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Abstract—An automated system for planning and optimization
of lumber production using Machine Vision and Computed
Tomography (CT) is proposed. Cross-sectional CT images of
hardwood logs are analyzed using Machine Vision algorithms.
Internal defects in the hardwood logs pockets are identified and
localized. A virtual in silico 3-D reconstruction of the hardwood
log and its internal defects is generated using Kalman filter-based
tracking algorithms. Various sawing operations are simulated on
the virtual 3-D reconstruction of the log and the resulting virtual
lumber products automatically graded using rules stipulated by
the National Hardwood Lumber Association (NHLA). Knowledge
of the internal log defects is suitably exploited to formulate sawing
strategies that optimize the value yield recovery of the resulting
lumber products. A prototype implementation shows significant
gains in value yield recovery when compared to lumber process-
ing strategies that use only the information derived from the
external log structure. The system is intended as a decision aid
for lumber production planning and an interactive training tool
for novice sawyers and machinists in the lumber industry.

Index Terms—Automated Lumber Production, Lumber Pro-
duction Optimization, Non-destructive Evaluation, Automated
Lumber Grading, Computed Tomography.

I. INTRODUCTION

The value of hardwood lumber is determined by the quan-

tity, size and types of internal log defects such as knots, cracks,

decay and other anomalies of tree growth that eventually

appear on the lumber surfaces. Depending on the nature of

the end utilization, each log is sawed to minimize the presence

of these internal defects on the resulting lumber surfaces. In

order to achieve this goal, the internal defects within the log

must be accurately identified and localized prior to the sawing

of the log. The knowledge of the nature and positions of the

internal log defects must then be exploited to determine a

lumber production strategy that maximizes the value and yield

of the resulting lumber product(s). In most sawmills, however,

logs are processed into lumber based solely on external log

inspection and knowledge of lumber grades with little or no
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information about the internal log defects and with inaccurate

or incomplete geometric log data. This adversely affects the

accuracy of the lumber processing, resulting in suboptimal

lumber production where the potential value of logs is wasted.

Production of lumber is essentially a destructive and hence

irreversible process; any loss in value yield due to incorrect

or suboptimal sawing is irrevocable. Given the low conversion

efficiency of about 35% for conventional sawmills [16] and

with the rising costs of hardwood logs accounting for over

80% of total production costs [17], improving the lumber

value yield from hardwood logs has become imperative for

many sawmills. Given the inherent limitations of external

log inspection, it is reasonable to assume that future gains

in lumber value yield will be achieved only by internal log

scanning [7], [13], [17], [34].

Identification and localization of internal log defects are

estimated to lead to potential gains of about 15%–18% in

lumber value [7]. This represents a savings of over $2 billion

for the hardwood lumber industry in the United States [17],

[25]. Forest products–based economies are increasingly de-

pendent on getting the highest-value wood products from a

declining forest resource base. This results in disproportionate

harvesting pressure on high-demand hardwood species such

as Hard Maple, Black Walnut, White Ash and Red Oak that

exhibit large differences in value between the highest and

lowest lumber grades [33]. Environmental concerns and the

ecological need for maintaining biodiversity in forest ecosys-

tems underscores the need to utilize as many hardwood species

for wood products as possible, to improve the efficiency in

converting low-grade logs into high-value lumber products,

to reduce unnecessary wastage and to conserve valuable hard-

wood forest resources. One way of achieving these goals is by

identification and localization of internal defects in hardwood

logs and using this information to optimize the processing of

the resulting lumber.

Studies of computed axial tomography (CAT or CT) and

magnetic resonance imaging (MRI) (also known as nuclear

magnetic resonance (NMR) imaging) for internal log de-

fects [1], [2], [6], [13], [34] have demonstrated that the CT

and MRI technologies available today can be used successfully

to image the internal features of logs. On account of their

inherent sensitivity to the water content of the imaged sample,

MRI techniques are particularly well suited for detecting inter-

nal features of logs, such as knots, reaction wood, wetwood,

and gum spots, that are characterized by varying moisture
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content in the underlying wood [6]. In CT images, on the other

hand, the grayscale value of a pixel is directly proportional

to the x-ray absorption which is then correlated with the

material density at the pixel location [13]. Knots and moisture

pockets are noted to have higher material density and/or higher

moisture content than surrounding clear wood and are often

characterized by pixels with very high grayscale values in the

CT image. Holes, cracks and decay pockets are void areas

filled with air or decayed wood and hence characterized by

low material density, resulting in corresponding CT image

pixels with very low grayscale values. Holes and decay pockets

usually have circular cross-sections and are typically short in

length whereas cracks are usually thin and long.

Although MRI is a more recent innovation, solid state CT

scanners, capable of scanning rates close to 30 slices per

second, are fast approaching the speed necessary for real-time

production use in sawmills [17]. However, the computational

methods for analyzing the CT images for internal defects

reliably and in real time, and exploiting the knowledge of

the internal defects to determine optimal lumber processing

strategies are a challenging research topic and the subject of

this paper.

In this paper we describe the design and implementation

of a machine vision system for the automated planning and

optimization of lumber production from hardwood logs. The

paper makes two significant contributions. First, a Kalman

filter-based feature tracking framework is proposed to enable

simultaneous detection, localization and 3-D reconstruction

of internal log defects in a manner that is computationally

much more efficient than existing approaches. Second, detailed

mathematical models and algorithms for lumber production

optimization are proposed which exploit the knowledge of the

internal log defects to maximize the value yield recovery of

the resulting lumber products. The system is intended as a

decision aid for lumber production planning but could also

be used as an interactive training tool for novice sawyers and

machinists, allowing them to practice various sawing strategies

on virtual logs before working on real logs.

The remainder of the paper is organized as follows. Sec-

tion II provides a brief review of previous work. Section III

provides an overview of the proposed system. Section IV

provides a detailed scheme for the detection, identification

and localization of internal defects such as holes, knots and

cracks in a single CT image slice using a combination of

structural and spectral features. Section V describes the 3-D

reconstruction of these internal defects using Kalman filter-

based tracking algorithms. Section VI describes algorithms for

determination of optimal lumber production strategies. Section

VII presents experimental results on real CT image data from

hardwood logs. Section VIII concludes the paper with an

outline for future work.

II. BRIEF LITERATURE REVIEW

Techniques for internal defect identification and classifica-

tion in cross-sectional CT images of logs include gray-level

thresholding and binarization [13], [34], neural network-based

classification [29], integration of shape and texture features

Fig. 1. System overview

with pixel grayscale values [1], [2], [5] and Dempster–

Schafer theory-based evidential reasoning on the 3–D geo-

metric features of the defects [36]. Bhandarkar et al. [1], [2]

and Samson [26] present geometrical modeling algorithms to

describe the structure of internal defects within the logs and

their appearance on the surfaces of the lumber beams sawn

from those logs, and to compute the effect of the presence of

knots in the conversion of logs into structural lumber [2], [27].

The results of internal defect identification and localization

can be used to reconstruct a 3-D model of the log along with

its internal defects [1], [2]. Software programs that simulate

various machining operations such as sawing and veneering

on the virtual 3-D log reconstruction have been described in

the literature [1], [2], [8], [15], [23], [28]. Likewise, programs

for automated grading of virtually produced lumber (using the

aforementioned simulators) and physical lumber produced by

sawmills have also been reported in the literature [20], [21].

These programs have been used to estimate the improvements

in lumber value yield recovery resulting from internal log

scanning which are reported to be in the range of 40%–

60% [2], [7], [15]. The above review covers the most relevant

developments in the use of CT and MRI technologies for

internal defect detection and identification in hardwood logs.

The review paper by Pham and Alcock [24] covers the wider

area of automated visual inspection of logs and lumber and

includes both external scanning using optical sensors and

internal scanning using CT and MRI technologies.

III. OVERVIEW OF THE PROPOSED SYSTEM

The proposed system (Figure 1) for planning and optimiza-

tion of lumber production consists of the following subsys-

tems: (a) CT log scanning (b) Internal defect identification

and localization, (c) 3-D virtual reconstruction of the log and

its internal defects, and, (d) Determination of optimal lumber

production strategy.

The CT log scanning subsystem consists of a Toshiba TCT

20AX CT scanner with a pixel resolution of 0.75mm by

0.75mm, an intensity resolution of 8 bits per pixel (i.e., 256

gray levels) and an image size of 316 × 316 pixels. The

scanning of a 4 meter log typically results in 224 cross-

sectional CT images. Although the above CT scanner is dated

compared to its counterparts used for medical imaging, it was

deemed adequate for the design and development of a proof-

of-concept prototype system for lumber production planning

and optimization.



TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

Fig. 2. The flowchart of the defect detection system

The overall flowchart for the proposed defect detection

subsystem is given in Figure 2. In the proposed subsystem,

both structural (shape) and spectral (grayscale) features are

incorporated in the detection and localization of internal log

defects in a single CT image slice. This addresses the limita-

tions of conventional pixel-level thresholding or binarization

methods which are limited in their classification accuracy,

especially when confronted with overlapping pixel grayscale

values from different defect classes, in spite of fairly sophisti-

cated analysis of the grayscale histogram [8]. Furthermore, in

the proposed scheme, the processes of detection, localization

and 3-D reconstruction of internal defects are integrated across

multiple CT image slices within a single Kalman filter-based

feature tracking framework. This is in contrast to most existing

techniques where the detection, identification and localization

of internal log defects are performed independently in each

CT or MR image slice and the 3-D reconstruction of the

defect is achieved via simple correspondence analysis across

multiple image slices using the defect shape, size and location

information [1], [2]. As a result, existing techniques are

computationally inefficient and potentially unsuitable for real-

time applications since the spatial coherence of the defects

along the axial direction is not exploited. They are also error-

prone, especially when dealing with defects with complex 3-D

shapes, since only two successive CT image slices are typically

used to establish the correspondence.

In the proposed scheme, a Kalman filter [18] is used to

track the defect parameters continuously from one CT image

slice to the next by predicting the locations of the defects in

successive slices. The algorithms for internal defect detection

and localization within a single CT image slice are used to

initialize the Kalman filter-based tracking algorithm. After a

defect is detected and localized within a CT image slice,

the tracking algorithm is used to detect and localize the

defect in successive CT image slices and also reconstruct its

geometry in 3-D space. The net result is much faster detection,

identification, localization and reconstruction of the internal

log defects since only a local search within a fairly small

neighborhood of the predicted defect locations is entailed.

