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Abstract

Current rates of species loss triggered numerous attempts to protect and conserve biodiver-

sity. Species conservation, however, requires species identification skills, a competence

obtained through intensive training and experience. Field researchers, land managers, edu-

cators, civil servants, and the interested public would greatly benefit from accessible, up-to-

date tools automating the process of species identification. Currently, relevant technologies,

such as digital cameras, mobile devices, and remote access to databases, are ubiquitously

available, accompanied by significant advances in image processing and pattern recogni-

tion. The idea of automated species identification is approaching reality. We review the tech-

nical status quo on computer vision approaches for plant species identification, highlight the

main research challenges to overcome in providing applicable tools, and conclude with a

discussion of open and future research thrusts.

Author summary

Plant identification is not exclusively the job of botanists and plant ecologists. It is

required or useful for large parts of society, from professionals (such as landscape archi-

tects, foresters, farmers, conservationists, and biologists) to the general public (like eco-

tourists, hikers, and nature lovers). But the identification of plants by conventional means

is difficult, time consuming, and (due to the use of specific botanical terms) frustrating for

novices. This creates a hard-to-overcome hurdle for novices interested in acquiring spe-

cies knowledge. In recent years, computer science research, especially image processing

and pattern recognition techniques, have been introduced into plant taxonomy to eventu-

ally make up for the deficiency in people’s identification abilities. We review the technical

status quo on computer vision approaches for plant species identification, highlight the

main research challenges to overcome in providing applicable tools, and conclude with a

discussion of open and future research thrusts.

Introduction

One of the most obvious features of organic life is its remarkable diversity [1]. Despite the vari-

ation of organisms, a more experienced eye soon discerns that organisms can be grouped into
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taxa. Biology defines taxa as formal classes of living things consisting of the taxon’s name

and its description [2]. The assignment of an unknown living thing to a taxon is called iden-

tification [3]. This article specifically focuses on plant identification, which is the process of

assigning an individual plant to a taxon based on the resemblance of discriminatory and mor-

phological plant characters, ultimately arriving at a species or infraspecific name. These under-

lying characters can be qualitative or quantitative. Quantitative characters are features that can

be counted or measured, such as plant height, flower width, or the number of petals per flower.

Qualitative characters are features such as leaf shape, flower color, or ovary position. Individu-

als of the same species share a combination of relevant identification features. Since no two

plants look exactly the same, it requires a certain degree of generalization to assign individuals

to species (or, in other words, assign objects to a fuzzy prototype).

The world inherits a very large number of plant species. Current estimates of flowering

plant species (angiosperms) range between 220,000 [4, 5] and 420,000 [6]. Given the average

20,000 word vocabulary of an educated native English speaker, even teaching and learning the

"taxon vocabulary" of a restricted region becomes a long-term endeavor [7]. In addition to the

complexity of the task itself, taxonomic information is often captured in languages and formats

hard to understand without specialized knowledge. As a consequence, taxonomic knowledge

and plant identification skills are restricted to a limited number of persons today.

The dilemma is exacerbated since accurate plant identification is essential for ecological

monitoring and thereby especially for biodiversity conservation [8, 9]. Many activities, such as

studying the biodiversity of a region, monitoring populations of endangered species, deter-

mining the impact of climate change on species distribution, payment of environmental ser-

vices, and weed control actions are dependent upon accurate identification skills [8, 10]. With

the continuous loss of biodiversity [11], the demand for routine species identification is likely

to further increase, while at the same time, the number of experienced experts is limited and

declining [12].

Taxonomists are asking for more efficient methods to meet identification requirements.

More than 10 years ago, Gaston and O’Neill [13] argued that developments in artificial intelli-

gence and digital image processing will make automatic species identification based on digital

images tangible in the near future. The rich development and ubiquity of relevant information

technologies, such as digital cameras and portable devices, has brought these ideas closer to

reality. Furthermore, considerable research in the field of computer vision and machine learn-

ing resulted in a plethora of papers developing and comparing methods for automated plant

identification [14–17]. Recently, deep learning convolutional neural networks (CNNs) have

seen a significant breakthrough in machine learning, especially in the field of visual object cate-

gorization. The latest studies on plant identification utilize these techniques and achieve signif-

icant improvements over methods developed in the decade before [18–23].

Given these radical changes in technology and methodology and the increasing demand for

automated identification, it is time to analyze and discuss the status quo of a decade of research

and to outline further research directions. In this article, we briefly review the workflow of

applied machine learning techniques, discuss challenges of image based plant identification,

elaborate on the importance of different plant organs and characters in the identification pro-

cess, and highlight future research thrusts.

Machine learning for species identification

From a machine learning perspective, plant identification is a supervised classification prob-

lem, as outlined in Fig 1. Solutions and algorithms for such identification problems are mani-

fold and were comprehensively surveyed byWäldchen and Mäder [16] and Cope et al. [17].
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The majority of these methods are not applicable right away but rather require a training

phase in which the classifier learns to distinguish classes of interest. For species identification,

the training phase (orange in Fig 1) comprises the analysis of images that have been indepen-

dently and accurately identified as taxa and are now used to determine a classifier’s parameters

for providing maximum discrimination between these trained taxa. In the application phase

(green in Fig 1), the trained classifier is then exposed to new images depicting unidentified

specimens and is supposed to assign them to one of the trained taxa.

Images are usually composed of millions of pixels with associated color information. This

information is too extensive and cluttered to be directly used by a machine learning algorithm.

