaches from computer vi-
sion, for detection and pose estimation, with those from machine learning
for classification. We show that the identity of a target face can be deter-
mined by first proposing faces with similar pose, and then classifying the
target face as one of the proposed faces or not. Faces at poses differing
from those of the training data are rendered using a coarse 3-D model
with multiple texture maps. Furthermore, the texture maps of the model
can be automatically updated as new poses and expressions are detected.
We demonstrate results of detecting three characters in a TV situation
comedy.

1 Introduction

The objective of this paper is to annotate video with the identities, location
within the frame, and pose, of specific people. This requires both detection and
recognition of the individuals. Our motivation for this is two fold: firstly, we want
to annotate video material, such as situation comedies and feature films, with
the principal characters as a first step towards producing a visual description of
shots suitable for blind people, e.g. “character A looks at character B and moves
towards him”. Secondly, we want to add index keys to each frame/shot so that
the video is searchable. This enables new functionality such as “intelligent fast
forwards”, where the video can be chosen to play only shots containing a specific
character; and character-based search, where shots containing a set of characters
(or not containing certain characters) can easily be obtained.

The methods we are developing are suitable for any video material, includ-
ing news footage and home videos, but here we present results on detecting
characters in an episode of the BBC situation comedy ‘Fawlty Towers’. Since
some shots are close-ups or contain only face and upper body, we concentrate
on detecting and recognizing the face rather than the whole body.

The task is a staggeringly difficult one. We must cope with large changes in
scale: faces vary in size from 200 pixels to as little as 15 pixels (i.e. very low
resolution), partial occlusion, varying lighting, poor image quality, and motion
blur. In a typical episode the face of a principal character (Basil) appears frontal



in one third of the frames, in profile in one third, and from behind in the other
third, so we have to deal with a much greater range of pose than is usual in face
detection.

Previous approaches to character identification have concentrated on frontal
faces [7, 9]. This is for two reasons: (i) face detection is now quite mature and
successful for frontal faces [10, 15, 16] (both in terms of false positive/ false
negative performance, and also in efficiency); and (ii) because most recognition
methods are developed for frontal faces [17]. For example, image-based ‘eigenface’
or ‘Fisherface’ [2] approaches are successful for registered frontal faces with stable
illumination. Detection of profile faces [15] or arbitrary pose [10, 12] has not yet
reached the same level of performance. This is principally because in the case of
frontal faces pattern matching methods can be used to classify an image region
through a fixed mask as a face or non-face, since there are sufficient distinctive
internal features visible (eyes, mouth, etc.). In the case of profiles there are fewer
distinctive features, and the silhouette varies. Consequently, simple fixed regions
of interest include background, and the resulting learning problem is then much
more difficult.

The approach we have developed is closest in spirit to the pose and multiple
view based approaches of [3, 5, 13]. Suppose that we have identified a face region
in a target frame, and our task is now to decide if this is the face of one of the
characters in our training data. This is a matching problem, and in the case of
faces we must account for three principal ‘dimensions’ of variation: pose change,
illumination change, and expression change. Conceptually we divide this problem
into two parts:

1. Pose based rendering: a set of candidate faces is proposed by rendering faces
from the training data at the same pose as the target face, see figure 4. The
candidate faces will typically contain several examples of the correct face with
a range of expressions, as well as examples of other characters. This largely
eliminates the pose variation, and we have reduced the problem to matching
over expression and illumination change.

2. Classification: a matching decision is made amongst the proposed faces. The
outcome is a match with one of the faces, or a non-match (if the target face
is not one of the learnt characters). This requires a matching measure which
is tolerant to small changes of expression, and largely invariant to illumination
conditions.

2 Approach

In this section we describe the two stages of the algorithm: learning face models,
and recognition of faces in target frames. The overall recognition approach con-
sists of three steps: (i) detecting candidate face regions in the target frame, (ii)
determining the pose of the target face and proposing candidate faces at that
pose, and (iii) classification.



a) Input image b) Skin probability c) Candidate face regions

Fig. 1. Candidate face region detection using skin colour model and multi-scale blob
detector. Darker grey levels in (b) represent higher probability. Concentric circles in (c)
show the scale uncertainty in the detections. Note there are several false positives due
to non-face skin regions, and non-skin regions of similar colour. These false positives
will be removed by subsequent verification.

