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Abstract: Podosomes are cellular adhesion structures involved in matrix degradation and invasion that
comprise an actin core and a ring of cytoskeletal adaptor proteins. They are most often identified by staining
with phalloidin, which binds F-actin and therefore visualizes the core. However, not only podosomes, but also
many other cytoskeletal structures contain actin, which makes podosome segmentation by automated image
processing difficult. Here, we have developed a quantitative image analysis algorithm that is optimized to
identify podosome cores within a typical sample stained with phalloidin. By sequential local and global
thresholding, our analysis identifies up to 76% of podosome cores excluding other F-actin-based structures.
Based on the overlap in podosome identifications and quantification of podosome numbers, our algorithm
performs equally well compared to three experts. Using our algorithm we show effects of actin polymerization
and myosin II inhibition on the actin intensity in both podosome core and associated actin network.
Furthermore, by expanding the core segmentations, we reveal a previously unappreciated differential distribu-
tion of cytoskeletal adaptor proteins within the podosome ring. These applications illustrate that our algorithm
is a valuable tool for rapid and accurate large-scale analysis of podosomes to increase our understanding of
these characteristic adhesion structures.
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INTRODUCTION

Podosomes are highly dynamic adhesion structures that are
involved in matrix degradation and invasion ~Linder,
2007; Gawden-Bone et al., 2010!. Structurally, they com-
prise a dense actin core, which has a diameter of approxi-
mately 350 nm, surrounded by a 250 nm wide ring of
integrins and integrin-associated proteins ~Block et al., 2008!.
With lifetimes between 2–12 min, podosomes are very dy-
namic and continuously change size, shape, and composi-
tion ~Destaing et al., 2003; Evans et al., 2003!. They have
initially been identified in Src-transformed fibroblasts, and
although previously thought to be restricted to only a few
cell types, they have now been observed in smooth muscle
cells, activated endothelial cells, and cells of the myeloid
lineage such as osteoclasts, macrophages, and dendritic cells
~DCs! ~Murphy & Courtneidge, 2011!. More recently,
podosome-associated structures named invadopodia have
been found on the ventral membranes of tumor cells where
they are thought to play a central role in tumor metastasis
~Blouw et al., 2008; Mukhopadhyay et al., 2009!.

Most of our current understanding of podosome for-
mation, turnover, and distribution is based on studies that

exploit conventional and confocal microscopy techniques.
Although these techniques are potentially quantitative, large-
scale image analysis is required to obtain enough statistical
power to be able to detect subtle and transient variations in
podosome composition. Since manual identification of po-
dosomes is very time-consuming ~.1 h for a typical image!
and requires sufficient experience from the researcher, a
reliable automated detection method is an essential tool to
study the mechanisms that regulate podosome organization
and behavior.

Podosomes are most often identified by a filamentous
actin ~F-actin! staining, which also serves as a reference for
the co-staining with other core or ring components. The
F-actin staining is commonly performed with fluorochrome-
conjugated phalloidin, which gives a typical punctate pat-
tern within fluorescence images, which is potentially well
suited for automated detection. In recent years extensive
progress has been made in methods for detection of spots in
fluorescence microscopy images, which could also be ap-
plied to detect podosome cores. These methods range from
morphological image filtering ~Kimori et al., 2010!, wavelet-
based multiscale detectors ~Olivo-Marin, 2002!, to machine
learning methods ~Jiang et al., 2007!. Also in the particle
tracking field, many different algorithms exist that localize
and subsequently track subdiffraction sized particles also in
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the presence of background fluorescence ~Kalaidzidis, 2007;
Smal et al., 2010!. However, several difficulties arise when
applying these methods for the detection of podosome
cores in phalloidin-stained images. First, although essential
for proper identification of podosomes, phalloidin does not
specifically stain the F-actin within podosome cores. Phal-
loidin also binds F-actin in cellular ruffles, focal adhesions,
and other F-actin rich structures that are visualized within a
typical sample. Second, the intensity of the podosome cores
within a typical image is highly heterogeneous. While some
podosome cores may be brighter than most of the back-
ground structures, others are much dimmer. These issues
result in a high number of false positives and false negatives,
respectively, when established spot-detection methods for
the identification of podosome cores in fluorescent images
are applied. This urges the need for a specific analysis
algorithm to identify podosome cores within a phalloidin-
stained sample.

