
Automated Planning of Tutorial Dialogues
Amin Rahati and Froduald Kabanza

Department of Computer Science
University of Sherbrooke

Sherbrooke, Canada
amin.rahati, kabanza@usherbrooke.ca

Abstract—Managing a dialogue between a student and an
intelligent tutoring system is a challenging problem for many
applications. It has often been argued and demonstrated that
adaptive dialogues between a user and a computer can be
generated automatically, using automated planning techniques to
plan speech acts. To date such plan-based dialogue generation
approaches have relied on deterministic planning algorithms.
Consequently they can only handle sequential dialogue structures.
In this paper we describe a new approach for automatically
planning more general tree-like dialogue structures, by using a
nondeterministic planner with incomplete knowledge and sensing.
Our approach takes into account incomplete information about
the user’s knowledge by including queries that the computer can
ask to the user to gather missing information that is necessary for
an effective feedback. We illustrate our system with an application
to an intelligent tutoring system for medical diagnosis.

Index Terms—Dialogue processing, Believe revision and up-
date, Planning under uncertainty, Intelligent Tutoring Systems

I. INTRODUCTION

Adaptive and believable dialogues constitute an important
aspect of intelligent capabilities in the interactions between a
computer and a user, for many applications. This is particularly
true for intelligent tutoring systems (ITS), that is, systems that
try to teach a subject by providing a support similar to one
by human teachers. In this context, dialogues specify what the
system tells the student, when and how, to support his learning
process in the most effective way. Dialogues can be involved to
guide a student solve a particular problem, to help him recover
from a mistake, present him new knowledge, or provide any
other kind of feedback [1], [2], [3], [2].

Since such dialogues depend on the current learning sit-
uation (e.g., the current step in a problem solving process),
the interactions that have to take place between the student
and the system during the dialogue cannot be exhaustively
specified off-line. Most current applications involve only par-
tial dialogues that cover some learning situations identified in
advance.

Automated planning has long been presented as a promising
technique for automatically generating more adaptive user-
computer dialogues [4], [5], [6], [7], [8]. The basic principle
is to model speech acts as actions executed by an agent and
dialogues as plans (i.e., combinations of actions) for achieving
some communication goal. That way, existing planning algo-
rithms can be applied to generated dialogue plans. Despite
the recent development of automated planning algorithms
that can deal with uncertainty, plan-based dialogue generation

techniques still rely on deterministic planning systems. They
do not take into account uncertainty about input from the user.
Uncertainty continues to be handled solely at the level of the
global artificial intelligence (AI) architecture, which invokes
the dialogue planner each time the user input is not as planned
for in the dialogue.

It is difficult to anticipate all mistakes a student will make
when interacting with an ITS. We can’t predict either the
student’s responses to queries made by the ITS (for instance
when asking him whether he wants some help or not). If
a deterministic planner is used to plan a dialogue for such
situations, it will have to commit to only one of the possible
course of events at the planning time, leaving the responsibility
to the AI engine to replan should the choices made at the
planning time happen to be wrong when the dialogue is ran.
Such frequent re-planning can be a source of inefficiency in
managing the interactions between the student and the ITS.

In this paper we describe a more robust planning approach
which models the problem of generating a dialogue as one
of planning with incomplete knowledge about the user. That
way, the dialogue planner produces dialogues having a tree-
like structure involving conditional branches on probable user
inputs. A generated dialogue also involves queries to the user
aimed at gathering information necessary to decide upon the
next course of action in the dialogue plan. (e.g., the system
may have to ask questions to the student to know what’s
wrong with him). Our dialogue planner is an application of
the PKS planning algorithm, originally introduced by Bacchus
and Petrick [9].

The remainder of the paper is organized as follows. In the
next section we discuss our case study of an ITS for medical
diagnosis. Then we give an overview of the dialogue system
architecture, followed by a detailed description of its main
components. Finally we present some scenarios, followed by
a discussion on related works and a conclusion.

II. MOTIVATION: DIALOGUES IN AN ITS FOR MEDICAL
DIAGNOSIS

This work is motivated by the automatic generation of
dialogues between a student and an ITS that teaches him
to diagnose clinical problems. ITS for clinical diagnosis is a
research area with a growing interest and several interesting
prototypes have been recently developed, including [1], [3],
[10]. In all these systems the dialogues are manually specified
to cover a limited number of interactions between the student

1



Fig. 1. Interaction scenario

and the system. Our system is an extension of TeachMed [10]
to allow automatically planned dialogues.