Given the 3-D reconstruction of the log and its internal

defects, the final subsystem determines the optimal lumber

production strategy; one that maximizes the yield and grade

of the resulting lumber product. Mathematical models for

commonly performed sawing operations such as live sawing,

cant sawing, grade sawing and secondary sawing are proposed.

The optimal sawing strategy is determined by searching the

parameter space of the sawing models using a dynamic pro-

gramming algorithm. The dynamic programming algorithm

determines the optimal spacings and orientations of the sawing

planes in order to maximize the value and yield of the resulting

lumber products. A heuristic search algorithm is designed and

shown to speed up the optimization process while providing

a solution that is acceptably close to the optimal result. An

automated lumber grading program that is compliant with

the National Hardwood Lumber Association (NHLA) grading

rules is designed to determine the grades of the (virtual)

lumber products resulting from the simulation of the various

aforementioned sawing operations on the virtual 3-D log

reconstruction.

IV. DETECTION OF DEFECTS IN A SINGLE CT IMAGE

Three major categories of defects are detected within a

single CT image slice, i.e., knots, holes and cracks, since

they are known to greatly impact the grade and value of the

resulting lumber.

A. Detection of Knots and the Outer Log Boundary

Knots are detected via analysis of the pixel grayscale

intensity in a local window surrounding the pixel as follows:

K(i, j) =

{

1 if 1
M2

∑

(x,y)∈W (i,j) F (x, y) > Tk

0 otherwise
(1)

where K(i, j) is the resulting binary image delineating the

knots, W (i, j) is a window of predetermined size M × M
centered at pixel (i, j), F (i, j) is a CT image slice of the

log and Tk is a predetermined threshold. A CT image slice

containing a knot is shown in Figure 3(a) whereas the binary

image resulting from the application of equation (1) is shown

in Figure 3(b). A comparison of Figure 3(a) and Figure 3(b)

shows that the application of equation (1) results in the erosion

of the knot boundaries. Consequently, a morphological dilation

operation [30] is used to recover the knot boundaries as

shown in Figure 3(c). The outer boundary of the log cross-

section in a single CT image slice is also detected using the

binarization technique given in equation (1); however with a

smaller window size (3×3 is typically adequate) and a smaller

threshold value (which is chosen to be slightly larger than the

grayscale value of a void area in the CT image).

B. Detection of Holes

Holes are actual void areas and appear as dark regions in the

CT images with graylevels similar to those of the background.

A simple thresholding scheme outlined in equation (2) is used

to classify the CT image pixels as holes.

K(i, j) =

{

1 if F (i, j) < Th

0 otherwise
(2)

where Th is an empirically determined threshold value. Since

holes are usually small in size and approximately round
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(a) (b) (c)

Fig. 3. Result of knot detection: (a) CT image slice containing a knot, (b)
Result of analysis of local graylevel pixel density, and (c) Extracted knots
after dilation

(a) (b) (c) (d)

Fig. 4. Result of hole detection: (a) Input CT image, (b) Thresholded image,
(c) Removal of cracks and valleys using erosion, and (d) Restoration of holes
using dilation

in shape, false holes, typically caused by small cracks or

grayscale valleys between successive rings, are removed by

using a combination of morphological erosion and dilation

operations on the thresholded result [30]. Figure 4 depicts the

results of the various stages of hole detection.

C. Detection of Cracks

A crack, in a CT image slice, is usually long and thin. A

straightforward grayscale-based binarization of the CT image

results in either fragmentation of the detected cracks or too

many misclassifications of the regions denoting the grayscale

valleys between the annular rings as cracks. Since both, the

grayscale valleys and cracks are narrow and long, the grayscale

density-based binarization technique (equation (1)) is not able

to separate them. However, cracks are typically perpendicular

to the grayscale valleys and the local direction of a grayscale

valley can be estimated by approximating the grayscale valleys

by concentric circles centered at the centroid of the log cross-

section. This property is exploited in the crack detection

scheme.

The crack detection scheme is summarized as follows.

The local linear structures resulting from cracks and valleys

are first detected using Sobel-like edge operators and then

skeletonized using an edge thinning algorithm [10] as depicted

in Figure 5(a). The points of intersection between the lines

defining the cracks and the lines defining the local structure

of the valleys are represented as fork points within a local

window (Figure 5(b)). Fork points that are distributed along

the same crack-like feature are grouped using a greedy cluster-

ing algorithm that exploits spatial connectivity and proximity

(Figure 5(c)). A RANSAC-based line fitting algorithm [11]

is used to determine the line segment characterizing a group

of fork points (Figure 5(d)). Crack-like features which are

observed to be parallel (within a certain angular threshold)

to the local structure of the valleys are deemed to be spurious

and discarded. Given the parameters of the fitted line segment,

(a) (b) (c) (d)

Fig. 5. Result of crack detection: (a) Binary image resulting from the Sobel-
like edge operators and edge thinning, (b) Result of fork detection, (c) Result
of fork grouping, and (d) Result of the RANSAC-based line fitting procedure

the actual crack pixels are determined using an iterative depth-

first search procedure detailed in [3].

V. 3-D DEFECT RECONSTRUCTION USING THE KALMAN

FILTER

Since internal log defects are observed to exhibit spatial

coherence across several successive CT image slices, it is

possible to design computationally efficient algorithms for the

detection of knots, holes and cracks that take advantage of

the defect attribute values predicted by the Kalman filter [18].

Since knots, holes and cracks exhibit very different geometri-

cal attributes in a 2-D image slice, different Kalman filtering

models are proposed for each defect class. In addition, the

outer boundary of the log cross-section is also detected and

tracked across successive CT image slices in order to virtually

reconstruct the entire log in 3-D space. The result is an

integrated and computationally efficient defect extraction and

3-D defect reconstruction procedure that precludes the need to

perform correspondence analysis independently for each pair

of successive image slices.

A. 3-D Reconstruction of Knots and the Exterior Log Surface

The knots and the outer boundary of the log cross-section

in a single CT image slice are simply encoded by using the

positions of their centroids and enumerating the pixels on

their respective bounding contours. However, the raw contour

pixels are not used directly as the tracked/predicted variables

in the Kalman filter model since the number of contour

pixels varies significantly from one CT image slice to the

next and it is computationally inefficient to use too many

tracked/predicted variables in the Kalman filter. Thus, for the

purpose of tracking, a knot defect or the exterior log boundary

in a single CT slice is encoded by its convex hull. The convex

hull is defined by a small number of points and computed using

Graham’s algorithm [14]. A B-spline contour approximation

algorithm [12] is then used to determine the control points of

the convex hull. The control points are used as the tracking

parameters in the Kalman filtering model. The Kalman filtering

model for the reconstruction of knots is depicted in Figure 6

and is described as follows.

1) Initially, a knot defect area is detected in a single CT

image as described in Section IV-A.

2) The contour of the knot defect is extracted and its convex

hull computed using Graham’s algorithm [14]. M B-

spline control points are then used to approximate the

convex hull.
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Fig. 6. An outline of the Kalman–Snakes based tracking method

3) The Kalman filter is applied to predict the velocity of the

knot defect, where the term velocity denotes the rate at

which the shape of the knot changes across successive

CT image slices. Let dx and dy denote the velocity

components along the x axis and y axis respectively. Let

s denote the scale parameter in the time interval [t, t+1]
such that s = 0 denotes the fact that the object size is

unchanged in the time interval [t, t + 1], s > 0 denotes

that the object size has increased and s < 0 denotes that

the object size has shrunk in the same time interval. If

at time t, the centroid of the convex hull is given by

(cx, cy), and the velocity by (dx, dy, s), then for a point

(x, y) on the convex hull at time t, its position (x′, y′)
at time t + 1 can be computed using equation (3).

x′ = x + dx + s(x − cx)
y′ = y + dy + s(y − cy)

(3)

4) The predicted velocity (dx, dy, s) is used to estimate

the new position of the predicted convex contour using

equation (3). The updated convex contour is obtained

by using the predicted convex contour to initialize the

Snakes contour fitting algorithm [19]. The Snakes con-

tour fitting algorithm is used to search for the actual

boundary of the knot in the new CT image slice.

5) Steps 2, 3 and 4 are repeated until all the CT image

slices are processed or the defect is too small in size to

be classified as a knot.

Since the above algorithm uses a combination of Kalman

filter-based prediction and Snakes contour fitting, it is termed

as the Kalman–Snakes algorithm [35]. The Kalman–Snakes

algorithm for reconstruction of the exterior log surface is

similar, except for some differences in how the convex hull

points are generated. The detailed algorithms for convex hull

generation, B-spline surface approximation and Kalman filter-

based prediction are given in [4].

B. 3-D Construction of Holes and Cracks

The Kalman filter-based model for 3-D reconstruction of

cracks and holes is given by the following equations:

ξ̂−k+1 = ξ̂+
k + qk (4)

Zk = ξ̂−k + vk (5)

where ξ̂ is the tracking variable, Zk the measured value of the

tracking variable, qk the random additive noise in the velocity

transition function which is modeled as zero-mean stationary

Gaussian white noise with distribution N (0, Q0) and vk the

random additive noise in the velocity measurement function

which is also modeled as zero-mean stationary Gaussian white

noise with distribution N (0, R0).
The contour of a hole is encoded by its bounding rectangle.

The velocity of the center point of the rectangle is used

as the tracking variable (ξ = (ξx, ξy)T ) for holes. Given a

prediction ξ̂−k+1, the new center point of the hole is computed.

A rectangular image region centered on the predicted center

point is then subject to binarization using equation (2) and

the new location of the hole is obtained exactly using the

technique for hole detection in a single CT image slice. Thus,

the 3-D reconstruction of a hole is achieved by tracking the

hole region across successive CT image slices.