The high dimensionality of these images is therefore reduced by computing feature vectors,

i.e., a quantified representation of the image that contains the relevant information for the clas-

sification problem. During the last decade, research on automated species identification mostly

focused on the development of feature detection, extraction, and encoding methods for com-

puting characteristic feature vectors. Initially, designing and orchestrating such methods was a

problem-specific task, resulting in a model customized to the specific application, e.g., the

studied plant parts like leaves or flowers. For example, Wu et al. [24] employ a processing

chain comprised of image binarization to separate background and the leaf, image denoising,

contour detection, and eventually extracting geometrical derivations of 12 leaf shape features.

The approach was evaluated on 32 species and delivered an identification accuracy of 90%.

However, this approach could only deal with species differing largely in their leaf shapes. Jin

et al. [25] propose leaf tooth features extracted after binarization, segmentation, contour detec-

tion, and contour corner detection. The proposed method achieved an average classification

rate of around 76% for the eight studied species but is not applicable to species with no signifi-

cant appearances of leaf teeth [19]. The sole step from an image to a feature vector, however,

typically required about 90% of the development time and extensive expert knowledge [19].

Model-free approaches aim to overcome the described limitations of model-based

approaches. They do not employ application-specific knowledge and therefore promise a

Fig 1. Fundamental steps of supervised machine learning for image-based species identification.

https://doi.org/10.1371/journal.pcbi.1005993.g001
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higher degree of generalization across different classes, i.e., species and their organs. The core

concept of model-free approaches is the detection of characteristic interest points and their

description using generic algorithms, such as scale-invariant feature transform (SIFT),

speeded-up robust features (SURF), and histogram of gradients (HOG). These descriptors cap-

ture visual information in a patch around each interest point as orientation of gradients and

have been successfully used for manifold plant classification studies, e.g., [26–28]. Seeland

et al. [29] comparatively evaluate alternative parts of a model-free image classification pipeline

for plant species identification. They found the SURF detector in combination with the SIFT

local shape descriptor to be superior over other detector–descriptor combinations. For encod-

ing interest points, in order to form an characteristic image descriptor for classification, they

found the Fisher Kernel encoding to be superior.

The next obvious step in automated plant species identification and many other machine

learning problems was removing an explicit decision about features to be described entirely. In

the last years, deep learning CNNs have seen a significant breakthrough in computer vision

due to the availability of efficient and massively parallel computing on graphics processing

units (GPUs) and the availability of large-scale image data necessary for training deep CNNs

with millions of parameters [19]. In contrast to model-based and model-free techniques,

CNNs do not require explicit and hand-crafted feature detection and extraction steps. Instead,

both become part of the iterative training process, which automatically discovers a statistically

suitable image representation (similar to a feature vector) for a given problem. The fundamen-

tal concept of deep learning is a hierarchical image representation composed of building

blocks with increasing complexity per layer. In a similar way, nature is compositional, i.e.,

small units form larger units, and each aggregation level increases the diversity of the resulting

structure (Fig 2). Such hierarchical representations achieve classification performances that

were mostly unachievable using shallow learning methods with or without hand-crafted fea-

tures (see Table 1).

Fig 2. Botanists’ (left) versus computer vision (right) description of flowers.

https://doi.org/10.1371/journal.pcbi.1005993.g002
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Challenges in image-based taxa identification

In providing a reliable and applicable automated species identification process, researchers

need to consider the following main challenges: (a) a vast number of taxa to be discriminated

from one another; (b) individuals of the same species that vary hugely in their morphology; (c)

different species that are extremely similar to one another; (d) specimen or other objects that

are not covered by the trained classifier; and (e) large variation induced by the image acquisi-

tion process in the field.

Large number of taxa to be discriminated

The world exhibits a very large number of plant species. Distinguishing between a large num-

ber of classes is inherently more complex than distinguishing between just a few and typically

requires substantially more training data to achieve satisfactory classification performance.

Even when restricting the focus to the flora of a region, thousands of species need to be sup-

ported. For example, the flora of the German state of Thuringia exhibits about 1,600 flowering

species [33]. Similarly, when restricting the focus to a single genus, this may still contain many

species, e.g., the flowering plant genus Dioscorea aggregates over 600 species [17]. Only a few

studies with such large numbers of categories have been conducted so far. For example, the

important "ImageNet Large Scale Visual Recognition Challenge 2017" involves 1,000 catego-

ries that cover a wide variety of objects, animals, scenes, and even some abstract geometric

concepts such as a hook or a spiral [34].

Large intraspecific visual variation

Plants belonging to the same species may show considerable differences in their morphological

characteristics depending on their geographical location and different abiotic factors (e.g.,

moisture, nutrition, and light condition), their development stage (e.g., differences between a

seedling and a fully developed plant), the season (e.g., early flowering stage to a withered

flower), and the daytime (e.g., the flower is opening and closing during the day). These changes

in morphological characteristics can occur on the scale of individual leaves (e.g., area, width,

length, shape, orientation, and thickness), flowers (e.g., size, shape, and color), and fruits but

may also affect the entire plant. Examples of visual differences of flowers during the daytime

and the season are given in Fig 3. In addition to the spatial and temporal variation, the shape

of leaves and flowers may vary continuously or discretely along a single individual. For ex-

ample, the leaf shape of field scabious (Knautia arvensis), a common plant in grassy places,

ranges from large entire or dentate lanceolate ground leafs over deeply lobed and almost pin-

nate stem leafs to small and again lanceolate and entire upper stem leafs. Furthermore, diseases

commonly affect the surface of leaves, ranging from discoloration to distinct marking, while

insects often alter a leaf’s shape by consuming parts of it. Some of this variation is systematic,

Table 1. Increasing classification accuracy achieved with evolving machine learning approaches on popular plant species benchmark datasets.