A typical scenario begins with a student selecting a vir-
tual patient having a particular disease with the objective to
generate a correct diagnosis. The student makes a diagnosis
by performing an investigation. He asks queries to the virtual
patient about the different symptoms, life style and family
background. He can

also make queries in terms of a physical exam on a 3D
model of the patient e.g., reflexes) or in terms of lab tests
(e.g., blood samples). Queries and tests are selected from a list
including noise queries. Each query has an answer specified
in the virtual-patient model, which includes his vital signs,
symptoms and results of lab tests or physical exam.

Figure 1 illustrates an excerpt for queries on a virtual
patient complaining of an abdominal pain. At the beginning,
the student does not know what causes the pain. He asks
queries to formulate some initial hypotheses. As more queries
are asked, he will eliminate some hypotheses, strengthen others
and generate new ones. This process continues until he can
narrow the list of hypothesis to one or two, that is, the final
diagnosis.

Some lab queries might be costly (e.g., MRI) or intrusive, so
they are made if only necessary. On the other hand, forgetting
to perform a particular test may lead to missing a pathology
that threats the patient’s health. The interview cannot go on
endlessly either, so the student must ask as few questions as
necessary. All these constraints call for appropriate feedback
depending on how the student is behaving. Feedback is also
necessary to help a student become aware of his mistakes
and to recover from them. For instance, the student may
forget to formulate a relevant hypothesis from the evidences

Fig. 2. A dialogue finite state machine. t = true; f = false.

he has collected so far, or fail to discard one that should be
discarded. Such mistakes suggest a lack of appropriate clinical
knowledge or skill by the student. Feedback in an ITS is not
just meant to raise mistakes committed by the student, but most
importantly to engage the student in a pedagogic dialogue that
will make him understand the reasons behind those mistakes
and foster the required clinical skills to avoid them later in
similar situations.

TeachMed uses an influence diagram (ID) [11] to model the
causal relationship between symptoms and diseases and the
utility of queries. Given the evidence collected by the student
at the current stage and the current differential diagnosis,
inference on the ID is used to determine the next queries or
tests

with high added value of information (e.g., queries or tests
that would increase the likelihood of a current hypothesis or
discard one). These queries are then compared to those made
by the student to provide feedback if there are significant
discrepancy. On the other hand, given the evidence collected
so far, the system can determine the most likely hypotheses in
the ID and compare with the differential diagnosis formulated
by the student so far to provide feedback accordingly.

To monitor the student’s solving trace, TeachMed uses
production rules, such that the preconditions of a rule are
matched by situations requiring intervention (e.g., the student
has failed to identify an hypothesis from the evidences he has
collected so far) and the postcondition is a trigger of a feedback
dialogue for handling the situation.

In the original TeachMed version [10], the dialogue is
modelled explicitly as a finite state machine (FSM); that is,
a graph with two types of states: display state and internal
state. In a display state, the system displays a multiple-



choice message to the student and waits for him to answer
by one choice, then moves to the corresponding transition;
messages involve place holders (delimited by < and > in
the example below) to be filled by values of corresponding
variables at the time they are displayed. In an internal state,
the system is making some computations, producing a symbol
as output, and moving to a state along a transition matching
the output. Figure 2 shows a dialogue for a student perceived
to be changing his hypothesis without explicitly updating his
hypothesis table. Display states are drawn with a rectangle
containing part of the displayed message. Internal states are
drawn in ovals. Entry states are indicated by an arrow with no
origin state.

For the extension of TeachMed described here, feedback
rules have a postcondition that is communication goal, rather
than an FSM dialogue, so that the actual FSM dialogue is
generated online by a planner. This permits more complex
and adaptive dialogues, for which the structure is determined
dynamically, rather than being enforced off-line. Before de-
scribing the planner, it is interesting to illustrate a situation
leading to the activation of a dialogue such as in Figure 2.

