
Automated Planning for Collaborative UAV Systems

Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science

Linköping University, SE-58183 Linköping, Sweden

{jonkv,patdo}@ida.liu.se

Abstract—Mission planning for collaborative Unmanned Air-
craft Systems (UAS:s) is a complex topic which involves trade-offs
between the degree of centralization or decentralization required,
the degree of abstraction in which plans are generated, and the
degree to which such plans are distributed among participating
UAS:s. In realistic environments such as those found in natural
and man-made catastrophes where emergency services personnel
are involved, a certain degree of centralization and abstraction
is necessary in order for those in charge to understand and
eventually sign off on potential plans. It is also quite often the
case that unconstrained distribution of actions is inconsistent
with the loosely coupled interactions and dependencies which
arise between collaborating systems. In this article, we present
a new planning algorithm for collaborative UAS:s based on
combining ideas from forward chaining planning with partial-
order planning leading to a new hybrid partial order forward-
chaining (POFC) framework which meets the requirements on
centralization, abstraction and distribution we find in realistic
emergency services settings.

Index Terms—Partial-order planning, unmanned aerial vehi-
cles, planning with control formulas

I. INTRODUCTION

A devastating earthquake has struck in the middle of the

night. Injured people are requesting medical assistance, but

clearing all roadblocks will take days. There are too few

helicopters to immediately transport medical personnel to

all known wounded, and calling in pilots will take time.

Fortunately, we also have access to a fleet of unmanned aerial

vehicles (UAVs) that can rapidly be deployed to send prepared

crates of medical supplies to those less seriously wounded.

Some are quite small and carry single crates, while others move

carriers containing many crates for subsequent distribution. In

preparation, a set of ground robots can move crates out of

warehouses and (if required) onto carriers.

This somewhat dramatic scenario involves a wide variety of

agents, such as UAVs and ground robots, that need to collabo-

rate to achieve common goals. For several reasons, the actions

of these agents often need to be known to some degree before

the start of a mission. For example, authorities may require

pre-approval of unmanned autonomous missions occurring in

specific areas. Even lacking such legal requirements, ground

operators responsible for missions or parts of missions often

prefer to know what will happen in advance. At the same

time, pre-planning a mission in every detail may lead to brittle

plans, and it is generally preferable to leave a certain degree

of freedom to each agent in the execution of its assigned tasks.

We are therefore interested in solutions where high-level

mission plans are generated at a centralized level, after which

Go to crate 12 at loc5

Actions for robot3 Actions for uav4

Pick up crate 12

Go to carrier 4 at loc9

Put crate 12 on carrier 4

Put crate 7 on carrier 4

Go to crate 5 at loc27

Takeoff

Fly to carrier 4 at loc9

Pick up carrier 4

Fly to (1500, 1023)

Fig. 1. Example plan structure

agent-specific subplans are extracted and delegated to individ-

ual agents. Each agent can then view its own subset of the

original high-level plan as a set of goals and constraints, after

which it can generate a more detailed plan with full knowledge

of the fine-grained platform-specific actions at its disposal.

This can be said to be a hierarchical hybrid between centralized

and decentralized planning.

A suitable plan structure for this type of collaborative multi-

agent mission should be sufficiently flexible to reflect the

most essential aspects of the true execution capabilities of

the agent or agents involved. In particular, the plan structure

should allow us to make full use of the potential for concurrent

execution and to provide a high degree of execution flexibility.

Plans should therefore be minimally constrained in terms of

precedence between actions performed by different agents, and

should not force an agent to wait for other agents unless this

is required due to causal dependencies, resource limitations, or

similar constraints arising from the domain itself. This requires

a plan structure capable of expressing both precedence between

actions and the lack of precedence between actions.

Though partially ordered plans satisfy this requirement, the

full expressivity afforded by such plans may be excessive for

our motivating scenario: While partial ordering is required

between actions executed by different agents, the actions for

each individual agent could be restricted to occur sequentially1.

Figure 1 shows a small example for two agents: A UAV flies to

a carrier, but is only allowed to pick it up after a ground robot

has loaded a number of crates. The actions of each agent are all

performed in a predetermined sequence. Due to partial ordering

between different agents, the ground robot can immediately

continue to load another carrier without waiting for the UAV.

1Note that this can easily be extended to allow multiple sequential threads
of execution within each agent.

978-1-4244-7815-6/10/$26.00 c©2010 IEEE ICARCV2010

Since planners generating partial-order plans already exist,

applying additional restrictions to the standard partially or-

dered plan structure is only reasonable if there is an accompa-

nying gain in some other respect. The potential for such gains

follows directly from the fact that stronger ordering require-

ments yield stronger information about the state of the world

at any given point in the plan. Many planners exploit such

information to great success in state-based heuristics [1], [2] or

in the evaluation of domain-specific control formulas [3], [4].

Such control formulas have been shown to improve planning

performance by orders of magnitude in many domains. They

can also be used to efficiently forbid a variety of suboptimal

action choices that can be made by a forward-chaining planner,

often leading to higher-quality plans. It would therefore be

interesting to investigate to what extent this potential can be

realized in practice.