Model-based approach Model-free approach Deep learning

Dataset Accuracy Author Accuracy Author Accuracy Author

Swedish leaf 82.0% [30] 93.7% [26] 99.8% [18]

Flavia 90.3% [24] 95.9% [27] 99.7% [31]

Leafsnap 73.0% [14] 72.6% [20] 97.6% [20]

ICL 83.8% [32] 91.3% [32] 93.9% [21]

Oxford Flower 17 - - 91.8% [29] 96.6% [22]

Oxford Flower 102 - - 90.2% [28] 96.6% [23]

https://doi.org/10.1371/journal.pcbi.1005993.t001
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particularly the allometric scaling of many features, but much variation is also idiosyncratic,

reflecting the expression of individual genotypic and phenotypic variation related to the factors

mentioned.

Small interspecific visual variation

Closely related species may be extremely similar to one another. Even experienced botanists

are challenged to safely distinguish species that can be identified only by almost invisible char-

acteristics [35]. Detailed patterns in the form of particular morphological structures may be

crucial and may not always be readily captured, e.g., in images of specimens. For example, the

presence of flowers and fruits is often required for an accurate discrimination between species

with high interspecific similarity, but these important characteristics are not present during

the whole flowering season and therefore are missing in many images. Furthermore, particular

morphological structures which are crucial for discrimination may not be captured in an

image of a specimen, even when the particular organ is visible (e.g., the number of stamens or

ovary position in the flower).

Rejecting untrained taxa

An automated taxon identification approach not only needs to be able to match an individual

specimen to one of the known taxa, but should also be able to reject specimens that belong to a

taxon that was not part of the training set. In order to reject unknown taxa, the classification

method could produce low classification scores across all known classes for "new" taxa. How-

ever, aiming for a classifier with such characteristics conflicts with the goal of tolerating large

intraspecific variation in classifying taxa. Finding a trade-off between sensitivity and specificity

is a particular challenge in classifier design and training.

Variation induced by the acquisition process

Further variation is added to the images through the acquisition process itself. Living plants

represent 3D objects, while images capture 2D projections, resulting in potentially large differ-

ences in shape and appearance, depending on the perspective from which the image is taken.

Furthermore, image-capturing typically occurs in the field with limited control of external

conditions, such as illumination, focus, zoom, resolution, and the image sensor itself [2].

Fig 3. Visual variation of Lapsana communis’s flower throughout the day from two perspectives (left) and visual variation of Centaurea pseudophrygia’s flower
throughout the season and flowering stage (right).

https://doi.org/10.1371/journal.pcbi.1005993.g003
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These variations are especially relevant for an automated approach in contrast to human

perception.

Status quo

In the last decade, research in computer vision and machine learning has stimulated manifold

methods for automated plant identification. Existing image-based plant identification

approaches differ in three main aspects: (a) the analyzed plant organs, (b) the analyzed organ

characters, and (c) the complexity of analyzed images. An extensive overview of studied meth-

ods is given byWäldchen and Mäder [16] and is briefly summarized below.

Relevant organs for automated identification

Above the ground, plants may be composed of four visible organ types: stem, leaf, flower, and

fruit. In a traditional identification process, people typically consider the plant as a whole, but

also the characteristics of one or more of these organs to distinguish between taxa. In case of

automated identification, organ characteristics were analyzed separately, too. For the following

reasons one image alone is typically not sufficient: (a) organs may differ in scale and cannot be

depicted in detail along with the whole plant or other organs; and (b) different organs require

different optimal image perspectives (e.g., leaves are most descriptive from the top, while the

stem is better depicted from the side).

A majority of previous studies solely utilized the leaf for discrimination [16]. The reason is

a more methodological one, rather than meaning that leaves are a more discriminative part of

plants from a botanical perspective. On the contrary, manual identification of plants in the

vegetative state is considered much more challenging than in the flowering state. From a com-

puter vision perspective, leaves have several advantages over other plant morphological struc-

tures, such as flowers, stems, or fruits. Leaves are available for examination throughout most of

the year. They can easily be collected, preserved, and imaged due to their planar geometric

properties. These aspects simplify the data acquisition process [17] and have made leaves the

dominantly studied plant organ for automated identification methods in the past. In situ top-

side leaf images in front of a natural background were shown to be the most effective nonde-

structive type of image acquisition [36]. Leaves usually refer only to broad leaves, while needles

were neglected or treated separately.

Often, the visually most prominent and perceivable part of a plant is its flower. Traditional

identification keys intensively refer to flowers and their parts for determination. In contrast,

previous studies on automated identification rarely used flowers for discrimination [16]. Typi-

cally, flowers are only available during the blooming season, i.e., a short period of the year. Due

to being complex 3D objects, there is a considerable number of variations in viewpoint, occlu-

sions, and scale of flower images compared to leaf images. If captured in their habitat, images of

flowers vary due to lighting conditions, time, date, and weather. All these aspects make flower-

based classification a challenging task. However, accurate, automated identification supporting

a realistic number of taxa will hardly be successful without the analysis of flowers.