Consider again the scenario in Figure 1. Initially, the student
is given a virtual patient to diagnose. The interaction between
the student and the TeachMed begins with a straightforward
question-answer loop as follows : the student is querying
the virtual patient and getting answers that are specified in
the patient model. After a few questions and corresponding
answers, the student is working on the hypothesis of urinary
infection. Until step 5, the student has been making queries that
are related to this hypothesis, trying to confirm it or discard it.
The ITS knows what current hypothesis the student is working
on because he must specify it in an appropriate window. On
step 6, the ITS determines (through inference on the ID) that
that the query is not related to the working hypothesis (Urinary
infection), but is related to another hypothesis (sexually trans-
mitted disease, (STD)). A feedback rule matching this situation
triggers a call to the planner with a goal of remedying the
situation. As a remedy, the planner then generates the dialogue
FSM in Figure 2. Then the interaction in Figure 1 resumes in
step 7, this time being driven by the dialogue FSM in Figure 2.

As the message displayed on step 7 indicates, the place-
holder <query-type> is replaced by “question” because
the value of this variable is “question” (meaning “interview
question”). The displayed message is a concatenation of the
message in the entry state with labels on outgoing transitions.
The remainder of the dialogue can be followed easily from Fig-
ure 2, given the choices made by the student when answering
multiple choice questions displayed by the dialogue process.

In the original TeachMed version [10], there are many
such dialogues covering the different kinds of feedback. Some
of these dialogues are quite complex to specify, considering
that the purpose is not to provide the answer to the student
immediately, but to check first whether the perceived situation
is indeed correct, to engage in a dialogue where the student’s
confidence will be tested (e.g., by the question “are you sure?”
, but this can get more complex), and then to encourage the

student to identify the error himself.
With our new version, the virtual patient designer does not

have to enumerate all possible dialogues. He only needs to
specify generic speech acts involved in the different dialogues
by using templates of speech acts (i.e., planning operators),
specifying when they are invoked and what are their effects
on the student’s belief state. It then becomes the role of the
planner to generate a particular FSM dialogue that is a tree of
speech acts for a given communication goal. This is not only
reduces costs in specifying medical diagnosis learning objects,
but also makes the system more adaptive.

III. DIALOGUE PLANNER

The dialogue planner applies PKS planning algorithms [9].
At the planning time, the planner may have incomplete knowl-
edge about the student’s belief state (e.g.: What hypothesis is
the student working with? Does the student know that this
symptom can be caused by this particular pathology?). Since
the planner is able to reason about the uncertainty on the
student’s belief state, it can generate dialogue plans that include
questions to the student, aimed at acquiring necessary infor-
mation at the execution time to run the dialogue succesfully.
These questions can be seen as “sensing actions” made by the
ITS. The ITS is an agent executing a dialogue plan and it
senses its environment (the student) by asking questions.

Hence in our context a dialogue FSM is a plan generated
by PKS. The input for generating such a plan is an initial
state, a goal, and plan operators. The initial state contains facts
from the student’s model and the current solving step that re
relevant; in particular; these include facts that matched the
precondition of the rule that triggers the goal for the dialogue.

A. Goals
A goal is a disjunctive formula on the student belief state.

Predicates express basic facts about the student’s belief state.
We use StBel(f, x1, . . . , xn) to express the student belief. The
first argument denotes the kind of the belief and the remaining
arguments are objects concerned by the belief. For instance,
we use StBel(causes, U, SP ) to express the fact that the
student believes there is causal relationship between urinary
infection (U ) and having a sexual partner (SP ). We also use
StBel(change, U) to means that student believes he should
change his working to urinary infection (U ) (i.e., he should
start asking queries on the virtual patient that will help him
confirm or discard the new working hypothesis).

Thus the goal (not StBel(causes, U, SP ) |
StBel(change, U)) is achieved by an FSM such that
by running it, the final student’s belief state will satisfy the
formula. Remember the FSM is triggered because the ITS has
noticed that the student has asked a query not related to the
current working hypothesis (urinary infection). So either the
student is wrongly thinking that the query is related to urinary
infection, or in he is actually focussing on a new hypothesis
(but he forgot to specify the new working hypothesis in
the appropriate window on the ITS interface). An dialogue
satisfying the previous dialogue will make the student realize
which one of the two situations he should normally be in.



Fig. 3. Brief description of speech acts used in dialogue plan generation. E = Explanatory, O = Ordering, I = Interrogative

B. Belief State

PKS planner produces a plan (in this case, a tutorial
dialogue plan) by searching a space of believes. During search,
the planner is in a particular belief state. The space is explored
by applying templates of speech acts to generate successors of
the current belief state in forward chaining process. One of the
interesting

features of PKS is that each belief state is partitioned into
four sets, allowing to make efficient logic inference during the
search for a plan [9]. Two of these components are relevant
for our application:

• A set of known facts (Kf), that is, the set of facts for
which the planner knows the true at the planning time in
the current state.