In this paper, we begin these investigations by introduc-

ing some aspects of forward-chaining into partial-order plan-

ning, leading to a new hybrid partial order forward-chaining

(POFC) framework (Section II) and a prototype planner operat-

ing within this framework (Section III). This planner generates

stronger state information than is usually available in partial-

order planning, allowing the use of certain forms of domain-

specific control formulas for pruning the search space. We then

show how we apply this planner to collaborative UAV systems

in the UASTech group (Section IV). Finally, we discuss related

work (Section V) and present our conclusions (Section VI).

II. PARTIAL ORDER FORWARD-CHAINING

Partial order forward-chaining (POFC [5]) is a new frame-

work intended for use in partly or fully centralized multi-agent

planning, where each agent can be assigned a sequence of

actions but where there should be a partial ordering between

actions belonging to different agents.

A variety of planners could be implemented in the POFC

framework. Common to these planners would be the as-

sumption that a problem instance explicitly specifies a set of

agents A and that every action (operator instance) specifies

the agent to which it belongs. Plan structures will differ

depending on the expressivity of a planner operating within

this framework, but would typically include a set of actions A

and a partial ordering relation � on actions. To reflect the

constraint that all actions belonging to any specific agent

should be sequentially ordered, POFC planning requires any

pair of actions a1, a2 ∈ A belonging to the same agent to

satisfy a1 � a2 or a2 � a1. This is satisfied in the plan

in Figure 1, for example. A POFC plan may also contain

additional components, such as a temporal constraint network.

An identifying characteristic of partial order forward-

chaining is that the subset of actions belonging to a specific

agent are not only executed in sequential order but also added

in sequential order during plan generation. Suppose a planner is

considering possible extensions to the plan shown in Figure 1.

Any potential new action for robot3 must then be added strictly

after the action of going to loc27. On the other hand, the new

action could remain unordered relative to the actions of uav4,

unless an ordering constraint is required due to preconditions

or other executability conditions. Actions belonging to distinct

agents can therefore be independent of each other to the same

extent as in a standard partial order plan.

In many domains, state variables such as the location or

fuel level of an agent are only affected by actions performed

by the agent itself (unless, for example, some agents actively

move others). As a direct consequence of the fact that actions

for each agent are added in sequential order, complete infor-

mation about such “agent-specific” state variables can easily

be generated at any point along an agent’s action sequence in

essentially the same way as in standard forward-chaining.

Furthermore, agents are in many cases comparatively

loosely coupled [6]: Direct interactions with other agents are

relatively few and occur comparatively rarely. For example,

a ground robot would require a long sequence of actions to

load a set of crates onto a carrier. Only after this sequence

is completed will there be an interaction with the UAV that

picks up the carrier. This means that for extended periods

of time, agents will mostly act upon and depend upon state

variables that are not currently affected or required by other

agents. Again, POFC planning allows the values of such state

variables to be propagated within the subplan associated with

a specific agent in a way similar to forward-chaining.

Thus, the use of agent-specific action sequences is key

to allowing POFC planners to generate agent-specific states

that are partial but considerably richer than the information

available to a standard partial-order planner. Such states can

then be used in heuristics or control formulas, as well as in

the evaluation of preconditions. This information is particularly

useful for the agent itself, since its own actions are likely to

depend to a large extent on its own agent-specific variables.

In general, though, state information cannot be complete.

In Figure 1, we cannot know exactly where uav4 will be

immediately after robot3 moves to loc27, since the precedence

constraints do not tell us whether this occurs before or after

uav4 flies to a new location. However, state information can

be regained when interactions occur: If the next action for

robot3 is constrained to occur after uav4 flies to a new

location, complete information about the location of uav4 can

once again be inferred. In this sense, state information can

“flow” between agent-specific partial states along precedence

constraints. See Section III-D for further details and examples.

These general ideas will now be exemplified and clarified

through the definition of a prototype planner operating within

the POFC framework. This planner uses agent-specific action

sequences to generate state information and effectively exploits

such states to enable efficient evaluation of preconditions and

control formulas.

III. A PROTOTYPE POFC PLANNER

We now present an initial prototype planner operating

within the framework of partial order forward-chaining. In this

planner, goal-directedness is achieved through domain-specific

precondition control formulas [3], [4], [7] as explained below.

This can be very effective due to the comparatively rich state

information afforded by the POFC plan structure. Means-ends

analysis as in standard partial order causal link (POCL [8])

planning, or state-based heuristics as in many forward-chaining

planners, could also be explored in the future.

A. Domains and Problem Instances

We assume a typed finite-domain state variable representa-

tion. State variables will also be called fluents. For example,

loc(crate) might be a location-valued fluent taking a crate as

its only parameter. For any problem instance, the initial state

must provide a complete definition of the values of all fluents.

The goal is typically conjunctive, but may be disjunctive.