Towards a more mature automated identification approach, solely analyzing one organ will

often not be sufficient, especially when considering all the challenges discussed in the previous

section. Therefore, more recent research started exploringmulti-organ-based plant identifi-

cation. The Cross Language Evaluation Forum (ImageCLEF) conference has organized a chal-

lenge dedicated to plant identification since 2011. The challenge is described as plant species

retrieval based on multi-image plant observation queries and is accompanied by a dataset con-

taining different organs of plants since 2014. Participating in the challenge, Joly et al. [37] pro-

posed a multiview approach that analyzes up to five images of a plant in order to identify a
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species. This multiview approach allows classification at any period of the year, as opposed to

purely leaf-based or flower-based approaches that rely on the supported organ to be visible.

Initial experiments demonstrate that classification accuracy benefits from the complementari-

ties of the different views, especially in discriminating ambiguous taxa [37]. A considerable

burden in exploring this research direction is acquiring the necessary training data. However,

by using mobile devices and customized apps (e.g., Pl@ntNet [38], Flora Capture [39]), it is

possible to quickly capture multiple images of the same plant observed at the same time, by the

same person, and with the same device. Each image, being part of such an observation, can be

labeled with contextual metadata, such as the displayed organ (e.g., plant, branch, leaf, fruit,

flower, or stem), time and date, and geolocation, as well as the observer.

It is beneficial if training images cover a large variety of scenarios, i.e., different organs from

multiple perspective and at varying scale. This helps the model to learn adequate representa-

tions under varying circumstances. Furthermore, images of the same organ acquired from dif-

ferent perspectives often contain complementary visual information, improving accuracy in

observation-based identification using multiple images. A structured observation approach

with well defined image conditions (e.g., Flora Capture) is beneficial for finding a balance

between a tedious observation process acquiring every possible scenario and a superficial

acquisition that misses the characteristic images required for training.

Relevant characters for automated identification

A plant and its organs (i.e., objects in computer vision) can be described by various characters,

such as color, shape, growing position, inflorescence of flowers, margin, pattern, texture, and

vein structure of the leaves. These characters are extensively used for traditional identification,

with many of them also being studied for automated identification. Previous research pro-

posed numerous methods for describing general as well as domain-specific characteristics.

Extensive overviews of the utilized characteristics, as well as of the methods used for capturing

them in a formal description, are given by Wäldchen and Mäder [16] and Cope et al. [17].

Leaf shape is the most studied characteristic for plant identification. A plethora of methods

for its description can be found in previous work [16, 17]. Also, most traditional taxonomic

keys involve leaf shape for discrimination, the reason being that, although species’ leaf shape dif-

fers in detail, general shape types can easily be distinguished by people. However, while tradi-

tional identification categorizes leaf shape into classes (e.g., ovate, oblique, oblanceolate),

computerized shape descriptors either analyze the contour or the whole region of a leaf. Ini-

tially, basic geometric descriptors, such as aspect ratio, rectangularity, circularity, and eccentric-

ity, were used to describe a shape. Later, more sophisticated descriptions, such as center

contour distance, Fourier descriptors, and invariant moments, were intensively studied [16, 17].

In addition to the shape characteristic, various researchers also studied leaf texture,

described by methods like Gabor filters, gray-level co-occurrence matrices (GLCM), and frac-

tal dimensions [40–42]. Although texture is often overshadowed by shape as the dominant or

more discriminative feature for leaf classification, it has been demonstrated to be of high dis-

criminative power and complementary to shape information [16, 43]. In particular, leaf texture

captures leaf venation information as well as any eventual directional characteristics, and more

generally allows describing fine nuances or micro-texture at the leaf surface [44]. Furthermore,

leaf texture analysis allows to classify a plant by having only a portion of a leaf available without

depending, e.g., on the shape of the full leaf or its color. Therefore, texture analysis can be ben-

eficial for botanists and researchers that aim to identify damaged plants.

The vein structure as a leaf-specific characteristic also played a subordinate role in previous

studies. Venation extraction is not trivial, mainly due to a possible low contrast between the
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venation and the rest of the leaf blade structure [45]. Some authors have simplified the task by

using special equipment and treatments that render images with more clearly identified veins

(mainly chemical leaf clarification) [45, 46]. However, this defeats the goal of having users get

an automated identification for specimens that they have photographed with ordinary digital

cameras.

Leaf color is considered a less discriminative character than shape and texture. Leaves are

mostly colored in some shade of green that varies greatly under different illumination [44],

creating a low interclass color variability. In addition, there is high intraclass variability. For

example, the leaves belonging to the same species or even the same plant can present a wide

range of colors depending on the season and the plant’s overall condition (e.g., nutrients and

water). Regardless of the aforementioned complications, color may still contribute to plant

identification, e.g., for considering leaves that exhibit an extraordinary hue [44]. However, fur-

ther investigation on the leaf color character is required.

While the shape of the leaves is of very high relevance, flower shape has hardly been consid-

ered so far. Interestingly, flower shape is an important characteristic in the traditional identifi-

cation process. It is dividing plants into families and genera and is thereby considerably

narrowing the search space for identification. However, previous attempts for describing

flower shape in a computable form did not find it to be very discriminative [47]. A major rea-

son is the complex 3D structure of flowers, which makes its shape vary depending on the per-

spective from which an image was taken. Furthermore, flower petals are often soft and flexible,

which is making them bend, curl or twist and letting the shape of the same flower appear very

differently. A flower’s shape also changes throughout the season [29] and with its age to the

extent where petals even fall off [48], as visualized in Fig 3.