For continuous crack detection, the CT images are first

binarized using the scheme described in [3]. A crack defect is

represented by the parameters (ρ, θ, x0, y0, l) where (x0, y0) is

the crack center and l the length of the line segment describing

the crack. The equation of the line describing the crack is given

by x cos θ + y sin θ = ρ where θ is the orientation angle of

the line and ρ the perpendicular distance of the line from the

origin. The orientation angle θ is used as the tracking variable

ξ in the Kalman filter-based tracking model for a crack. After

a crack is detected and extracted in the previous CT image

slices, its orientation angle in succeeding CT image slices is

predicted using equation (4). A fast crack localization scheme

detailed in [4] is used to extract the crack in succeeding CT

image slices using the predicted orientation.

Note that in the above Kalman filter-based tracking ap-

proach, it is not necessary to perform all the steps involved

in defect detection and localization in subsequent CT image

slices once they have been performed for the first CT image

slice in the image sequence. The defects that are detected

and localized are removed from further consideration. The

procedures for defect detection and localization in a single

CT image slice (i.e., without defect tracking) are applied to

the remainder of the image to search for new defects.

C. Removal of False Defects and Insertion of Missing Defects

Spatial coherence is exploited to remove false defects and

account for missing defects in the CT image slices. If a defect

is detected in only one CT image slice, and no corresponding

defect is detected in k previous or k succeeding CT image

slices, where k is a predetermined threshold (in our case k =
2), then the defect is deemed to have been caused by random

noise and is removed from further consideration. Likewise,

when the size of a defect is small, it is possible that it is not

detected in a single CT image slice. If a defect is detected

in CT image slices i − 1 and i + 1 but not in CT image

slice i, then it is necessary to verify whether or not the defect
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Fig. 7. A typical lumber production system

exists in CT image slice i. The approximate position of the

defect in CT image slice i is computed via linear interpolation

between its positions in CT image slices i − 1 and i + 1.

The existence of the defect at the interpolated position in the

CT image slice is verified by using the defect detection and

localization procedure for a single CT image slice (i.e., without

tracking) but with relaxed threshold values.

VI. MATHEMATICAL MODELS FOR LUMBER PRODUCTION

OPTIMIZATION

Lumber production is essentially a decomposition process

where the log is broken down to yield the desired lumber

products. Given a 3-D model of the log, different sawing

schemes can be used to decompose the log. Live sawing, cant

sawing and grade sawing are primary sawing schemes [16]

used to cut a log into flitches along sawing planes parallel

to the axis of the 3-D cylindrical abstraction (i.e., the Z axis

in our case) of the log (Figure 7). Secondary sawing [16] is

used to further refine the flitches into higher quality boards

(Figure 7). Given a board or a flitch, an automated grading

system is used to determine its value based on the grading rules

stipulated by the National Hardwood Lumber Association

(NHLA) [22]. The grading system determines the value of

a flitch or board by classifying it into different grades based

on its quality which is determined by the type and size of

defects that appear on the flitch or board surface. The size of

the clear cutting (i.e., defect-free) areas and the size of the

surface defects are two important factors that determine the

grade of a flitch or board. The three dimensions of a board or

flitch are termed as its length, width and thickness as illustrated

in Figure 7. The goal of a computer-aided lumber production

planning system is to determine the optimal sawing pattern in

an appropriately chosen parameter space such that the value of

the lumber products obtained from the log is maximized [31],

[32].

A. Live Sawing

Consider a 3-D coordinate system associated with the 3-

D cylindrical abstraction of a log such that the axis of the

cylinder is parallel to the Z axis and the log cross-sections

lie in the XY plane. Live sawing is a straightforward sawing

method where, for a given initial orientation of the saw in the

Fig. 8. Cutting range and sawing planes for live sawing

XY plane, the log is cut into flitches using sawing planes that

parallel to each other and parallel to the Z axis. Different

initial orientations of the saw in the XY plane result in

different values for the resulting lumber products. The goal in

formulating an optimal live sawing strategy is to determine the

best initial saw orientation in the XY plane and the optimal

spacings between the mutually parallel sawing planes so as

to maximize the value of the resulting lumber products. In

the context of this paper, the term lumber or lumber product

denotes resulting flitches or boards depending on whether

the sawing technique under discussion is a primary sawing

technique or a secondary sawing technique respectively.

1) Formalization of Live Sawing: The variables used in the

formalization of live sawing are defined below and illustrated

in Figure 8. Figure 8 shows the projection of a cylindrical

log on the XY plane. The outer (almost) elliptical boundary

denotes the projection of the larger cross-sectional end of the

log on the XY plane whereas the inner (almost) elliptical

boundary denotes the projection of smaller cross-sectional end

of the log on the XY plane. Thus the log is modeled as a

cylinder with a monotonically tapering cross-section from one

end to the other. Note that this subsumes the special case of

a cylinder with uniform cross-section.

• T = {T1, T2, ..., Tt}: a finite set of allowable lumber

thickness values in mm.

• tmin: the minimum of the elements in T .

• W = {W1, W2, ...,Ww}: a finite set of lumber width

values in mm.

• wmin: the minimum of the elements in W .

• c: cutting plane resolution (smallest separation between

two successive sawing planes) in mm.

• K: the kerf of the sawing planes in mm. The kerf denotes

the finite thickness of the saw.

• CR: the cutting range in mm.

• N = ⌊CR/c⌋ the number of possible sawing planes that

can be accommodated within the sawing range.

• θ: The initial orientation of the sawing plane as measured

in the XY plane (Figure 10). The value of θ ∈ [0o, 180o).

It is assumed that the allowable lumber thickness values Ti

and the sawing plane resolution c are integers. The sawing

range and other important parameters of the sawing surface in

the context of live sawing are computed as follows:



TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

Determination of the Cutting Range: Given the initial

orientation θ of the sawing plane, the cutting range for a log is

first determined. Note that a valid piece of lumber must have a

minimum width of wmin. Thus the cutting range is determined

by searching for the start and end locations of the sawing

plane that results in a piece of lumber with valid width. Since

the outer boundary of the smaller cross-sectional end of the

log is known, the cutting range for a given initial orientation

θ of the sawing plane is determined by scanning from the

cross-sectional boundary towards the cross-sectional centroid

from two opposite ends as illustrated in Figure 8. A pair of

sawing planes within this range produces a piece of lumber

with a valid width value and prespecified thickness value. To

simplify the analysis, it is assumed that the possible positions

of the sawing plane are discrete in steps of c mm (Figure 8).

The value of c is assumed to be an integer and a reasonable

value for c is 1 mm. N = ⌊CR/c⌋ represents the number of

possible sawing planes that can be accommodated within the

cutting range. The possible cutting planes are enumerated as

1, 2, ..., N . It can be shown that the first sawing plane must

be one of sawing planes between 1 and ⌈tmin/c⌉, whereas

the last sawing plane must be one of sawing planes between

N − ⌈tmin/c⌉ and N .
Cutting surface: For a given sawing plane, the appearance

of the resulting lumber surface (determined by the sizes and

distribution of the surface defects) determines the quality and

price of the resulting lumber product. The lumber surface

data needed to evaluate the appearance of the lumber surface

include the types, boundaries and sizes of the surface defects

and the outer log boundary.
Mathematical model for optimal live sawing: Inputs to

the optimal live sawing determination algorithm include the

sawing orientation θ, T , W , various lumber price factors, and

the log data which includes the types, sizes, positions and

orientations of the internal defects. The mathematical model

for optimal live sawing can be simply represented by the

objective function:

Flive(log) = (Θ∗(log), S∗(Θ∗), V (S∗)) (6)

where Θ∗(log) is the optimal sawing orientation for a given

log, S∗(Θ∗) is the optimal sawing pattern (determined by the

locations of the sawing planes) corresponding to the optimal

sawing orientation Θ∗(log) and V (S∗) is the maximum value

of the lumber boards resulting from the optimal sawing

pattern S∗(Θ∗) associated with the optimal sawing orientation

Θ∗(log).
For a given value of θ, the cutting range CR(θ) can be

determined as discussed earlier. Let C(θ) = {1, 2, ..., N} be a

finite set of all possible positions of the sawing planes. S∗(θ) is

the optimal sawing pattern for the given sawing orientation θ.

V (S(θ)) is the value of the resulting lumber (obtained using an

automated lumber grading algorithm) for a given the sawing

pattern S(θ). A sawing pattern S(θ) = {s0, s1, ..., sn} is a

subset of C(θ) that satisfies the following constraints:

(si − si−1 − ⌈K/c⌉) · c ∈ T, for 1 ≤ i ≤ n (7)

1 ≤ s0 ≤ ⌈tmin/c⌉ (8)

Fig. 9. A feasible solution for live sawing

N − ⌊tmin/c⌋ ≤ sn ≤ N (9)

A sawing pattern S(θ) that satisfies constraints (7)–(9) is a

deemed to be a feasible sawing pattern for the log (Figure 9).

Suppose the lumber generated by the sawing planes si−1

and si is of value vi. Let v = (v1, v2, ..., vn) be an n-

vector describing the values of the lumber pieces generated

by the sequence of sawing planes S(θ) = {s0, s1, . . . , sn}.

For S(θ) ⊂ C(θ), define V (S(θ)) =
∑

j∈S(θ) vj to be the

total lumber value associated with the sawing pattern S(θ).
In practical situations, constraint (7) is relaxed since forcing

a lumber surface containing lots of defects into the final

lumber product may result in lowering its overall value. Thus

constraint (7) is relaxed to the following pair of constraints:

(si − si−1 − ⌈K/c⌉) · c ∈ T, for 1 ≤ i ≤ n (10)

or

(si − si−1 − ⌈K/c⌉) · c < tmin (11)

Thus, when constraint (11) is satisfied, a portion of the lumber

between sawing surfaces si−1 and si is omitted from the final

lumber product without lowering its value. Suppose ζ(θ) is

a collection of subsets of C(θ), wherein each subset satisfies

the sawing constraints (8) and (9) and, either constraint (10) or

constraint (11). Then the problem of determining the optimal

sawing pattern is one of combinatorial optimization given by:

S∗(θ) = arg(max {v(S(θ)) : S(θ) ∈ ζ(θ)}) (12)

This combinatorial optimization problem can be easily solved

using a dynamic programming algorithm [9].