2.1 Candidate face region detection

The first step in detection is to propose candidate face regions in an image for
further processing. Requirements are that the algorithm proposes all faces in the
image as candidates across a wide range of scale and pose. We desire to have a
relatively small number of false positive (non-face) responses from the algorithm,
since processing false detections incurs computational cost, but we can cope with
some false positives since candidate regions will be subsequently verified. This
differs somewhat from the isolated problem of face detection [15, 16], where
detections are not subject to additional verification.

We take advantage of working with colour video and use a skin colour de-
tector to propose probable face regions. The probability distribution over the
colour of skin pixels in RGB space is modelled as a single Gaussian with full co-
variance. A corresponding Gaussian distribution with large variance is estimated
for ‘background’ pixels, and Bayes theorem is applied to obtain an image of the
posterior probability that each pixel is skin. Skin blob detection is performed
over an image pyramid by applying a Difference of Gaussians (DOG) operator
[14] to the skin probability image at each level. A face region is declared at local
maxima in the DOG response with positive response above threshold, and cor-
responding high skin probability. The approximate scale of the face is obtained
from the pyramid level. Figure 1 shows an example image, skin probability, and
detected candidate face regions.

2.2 Pose based face rendering

We require a method of rendering faces at poses different from those in the
training material. The approach used here is to combine coarse 3-D geometry
with multiple texture maps. The model has two parts: a global 3-D geometric
model of the head, and a set of visual ‘aspects’ which define appearance over
local regions of pose space. The shape of the head is modelled simply as an
ellipsoid, the parameters of which are fitted to a single training image of the
person. Figure 2a shows a training image for the ‘Basil’ model, and Figure 2b
the ellipsoid model overlaid. The aims of using a 3-D model for the head are two
fold:



a) Training image b) Ellipsoid c) Texture d) Novel view

Fig. 2. Ellipsoid head model. The triangulation shown (a) is coarser than that used,
to aid visibility. The blank area of the texture map is the back of the head, which has
not yet been observed.

1. Extrapolation: The 3-D model allows us to extrapolate some way from a
single view of the person and propose how the person looks in nearby poses.
The single training image is back-projected onto the ellipsoid to give a texture
map (Figure 2c), then a new view of the head in a different pose can then
be rendered by transforming the ellipsoid and projecting the texture map back
into the image. Figure 2d shows an example: for poses near to the one from
which the texture map was obtained, fairly accurate images can be rendered.
Because the ellipsoid geometry only approximates the head shape, the realism
of the rendered views degrades as the pose change increases, principally because
the ellipsoid does not predict self occlusions (such as the eye being occluded as
the face looks down). However, it will be seen that combining a simple shape
model with multiple texture maps enables accurate rendering of many poses. By
contrast, an accurate 3-D model could extrapolate further from a single view,
but it is difficult to obtain such an accurate model, and an inaccurate but non-
smooth model can introduce many artifacts that we wish to avoid. Ellipsoids [1]
and close relatives (superquadrics [11], tapered ellipsoids [13]) have been applied
successfully to head tracking by several authors.

2. Pose space: The second reason for the 3-D model is that it provides a global
reference frame against which any image of the face can be aligned. Initially,
having seen just a single image of the face, we have a good idea of the appearance
in only a narrow range of poses, and with fixed facial expression. Estimating the
pose of a new image and verifying the identity of the person allows a new image to
be classified as: (i) close in pose and appearance to an already seen image, (ii) in
a pose far from one observed up to this point, or (iii) in a known pose but with
differing appearance (facial expression). In the latter two cases the algorithm
considers expanding the model by adding additional texture maps, positioning
them appropriately in pose space. This allows the model to be improved without
manual supervision.