Flower color is a more discriminative character [48, 49]. Many traditional field guides

divide plants into groups according to their flower color. For automated identification, color

has been mostly described by color moments and color histograms [16]. Due to the low

dimensionality and the low computational complexity of these descriptors, they are also suit-

able for real-time applications. However, solely analyzing color characters, without, e.g., con-

sidering flower shape, cannot classify flowers effectively [48, 49]. Flowers are often transparent

to some degree, i.e., the perceived color of a flower differs depending on whether the light

comes from the back or the front of the flower. Since flower images are taken under different

environmental conditions, the variation in illumination is greatly affecting analysis results.

This motivated the beneficial usage of photometric invariant color characters [29, 50].

Various previous studies showed that no single character may be sufficient to separate all

desired taxa, making character selection and description a challenging problem. For example,

whilst leaf shape may be sufficient to distinguish some taxa, others may look very similar to

each other but have differently colored leaves or texture patterns. The same applies to flowers,

where specimens of the same color may differ in their shape or texture. Therefore, various

studies do not only consider one type of character but use a combination of characteristics

for describing leaves and flowers [16]. The selection of characteristics is always specific for a

certain set of taxa and might not be applicable to others. Meaningful characters for, e.g., flower

shape can only be derived if there are flowers of sufficient size and potentially flat structure.

The same applies to leaf shape and texture. This reflects a fundamental drawback of shallow

learning methods using hand-crafted features for specific characters.

Deep learning

Deep artificial neural networks automate the critical feature extraction step by learning a suit-

able representation of the training data and by systematically developing a robust classification
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model. Since about 2010, extensive studies with folded neural networks have been conducted

on various computer vision problems. In 2012, for the first time a deep learning network archi-

tecture with eight layers (AlexNet) won the prestigious ImageNet Challenge (ILSVRC) [51]. In

the following years, the winning architectures grew in depth and provided more sophisticated

mechanisms that centered around the design of layers, the skipping of connections, and on

improving gradient flow. In 2015, ResNet [52] won ILSVRC with a 152 layer architecture and

reached a top-5 classification error of 3.6%, being better than human performance (5.1%) [34].

As for many object classification problems, CNNs produce promising and constantly improv-

ing results on automated plant species identification. One of the first studies on plant identifi-

cation utilizing CNNs is Lee et al.’s [53, 54] leaf classifier that uses the AlexNet architecture

pretrained on the ILSVRC2012 dataset and reached an average accuracy of 99.5% on a dataset

covering 44 species. Zhang et al. [55] used a six-layer CNN to classify the Flavia dataset and

obtained an accuracy of 94,69%. Barre et al. [19] further improved this result by using a

17-layer CNN and obtained an accuracy of 97.9%. Eventually, Sun et al. [31] study the ResNet

architecture and found a 26-layer network to reach best performance with 99.65% on the Fla-

via dataset. Simon et al. [56] used CNNs (AlexNet and VGG19) for feature detection and

extraction inside a part constellation modeling framework. Using Support Vector Machine

(SVM) as classifier, they achieved 95.34% on the Oxford Flowers 102 dataset. Table 1 contrasts

the best previously reported classification results of model-based, model-free and CNN-based

approaches on benchmark plant image datasets. A comparison shows that CNN classification

performance was unachievable using traditional and shallow learning approaches.

Training data and benchmarks

Merely half of the previous studies on automated plant identification evaluated the proposed

method with established benchmark datasets allowing for replication of studies and compari-

son of methods (see Table 2). The other half solely used proprietary leaf image datasets not

available to the public [16].

The images contained in these datasets (proprietary as well as benchmark) fall into three

categories: scans, pseudo-scans, and photos. While scan and pseudo-scan categories corre-

spond respectively to leaf images obtained through scanning and photography in front of a

simple background, the photo category corresponds to leaves or flowers photographed on nat-

ural background. The majority of utilized leaf images are scans and pseudo-scans [16]. Typi-

cally fresh material, i.e., simple, healthy, and not degraded leaves, were collected and imaged in

the lab. This fact is interesting since it considerably simplifies the classification task. If the

object of interest is imaged against a plain background, the often necessary segmentation for

distinguishing foreground and background can be performed in a fully automated way with

high accuracy.

Table 2. Overview of previously studied benchmark datasets.

Dataset Author # Species # Images Acquisition Background Organs Life form

Swedish leaf [30] 15 1,125 scan plain leaves trees

Flavia [24] 32 1,907 scan + photo plain leaves trees

Leafsnap [58] 185 30,866 scan + photo plain leaves trees

ICL [59] 220 17,032 scan + photo plain leaves herb, tree

Oxford Flower 17 [48] 17 1,360 photo natural flower herbs

Jena Flower 30 [29] 30 1,479 photo natural flower herbs

Oxford Flower 102 [49] 102 8,189 photo natural flower herbs

PlantCLEF16 [60] 1,000 113,205 photo natural fruit, flower, leaves, stem herb, tree, fern

https://doi.org/10.1371/journal.pcbi.1005993.t002
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Leaves imaged in the natural environment, as well as degraded leaves largely existing in

nature, such as deformed, partial, overlapped, and compounded leaves (leaves consisting of

two or more leaflets born on the same leafstalk), are largely avoided in the current studies. Seg-

menting the leaf with natural background is particularly difficult when the background shows

a significant amount of overlapping, almost unicolor elements. This is often unavoidable when

imaging leaves in their habitat. Interferences around the target leaves, such as small stones and

ruderals may create confusion between the boundaries of adjacent leaves. Compound leaves

are particularly difficult to recognize and existing studies that are designed for the recognition

of simple leaves can hardly be applied directly to compound leaves. This is backed up by the

variation of a compound leaf—it is not only caused by morphological differences of leaflets,

but also by changes in the leaflet number and arrangements [57].