The Dynamic Programming Algorithm: Function s∗(i) is

defined as the optimal sawing pattern for the portion of the log

between sawing planes 1 and i and v∗(i) is the corresponding

optimal value of the lumber produced. Let g(i, j) be the value

of the lumber by the sawing planes i through j. It is obvious

that v∗(i) ≥ v∗(i− 1) and v∗(k) = 0, s∗(k) = Φ (where Φ is

the empty set) for all k < tmin/c. When the values of v∗(k)
and s∗(k) for all k ≤ i are known, then

v∗(i + 1) = max
j∈[0,t]

( (v∗(i + 1 − Tj/c − ⌈K/c⌉)

+ g(i + 1 − Tj/c, i + 1))) (13)
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where ⌈K/c⌉, the kerf size, is the minimum gap between

two sawing surfaces. Note that T0 = 0 when j = 0.

This means that when j = 0, then the additional piece of

lumber defined by the sawing surfaces (i, i + 1) does not

increase the maximum value of the overall generated lumber

at point i + 1. Thus this piece of lumber is simply ignored,

but may be reconsidered at a later point in the optimization

process. The relaxation of constraint (7) to constraint (10) or

constraint (11) makes it possible to discard some portion of

the lumber that contains too many defects. Equation (13) in

conjunction with constraints (8), (9) and either constraint (10)

or constraint (11) results in the standard dynamic programming

algorithm. Suppose j∗ results in the optimal value of v∗(i+1),
then

s∗(i+1) = s∗(i+1−Tj∗/c−K/c∗)∪{i+1−Tj∗/c∗} (14)

In summary, the dynamic programming algorithm first

generates the initial values v∗(k) for k ≤ Tmin/c where

v∗(k) = 0, s∗(k) = Φ for k < Tmin/c and v∗(k) =
g(1, k),s∗(k) = {k} for k = Tmin/c. Thereafter for each

i > Tmin/c, equations (13) and (14) are used iteratively to

update v∗(i) and s∗(i) for all values of i. Finally, s∗(N) and

v∗(N) correspond to S∗(θ) and V (S∗(θ)) in the objective

function Flive for a given value of the sawing orientation θ.

2) Live Sawing Algorithm: In the previous section, a dy-

namic programming algorithm was designed to determine

S∗(θ) and V ∗(θ) for a given value of the sawing orientation

θ. However, to optimize the objective function Flive(log), the

optimal sawing orientation Θ∗ also needs to be determined. A

reasonable heuristic would be to examine the major axes of all

the various internal log defects and if the internal defects are

observed to share a common major axis (within a prespecified

error threshold) then the sawing orientation is chosen to be

along the common major axis (Figure 10(a)). This heuristic

tends to cluster the surface defects on a few lumber surfaces.

Alternatively, one can perform an exhaustive search for Θ∗ in

[0, 180) in discrete steps where the step size is determined by

the angular resolution of the saw (typically 2◦ or 4◦) as shown

in Figure 10(b).

The exhaustive search method to optimize the objective

function, Flive(log) = (Θ∗(log), S∗(Θ∗), V (S∗)) can be

summarized as:

1) For each sawing orientation θ ∈ [0, 180)

a) Determine the cutting range CR. Let N =
⌊CR/c⌋.

b) Run the dynamic programming algorithm to deter-

mine and output the optimal sawing pattern S∗(θ)
and the corresponding lumber value V (S∗)

2) Determine the optimal sawing orientation Θ∗ such that

V (S∗(Θ∗)) is maximized. Output Θ∗, S∗(Θ∗) and

V (S∗).

In order to determine the computational complexity of the

exhaustive search algorithm, we define tcr to be the time taken

to compute the cutting range CR, tcs to be the time taken to

construct a cutting surface, tg to be the time taken to determine

g(i, j) for each pair (i, j). At each step i, g(i, j) needs to be

computed |T | times where |T | is the cardinality of set T and

(a) heuristic

(b) exhaustive

Fig. 10. Sawing orientation selection

there are N steps in all. Therefore, for each value of the sawing

orientation θ, the execution time is given by

Time(S∗(θ)) = tcr + N × tcs + N × |T | × tg (15)

in which, (.) denotes the average, because in practice N
varies with the angular orientation θ, and tg also varies for

different (i, j) values in g(i, j). We define the parameter

tsg = tcs + |T | × tg . Thus the expression for Time(S∗(θ))
can be simplified as Time(S∗(θ)) = tcr + N × tsg . We can

see that for a given sawing orientation, the execution time is

roughly proportional to the cutting range. This confirms our

intuition that the larger the log diameter, the longer it takes to

determine the resulting lumber value.

In the case of exhaustive search, the total number of angular

orientations explored is n = R/δθ, where δθ is the search

resolution for the sawing orientation. R is the search range

for the sawing orientation and is 180◦. The execution time for

the exhaustive search is given by:

Time(Flive(log)) = R/δθ · (tcr + N × tsg) (16)

Instead of exhaustively searching the entire range of sawing

orientations with a fixed angular resolution, one can perform

a coarse-to-fine search by initially searching the entire range

of sawing orientations at coarse angular resolution and subse-

quently narrowing down the search range while simultaneously

increasing the angular resolution (decreasing ∆).

Consider a class of objective functions given by:

F ∗(ζ) = max
ζ∈R

(F (ζ)) (17)

where the goal is to determine the maximum value of F (ζ) and

the corresponding value of ζ. Function F (ζ) is known and R
is a range of ζ and is denoted by [A, B]. The minimum search

resolution δ for the parameter ζ is also known. The exhaustive
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search algorithm, explores all possible values of ζ at a given

resolution and guarantees that the optimal value of F ∗(ζ)
can be determined at that resolution. However, the exhaustive

search algorithm is computationally inefficient. The proposed

two-step coarse-to-fine algorithm is termed as Algorithm 1

and is summarized below:

Algorithm 1

1) Start with an initial angular resolution ∆ (where ∆ > δ),

initial range R = [A, B] (where A = 0◦ and B = 180◦)

and starting centroid c = (A + B)/2.

2) Search for the optimal value F ∗(ζ) and corresponding

ζ∗ for the given values of centroid c, angular resolution

∆ and range R.

3) Set c = ζ∗, R = [ζ∗ − ∆/2, ζ∗ + ∆/2] and ∆ = δ.

Perform step 2) again to determine the optimal value

F ∗(ζ) and the corresponding argument ζ∗ at resolution

δ.

The above two-step coarse-to-fine algorithm runs for R/∆+
∆/δ iterations whereas the exhaustive search algorithm runs

for R/δ iterations in order to determine the optimal value

F ∗(ζ). When ∆ =
√

Rδ, the two-step coarse-to-fine algorithm

runs for 2
√

R/δ iterations. For example, for δ = 2 and

∆ = 16 the two-step coarse-to-fine live sawing algorithm takes

19 iterations whereas the exhaustive search algorithm takes 90
iterations. The two-step coarse-to-fine algorithm could result

in a suboptimal result since not all possible values of the

objective function F are examined. However, our experimental

results (Section VII) show that the value of F obtained using

the two-step coarse-to-fine algorithm is nevertheless close to

the optimal value.

The computation time for optimal live sawing using Algo-

rithm 1 for a given log is:

Time(Flive(log)) = 2
√

R/δθ · (tcr + N × tsg) (18)

whereas the computation time for optimal live sawing using

exhaustive search is:

Time(Flive(log)) = R/δθ · (tcr + N × tsg) (19)

B. Cant Sawing

The cant sawing algorithm is based on live sawing. Cant

sawing breaks a log into three portions along the initial sawing

orientation (Figure 11). Portions 1 and 3, at the extremities of

the log cross-section, are subject to live sawing along the initial

sawing orientation whereas portion 2 in the center of the log

cross-section is subject to live sawing with the sawing planes

orthogonal to the initial sawing orientation. Thus, in addition

to determining the best initial sawing orientation, the optimal

positions of the two breakdown planes, denoted by l1 and l2
in Figure 11 also need to be determined in order to arrive at

the optimal cant sawing strategy.

The objective function for cant sawing can be expressed as:

Fcant(log) = (Θ∗(log), L∗

1(Θ
∗), L∗

2(L
∗

1), V (L∗

1, L
∗

2),

S∗

1 (L∗

1), S
∗

2 (L∗

1, L
∗

2), S
∗

3 (L∗

2)) (20)

That is, in the case of cant sawing, the objective is to (a)

determine the optimal sawing orientation Θ∗, (b) determine the

Fig. 11. Cant Sawing

locations of the sawing planes L∗

1 and L∗

2 for this orientation,

and (c) determine the corresponding optimal lumber value

V (L∗

1, L
∗

2) and the corresponding sawing patterns S∗

1 (L∗

1),
S∗

2 (L∗

1, L
∗

2), and S∗

3 (L∗

2) for portions 1, 2 and 3 of the log

respectively (Figure 11). Note that for a given value of L1, an

optimal value for L2 can be determined; thus L2 is directly

dependent on L1.

As in the case of live sawing, given a sawing orientation

θ, the cutting range CR and the maximum number of sawing

planes N = ⌊CR/c⌋ can be determined. The variables l1 and

l2 are used to define the locations of the sawing planes L1 and

L2 respectively where 0 ≤ l1 < l2 < N (Figure 11). When

values of l1 and l2 are determined, the optimal processing of

portions 1, 2 and 3 can be determined using the optimal live

sawing algorithm described earlier (Figure 11). The optimal

live sawing algorithm is applied to portions 1, 2 and 3 of

the log with sawing orientations θ, 90− θ and θ respectively.

Note that for portions 1 and 3 of the log, it is not necessary to

compute the cutting range CR, since N1 = l1 and N3 = N−l2
respectively. However, for portion 2, each parameter needs to

be recomputed.

For a given log, an exhaustive search algorithm can be used

to determine the optimal values for θ, l1 and l2 as follows:

1) For each cutting orientation θ ∈ [0, 180)

a) Determine the cutting range CR and N = ⌊CR/c⌋
b) For each l1 ∈ [0, N)

i) Run the dynamic programming algorithm on

portion 1 and determine V ∗

1 (l1), S∗

1 (l1).
ii) For each value of l2 ≥ (l1 +2K/c+Wmin/c).

A) Run the dynamic programming algorithm

on portion 3 and determine V ∗

3 (l2), S∗

3 (l2).
B) Determine the cutting range CR2 for por-

tion 2 and the corresponding value of N2.