An operator has a list of typed parameters, where the first

parameter always specifies the executing agent. For example,

flying between two locations may be modeled as the operator

fly(uav, from, to). An action is a fully instantiated (grounded)

operator. Given finite domains, any operator corresponds to a

finite set of actions.

Each operator is associated with a precondition formula and

a set of precondition control formulas, all of which may be

disjunctive and quantified and must be satisfied at the time

when an instance of the operator is invoked. Precondition

control represents conditions that are not “physically” required

for execution but should be satisfied for an action to be

meaningful given the current state and the goal [3], [7]. The

construct goal(φ) tests whether φ is entailed by the goal. For

example, flying a loaded carrier to a location far from where

its crates should be delivered according to the goal can be

prevented using a control formula. We often use “conditions”

to refer to both preconditions and control formulas.

Note that given the search method used in this planner,

precondition control will not introduce new subgoals that the

planner will attempt to satisfy. Instead, control formulas will

be used effectively to prune the search space.

An operator has a duration specified by a possibly state-

dependent temporal expression. We currently assume that the

true duration of any action is strictly positive and cannot be

controlled directly by the executing agent. We assume no

knowledge of upper or lower bounds, though support for such

information will be added in the future.

A set of mutexes can be associated with every operator.

Mutexes are acquired throughout the duration of an action to

prevent concurrent use of resources. For example, an action

loading a crate onto a carrier may acquire a mutex associated

with that crate to ensure that no other agent is allowed to

use the crate simultaneously. Mutexes must also be used to

prevent actions having mutually inconsistent effects from being

executed in parallel. Thus, mutual exclusion between actions

is not modeled by deliberately introducing inconsistent effects.

For simplicity, we initially assume single-step operators,

where all effects take place in a single effect state. Effects are

currently conjunctive and unconditional, with the expression

f(v) := v stating that the fluent f(v) is assigned the value v.

Both v and all terms in v must be either value constants

or variables from the formal parameters of the operator. For

example, fly(uav, from, to) may have the effect loc(uav) := to.

B. Plan Structures, Executable Plans and Solutions

For our initial POFC planner, a plan is a tuple 〈A,L,O〉
whose components are defined as follows.

• A is the set of actions occurring in the plan.

• L is a set of ground causal links ai
f=v
−−→ aj representing

the commitment that the ai will achieve the condition that

f takes on the value v for aj . This is similar to the use of

causal links in partial order causal link (POCL) planning.

• O is a set of ordering constraints on A whose transitive

closure is a partial order denoted by �. We define ai ≺ aj
iff ai � aj and ai 6= aj . We interpret ai ≺ aj as meaning

that ai ends before aj begins. The expression ai ≺imm aj
is a shorthand for ai ≺ aj ∧ 6 ∃a.ai ≺ a ≺ aj , indicating

that ai is an immediate predecessor of aj .

By the definition of partial order forward-chaining, the actions

associated with any given agent must be totally ordered by O.

As in POCL planning, we assume a special initial action

a0 ∈ A without conditions or mutexes, whose effects com-

pletely define the initial state. Any other action ai 6= a0 ∈ A

must satisfy a0 ≺ ai. Due to the use of forward-chaining

techniques instead of means-ends analysis, there is no need

for an action whose preconditions represent the goal.

A POFC plan such as the one in Figure 1 places certain

constraints on when actions may be invoked. For example,

uav4 must finish taking off before it begins flying to carrier 4.

At the same time, the execution mechanism is free to make

choices such as whether robot3 begins going to crate 12 before

uav4 begins taking off or vice versa. Additionally, the order in

which actions end is generally unpredictable: uav4 may finish

taking off before or after robot3 finishes going to crate 12.

An executable plan satisfies all executability conditions

(preconditions, control formulas and mutexes) regardless of

the choices made by the execution mechanism and regardless

of the outcomes of unpredictable action durations.

To define executability more formally, we associate each

action a ∈ A with an invocation node inv(a) where conditions

must hold and mutexes are acquired, and an effect node eff(a)
where effects take place and mutexes are released. For all

actions a, a′ ∈ A, we let eff(a) ≺ inv(a′) iff a ≺ a′, meaning

that a must end before a′ is invoked. For all actions a ∈ A, we

let inv(a) ≺ eff(a): An action must begin before it ends. Then

every total ordering of nodes compatible with ≺ corresponds

directly to one combination of choices and outcomes. For ex-

ample, Figure 2 shows three partial node sequences compatible

with the plan defined in Figure 1, including the special initial

action a0 used in this particular POFC planner.

A plan is executable iff every node sequence compatible

with the plan is executable. The executability of a single node

sequence is defined as follows. Observe that the first node must

be the invocation node of the initial action a0, which has no

preconditions. The second node is the effect node of a0, which

completely defines the initial state. After this prefix, invocation

nodes contain preconditions and precondition control formulas

that must be satisfied in the “current” state. Effect nodes update

the current state and must have internally consistent effects

Inv: Go to c12

Inv: Initial a0

Eff: Initial a0

Eff: Pick up c12

Inv: Takeoff

Eff: Fly to c4

Eff: Go to c12

Inv: Pick up c12

Eff: Takeoff

Inv: Fly to c4

Inv: Go to c12

Inv: Initial a0

Eff: Initial a0

Eff: Go to c12

Inv: Pick up c12

Inv: Takeoff

Inv: Takeoff

Eff: Takeoff

Inv: Initial a0

Eff: Initial a0

Inv: Pick up c12

Fig. 2. Three node sequences compatible with the plan in Figure 1

(must not assign two different values to the same fluent).