The lower part of Table 2 shows benchmark datasets containing flower images. The images

of the Oxford Flower 17 and 102 datasets have been acquired by searching the internet and by

selecting images of species with substantial variation in shape, scale, and viewpoint. The Plant-

CLEF2015/2016 dataset consists of images with different plant organs or plant views (i.e.,

entire plant, fruit, leaf, flower, stem, branch, and leaf scan). These images were submitted by a

variety of users of the mobile Pl@ntNet application. The recently published Jena Flower 30

dataset [29] contains images acquired in the field as top-view flower images using an Apple

iPhone 6 throughout an entire flowering season. All images of these flower benchmark datasets

are photos taken in the natural environment.

Applicable identification tools

Despite intensive and elaborate research on automated plant species identification, only very

few studies resulted in approaches that can be used by the general public, such as Leafsnap [61]

and Pl@ntNet [37]. Leafsnap, developed by researchers from Columbia University, the Univer-

sity of Maryland, and the Smithsonian Institution, was the first widely distributed electronic

field guide. Implemented as a mobile app, it uses computer vision techniques for identifying

tree species of North America from photographs of their leaves on plain background. The app

retrieves photos of leaves similar to the one in question. However, it is up to the user to make

the final decision on what species matches the unknown one. LeafSnap achieves a top-1 recog-

nition rate of about 73% and a top-5 recognition rate of 96.8% for 184 tree species [61]. The

app has attracted a considerable number of downloads but has also received many critical user

reviews [62] due to its inability to deal with cluttered backgrounds and within-class variance.

Pl@ntNet is an image retrieval and sharing application for the identification of plants. It is

being developed in a collaboration of four French research organizations (French agricultural

research and international cooperation organization [Cirad], French National Institute for

Agricultural Research [INRA], French Institute for Research in Computer Science and Auto-

mation [Inria], and French National Research Institute for Sustainable Development [IRD])

and the Tela Botanica network. It offers three front-ends, an Android app, an iOS app, and a

web interface, each allowing users to submit one or several pictures of a plant in order to get a

list of the most likely species in return. The application is becoming more and more popular.

The application has been downloaded by more than 3 million users in about 170 countries. It

was initially restricted to a fraction of the European flora (in 2013) and has since been extended

to the Indian Ocean and South American flora (in 2015) and the North African flora (in 2016).

Since June 2015, Pl@ntNet applies deep learning techniques for image classification. The net-

work is pretrained on the ImageNet dataset and periodically fine-tuned on steadily growing

Pl@ntNet data. Joly et al. [63] evaluated the Pl@ntNet application, which supported the identi-

fication of 2,200 species at that time, and reported a 69% top-5 identification rate for single
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images. We could not find published evaluation results on the current performance of the

image-based identification engine. However, reviews request better accuracy [15]. We con-

clude that computer vision solutions are still far from replacing the botanist in extracting plant

characteristic information for identification. Improving the identification performance in any

possible way remains an essential objective for future research. The following sections summa-

rize important current research directions.

Open problems and future directions

Utilizing latest machine learning developments

While the ResNet architecture is still state-of-the-art, evolutions are continuously being pro-

posed, (e.g., [64]). Other researchers work on alternative architectures like ultra-deep (Fractal-

Net) [65] and densely connected (DenseNet) [66] networks. These architectures have not yet

been evaluated for plant species identification. New architectures and algorithms typically aim

for higher classification accuracy, which is clearly a major goal for species identification; how-

ever, there are also interesting advances in reducing the substantial computational effort and

footprint of CNN classifiers. For example, SqueezeNet [67] achieves accuracy comparable to

AlexNet but with 50 times fewer parameters and a model that is 510 times smaller. Especially

when aiming for identification systems that run on mobile devices, these developments are

highly relevant and should be evaluated in this context.

Current studies still mostly operate on the small and nonrepresentative datasets used in the

past. Only a few studies train CNN classifiers on large plant image datasets, demonstrating

their applicability in automated plant species identification systems [68]. Given the typically

"small" amounts of available training data and the computational effort for training a CNN,

transfer learning has become an accepted procedure (meaning that a classifier will be pre-

trained on a large dataset, e.g., ImageNet, before the actual training begins). The classifier will

then only be fine-tuned to the specific classification problem by training of a small number of

high-level network layers proportional to the amount of available problem-specific training

data. Researchers argue that this method is superior for problems with� 1 M training images.

Most previous studies on plant species identification utilized transfer learning, (e.g., [54, 69]).

Once a sufficiently large plant dataset has been acquired, it would be interesting to compare

current classification results with those of a plant identification CNN solely trained on images

depicting plant taxa.

Another approach tackling the issue of small datasets is using data augmentation schemes,

commonly including simple modifications of images, such as rotation, translation, flipping,

and scaling. Using augmentation for improving the training process has become a standard

procedure in computer vision. However, the diversity that can be reached with traditional aug-

mentation schemes is relatively small. This motivates the use of synthetic data samples, intro-

ducing more variability and enriching the dataset, in order to improve the training process. A

promising approach in this regard are Generative Adversarial Networks (GANs) that are able

to generate high-quality, realistic, natural images [70].