2.3 Pose estimation

Given a candidate face region in the image, the pose of the face is recovered by
search in the joint pose/appearance space, proposing the appearance of the face
and comparing against the target image. The pose is parameterized as a 6-D vec-
tor p = 〈θ, φ, ψ, σ, τx, τy〉 corresponding to rotation, scale, and 2-D translation



Fig. 3. Pose estimation (best viewed in colour). Top rows show original image, middle
rows show ellipsoid overlaid at the estimated pose, bottom rows show overlaid model
rendered at the estimated pose.

in the image. Rotation is specified by azimuth θ, elevation φ, and in-plane ro-
tation ψ. This parameterization allows reasonable bounds to be specified easily.
A candidate face region provides an initial estimate of scale σ̃, up to the scale
step between pyramid levels, and translation 〈τ̃x, τ̃y〉 (the centre of the candidate
region). The task is to find the pose parameters p̂ which maximize the similarity
between the rendered view R(p, µ) and the target image I. Normalized cross-
correlation (NCC), masked by the silhouette of the rendered view, is used as the
similarity measure:

p̂ = arg max
p

[

max
µ∈{µp}

NCC (I,R(p, µ))

]

(1)

For a given pose, multiple appearances R(p, µ) are proposed by selecting a
subset of the texture maps {µp} which are (i) close to the current pose, and (ii)
varying in expression. This is done by first finding the texture map which has
pose q closest to the current estimate p, then selecting all texture maps with
pose close to q (which represent different facial expressions). Distance between
poses is computed by the dot product between a front-facing vector normal to



Fig. 4. Face classification based on multiple appearance proposals. The leftmost image
is the target, with rows showing proposals rendered from the Manuel, Basil and Sybil
models. The task is to decide which proposal to accept, or to reject all.

the ellipsoid, so that in-plane rotation about the frontal view does not influence
the distance. Using this ‘nearest neighbour plus siblings’ approach to selecting
texture maps allows the algorithm to consider texture maps corresponding both
to close poses and varying facial expression. Numerical optimization is carried
out using the coordinate descent algorithm of [8]. Figure 3 shows examples of
pose estimation. Additional examples can be seen in Figure 4, discussed below.

2.4 Classification

Given an estimated pose, a set of images is proposed by the models of each
person. Figure 4 shows an example, with each person model attempting to re-
produce the leftmost image, of Basil. Note that the proposals here have the same
pose but vary in facial expression. The aim now is to obtain a representation of
the face image suitable for person classification, capturing the essential structure
of the facial appearance but allowing for small local misalignments between the
original and rendered images due to factors such as the approximation of the
face shape as ellipsoidal. Using this representation, one of the proposed images
may be accepted as a match, yielding classification of the person, or all may be
discounted, in the case of a non-face region, or person other than those modelled.

Use of ‘edges’ rather than raw grey levels for emphasizing salient image struc-
ture has been proposed in many contexts [14] and an edge-based descriptor is
used here, proposed most recently for comparing optical flow fields [6]. For an
image I, the image gradients Ix, Iy are computed, and half-wave rectified to form
four non-negative channels I+

x , I−x , I+
y , I−y . Each channel is then blurred with a

Gaussian to give some robustness to local image deformations, and the descrip-
tor for the image D(I) is formed by normalizing and concatenating the four
channels. The non-negativity and relative sparseness of signal in each channel
allows the channels to be blurred without destroying orientation information or
edges by cancelling positive and negative gradients. The width of the Gaussian
is set proportional to the scale of the face in the image.

When comparing descriptors for a target image I and a rendered view of the
ellipsoid R(p, µ), the rendered view is overlaid on the target image (in the man-
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Fig. 5. Gradient descriptor for target (top) and rendered (bottom) images. Darker grey
levels represent larger values. The similarity measure here is 0.98, a close match.