C) Run the dynamic programming algorithm

on portion 2 and determine V ∗

2 (l1, l2),
S∗

2 (l1, l2).

iii) Determine the optimal value l∗2 , such that

V ∗

2 (l1, l
∗

2) + V ∗

3 (l∗2) is maximized. Output

V ∗

2 (l1, l
∗

2), S∗

2 (l1, l
∗

2) and V3 ∗ (l∗2), S∗

3 (l∗2).

c) Determine the optimal value l∗1 such that V ∗

1 (l∗1)+
V ∗

2 (l1, l2) + V ∗

3 (l2) is maximized. Output V ∗

1 (l∗1),
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S∗

1 (l∗1), V ∗

2 (l∗1, l
∗

2), S∗

2 (l∗1, l
∗

2) and V ∗

3 (l∗2), S∗

3 (l∗2).

2) Determine the optimal cutting orientation θ∗, such that,

L∗

1 = L∗

1(θ
∗) and V ∗

1 (l∗1) + V ∗

2 (l1, l2) + V ∗

3 (l2) is

maximized. Output θ∗, L∗

1(θ
∗), L∗

2(L
∗

1), V ∗

1 (l∗1), S∗

1 (l∗1),
V ∗

2 (l∗1, l
∗

2), S∗

2 (l∗1, l
∗

2) and V ∗

3 (l∗2), S∗

3 (l∗2).

Note that l2 = l1 + 2K/c + Wmin/c, because the width of

portion 2 of the log must be greater than Wmin. However

we allow a special instance of cant sawing where l1 = l2
(i.e., portion 2 is nonexistent); in which case cant sawing is

equivalent to live sawing.

When θ is known, s∗(l1), v∗(l1) and s∗(l2), v∗(l2) can be

precomputed using the dynamic programming algorithm and

stored for all possible values of l1 and l2. In this case, step

i) and step A) in the above algorithm need not be performed

at each iteration. However in the case of portion 2, for each

pair (l1, l2), S∗

2 (l1, l2) and V ∗

2 (l1, l2) needs to be recomputed.

Given a pair (l1, l2), the time to compute the optimal sawing

pattern and resulting lumber value for portion 2 is given by:

T (S∗(l1, l2)) = tcr + N2 · tsg . The total computation time

needed to determine s∗1(l1) and s∗3(l2) for all l1 and l2 is

simply given by Time(S∗

1 (N)) + Time(S∗

3 (N)) = tcr + N ·
tsg . The total number of pairs (l1, l2) is given by (N/δl)

2/2.

In addition, if we let N2 = N , then the total computation

time for determination of optimal cant sawing for a specified

orientation is given by

Time(L∗(θ)) = ((N/δl)/2 + 1)(tcr + N · tsg) (21)

The total time taken to compute the optimal cant sawing pat-

tern using exhaustive search for determination of the optimal

sawing orientation is given by

Time(Fcant(log)) = ((N/δl)
2/2 + 1) ·R/δθ · (tcr + N · tsg)

(22)

If the two-step coarse-to-fine strategy described in Algorithm

1 is used to compute the optimal positions of sawing planes

L1 and L2 and the optimal sawing orientation, then the total

time taken to compute the optimal cant sawing pattern is given

by:

Time(Fcant(log)) = (2(N/δl)+1) ·2
√

R/δθ · (tcr +N · tsg)
(23)

C. Grade Sawing

In the case of grade sawing, for a given sawing orientation

θ, a sawing plane (denoted by l1 in Figure 12) along the same

orientation is chosen to divide the log into two portions. Live

sawing is performed along sawing orientation θ on portion 1

of the log. For portion 2, a new sawing plane (denoted by l2
in Figure 12) with orientation orthogonal to θ is chosen to

further divide the log into two portions (portions 21 and 22)

as illustrated in Figure 12. Live sawing with orientations θ and

90−θ is then performed on the portions 21 and 22 respectively.

Therefore, given the sawing orientation, the objective func-

tion is given by Fgrade(log) = (Θ∗(log), L∗

1(Θ
∗), L∗

2(L
∗

1),
V (L∗

1, L
∗

2), S∗

1 (L∗

1), S∗

21(L
∗

1, L
∗

2), S∗

22(L
∗

1, L
∗

2)). Thus, in the

case of grade sawing, the objective is to (a) determine the

optimal sawing orientation Θ∗, (b) determine the locations of

Fig. 12. Grade Sawing

the sawing planes L∗

1 and L∗

2 for this orientation, and (c) deter-

mine the corresponding optimal lumber value V (L∗

1, L
∗

2) and

the corresponding sawing patterns S∗

1 (L∗

1), S∗

21(L
∗

1, L
∗

2), and

S∗

22(L
∗

1, L
∗

2) for portions 1, 21 and 22 of the log respectively

(Figure 12). As in the case of cant sawing, for a given value

of L1, an optimal value for L2 can be determined; thus L2 is

directly dependent on L1.

The following algorithm is used to optimize the objective

function Fgrade(log):

1) For each θ ∈ [0, 180) and for a given resolution δθ.

a) Determine the cutting range CR1 and set N1 =
⌊CR1/c⌋.

b) For each l1 ∈ [0, N1)

i) Run the dynamic programming algorithm on

portion 1 of the log and output V ∗

1 (l1), S∗

1 (l1).
ii) Determine the cutting range CR21 for portion

21 of the log, and set N21 = ⌊CR21/c⌋
iii) For each l2 < N21

A) Run the dynamic programming algorithm

on portion 21 of the log and output

V ∗

21(l1, l2), S∗

21(l1, l2).
B) Decide the cutting range CR22 for portion

22 of the log and set N22 = ⌊CR22/c⌋.

C) Run the dynamic programming algorithm

for portion 22 of the log and output

V ∗

22(l1, l2), S∗

22(l1, l2).

iv) Decide the optimal l∗2 , such that V ∗

21(l1, l
∗

2) +
V ∗

22(l1, l
∗

2) is maximized. Output V ∗

21(l1, l
∗

2),
S∗

21(l1, l
∗

2) and V22 ∗ (l1, l
∗

2), S∗

22(l1, l
∗

2).

c) Decide the optimal l∗1 such that V ∗

1 (l∗1) +
V ∗

21(l
∗

1, l
∗

2) + V ∗

22(l
∗

1, l
∗

2) is maximized. Output

V ∗

1 (l∗1), S∗

1 (l∗1), V ∗

21(l
∗

1, l
∗

2), S∗

21(l
∗

1, l
∗

2), V ∗

22(l
∗

1, l
∗

2),
S∗

22(l
∗

1, l
∗

2).

2) Determine the optimal sawing orientation θ∗ such

that V ∗

1 (l∗1) + V ∗

21(l
∗

1, l
∗

2) + V ∗

22(l
∗

1, l
∗

2) is maximized.

Output θ∗, l∗1(θ
∗), l∗2(l

∗

1), V ∗

1 (l∗1), S∗

1 (l∗1), V ∗

21(l
∗

1, l
∗

2),
S∗

21(l
∗

1, l
∗

2), V ∗

22(l
∗

1, l
∗

2), S∗

22(l
∗

1, l
∗

2).

Note that the dynamic programming algorithm in step i) does

not have to be performed for each value of l1. The s∗(l1) and

v∗(l1) values can be precomputed for each sawing orientation

and for each l1 value. Similarly, the dynamic programming
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algorithm in step C) does not have to be performed for each

value of l2, given a value of l1. However, for portion 21 of the

log, all possible pairs of (l1, l2) values have to be considered.

For portion 1 of the log, the computation time is tcr +N1 ·tsg ,

For portion 21 of the log, there are N1/δl possible values for

l1, therefore, the computation time is N1/δl · (tcr +N21 · tsg).
For portion 22 of the log, there are N1/δl × N2/δ1 possible

values for (l1, l2) so the computation time is N1/δl ×N2/δ1 ·
(tcr + N22 · tsg). If we let N1 = N2 = N21 = N22 = N then

the total computation time for determination of optimal grade

sawing is

Time(Fgrade(log)) = (1+N/δl+(N/δl)
2)·R/δθ·(tcr+N ·tsg)

(24)

If the two-step coarse-to-fine strategy outlined in Algorithm

1 is used to determine the optimal sawing plane positions

l1 and l2 and the optimal sawing orientation, then the total

computation time for determination of optimal grade sawing

is given by Time(Fgrade(log)) = (4(N/δl)+ 2
√

N/δl +1) ·
2
√

R/δθ · (tcr + N · tsg).

D. Secondary Sawing

In primary sawing (i.e., live sawing, cant sawing, grade

sawing) slabs of wood termed as flitches are produced. These

flitches are further processed to produce edged (cut length-

wise) and trimmed (cut widthwise) pieces termed as boards

(Figure 7). This procedure is called secondary sawing. The

purpose of secondary sawing is to produce higher quality

board products from flitches.

The parameters used in secondary sawing are the same as

those used in primary sawing. The viewing angle for the flitch

is perpendicular to the surface of the lumber. The orientation of

the sawing plane is fixed and is either parallel or perpendicular

to the Z axis as illustrated in Figure 7. In primary sawing, the

constraints are primarily imposed on the lumber thickness T .

In the case of secondary sawing, the constraints are imposed

on the board width W and length L.

There is no concept of cutting range in the case of sec-

ondary sawing. A flitch of width Wf , for a given sawing

resolution c, is divided into N = ⌊Wf/c⌋ sawing planes. The

objective function for secondary sawing is Fsecond(flitch) =
(S∗(flitch), V (S∗)), that is, given a flitch, determine the

optimal sawing pattern S∗ and corresponding maximum value

V (S∗). Note that there is no dependence on the sawing ori-

entation which is fixed (unlike primary sawing). The dynamic

programming procedure to optimize Fsecond(flitch) can be

stated as follows:

Let s∗(i) to be the optimal sawing pattern for sawing plane

positions from 1 to i for the given flitch and v∗(i) to be the

corresponding value. If v∗(k) and s∗(k) for all k ≤ i are

known, then

v∗(i + 1) = max
j∈[0,W ]

( v∗(i + 1 − ⌈Wj/c⌉ − ⌈K/c⌉)

+g(i + 1 − ⌈Wj/c⌉, i + 1)) (25)

where W = {W1, W2, . . . ,Wn} is the allowed set of width

values and g(i, j) is value of the portion of the board between

sawing planes i and j. As in the case of live sawing, ⌈K/c⌉ is

the kerf size which determines the minimum gap between two

boards. Note that the width Wj is used instead of the thickness

Tj as in the case of primary sawing. As in the case of live

sawing, the constraints on the sawing pattern S are relaxed i.e.,

j can be 0 in which case W0 = 0. This means that if j∗ = 0,

then the additional portion (i, i + 1) would not increase the

maximum value of the log at point i + 1. This portion could

be currently ignored, but could also be reconsidered at a later

point. The above constraint relaxation makes it possible to

discard some portion(s) of the flitch that contain(s) too many

defects.