Without the complicated and time-consuming process for designing an image analysis

pipeline, deep learning approaches can also be applied by domain experts directly, i.e., bota-

nists and biologists with only a basic understanding of the underlying machine learning con-

cepts. Large-scale organizations provide a competing and continuously improving set of

openly available machine learning frameworks, such as Caffe2, MXNet, PyTorch, and Tensor-

Flow. Developments like Keras specifically target newcomers in machine learning and provide

add-ons to these frameworks that aim to simplify the setup of experiments and the analysis of

results. Furthermore, it is mostly common practice that researchers make their models and
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architectures publicly available (model zoos), increasing visibility in their field but also facili-

tating their application in other studies.

Creating representative benchmarks

Todays benchmark datasets are limited both in the number of species and in the number of

images (see Table 2) due to the tremendous effort for either collecting fresh specimens and

imaging them in a lab or for taking images in the field. Taking a closer look at datasets, it

becomes obvious that they were created with an application in computer vision and machine

learning in mind. They are typically created by only a few people acquiring specimens or

images in a short period of time, from a limited area, and following a rigid procedure for their

imaging. As a result, the plants of a given species in those datasets are likely to represent only a

few individual plants grown closely together at the same time. Considering the high variability

explained before, these datasets do not reflect realistic conditions.

Using such training data in a real-world identification application has little chance to truly

classify new images collected at different periods, at different places, and acquired differently

[63]. Towards real-life applications, studies should utilize more realistic images, e.g., contain-

ing multiple, overlapped, and damaged leaves and flowers. Images should have real, complex

backgrounds and should be taken under different lighting conditions. Large-scale, well-anno-

tated training datasets with representative data distribution characteristics are crucial for the

training of accurate and generalizable classifiers. This is especially true for the training of Deep

Convolutional Neural Networks that require extensive training data to properly tune the large

set of parameters. The research community working on the ImageNet dataset [71] and the

related benchmark is particularly important in this regard. ImageNet aims to provide the most

comprehensive and diverse coverage of the image world. It currently contains more than 14

million images categorized according to a hierarchy of almost 22,000 English nouns. The aver-

age number of training images per category is in the range of 600 and 1,200, being consider-

able larger than any existing plant image collection.

First efforts have been made recently to create datasets that are specifically designed for

machine learning purposes—a huge amount of information, presorted in defined categories.

The PlantCLEF plant identification challenge initially provided a dataset containing 71 tree

species from the French Mediterranean area depicted in 5,436 images in 2011. This dataset has

grown to 113,205 pictures of herb, tree, and fern specimens belonging to 1,000 species living in

France and the neighboring countries in 2016. Encyclopedia Of Life (EOL) [72], being the

world’s largest data centralization effort concerning multimedia data for life on earth, cur-

rently provides about 3.8 million images for 1.3 million taxa. For angiosperms, there are cur-

rently 1.26 million images, but only 68% of them are reviewed and trusted with respect to the

identified taxa [73].

Crowdsourcing training data

Upcoming trends in crowdsourcing and citizen science offer excellent opportunities to gener-

ate and continuously update large repositories of required information. Members of the public

are able to contribute to scientific research projects by acquiring or processing data while hav-

ing few prerequisite knowledge requirements. Crowdsourcing has benefited fromWeb 2.0

technologies that have enabled user-generated content and interactivity, such as wiki pages,

web apps, and social media. iNaturalist and Pl@ntNET already successfully acquire data

through such channels [37]. Plant image collections that acquire data through crowdsourcing

and citizen science projects today often suffer from problems that prevent their effective use as

training and benchmark data. First, the number of images per species in many datasets follows

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005993 April 5, 2018 13 / 19

https://doi.org/10.1371/journal.pcbi.1005993


a long-tail distribution. Thousands of images are acquired for prominent taxa, while less

prominent and rare taxa are represented by only a few and sometimes no images at all. The

same fact applies to the number of images per organ per taxon. While prominent organs such

as the flower of angiosperms are well populated, other organs such as fruits are often underrep-

resented or even missing. Second, collections contain a high degree of image and tag hetero-

geneity. As we elaborated in our discussion of identification challenges, the acquisition

process is a main contributor of image variability. In a crowdsourcing environment, this fact is

even exacerbated since contributors with very different backgrounds, motivations, and equip-

ment contribute observations. Image collections today contain many examples not sufficient

for an unambiguous identification of the displayed taxon. They may be too blurry or lack

details. Collections also suffer from problems such as heterogeneous organ tags (e.g., "leaf" ver-

sus "leaves" versus "foliage"), manifold plant species synonyms used alternatively, and evolving

and concurrent taxonomies. Third, nonexpert observations are more likely to contain image

and metadata noise. Image noise refers to problems such as highly cluttered images, other

plants depicted along with the intended species, and objects not belonging to the habitat (e.g.,

fingers or insects). Metadata noise refers to problems such as wrongly identified taxa, wrongly

labeled organs, imprecise or incorrect location information, and incorrect observation time

and date.