Finally, executability also requires that no mutex is held by

more than one agent in the same interval of time.

An executable plan is a solution iff every compatible node

sequence results in a final state satisfying the goal.

C. Search Space and Main Planning Algorithm

We are currently exploring a search space where adding

a new action to an executable plan, together with a new set

of causal links and precedence constraints, is only permitted if

this results in a new executable plan: The conditions of the new

action must be satisfied at the point where it is inserted in the

current plan structure, its effects must be internally consistent

and must not interfere with existing actions in the plan, and

mutexes must be satisfied.

The following is a high-level description of the prototype

planner. For simplicity and clarity, we present it as a non-

deterministic algorithm. In reality, standard complete search

methods such as depth first search with cycle detection can

be used. Furthermore, each iteration in the algorithm below

generates all executable actions for a given agent before

selecting one of these actions. This is also a simplification

for clarity, where the real planner does not have to generate

all executable actions before making a choice.

Algorithm POFC-prototype-planner(a0, g):
A← {a0}; L← ∅; O ← ∅

π ← 〈A,L,O〉
Generate agent-local initial states as shown in Section III-D
// If we can ensure the goal g holds after execution
// by introducing new precedence constraints, we are done
while adding precedence constraints is insufficient to satisfy g do

// Choose an agent that will be assigned a new action
agent← nondet-choice(A)
// Choose an action a that can be made executable
// given that the precedence constraints P and causal links C
// are added to the current plan
〈a, P, C〉 ← nondet-choice(find-executable(π, agent, g))
// Apply the action and iterate
A← A ∪ {a} // New action
L← L ∪ C // New causal links
O ← O ∪ P // New precedence constraints
// Update and generate states according to Section III-F
Update existing states: state-update(〈A,L,O〉, a)
Generate new state: generate-state-after(〈A,L,O〉, a)

At the highest level, the prototype planner appears quite similar

to any other planner based on search. It begins with an

initial search node corresponding to the initial executable plan,

containing only the special initial action a0. Given a node

Partial state s1:

loc(robot3) ∈ {depot1}

Actions for robot3 Actions for uav4

Partial state s2:

loc(robot3) ∈ {depot1}

Initial action a0

Initial state s0: loc(robot3) ∈ {depot1}

Fig. 3. Partial states for an initial (empty) plan.

s1: loc(robot3) ∈ {depot1}

Actions for robot3 Actions for uav4

s2: loc(robot3) ∈
{depot1, loc5}

Initial action a0

Initial state s0: loc(robot3) ∈ {depot1}

Go to crate 12 at loc5

s3: loc(robot3) ∈ {loc5}

Fig. 4. Partial states after one action has been added.

corresponding to a plan π, it tests whether the goal is satisfied

after execution – or rather, whether the goal can be made

satisfied through the introduction of additional precedence con-

straints. This is tested using the make-true procedure presented

in Section III-E. If not, a child node can be generated by

deciding which agent should be given a new action in π, and

then choosing a new action to be added at the end of that

agent’s action sequence, together with precedence constraints

and causal links ensuring that the new plan is executable.

Many heuristics can be used for choosing an agent, such as

using as few agents as possible or distributing actions evenly

across all available agents. In the latter case, we can calculate

the time at which each agent is expected to finish executing

its currently assigned actions and test agents in this order.

D. Partial States and Initial States

A variety of state structures can be used to store partial

information about the state at distinct points in a plan. We

initially use a simple structure where a finite set of possible

values is stored for each fluent: f ∈ {v1, . . . , vn}. The evalua-

tion procedure defined in the next section resolves as much of

a formula as possible in such partial states. Should this not be

sufficient to completely determine whether the formula is true,

the procedure falls back on an explicit traversal of the plan

structure for those parts of the formula that remain unknown.

This grounds evaluation in the initial state and the explicit

effects in the plan for completeness.

The initial plan consists of a single action a0, which

completely defines the initial state s0 of the planning problem

at hand. In preparation for future agent-specific state updates,

this state is copied into a partial state structure for each agent

as indicated in Figure 3, where s1 and s2 initially contain all

facts specified in s0. For example, robot3 is initially at depot1.

A partial state represents facts known to hold over an

interval of time. This interval starts at the end of a specific

action for a given agent, or at the beginning of the plan if

there is no preceding action. It ends at the beginning of the

next action for the same agent, or at the end of the plan if no

such action exists. For example, state s1 in Figure 4 represents

what must hold from the beginning of the plan until robot3

begins moving to loc5.

Whenever a new action has been added, existing states must

be updated and a new state must be created. This will be

discussed in Section III-F.