If j∗ results in the best value v∗(i + 1) then

s∗(i+1) = s∗(i+1−W ∗

j /c−⌈K/c⌉)∪{i+1−W ∗

j /c} (26)

Equation (26) defines a dynamic programming algorithm.

The outputs s∗(N) and v∗(N) of the dynamic programming

algorithm are the optimal sawing pattern S∗(log) and the

corresponding value V (S∗) respectively.

In secondary sawing, there is no need to generate the

lumber surface for a sawing plane as in the case of primary

sawing; it is sufficient to only check the appearance of defects

on the top and bottom surface of the board. Therefore, the

time complexity of secondary sawing for a given flitch is:

Time(Fsecond(flitch)) = N × w × tg , in which tg is the

time to determine the value of a given board.

A similar dynamic programming approach can be formu-

lated to generate boards of allowable lengths resulting in a two-

step dynamic programming algorithm. A flitch of width Wf

and length Lf for a given sawing resolution c, is divided into

NW = ⌊Wf/c⌋ horizontal sawing planes and NL = ⌊Lf/c⌋
vertical sawing planes. Let s∗(i, j) to be the optimal sawing

pattern for the horizontal sawing plane positions from 1 to i
and vertical sawing plane positions from 1 to j for the given

flitch, and v∗(i, j) to be the corresponding value. If v∗(k, l)
and s∗(k, l) for all k ≤ i are known, then

v∗(i + 1, j + 1) = maxk∈[0,W ](maxl∈[0,L](

(v∗(i + 1 − ⌈Wk/c⌉ − ⌈K/c⌉,
j + 1 − ⌈Ll/c⌉ − ⌈K/c⌉)
+g(i + 1 − ⌈Wj/c⌉, i + 1,

j + 1 − ⌈Ll/c⌉, j + 1)))) (27)

where L = {L1, L2, . . . , Ln} is the set of allowable

lengths and g(i, j, k, l) is the value of the lumber between

the horizontal sawing planes (i, j) and vertical sawing planes

(k, l).

E. Lumber Grading

Given a flitch or a board, a well-defined and systematic

grading system is essential to determine its value. An auto-

mated grading subsystem is a critical component of an overall

automated lumber production planning system. The grading

process is that of classification of a board or flitch into one

of various grades based on its size and defect content and

computation of its price based on the assigned grade and its

surface area. The most commonly used hardwood grading
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rules are the ones promulgated by the National Hardwood

Lumber Association (NHLA) [22]. In practice, manual lumber

grading via application of the various NHLA rules is a

complicated process. Consequently, lumber companies usually

hire trained professional lumber graders for this important

task. In our automated lumber production planning system, an

automated lumber grading subsystem is implemented based on

compilation of the various NHLA grading rules.

Under the NHLA hardwood grading system, the grade

assigned to a hardwood board or flitch is based on the number

and sizes of clear/sound face cuttings that can be obtained from

a board or flitch. A clear face cutting is a piece that is free of

defects on one side except for minor seasoning checks. The

standard NHLA grades in the order from highest to lowest are

First and Second (FAS), Selects, Number 1 Common, Number

2A and 2B Common, Number 3A Common and Number 3B

Common as shown in Figure 13. For example, FAS grade

lumber is the best suited for high quality furniture, high quality

veneer, interior trim or molding. Some important terminology

pertaining to lumber grading using the NHLA rules is given

as follows.

1) Lumber Grading Terminology:

Surface measure: Surface measure (SM) is the surface area

of a board in square feet and is computed as follows:

SM = width(inches) × integer length(feet) ÷ 12 (28)

In equation (28) the width of the board is measured in inches

(including the fractional portion) whereas the length of the

board is measured in integral feet obtained via truncation of

the actual length in feet. The result is expressed as an integer

obtained via rounding of the product. For example, a flitch of

size 6 7
16 inches × (10feet 9inches), has a surface measure of

SM = (6 7
16 × 10)/12 = 5.36 ≈ 5ft2.

Poor side: One of the two surfaces of a flitch is considered as

the poor side. The poor side of the flitch is the one associated

with a lower grade. If both sides have the same grade, then

the surface with fewer cutting units is deemed the poor side.

Cutting: A rectangular portion of a board or flitch. Different

grades have different requirements on the quality, sizes and

number of the resulting cuttings.

Clear Cutting: A cutting without any visible surface defects.

Sound cutting: A cutting with only certain allowed types of

visible surface defects.

Cutting Unit: Cutting unit (CU) is a unit of measure com-

prising of a 1 inch width and a 1 foot length. The number of

cutting units associated with a cutting is computed as:

CU = [width (inches)+fraction]×[length (feet)+fraction]
(29)

For the sake of clarification consider the example board shown

in Figure 14. The SM of the board is 10(in)× 11(feet)/12 =
9.16 ≈ 9ft2. The number of cuttings is two as indicated by

the two rectangular boxes A and B in Figure 14. Since both

the cuttings are free of defects, they are deemed to be clear

cuttings. The total number of cutting units associated with the

board is computed as: CU = (6.5in×7ft)+(3.5in×9ft) = 77
2) Grading Rules: Different lumber grades have different

requirements with regard to the quality, sizes and number

Fig. 13. Grading Table

Fig. 14. Clear cutting units and grading of a board

of the resulting cuttings as shown in the grading table in

Figure 13. For example, to qualify as grade FAS, a board

must have a width greater than 6 inches, length between 8 feet

and 16 feet. The FAS grade allows a total of at most SM/4
cuttings to be used to determine the total number of clear

cutting units. A cutting must be larger than 4 inches× 5 feet
or 3 inches× 7 feet. The total number of clear cuttings units

must be at least 10/12× (SM ×12). For example, in the case

of the board shown in Figure 14 the required number of clear

CUs is 10/12×9×12 = 90 for the board to be classified as FAS

grade. If the maximum number of clear CUs obtained from

the board is 77, as shown earlier, then this board cannot be

classified as FAS grade. However, it is possible to determine

the optimal locations of the cuttings that would enable the

board to be classified as FAS grade.

To determine the highest possible grade for a board, we

first compute its surface measure (SM) and then the number

of cutting units (CUs). The required number of clear cuttings

is determined using the requirements displayed in Figure 13.

Next, the maximum number of clear cutting units is deter-

mined based on the locations of the defects as described below.

3) A Mathematical Model to Compute Clear Cutting Units:

The width, length and the surface measure SM of a board or

flitch are easily computed. The real difficulty lies in deter-

mining the number and locations of the clear/sound cuttings

since the stipulated requirements on the number and sizes of

the cuttings and the total number of cutting units (CUs) varies

with the grade. Therefore, to classify a board as belonging

to a certain grade, the grading system needs to compute the

number and sizes of the clear/sound cuttings and the total

number of CUs associated with the board and match these

with the stipulated requirements for each grade as tabulated in

the grading table (Figure 13).

Suppose the length and width of the board are L and W
respectively. The image of the board surface is divided into a

L/rl × W/rw grid as shown in Figure 15 where rw and rl
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Fig. 15. The grid image used for determining the clear/sound cuttings

denote the dimensions of each grid cell along the width and

length respectively. The parameters rw and rl thus control

the grid granularity or resolution. A finer grid resolution

increases the computational complexity whereas a coarser grid

resolution decreases the accuracy of the analysis. A grid cell

p in the yth row and xth column is represented as p(x, y).
Grid cell p1(x1, y1) is said to precede cell p2(x2, y2) if one

of the two conditions is satisfied:: (1) y2 > y1; (2) y2 = y1

and x2 > x1. Two cells p1(x1, y1) and p2(x2, y2) where p1

precedes p2, define a rectangle with p1 and p2 as the end points

of its diagonal. A grid cell p(x, y) is deemed to lie within the

rectangle when x1 ≤ x < x2 and y1 ≤ y < y2. Given a

log and the 3D geometry and locations of its internal defects,

the grid cells containing each defect can be determined. To

enhance the computational efficiency of the search for clear

cuttings, the grid image is encoded using run-length codes

along both the x-direction and y-direction in the defect-free

regions.

The mathematical model for determining the optimal num-

ber of clear cuttings is described below. The variables used in

this model are listed as follows.

• Nc: the maximum number of allowable cuttings for a

certain grade. This value is determined using the grading

table.

• S = {(wi, li)}, i = 1, ..., s: the minimum allowable

sizes of the cuttings for a certain grade where the width

and length are expressed in grid units. These values

are obtained from the grading table. Under the NHLA

standard, the value of s is usually small (1 or 2).

• Cu: The minimum number of clear cutting units allowed

for a certain grade. This value is also obtained from the

grading table.

Thus, given a board/flitch surface, the objective is to obtain the

maximum number of clear cutting units under the constraints

of Nc and S. Therefore, the target function is represented as

Fcut = (C∗, CU(C∗)), where C∗ is the set of optimal cuttings

and CU(C∗) is the number of cutting units associated with

C∗. The number of cuttings in C∗ is no larger than Nc. The

size of each cutting in C∗ is no less than that of any element

in S.

A legal set of cuttings of a board is represented as an

array of nonoverlapping rectangles C = {cj(p1, p2)}, 1 ≤
j ≤ c ≤ Nc, where c is the total number of cuttings. For

convenience, let pj
1 represent the first grid cell and pj

2 the

second grid cell that define rectangle cj(p1, p2) (note that

Fig. 16. Sorted legal cuttings

Fig. 17. Cutting graph

(pj
1, p

j
2) defines the diagonal of the rectangle cj). A feasible

solution C to the cuttings determination problem satisfies

the following conditions: (1) Rectangles ci and cj are non-

overlapping for 1 ≤ i, j ≤ c; and (2) Rectangle pi
1 precedes

rectangle pj
1 for 1 ≤ i < j ≤ c.