We therefore developed a quantitative image analysis
algorithm that was optimized to identify podosome cores
within a typical sample stained with fluorochrome-
conjugated phalloidin. By sequential local and global thresh-
olding, our analysis readily identifies up to 76% of podosome
cores excluding other F-actin-based structures. Moreover,
we demonstrate that based on the overlap in podosome
identifications and quantification of podosome numbers,
our algorithm performs equally well compared to three
experts. Finally, we show that our analysis provides accurate

quantitative information on podosome core and ring com-
position and structure, illustrating that it can be a valuable
tool for the large-scale analysis of podosomes to increase
our understanding of these small adhesion structures.

MATERIALS AND METHODS

Description of the Algorithm
The basic idea behind the algorithm is to separate podo-
some F-actin cores from other F-actin rich cellular struc-
tures within phalloidin-stained samples based on intensity,
shape, and size. To achieve a good foreground separation,
we have developed a method that combines local and global
thresholding, after suitable preprocessing to suppress noise.
The algorithm is divided into six steps ~Figs. 1A, 1B!. To
allow distinction between podosomes and other small F-actin
rich cellular structures, the image is preprocessed in two
different ways ~steps 1 and 3!. The first preprocessing is
optimized for local thresholding to segment the foreground
~step 2!, which results in a mask of all the structures that
stand out from the background in the original image. The
second preprocessing step is optimized to prevent the
artificial enhancement of small dim cellular structures.
Then, the resulting image from step 3 is combined with the
mask obtained in step 2 to allow global thresholding ~step
4A!. The global threshold applied to the combined image is
calculated via the isodata method ~Ridler & Calvard, 1978!.
After the global threshold, the image is segmented by a

Figure 1. Schematic overview of algorithm. ~A! Main processing steps of algorithm. ~B! Segmentation of podosomes;
the original image is preprocessed using Gaussian filtering and an unsharp mask ~1! or Gaussian filtering only ~3!, a
Niblack intensity threshold on ~1! separates the foreground to produce a mask ~2!, which is combined with image ~3! to
produce image ~4A!, an isodata threshold, distance transform based watershed operation and filter on shape and size
result in the regions of interest, which are represented as labeled objects in ~4B!.
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watershed algorithm, and subsequently podosome cores
are selected based on size and shape ~step 4B!. The infor-
mation about the localization of the core can be used to
calculate the position of the ring that surrounds the core,
after which various podosome characteristics, such as the
structure and composition of the core and ring, can be
determined ~step 5!.

Step 1. Image Preprocessing for Foreground Separation

To enable rough podosome segmentation, the original im-
age is preprocessed using Gaussian smoothing to reduce
noise and a high pass filter to enhance the contrast of small
cellular features. For Gaussian smoothing, a standard devia-
tion of s � 0.5 pixel � 50 nm was chosen to reduce noise as
well as to enhance object visibility, without affecting the
structure and intensity profile of the podosome cores within
the image. Second, unsharp masking is applied by subtract-
ing the Laplacian of the image from the image itself. The
width of the Laplace operator is essential to filter for the
right object sizes and should be about 10 times smaller than
the expected diameter of the podosomes.