E. Searching for Applicable Actions

When the planner searches for a new applicable action for

a particular agent (such as uav4 in Figure 4), there already

exists a partial state describing facts that must hold up to

the point where the new action will be invoked (in this case,

state s2). This state can be used for the efficient evaluation of

preconditions and control formulas.

Given sufficiently loose coupling, together with the exis-

tence of agent-local and static facts, this state will be sufficient

to immediately determine the executability of most actions

related to the chosen agent. In some cases, though, the partial

information in the state will be insufficient. This can be

due to our use of simple partial state structures that cannot

represent arbitrary sets of possible states, or due to incomplete

state update procedures. Another reason is that given partially

ordered plans, we cannot know in which order actions will start

and end. In Figure 4, for example, we cannot know whether

the next action to be added for uav4 will start before or after

robot3 moves to loc5. Therefore we cannot predict exactly

which value loc(robot3) will have when this new action starts

– only that it will be either depot1 or loc5.

Nevertheless, completeness requires a complete evaluation

procedure. This procedure also needs the ability to introduce

new precedence constraints to ensure that a precondition holds.

For example, suppose that the precondition of a potential new

action for uav4 requires robot3 to be at loc5. This can be

satisfied by ensuring that the new action occurs not only after

all existing actions for uav4, but also after robot3 goes to loc5.

Such alternatives must also be considered by the planner.

For this purpose we define replace plain formula evaluation

in a partial state with the procedure make-true(α, a, s, g, π).
This procedure assumes that the action a whose conditions α

should be tested has temporarily been added to the plan π, and

that the last known partial state before a is s. It recursively

determines whether α can be made to hold when a is invoked,

possibly through the addition of new precedence constraints.

When necessary due to incomplete state information, it explic-

itly searches π for actions having suitable effects. The goal g

is provided to enable evaluation of goal() constructs.

The procedure returns a set of extensions corresponding to

the minimally constraining ways in which the precedence order

can be constrained to ensure that α holds when a is invoked.

Each extension is a tuple 〈P,C〉 where P is a set of precedence

constraints to be added to O and C is a set of causal links to

be added to L. Thus, if α is proven false regardless of which

precedence constraints are added, ∅ is returned: There exists

no valid extension. If α is proven true without the addition

of new constraints, {〈∅, C〉} is returned for some suitable set

of causal links C. In this case, s can be updated accordingly,

providing better information for future formula evaluation.

Below, certain aspects of the make-true procedure have been

simplified to improve readability while retaining correctness.

A number of optimizations to this basic procedure can and

have been applied. For example, suppose one is evaluating a

formula such as α ∧ β and it cannot be determined using the

current partial state alone whether the first subformula α holds.

Then the attempt to “make” it true by the introduction of new

precedence constraints can be deferred while β is evaluated.

If β turns out to be false, the entire formula must be false and

there is no need to return to the deferred subformula.

Algorithm make-true(α, a, s, g, π = 〈A,L,O〉)
// Returns a set of 〈precedence, causallink〉 tuples
if α is f = v then

if s |= α then
// Formula known to be true. Need to find an action that can
// support a causal link: Must assign the right value, occur
// before a, and no action must be able to interfere. At least
// one possibility will exist without the need for additional
// precedence constraints!
S ← {ai ∈ A | ai ≺ a ∧ ai assigns f := v

∧ no action aj can interfere by assigning
another value between ai and a}

// All the tuples below are minimally constraining extensions

return { 〈∅, {ai
f=v
−−→ a}〉 | ai ∈ S }

else if s |= ¬α then
// Formula known to be false. No support possible.
return ∅

else
// Insufficient information in s. Formula could already be true,
// in which case P = ∅ will be found below. Or we may be
// able to “make” it true given new precedence constraints.
S ← {ai ∈ A | ai ≺ a ∧ ai assigns f := v}
E ← ∅

for all ai ∈ S do
for all minimally constraining new precedence constraints
P that would ensure that the relevant effect of ai cannot
be interfered with between ai and a do

E ← E ∪ {〈P, {ai
f=v
−−→ a}〉}

return E
else if α is ¬(f = v) then

// Handled similarly
else if α is goal(φ) then

if g |= α then return {〈∅,∅〉} else return ∅

else if α is ¬goal(φ) then
if g |= α then return ∅ else return {〈∅,∅〉}

else if α is ¬β then
// Push negations in, until they appear before an atomic formula.
// For example, ¬(β ∧ γ) = (¬β) ∨ (¬γ).
γ ← push negations in using standard equivalences
return make-true(γ, a, s, g, π)

else if α is β ∧ γ then
// Both conjuncts must be satisfied. For every way we can satisfy
// the first, find every way in which the second can be satisfied.
// May result in non-minimal extensions that can be filtered out.
E ← ∅

for all 〈P,C〉 ∈ make-true(β, a, s, g, π) do
E ← E ∪ make-true(γ, a, s, g, 〈A,L ∪ C,O ∪ P 〉)