Given a board/flitch, all the legal cuttings are scanned and

stored in an array C = {cj}. The array C is sorted based on

the coordinates of the first grid cell of each cutting as shown in

Figure 16. A directed graph for array C is then constructed.

The nodes of the graph are cuttings labeled based on their

order in array C. Each node j in the graph is assigned a value

CU(cj) . Two non-overlapping nodes i and j in the graph,

where i < j, are connected by a directed edge eij from node

i to node j. Two dummy nodes 0 and c + 1 are added to the

graph. The value associated with nodes 0 and c + 1 is 0. For

any node j in the graph, where 1 ≤ j ≤ c, there is an edge

from node 0 to node j from node j to node c+1. The resulting

graph is shown in Figure 17 in which there are directed edges

from node 1 to nodes 4, 5, 6, 7 and 8, because cutting 1 in

Figure 16 does not overlap with cuttings 4, 5, 6 and 7.
A path in the above graph is defined as a sequence of nodes

p = 0, i1, i2, ..., ik, c+1, that satisfies the conditions 0 < i1 <
i2 < ... < ik < c+1 and k ≤ Nc. The total number of cutting

units associated with this path is given by

CU(p) =

k
∑

j=1

CU(cij
) (30)

The optimal set of cuttings corresponds to the path p∗

which maximizes CU(p). A dynamic programming algorithm

outlined below is used to find the optimal path p∗:

(1) Initialization: C∗(0) = Φ and CU∗(0) = 0 for node 0

where Φ is the empty set.

(2) For each node i ∈ [1, c + 1], compute

CU∗(i) = CU(i) + max
j∈p(i)

CU(j) (31)

where p(i) is the set of all nodes which have edges to node

i. C∗(i) = C(arg (maxj∈p(i) CU(j))) ∪ {ci}
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Fig. 18. Flow chart of the grading system

(3) C∗ = C∗(c+1) is the optimal set of cuttings and CU∗ =
CU∗(c + 1) is the corresponding optimal number of cutting

units.

If the optimal number of cutting units CU∗ ≥ Cu for a

given grade, then the board/flitch surface can be classified as

belonging to that grade. The classification of a board/flitch sur-

face proceeds from the highest grade FAS to the lowest grade

3B COM. The values of C∗ and CU∗ are computed subject

to the constraints of each grade category and the board/flitch

surface assigned to the highest grade that it qualifies for.

4) Grading system: The flowchart of the overall grading

system is summarized in Figure 18. Given the two surfaces

of a board or flitch, both surfaces are graded. Once the

grades of both surfaces determined, the final grade of the

entire board/flitch is determined. The final grade of the entire

board/flitch is typically the lower of two surface grades. After

the final grade of a board/flitch is determined, the price of the

board/flitch is computed based on a pricing table. The pricing

table typically contains the cost per clear cutting unit for each

grade category.

F. Lumber value determination

In practice, the lumber value is determined by its species

group, its grade, its size (width, thickness and length) and

market demand. The hardwood lumber grade is based on the

appearance of the defects on lumber surfaces and determined

according to the NHLA rules [22]. The effect of the market

demand factor can be typically represented by other factors

related to species, grade, volume and dimensions of the

lumber. Thus the value of a piece of lumber v may be obtained

using the following formula:

v = V PsPgPwPtPl (32)

where V is the lumber volume, Ps, the base price for a unit

volume of a certain lumber species, Pg , the price factor related

to the lumber grade, and Pw, Pt and Pl the price factors related

TABLE I
THE LUMBER VALUE FACTOR: GRADE AND THICKNESS

Grade Pg thickness (mm) Pt

FAS 1100 (5, 10] 0.75
Select 800 (10, 15] 0.8
No1 Common 500 (15, 25] 1
No2 Common 400 (25, 40] 1.1
No3a Common 350 (40,60] 1.05

TABLE II
THE LUMBER VALUE FACTOR: LENGTH AND WIDTH

length (mm) Pl width (mm) Pw

(50,200] 0.7 (50, 100] 0.8
(200, 400] 0.8 (100,150] 0.95
(400, 800] 0.9 (150,250] 1

(800, 1000] 1 (250,350] 1.1
(1000, 1200] 1.05 (350,450] 1.15
(1200, 1400] 1.1

to the lumber width, lumber thickness and lumber length,

respectively.

The pricing model is typically a complex function of several

market conditions. Therefore the pricing model shown above is

just an example to illustrate the procedure for determination of

the optimal sawing strategy. Derivation of an accurate pricing

model is beyond the scope of the paper. Table I and II list

the price factors used in our system for the hardwood species

White Ash. Similar price factor tables can be obtained for

other hardwood species.

VII. EXPERIMENTAL RESULTS

The proposed Kalman filter-based tracking scheme for de-

tection, localization and 3-D reconstruction of internal defects

in hardwood logs from CT image data was subject to ex-

perimental verification and validation. Experiments were con-

ducted on four sets of log data, from three popular hardwood

species found in the United States, namely, White Ash, Red

Oak and Hard Maple, and were labeled as Ash1, Ash2, Maple

and Oak respectively. The cross-sectional CT images of the

hardwood logs were captured using a Toshiba TCT 20AX CT

scanner described in Section III. All the programs were run

on a 2.0 GHz Pentium 4 Xeon workstation with 1.5 GByte

RAM and 1.0 MByte of cache memory.

A. Experimental Results for Defect Detection

Figure 19 shows the results of Kalman filter-based tracking

and contour fitting using Snakes for detection and localization

of knots over a continuous sequence of CT image slices. Like-

wise, Figure 20 shows the results for detection and localization

of cracks and holes over a sequence of CT images. Holes are

represented by their bounding rectangles. Rectangles with the

same color in different image slices correspond to the same

hole. A crack is modeled as a line, but for the sake of clarity

a rectangle is used to mark its locations (Figure 20). A semi-

transparent view of the virtually reconstructed log showing its

internal defects is depicted in Figure 21.

Table III summarizes the defect detection performance of

the proposed scheme for over 224 cross-sectional CT image

slices of hardwood log data Ash1 for each of the three major
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(a) frame 26 (b) frame 28 (c) frame 30 (d) frame 32

(e) frame 34 (f) frame 36 (g) frame 38 (h) frame 40

Fig. 19. Results of Kalman filter-based tracking and Snakes contour fitting
for detection, localization and 3-D reconstruction of knots

(a) frame 1 (b) frame 2 (c) frame 3

(d) frame 4 (e) frame 5 (f) frame 6

Fig. 20. Results of Kalman filter-based tracking and Snakes contour fitting
for detection, localization and 3-D reconstruction of cracks and holes

internal defect types: knots, holes and cracks. The detection

rate, false positive rate and false negative rate of the proposed

scheme are computed by comparing the results of the proposed

scheme with those obtained from a human expert grader

examining the physically sawn lumber. Also, the performance

of the previous scheme [1], [2] that detected and localized

defects in each CT image slice independently (i.e., slice by

slice without tracking the defects across multiple CT image

slices) was compared with the performance of the proposed

scheme (Table III). Although the Kalman filter-based tracking

scheme did not result in any improvement in the detection rate

or the false positive rate for knots, it did improve the detection

rate for cracks from 94% to 98% and the false positive rate

from 12% to 2% when compared to the scheme that processed

and analyzed each CT image slice independently. Likewise,

Fig. 21. A semi-transparent view of the log showing its internal defects

TABLE III
THE DETECTION RATE FOR THE THREE MAJOR DEFECT TYPES FOR LOG

DATA Ash1

correct false false
negative positive

knot (total 24)
slice by slice 24(100%) 0(0%) 0(0%)

tracking 24(100%) 0(0%) 0(0%)
crack (total 112)

slice by slice 105(94%) 7(6%) 13(12%)
tracking 110(98%) 4(4%) 2(2%)

hole (total 25)
slice by slice 24(96%) 1(4%) 3(12%)

tracking 24(96%) 1(4%) 1(4%)

TABLE IV
THE DETECTION RATE FOR THE THREE MAJOR DEFECT TYPES FOR LOG

DATA Ash2

correct false false
negative positive

knot (total 135)
slice by slice 135(100%) 0(0%) 0(0%)

tracking 135(100%) 0(0%) 0(0%)
crack (total 22)

slice by slice 21(95%) 1(5%) 3(15%)
tracking 21(95%) 1(5%) 1(5%)

hole (total 159)
slice by slice 159(100%) 0(0%) 0(0%)

tracking 159(100%) 0(0%) 0(0%)

the proposed Kalman filter-based scheme did not improve the

detection rate for holes but did improve the false positive rate

from 12% to 3%.

Table IV, Table V and Table VI summarize the performance

of the proposed Kalman filter-based tracking scheme for hard-

wood log data Ash2, Maple and Oak respectively. In all cases,

it can be seen that the proposed Kalman filter-based tracking

approach does improve upon the performance of the scheme

that processes and analyzes each CT image slice independently

in terms of both, defect detection rate and false positive rate.

Overall, it was empirically observed, based on the available CT

image data sets in Tables III–VI, that detection of false knots or

insertion of missing knots is typically not an issue since knots

tend to be fairly large and distinct. Holes, on the other hand,

could be missed if they are small in diameter. However, after

exploiting spatial coherence it was possible to restore missing

hole defects. In the case of crack defects, the Kalman filter-

based tracking technique was observed to be robust enough to

detect, localize and compute a 3-D reconstruction of a crack,

once detected and localized in previous CT image slices. Thus,

in the case of false cracks and holes, verifying spatial support

from previous and/or succeeding CT image slices was found

to be very effective in their removal.