Fig. 6. Model update by tracking. A colour tracker successfully tracks the face over
large pose variation and is used to validate proposed updates to the model.

ner of Figure 4) before computing image gradients in order to avoid introducing
spurious edges due to the ellipsoid boundary. Similarity between the correspond-
ing descriptors D(I) and D(R(p, µ)) is obtained by correlation, considering only
pixels within the ellipsoid mask. Figure 5 shows example descriptors for target
and rendered images.

2.5 Model learning

The supervision required for learning the face model is minimal: a face for each
character is identified in one frame, and the ellipsoid model fitted. Additional
training is automatic, as will now be described.

Having computed the similarity (section 2.4) between a set of face candidates
and a particular person, a decision is made as to which detections to add to the
model as new texture maps, enabling the model to cope with wider variations
in expression and pose.

A low threshold on similarity tl is defined, above which we are confident
that a detection matches a particular person. Three cases then follow: (i) if the
similarity of a match is above a second higher threshold (t > th > tl) and the
pose is close to one already seen, then the image need not be added to the
model. (ii) If however the match is certain (t > th) and the pose is far from one
already seen, the image is added to the model so that the range of pose covered
is expanded. Finally (iii), less certain matches (tl < t < th) which lie close to an
existing pose are validated by tracking. These would typically represent unseen
facial expressions. To validate such matches, temporal coherence of the video
is exploited: a tracker is run from frames with certain matches, ending at the
candidate frame. The tracker used is a colour version of a deformable region
tracker [4]. If the position of the tracked region agrees with the detected face,
then the model is updated. Figure 6 shows an example of successful tracking
over wide pose variation.
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Fig. 7. ROC curves for three characters in 1,500 key frames. Successful identification
requires correct detection, pose estimation, and recognition. In all cases, unsupervised
model update improves the accuracy of the model.

3 Experimental results

The algorithm was tested on 1,500 key-frames taken one per second from the
episode ‘A Touch of Class’ of the sitcom ‘Fawlty Towers’. We evaluated detec-
tion of three of the main characters: Basil, Sybil and Manuel. The task was to
detect the frames containing each character, and identify the image position and
pose of the face correctly. Correctness was measured by the distance to ground
truth points marked on the eyes, nose and ears according to pose, requiring
distance of all predicted points to be less than 0.3 of the inter-ocular distance.
Corresponding points for the model (for testing purposes only) were obtained
by back-projecting the ground truth points onto the ellipsoid during training
and model update. Pose of the ground truth faces in the video covers poses of
around +/-60o azimuth, +/-30o elevation and +/-45o in-plane rotation. Faces
vary in scale from 15 to 200 pixels. The values of the thresholds tl and th were
determined from a validation set and kept fixed throughout the experiments.

Figure 7 shows ROC curves for each of the three characters. Note that we
treat the problem as one of detection rather than 1-of-m classification since we
do not know a priori all the characters in the video. For each character, curves
are shown for the initial model and two runs of the model update procedure.
The number of texture maps after model update varied for each character, due
to the varying number of frames in which the character appears and differences
in pose variation between characters, and is shown in the legend. The graphs
show clear improvement in the accuracy of the model after update, for example
in the Basil model the equal error rate decreases from 30% to 15% after two
rounds of update. At this stage, characters can be detected in 75–95% of frames
at a false positive rate of 10%. These results are extremely promising given the
difficulty of the task. It is interesting to observe that the performance on Sybil
is notably better than the other characters; this is the ‘moustache problem’ -
the moustache is a strong visual feature shared between Basil and Manuel, and
indeed three other secondary characters in the episode, which gives much scope
for confusion.



4 Discussion

We have presented methods for detecting and identifying characters in video
across wide variations in pose and appearance by combining a simple 3-D model
with view-dependent texture mapping. Placing the views of the face in a common
reference frame allows more efficient search than possible with an unorganized
collection of images, and provides a basis for automatic model update. Use of a
simple 3-D model rather than a detailed face model [3] avoids introducing severe
rendering artifacts due to incorrect modelling of self-occlusion, and multiple
texture maps allow facial expressions to be modelled, which is challenging for
3-D models with a fixed texture map.
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