• A set of knowable facts (Kw), that is, the set of facts for
which the planner does not know the truth at the planning
time, but for which it has planned sensing actions that will
determine the truth at the run time.

For our application, known facts are facts in the ini-
tial state and thereafter facts that are entailed by ex-
planatory and ordering speech acts. For instance, initially
StAsked(Question, SP ) and WorkingHP (U) are in Kf
if the student has asked a question about the sexual-partner
evidence and working hypothesis is urinary infection. If at
planning time, the planner applies a planning operator that
models an order instructing the student to do something (e.g.,
change your working hypothesis) the effect of will be an update
on Kf. Knowable facts are facts entailed by interrogative
speech acts. For instance, if the planner applies an operator
modelling a query to the student (e.g., asking the student

whether he has finished working with Urinary hypothesis), the
effect is an update on the Kw component of the successor state
to reflect that the student’s answer (yes or no) will be known
at the run time when the query action is actually executed.

C. Planning Operators

Display states in the FSM correspond to speech acts. To
generate them, the planner requires as input planning operators
that specify templates of speech acts. Each planning operator
describes the situation in which a type of speech act is
appropriate (i.e, the precondition of the planning operator) and
its effect on the current state. There are three types of speech
acts:

• Explanatory speech acts display an explanation to student.
• Ordering speech acts give orders to the student about the

next step in the clinical problem solving.
• Interrogative speech acts ask questions to the student.
Explanatory and ordering speech acts deterministic and

always affect only the Kf component of states. Interrogative
speech acts are non deterministic and affect both Kf and
Kw state components. Nondeterminism here accounts for the
possible answers by the students for a question represented by
the interrogative speech act. This nondeterminism induces a
conditional branch in the dialogue plan structure.

Figure 3 illustrates a simple planning operators. PKS uses
the logic modal operator K to express the planner’s knowledge
about something. For any first-order formula, K(φ) means that
the planner knows φ. Symbols between braces (< >) are to be
interpreted as template placeholders (or predicate variables).
A planning operator is applied to a state by replacing the



Algorithm 1 Dialogue planner algorithm

1. begin DP(s, p, g)
2. loop
3. if GOALSATISFIED(s, g) then return p
4. if Kw 6= ∅ then
5. PICK(α) : α ∈ Kw

6. BRANCH (s, α, s1, s2)
7. C := {DP(s1, ∅, g), DP(s2, ∅, g)}
8. iffailure ∈ C then return failure
9. else return p, C

10. appicable← {A | PRECONDSSATISFIED(A, s)}
11. if appicable = ∅ then return failure
12. PICK(A) : A ∈ appicable
13. s← APPLYEFFECTS(A, s)
14. p← p, A
15. end

variables with values that make the operator’s precondition true
in the current state. Each substitution gives an action (that is, a
fully instantiated planning operator), which creates a successor
of the current state by applying its effects. The effects column
describes the updates made by the application of the operator
to a current state. The add keyword in the effects means that
the effect is added to the indicated state component. The text
column shows the text that is displayed when the speech act
is executed.

D. Planning Algorithm

PKS planning algorithm is shown in Table 1. Its input are:
an initial belief state (s); an empty plan (p ); and a communica-
tive goal (g). A part from the conditional if statement on line 4
and its nested statement (lines 5 to 9), this is similar to forward-
search algorithm. The if statement on line 4 checks the Kw
state component for an entry; if one exist (say α) it is removed
from Kw (i.e, PICK statement, line 5) and then two new belief
states s1 and s2 are created from the current state s by adding
α and ¬α (i.e., BRANCH statement, 6); then (through lines 7
to 9) two recursive invocations of the algorithm take place. If
the goal holds in all the created branches by the recursive calls,
then after returning to the top-level invocation of the algorithm
the nested list p is returned as the solution plan, otherwise a
failure is returned. A correctness proof of this algorithm can
be found in [9].