These problems show that crowdsourced content deserves more effort for maintaining suf-

ficient data quality. An examination of a small number of randomly sampled images from the

Pl@ntNET initiative and their taxa attributions indicated that misclassifications are in the

range of 5% to 10%. In a first attempt to overcome these problems, Pl@ntNET introduced a

star-based quality rating for each image and uses a community based review system for taxon

annotations, whereas EOL offers a "trusted" tag for each taxon that has been identified within

an image by an EOL curator. We argue that multimedia data should be based on common

data standards and protocols, such as the Darwin Core [74], and that a rigorous review system

and quality control workflows should be implemented for community based data assessment.

Analyzing the context of observations

We argue that it is hard to develop a plant identification approach for the worlds estimated

220,000 to 420,000 angiosperms that solely relies on image data. Additional information char-

acterizing the context of a specimen should be taken into consideration. Today, mobile devices

allow for high quality images acquired in well choreographed and adaptive procedures.

Through software specifically developed for these devices, users can be guided and trained in

acquiring characteristic images in situ. Given that mobile devices can geolocalize themselves,

acquired data can be spatially referenced with high accuracy allowing to retrieve context infor-

mation, such as topographic characteristics, climate factors, soil type, land-use type, and bio-

tope. These factors explaining the presence or absence of species are already used to predict

plant distribution and should also be considered for their identification. Temporal informa-

tion, i.e., the date and the time of an observation, could allow adaptation of an identification

approach to species’ seasonal variations. For example, the flowering period can be of high dis-

criminative power during an identification. Furthermore, recorded observations in public

repositories (e.g., Global Biodiversity Information Facility GBIF) can provide valuable hypoth-

eses as to which species are to expect or not to expect at a given location. Finally, additional

and still-emerging sensors built into mobile devices allow for measuring environmental vari-

ables, such as temperature and air pressure. The latest cameras can acquire depth maps of

specimens along with an image and provide additional characteristics of an observation and its

context further supporting the identification.
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From taxa-based to character-based training

In automated species identification, researchers solely aim to classify on the species level so far.

An alternative approach could be classifying plant characteristics (e.g., leaf shape categories,

leaf position, flower symmetry) and linking them to plant character databases such as the TRY

Plant Trait Database [75] for identifying a wide range of taxa. In theory, untrained taxa could

be identified by recognizing their characters. So far, it is uncertain whether automated

approaches are able to generalize uniform characters from nonuniform visual information.

Characters that are shared across different taxa are often differently developed per taxon, mak-

ing their recognition a particular challenge.

Utilizing the treasure of herbarium specimens

Herbaria all over the world have invested large amounts of money and time in collecting sam-

ples of plants. Rather than going into the field for taking images or for collecting specimens

anew, it would be considerably less expensive to use specimens of plants that have already

been identified and conserved. Today, over 3,000 herbaria in 165 countries possess over 350

million specimens, collected in all parts of the world and over several centuries [76]. Currently,

many are undertaking large-scale digitization projects to improve their access and to preserve

delicate samples. For example, in the USA, more than 1.8 million imaged and georeferenced

vascular plant specimens are digitally archived in the iDigBio portal, a nationally funded and

primary aggregator of museum specimen data [76]. This activity is likely going to be expanded

over the coming decade. We can look forward to a time when there will be huge repositories of

taxonomic information, represented by specimen images, accessible publicly through the

internet. However, very few previous researchers utilized herbaria sheets for generating a leaf

image dataset [58, 69, 77–79]. On the other hand, analyzing herbaria specimens may not be

suitable for training identification approaches applied in a real environment [69]. The material

is dried, and thereby, original colors change drastically. Furthermore, all herbaria specimens

are imaged flattened on a plain homogeneous background, altering their structure and

arrangement. In conclusion, more research on the detection and extraction of characteristics

from herbaria specimens is required. It is also an open research question (how to train classifi-

ers on herbaria specimens that are applicable on fresh specimens).

Interdisciplinary collaborations

Twelve years ago, Gaston and O’Neill [13] argued that developing successful identification

approaches requires novel collaborations between biologists and computer scientists with per-

sonnel that have significant knowledge of both biology and computing science. Interestingly,

automated plant species identification is still mostly driven by academics specialized in com-

puter vision, machine learning, and multimedia information retrieval. Very few studies were

conducted by interdisciplinary groups of biologists and computer scientists in the previous

decade [16]. Research should move towards more interdisciplinary endeavors. Biologists can

apply machine learning methods more effectively with the help of computer scientists, and the

latter are able to gain the required exhaustive understanding of the problem they are tacking

by working with the former.

A vision of automated identification in the wild

We envision identification systems that enable users to take images of specimens in the field

with a mobile device’s built-in camera system, which are then analyzed by an installed applica-

tion to identify the taxon or to at least get a list of candidate taxa. This approach is convenient,
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since the identification requires no work from the user except for taking an image and brows-

ing through the best matching species. Furthermore, minimal expert knowledge is required,

which is especially important given the ongoing shortage of skilled botanists. An accurate

automated identification system also enables nonexperts with only limited botanical training

and expertise to contribute to the survey of the world’s biodiversity. Approaching trends and

technologies, such as augmented reality, data glasses, and 3D-scans, give such applications a

long-term research and application perspective. Furthermore, large-character datasets can be

generated automatically (for instance, by taking measurements from thousands of specimens

across a single taxon). We cannot only derive more accurate descriptions of a species and its

typical character expressions, but also study the statistical distribution of each character,

including variance and skew. Furthermore, image processing provides the possibility to extract

not only the linear measurements typical of botanical descriptions (leaf length, leaf width,

petal length, etc.), but also more sophisticated and precise descriptions such as mathematical

models of leaf shapes.
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