Remove extensions not minimal in terms of precedence
return E

else if α is β ∨ γ then
// It is sufficient that one of the disjuncts is satisfied. Calculate
// all ways of satisfying either disjunct, and retain the minimal
// extensions.
E ← make-true(β, a, s, g, π) ∪ make-true(γ, a, s, g, π)

Remove extensions not minimal in terms of precedence
return E

else if α is ∀v.β(v) then
Treat as conjunction over all values in the finite domain of v

else if α is ∃v.β(v) then
Treat as disjunction over all values in the finite domain of v

Though make-true is important for the procedure of finding

new executable actions, it only considers preconditions and

control formulas. For each extension returned by make-true, we

may have to add further precedence constraints to ensure that

no mutex is used twice concurrently. Additional constraints

may be required to ensure that the new potential action does

not interfere with existing causal links in the plan. This results

in the following procedure.

Algorithm find-executable(π = 〈A,L,O〉, agent, g)
executable← ∅

lastact← the last action associated with the given agent in π,
or a0 if no such action exists

laststate← the last partial state for the given agent in π
for all potential actions a associated with the given agent do

// Temporarily add the potential action to the plan
π′ ← 〈A ∪ {a}, L,O ∪ {lastact ≺ a}〉
for all 〈P,C〉 ∈ make-true(conditions(a), a, laststate, g, π′) do

for all 〈P ′, C〉 minimally extending 〈P,C〉 so that no mutex
is used twice concurrently do

for all 〈P ′′, C〉 minimally extending 〈P ′, C〉 so that a
cannot interfere with existing causal links in L do

executable← executable ∪ {〈a, P ′′, C〉}

It may seem like this procedure results in a combinatorial

explosion of alternative extensions. However, standard POCL

planners have essentially the same alternatives to choose from,

the main difference being that alternatives not generated in a

single procedure but selected through a long sequence of plan

refinement steps. POFC implementations can easily generate

extensions incrementally as needed.

Note also that every new precedence constraint generated

leads to fewer options available in the next step, which

provides a natural limit to the potential complexity. Searching

for existing support for all conditions in the current plan, as

opposed to leaving open “flaws” to be treated later, also tends

to reduce the number of consistent extensions. Additionally,

the initial filtering based on the partial state quickly filters out

most candidate actions.

Finally, we would like to note that evaluation performance

can be improved by analyzing preconditions and control for-

mulas in order to extract common parts that only depend on

some or none of the parameters of a particular operator.

F. Generating and Updating States

Updating Existing States. When a new action is added to

a plan, some of the existing partial states must be updated. As

an example, let us expand the plan in Figure 3 with the action

of robot3 moving to loc5, resulting in the plan in Figure 4.

Recall that state s2 in this figure should represent what we

know about the state of the world from the beginning of the

plan up to the first action that will eventually be performed by

uav4. Given the action that was just added, we no longer know

whether robot3 will remain at depot1 throughout this interval

of time. It might, but it may also finish going to loc5 before

uav4 begins executing its first action. What we can say with

certainty is that at any point of time in the relevant interval,

robot3 will be either at depot1 or at loc5.

State information must always be sound, but since formula

evaluation will be able to fall back on explicit plan traversal, it

does not have to be complete. Therefore, updates do not have

to yield the strongest information that can be represented in

the state structure, and a tradeoff can be made between the

strength and the efficiency of the update procedure.

A simple but sound state update procedure could weaken

the states of all existing nodes in the plan: If a state claims

that f ∈ V and the new action has the effects f := v, the state

would be modified to claim f ∈ V ∪ {v}.

However, suppose that a state s is followed by an action

a that in turn precedes the newly added action. Clearly, the

new action cannot interfere with s, as this would require

interference backwards in time. In Figure 1, for example, the

action of picking up carrier 4 has ancestors belonging to robot3

as well as uav4 and cannot interfere with the states of these

nodes. Therefore, the following procedure is sufficient.

Algorithm state-update(π = 〈A,L,O〉, newact)
for all partial states s stored in π do

if s is followed by an action a such that a � newact then
// No update needed: New effects cannot interfere with s

else
for all f(v) := v ∈ effects(newact) do

add v to the set of values for f(v) in s

Generating New States. In addition to updating new states,

a new partial state must be created representing facts known

to hold from the end of the newly added action. For example,

when the action of going to crate12 was added to Figure 3, a

new state s3 had to be generated.

Any new action a always has at least one immediate

predecessor p such that p≺imm a. For example, the action of

going to crate12 has a single immediate predecessor: a0.

Let a be a new action and p one of its immediate predeces-

sors. Clearly, the facts that hold after p will still hold when a

is invoked except when there is interference from intervening

effects. Therefore, taking the state associated with p and

“weakening” it with all effects that may occur between p and a,

in the same manner as in the state update procedure, will result

in a new partial state that is valid when a is invoked. For

example, let a be the action of robot3 going to crate12. We can

then generate a state that is valid when a is invoked by taking

the initial state and weakening it with the effects associated

with uav4 taking off and flying to carrier 4, since this is the

only action that might intervene between a0 and a.