Figure 4 shows a portion of the plan generated from: an ini-
tial state whose Kf component is {StAsked(question, SP ),
WorkingHP (U), Finished(U)} (the later fact is one of the
facts that shows the planner knowledge about the problem and
means that planner knows urinary infection has finished, we
ignored the other facts of initial state that are not relevant to our
example) and the other components (Kw, Kv, Kx) are empty;
the goal is (not StBel(causes, U, SP ) | StBel(change, U));
and the planning operators are in Figure 3. Nodes in the plan
of Figure 4 correspond to instantiations of planning operators.
Transitions correspond to conditional branches spawned by
the update of Kw components. One obtains the dialogue
in Figure 2 from the previous plan by replacing the action
in nodes by corresponding message texts as given in the
description of planning operators (Figure 3). This dialogue was

Fig. 4. A part of the tree structure representation of generated dialogue plan

produced in 1 second on a Pentium 1.8 GHZ.

IV. CONCLUSION AND RELATED WORK

In this paper we showed a new dialogue planning approach
that is able to take into account the uncertainty about user
input in the dialogue process and incomplete knowledge about
the users knowledge of problem or task in planning process.
This is a significant shift from previous dialogue planning
approaches which use deterministic approaches. As mentioned
in the introduction, a lot of previous work have considered the
problem of automatically generating user-computer dialogues
by using planning techniques [4], [5], [6], [7], [8]. APE [7] is
a recent system that uses a deterministic dialogue planner that
handles the uncertainty of user input by replanning. BEETLE
[8] uses a 3-tier planning architecture to handle different
aspects in dialogue generation, but still a deterministic planner
is used.

Currently speech acts are modelled by planning operators
with corresponding template messages. More natural messages
could be displayed by using automatically generated texts
rather than templates, by integrating a discourse planning
method [12], [5], [4], [13]. In fact, we view dialogue planning
at high level where one is interested in planning the structure
of the dialogues, that is, the turns for the participants in the
dialogues. Discourse planning would occur at a lower level of
speech acts (i.e., each speech acts becomes itself the output
of a planning or some other automated generation process).
For instance, if a system has different ways of communicating
a message, discourse planning would help determine the best
approach.

REFERENCES

[1] R. Ganeshan, W. Johnson, E. Shaw, and B. P. Wood, “Tutoring diagnostic
problem solving,” in Proceedings of the Fifth Int’l Conf. on Intelligent
Tutoring Systems, 2000.

[2] K. VanLehn, C. Lynch, K. Schulze, J. Shapiro, and R. Shelby, “The
andes physics tutoring system: Lessons learned,” International Journal
of Artificial Intelligence in Education, vol. 15, no. 3, 2005.

[3] S. Suebnukarn and P. Haddawy, “Clinical-reasoning skill acquisition
through intelligent group tutoring,” in Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI2005), Edin-
burgh, UK, July 2005, pp. 1425–1430.



[4] M. Pollack, “A model of plan inference that distinguishes between the
beliefs of actors and observers,” in Proceedings of the 24th Meeting of
the Association for Computational Linguistics. Morristown, New Jersey:
Association for Computational Linguistics, 1986, pp. 207–215.

[5] P. Cohen and H. Levesque, “Intention is choice with commitment,”
Artificial Intelligence, vol. 42, pp. 213–261, 1990.

[6] A. Cawsey, “Planning interactive explanations,” International Journal of
Man-Machine Studies, vol. 38, Issue 2, pp. 169–199, February 1993.

[7] R. Freedman, “Plan-based dialogue management in a physics tutor,”
in Proceedings of the Sixth Applied Natural Language Processing
Conference (ANLP), Seattle, 2000.

[8] M. G. Core, J. D. Moore, and C. Zinn, “Supporting constructive learning
with a feedback planner,” AAAI Fall Symp. Building Dialogue Systems
for Tutorial Applications,Cape Cod, MA, vol. 15, no. 3, November 2000.

[9] R. P. A. Petrick and F. Bacchus, “Extending the knowledge-based
approach to planning with incomplete information and sensing,” in
Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS-04), 2004, pp. 2–11.

[10] F. Kabanza and G. Bisson, “Clinical reasoning learning with simulated
patients,” pp. 385–394, 2005.

[11] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2003.
[12] M. Bratman, Intentions, Plans, and Practical Reason. Harvard Univer-

sity Press, 1987.
[13] R. M. Young, J. Moore, and M. Pollack, “Towards a principled represen-

tation of discourse plans,” in Proceedings of the Sixteenth Conference of
the Cognitive Science Society, Atlanta, GA, 1994.