Step 2. Foreground Separation

To separate the foreground, the image is thresholded by on
a local threshold operation ~Niblack, 1986! given by

IB � mB �
1

2
sB ~1!

where I are the pixel intensities, and m the average and s
the standard deviation of the pixel intensities in a circular
structuring element B. The diameter of the structuring
element is set to be about 1.3 times larger than the expected
diameter of the podosomes. The first segmentation, which
is created by the Niblack threshold, does not yet allow the
selection of podosomes based on shape, size, or intensity
due to the fact that some of the other F-actin rich cellular
structures, which are still present, have roughly the same
brightness, size, and shape as podosomes. Therefore, after
labeling the segmentation, only a rough selection of the
objects is applied to remove the outliers, based on the area
~number of pixels! and roundness of the objects. Roundness
is calculated using

R �
4A

pd 2
~2!

where A is the number of foreground pixels and d is the
maximal Feret diameter, which is the width of the longest
projection ~Feret, 1931!. For an ellipse the roundness be-
comes the aspect ratio. The selection criteria for the area
and roundness depend on the expected average and varia-
tion in size of the podosomes, which are specified for each
application. The boundaries used here are 1.5 times smaller
and larger than the lower and upper expected size limits of
podosomes, respectively. The lower and upper limits for the
roundness are set to 0.4 and 1. The resulting segmentation
mask will then be combined with the image that will be
obtained in step 3 of the algorithm.

Step 3. Image Preprocessing for Foreground Refining

The first image preprocessing step does not only enhance
podosomes but also other small cellular features that are
present in the original image. The mask obtained in step 2
therefore still contains many unwanted features that should
not be identified as podosome cores. To allow the separa-
tion of the podosome cores from the other objects, the first
mask is combined with a Gaussian smoothed version of the
original image. For Gaussian smoothing, a standard devia-
tion sigma of 1 pixel ~100 nm! was chosen to filter out
objects much smaller than podosome cores while leaving
podosome sized objects intact.

Step 4. Foreground Refining

To segment the podosomes a global threshold is applied.
For this, an automated isodata threshold is used ~Ridler &
Calvard, 1978! in which all background pixels that result
from the masking are ignored. The global threshold is
followed by a watershed segmentation on the distance trans-
form of the binary image ~Vincent & Soille, 1991! to sepa-
rate connected/touching blob like objects. The final selection
of podosome cores is made from this mask based on size.

Step 5. Measurements

The segmented podosomes can be used to quantitatively
investigate podosome core intensity, size, and shape. To
study the structure and intensity of the podosome rings,
the individual segmentations can be easily manipulated
~dilated or eroded!. We can calculate the intensity in the
ring around the podosomes as a function of distance from
the initial segmentation mask. To this end we create a
binary mask Mr as

Mr � rmin � DT ~obj ! � rmax ~3!

where DT is the distance transform on the logical comple-
ment of the podosome segmentations, rmin and rmax are the
minimal and maximal distance from the segmentation
boundary, and obj are the segmented podosome cores.
Subsequently, fluorescence intensity of F-actin, or co-
stainings of other proteins, can be determined by applying
these segmentation masks. For our application it was suffi-
cient to use a radius step of 1 pixel between subsequent rmin

and rmax, but subpixel steps are also possible.

Preparation of Human DCs
DCs were generated from monocytes, which were isolated
from peripheral blood mononuclear cells as described pre-
viously ~Thurner et al., 1999; de Vries et al., 2002!. Mono-
cytes were derived either from buffy coats or leukapheresis
products. Plastic-adherent monocytes were cultured for
6 days in RPMI 1640 medium ~Life Technologies, Carlsbad,
CA, USA! supplemented with 10% fetal bovine serum
~Greiner Bio-One, Kremsmünster, Austria!, 1 mM Ultra-
glutamine ~BioWhittaker, Inc., Walkersville, MD, USA!, anti-
biotics ~100 U/mL penicillin, 100 mg/mL streptomycin, and
0.25 mg/mL amphotericin B; Gibco, Grand Island, NY,
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USA!, IL-4 ~500 U/mL!, and GM-CSF ~800 U/mL! in a
humidified, 5% CO2 containing atmosphere.