Now suppose that we apply this procedure to two immediate

predecessors p1 and p2. This would result in two states s1
and s2, both describing facts that must hold when the new

action a is invoked. If s1 claims that f ∈ V1 and s2 claims that

f ∈ V2 for some fluent f, then both of these claims must be

true. We therefore know that f ∈ V1∩V2. This can be extended

to an arbitrary number of immediate predecessors.

Conjoining information from multiple predecessors often

results in gaining “new” information that was not previously

available for the current agent. For example, if robot3 loads

crates onto a carrier, incrementally updating a total-weight

fluent, other agents will only have partial information about

this fluent. When uav4 picks up the carrier, this action must

have the last load action of robot3 as an immediate predecessor.

The UAV thereby gains complete information about weight and

can use this efficiently in future actions.

This results in a state that is valid when the new action a

is invoked. To generate a state valid when a ends, the effects

of a must also be applied to the new state.

Algorithm generate-state-after(〈A,L,O〉, newact)
newstate← a completely undefined state
for all p ∈ A: p≺imm newact do

for all fluents f do
values← the values for f in the state immediately after p
for all a ∈ A that can interfere between p and newact do

v ← the value assigned to f by a
values← values ∪ {v}

newstate[f]← newstate[f] ∩ values
apply the effects of newact to newstate
return newstate

G. Completeness

Requiring every intermediate search node to correspond to

an executable plan does not result in a loss of completeness.

Intuitively, the reason is that there can be no circular depen-

dencies between actions, where adding several actions at the

same time could lead to a new executable plan but adding any

single action is insufficient.

More formally, let π = 〈A,L,O〉 be a non-empty exe-

cutable plan. Let a ∈ A be an action such that there exists

no other action b ∈ A where a ≺ b (for example, the action of

going to crate 5 in Figure 1). Such an action must exist, or the

precedence relation would be circular and consequently not a

partial order, and π would not have been executable.

Since a does not precede any other action, it cannot be re-

quired in order to support the preconditions or control formulas

of other actions in π. Similarly, a clearly cannot be required

for mutual exclusion to be satisfied. Consequently, removing a

from π must lead to an executable plan π′. By induction,

any finite executable plan can be reduced to the initial plan

through a sequence of reduction steps, where each step results

in an executable plan. Conversely, any executable plan can be

constructed from the initial plan through a sequence of action

additions, each step resulting in an executable plan.

Given finite domains, solution plans must be of finite size

and can be constructed from the initial plan through a finite

number of action additions. The action set must also be finite.

Furthermore, when any particular action is added to a plan,

there must be a finite number of ways to introduce new

precedence constraints and causal links ensuring that the plan

remains executable. Any search node must therefore have a

finite number of children, and the search space can be searched

to any given depth in finite time.

Thus, given a method for finding all applicable actions for

a given agent, we can incrementally construct and traverse a

search space. Given a complete search method such as iterative

Fig. 5. The UASTech Yamaha RMAX helicopter system

deepening or depth first search with cycle detection, we have

a complete planner.

IV. PLANNING FOR COLLABORATIVE UAV SYSTEMS

The research context in which this planning framework

is being developed focusses on the topic of mixed-initiative

decision support for collaborative Unmanned Aircraft Systems

[9], [10]. In the broader context, we are developing a delegation

framework [11] which formally characterizes the predicate

Delegate(A,B, Task,Constraints), where an agent A delegates

a Task to agent B in a context characterized as a set of

Constraints. It is often the case that a Task is in fact a goal

statement. In this case, in order for agent B to accept the task

and for delegation to take place, it must find a plan which

satisfies the goal statement. A recursive process may then

ensue where agent B makes additional calls for delegation of

additional tasks to other agents. The character of these tasks

might be new goal statements or sequences of abstract actions

in a loosely coupled plan already generated by agent B.

In the latter case, agent B would broadcast for agents

with specific capabilities and roles associated with the goal

statement. For example, in the logistics example described in

the introduction, agent B would look for a number of agents

capable of lifting food and medical supplies onto carriers.

It would also look for agents such as our modified Yamaha

RMAX helicopters (Figure 5) capable of lifting carriers with

supplies already loaded and taking them to locations where

injured inhabitants have been geo-located. Given this set of

agents as input, agent B would then use the POFC planner

described here to generate a loosely coupled distributed plan

for the given agents. The output would be sequences of

abstract actions which would then be delegated to these agents

by agent B. The agents would then have to check whether

they could instantiate these abstract actions in their specific

action repertoires while taking into account the dependency

constraints associated with the larger loosely coupled plan. If

these recursive calls are successful, then the original delegation

from agent A to B will also be successful. This integration of

the POFC planner with the delegation framework has in fact

been done and a prototype system is now being integrated with

our UAV systems.