Table VII compares the average processing time per CT

image slice of the proposed Kalman filter-based tracking

scheme and the scheme that processes and analyzes each CT

image slice independently (i.e., slice by slice) on the hardwood

log data Ash1. In order to ensure a fair comparison, the

detection time for the outer log boundary and each of the

three major internal defect types i.e., knot, crack and hole are
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TABLE V
THE DETECTION RATE FOR THE THREE MAJOR DEFECT TYPES FOR LOG

DATA Maple

correct false false
negative positive

knot (total 12)
slice by slice 12(100%) 0(0%) 0(0%)

tracking 12(100%) 0(0%) 0(0%)
crack (total 21)

slice by slice 19(90%) 2(10%) 1(5%)
tracking 21(100%) 0(0%) 1(5%)

hole (total 27)
slice by slice 27(100%) 0(0%) 0(0%)

tracking 27(100%) 0(0%) 0(0%)

TABLE VI
THE DETECTION RATE FOR THREE MAJOR DEFECT TYPES FOR LOG DATA

Oak

correct false false
negative positive

knot (total 15)
slice by slice 15(100%) 0(0%) 0(0%)

tracking 15(100%) 0(0%) 0(0%)
crack (total 0)

slice by slice 0(0%) 0(0%) 0(0%)
tracking 0(0%) 0(0%) 0(0%)

hole (total 15)
slice by slice 15(100%) 0(0%) 0(0%)

tracking 15(100%) 0(0%) 0(0%)

measured and tabulated independently.

B. Experimental Results for Optimal Sawing Scheme Deter-

mination

Tables VIII and IX summarize the performances of the

exhaustive search algorithm and the two-step coarse-to-fine

search algorithm (Algorithm 1) proposed in this paper, respec-

tively, when used to determine the optimal sawing orientation

and optimal sawing pattern for live sawing. In this experiment,

the angular resolution δθ = 2◦ and the angular search range

R = [0, 180). A comparison of Tables VIII and IX shows

that Algorithm 1 results in the same optimal solution as the

exhaustive search algorithm in the case of the first two log

samples. In contrast, Algorithm 1 produces suboptimal results

in the case of the third log sample Maple resulting in 96.7%
of the optimal value and in the case of the fourth log sample

Oak resulting in 81.7% of the optimal value. However, the

execution time of Algorithm 1 is, on average, only 17% of

the execution time of the exhaustive search algorithm in the

context of live sawing.

The three primary sawing methods (live sawing, grade

sawing and cant sawing) are compared in Figure 22 on the

TABLE VII
THE AVERAGE PROCESSING TIME PER CT IMAGE SLICE IN MILLISECONDS

boundary knots crack hole
slice by slice 40 95 101 15

tracking 16 61 81 15

TABLE VIII
DETERMINATION OF OPTIMAL LIVE SAWING USING THE EXHAUSTIVE

SEARCH ALGORITHM

log species orientations time value
Ash1 90 447 sec $13.59
Ash2 90 272 sec $17.40
Maple 90 210 sec $28.29
Oak 90 206 sec $32.53

TABLE IX
DETERMINATION OF OPTIMAL LIVE SAWING USING Algorithm 1

log species orientations time value
Ash1 19 73 sec $13.59
Ash2 18 66 sec $17.40
Maple 20 35 sec $27.35
Oak 20 35 sec $26.57

log sample data Ash1 using exhaustive search to determine

the optimal log orientation. In the absence of Algorithm 1,

live sawing takes 447 seconds (7 minutes 27 seconds), cant

sawing takes 82593 seconds (22 hours 56 minutes 33 seconds)

and grade sawing takes 92993 seconds (25 hours 49 minutes

53 seconds) to process the 4 meter log. These run times are

currently not suitable for real time application in sawmills.

Note that the optimal lumber yield values returned by grade

sawing and cant sawing are comparable whereas those returned

by live sawing are significantly lower (Figure 22). However,

optimal live sawing determination is at least 2 orders of

magnitude faster than the determination of optimal grade

sawing or optimal cant sawing.

Table X compares the execution time of the optimal sawing

determination algorithm for each of the three primary sawing

techniques and for each log data set using Algorithm 1 to

determine the optimal log orientation. The use of Algorithm

1 clearly reduces the execution time by an order of magnitude

for each of the three primary sawing techniques. Once again,

the optimal lumber yield values returned by cant sawing and

grade sawing are comparable whereas those returned by live

sawing are significantly lower. However, the algorithm for

determination of optimal live sawing is computationally far

Fig. 22. A comparison between the optimal lumber yield values returned by
various primary sawing schemes using exhaustive search to determine optimal
log orientation
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TABLE X
COMPARISON OF EXECUTION TIME OF THE OPTIMAL SAWING

DETERMINATION ALGORITHM FOR LIVE SAWING, GRADE SAWING AND

CANT SAWING USING Algorithm 1 TO DETERMINE THE OPTIMAL SAWING

ORIENTATION

Sawing Scheme Ash1 Ash2 Maple Oak
live sawing 73 sec 66 sec 35 sec 35 sec
cant sawing 2482 sec 2598 sec 997 sec 959 sec

grade sawing 4032 sec 4099 sec 2332 sec 2600 sec

TABLE XI
THE COMPARISON OF OPTIMAL LUMBER YIELD RECOVERY FOR LIVE

SAWING, GRADE SAWING AND CANT SAWING USING Algorithm 1 TO

DETERMINE THE OPTIMAL SAWING ORIENTATION

Sawing Ash1 Ash2 Maple Oak
live sawing $13.59 $17.40 $27.35 $26.57
cant sawing $19.08 $27.98 $49.53 $54.86

grade sawing $19.78 $28.12 $50.11 $57.54

more efficient compared to its cant sawing and grade sawing

counterparts.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper described the design and implementation of an

automated system for planning and optimization of lumber

production using Machine Vision and Computed Tomography

(CT). Cross-sectional CT images of hardwood logs were

analyzed using Machine Vision algorithms. A novel feature-

based tracking approach was proposed and implemented for

the detection, localization and 3-D reconstruction of internal

defects in hardwood logs from cross-sectional computed to-

mography (CT) images. In contrast to traditional methods,

where the defects are detected and localized independently in

individual CT image slices and the 3-D reconstruction of the

defects accomplished via correspondence analysis across the

various CT image slices, the proposed system integrated defect

detection, defect localization and 3-D defect reconstruction

within a Kalman filter-based feature tracking scheme. The

defects were simultaneously detected, classified, localized and

reconstructed in 3-D space, making the proposed scheme

computationally much more efficient than existing methods.

Robust techniques for defect detection and classification were

proposed and implemented. Defect class-specific tracking

schemes based on the Kalman filter were designed which

used the geometric parameters of the defect contours as the

tracking variables. The geometric parameters of the defect

contours were computed using a combination of B-spline

contour approximation and an improvised Snakes contour

fitting procedure termed as Kalman Snakes. Robust techniques

for extraction and characterization of the external log surface

were also designed.

The proposed system was shown to be capable of simulating

various sawing operations on the virtual 3-D reconstruction of

the log and exploiting the knowledge of the internal defects

to formulate sawing strategies that optimize the value yield

recovery of the resulting lumber products. Algorithms for the

determination of the optimal primary sawing strategy were

designed and implemented for live sawing, grade sawing

and cant sawing which are commonly used primary sawing

strategies in real sawmills. Algorithms for the determination

of the optimal secondary sawing strategy (i.e., decomposing a

board/flitch into cuttings) were also implemented. The system

was designed to be capable of automatic grading of the

lumber products to compute their value using the grading rules

stipulated by the National Hardwood Lumber Association

(NHLA). A prototype implementation of the system showed

significant gains in value yield recovery when compared to

lumber processing strategies that use only the external log

structure information. The system could be used as a decision

aid for lumber production planning as well as a training tool

to train novice sawyers.

Although the execution times of the algorithms for de-

fect detection, defect tracking, defect reconstruction, optimal

primary and secondary sawing strategy determination and

automated lumber grading are currently not suitable for real

time application in a sawmill, the execution times could

be improved significantly by the incorporation of parallel

processing. The operations of CT scanning, defect detec-

tion, defect tracking, defect reconstruction, optimal primary

and secondary sawing strategy determination and automated

lumber grading could be pipelined. These operations could

also be performed on different sections of a 4 meter log in

parallel (i.e., data parallelism). The operations for optimal

primary and secondary sawing strategy determination could

also be parallelized by analyzing multiple log orientations and

multiple sawing planes concurrently (i.e., task parallelism).

Making the system capable of real time performance by means

of parallel computing is a promising topic for future research.

ACKNOWLEDGEMENT

This work was supported in part by the US Department of

Agriculture through an NRICGP grant (Award Number: 2001-

35103-10049) to Drs. Bhandarkar, Daniels and Tollner.

REFERENCES

[1] S.M. Bhandarkar, T. Faust and M. Tang, CATALOG: A system for de-
tection and rendering of internal log defects using computer tomography,
Journal of Machine Vision and Applications, Vol. 11, pp. 171–190, 1999.

[2] S.M. Bhandarkar, T.D. Faust and M. Tang, Design and Prototype
Development of a Computer Vision-based Lumber Production Planning
System, Journal of Image and Vision Computing, Vol. 20, No. 3, pp.
167–189, 2002.

[3] S.M. Bhandarkar, X. Luo, R. Daniels and E.W. Tollner, Detection of
Cracks in Computer Tomography Images of Logs, Pattern Recognition

Letters, Vol. 26, No. 14, pp. 2282–2294, Oct. 2005.
[4] S.M. Bhandarkar, X. Luo, R. Daniels and E.W. Tollner, A Novel

Feature-based Tracking Approach to the Detection, Localization and 3-D
Reconstruction of Internal Defects in Hardwood Logs Using Computer
Tomography, Pattern Analysis and Applications, Vol. 9, Nos 2/3, pp.
155–175, Oct. 2006.

[5] D.A. Butler, C.C. Brunner, and J.W. Funck, An adaptive image pre-
processing algorithm for defect detection in Douglas-fir veneer, Forest

Products Journal, Vol. 43, No. 5, pp. 57–60, 1993.
[6] S.J. Chang, J.R. Olson, and P.C. Wang, NMR imaging of internal

features in wood, Forest Products Journal, Vol. 39, No. 6, pp. 43–49,
1989.

[7] S.J. Chang, S. Guddanti and C.S. Cooper, Measuring the benefits
of internal log defect scanning: a mill-based study, Proc. Intl. Conf.

Scanning Technology and Process Optimization for the Wood Products

Industry, Charlotte, NC, pp. 25–28, Nov. 12–14, 1997.



TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 18
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