V. RELATED WORK

A variety of planners creating temporal partially ordered

plans exist in the literature and could potentially be applied in

multi-agent settings. Some of these planners also explicitly

focus on multi-agent planning. For example, Boutilier and

Brafman [12] focus on modeling concurrent interacting ac-

tions, in a sense the opposite of the loosely coupled agents we

aim at.
However, very little appears to have been done in terms

of taking advantage of forward-chaining when generating

partially ordered plans for multiple agents. An extensive search

through the literature reveals two primary examples.
First, a multi-agent planner presented by Brenner [13]

does combine partial order planning with forward search.

However, the planner does not explicitly separate actions by

agent and does not keep track of agent-specific states. Instead,

it evaluates conjunctive preconditions relative to those value

assignments that must hold after all actions in the current

plan have finished. The evaluation procedure defined in this

paper is significantly stronger. In fact, as Brenner’s evaluation

procedure cannot introduce new precedence constraints, the

planner is incomplete.
Second, the FLECS planner [14] uses means-ends analysis

to add relevant actions to a plan. A FLExible Commitment

Strategy determines when an action should be moved to the

end of a totally ordered plan prefix, allowing its effects to

be determined and increasing the amount of state information

available to the planner. Actions that have not yet been

added to this prefix remain partially ordered. Though there

is some superficial similarity in the combination of total and

partial orders, FLECS uses a completely different search space

and method for action selection. Also, whereas we strive to

generate the weakest partial order possible between actions

performed by different actions, any action that FLECS moves

to the plan prefix immediately becomes totally ordered relative

to all other actions. FLECS therefore does not retain a partial

order between actions belonging to distinct agents.
Thus, we have found no planners taking advantage of agent-

specific forward-chaining in the manner described in this paper.

VI. CONCLUSION

We have presented a hybrid planning framework applicable

to centralized planning for collaborative multi-agent systems.

We have also described one of many possible planners oper-

ating within this framework. Though this work is still in the

early stages, a prototype implementation is in the process of

being integrated with the UASTech UAV architecture and will

be tested in flight missions in the near future. Interesting topics

for future research include integration with existing techniques

for execution monitoring and recovery from execution failures

[15] and the extension of these techniques to handle dynamic

reconfiguration after execution failures.

ACKNOWLEDGMENT

This work is partially supported by grants from the Swedish

Research Council (2009-3857), the CENIIT Center for In-

dustrial Information Technology (06.09), the ELLIIT network

organization for Information and Communication Technology,

the Swedish Foundation for Strategic Research (SSF) Strategic

Research Center MOVIII, and the Linnaeus Center for Control,

Autonomy, Decision-making in Complex Systems (CADICS).

REFERENCES

[1] B. Bonet and H. Geffner, “HSP: Heuristic search planner,” AI Magazine,
vol. 21, no. 2, 2000.

[2] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-
tion through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[3] F. Bacchus and F. Kabanza, “Using temporal logics to express search
control knowledge for planning,” Artificial Intelligence, vol. 116, no. 1-2,
pp. 123–191, 2000.

[4] J. Kvarnström and P. Doherty, “TALplanner: A temporal logic based
forward chaining planner,” Annals of Mathematics and Artificial Intelli-

gence, vol. 30, pp. 119–169, Jun. 2000.
[5] J. Kvarnström, “Planning for loosely coupled agents using partial order

forward-chaining,” in Proceedings of the 26th Annual Workshop of the

Swedish Artificial Intelligence Society (SAIS), Uppsala, Sweden, May
2010, pp. 45–54.

[6] R. I. Brafman and C. Domshlak, “From one to many: Planning for
loosely coupled multi-agent systems,” in Proceedings of the 18th Inter-

national Conference on Automated Planning and Scheduling (ICAPS),
Sydney, Australia, 2008, pp. 28–35.

[7] F. Bacchus and M. Ady, “Precondition control,” 1999, available at http:
//www.cs.toronto.edu/∼fbacchus/Papers/BApre.pdf.

[8] D. S. Weld, “An introduction to least commitment planning,” AI maga-

zine, vol. 15, no. 4, p. 27, 1994.
[9] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson,

and B. Wingman, “A distributed architecture for autonomous unmanned
aerial vehicle experimentation,” in Proc. DARS, 2004.

[10] P. Doherty, “Advanced research with autonomous unmanned aerial
vehicles,” in Proc. KR, 2004.

[11] P. Doherty and J.-J. C. Meyer, “Towards a delegation framework for
aerial robotic mission scenarios,” in Proc. 11th International Workshop

on Cooperative Information Agents (CIA-07), 2007.
[12] C. Boutilier and R. I. Brafman, “Partial-order planning with concurrent

interacting actions,” Journal of Artificial Intelligence Research, vol. 14,
pp. 105–136, 2001.

[13] M. Brenner, “Multiagent planning with partially ordered temporal plans,”
in Proc. IJCAI, 2003.

[14] M. Veloso and P. Stone, “FLECS: Planning with a flexible commitment
strategy,” Journal of Artificial Intelligence Research, vol. 3, pp. 25–52,
1995.

[15] P. Doherty, J. Kvarnström, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” Journal of Autonomous Agents and Multi-Agent Systems,
vol. 19, no. 3, pp. 332–337, Feb. 2009.