Antibodies and Reagents
The following antibodies were used: mouse anti-vinculin,
mouse anti-talin ~both Sigma-Aldrich!, mouse anti-paxillin
~BD Transduction Laboratories, Franklin Lakes, NJ, USA!,
and goat anti-zyxin ~Santa Cruz Biotechnology, Inc., Santa
Cruz, CA, USA!. Texas Red-conjugated phalloidin ~Invitro-
gen Corporation, Carlsbad, CA, USA! was used to stain
F-actin. The following compounds were used: 2.5 mg/mL
Cytochalasin D, 20 mM Blebbistatin ~both Sigma-Aldrich,
St. Louis, MO, USA! and 10 mM prostaglandin E2 ~PGE2,
Cayman Chemical Company, Ann Arbor, MI, USA!.

Immunofluorescence
Cells were seeded on glass coverslips, left to adhere for 4 h,
and stimulated or left untreated. The cells were fixed in
3.7% ~w/v! formaldehyde in phosphate buffered saline
~PBS! for 10 min. Cells were permeabilized in 0.1% ~v/v!
Triton X-100 in PBS for 5 min and blocked with 2% ~w/v!
bovine serum albumin in PBS. The cells were incubated
with primary Ab for 1 h. Subsequently, the cells were
washed with PBS and incubated with Alexa Fluor 488-
labeled secondary Abs for 45 min. Finally, cells were incu-
bated with Texas Red-conjugated phalloidin for 30 min and
washed with phosphate buffer prior to embedding in Mowiol
~Sigma-Aldrich!. The cells were imaged with a Leica DMRA
fluorescence microscope ~Leica Microsystems, Wetzlar, Ger-
many! with a 63� PL APO 1.3 NA oil immersion objective
and a Leica DFC340 FX charge-coupled device camera with
1200 � 1600, 8 bit pixels. Samples were excited with an
OSRAM HBO103 w/2 mercury lamp and a green fluores-
cent protein ~GFP! and N2.1 filtercube were used to image
the Alexa Fluor 488-labeled secondary Abs and Texas Red-
conjugated phalloidin, respectively. The GFP and N2.1
channels were sequentially acquired with an integration
time of 200 ms and 10 ms, respectively. Imaging was also
performed on a Olympus FV1000 confocal laser scanning
microscope ~Olympus, Tokyo, Japan! with a 60� 1.35 NA
oil immersion objective, Texas Red-conjugated phalloidin
was excited with a 559 nm diode laser and emission
fluorescence was filtered by a 575–675 nm band-pass filter
and detected through a 125 nm pinhole. Frames were
acquired at 1200 � 1600 pixels with 100 nm pixel size, 16
bits per pixel, and 12.5 ms pixel time.

Transfection
Transient transfection of LifeAct-GFP ~gift of Michael Sixt,
Max Planck Institute of Biochemistry, Martinsried, Germany!
was carried out with the Neon Transfection System ~Invitro-
gen!. Cells were washed with PBS and resuspended in 115 mL
resuspension buffer per 0.5 � 106 cells. Subsequently, cells
were mixed with 5 mg DNA per 106 cells per transfection
and electroporated. Directly after, cells were transferred
to WillCo-dishes ~WillCo Wells bv., Amsterdam, The Nether-
lands! with prewarmed medium without antibiotics

or serum. After 3 h, medium was replaced by medium supple-
mented with 10% ~v/v! fetal calf serum and antibiotics.

Live Cell Imaging
Prior to live cell imaging, cells were washed with PBS and
imaging was performed in RPMI without phenol red sup-
plemented with 25 mM HEPES. Transiently transfected cells
were imaged on a Zeiss LSM 510 microscope ~Carl Zeiss,
Oberkochen, Germany! equipped with a PL APO 63�/1.4
NA oil immersion objective. GFP was excited with a 488 nm
argon laser and detected through a 125 nm pinhole. Images
~140 nm pixel size! were acquired every 15 s at 378C with a
12.5 ms pixel time.

Statistical Analysis
Statistical analysis was carried out with GraphPad Prism
and Microsoft Excel. Data are presented as mean for line
graphs and median 6 interquartile range for box plots. A
Student’s t-test was used for comparison of two groups.
Statistical significance was defined as P , 0.05.

Image Processing and Software
The algorithm described in this work is available online at
http://www.diplib.org/add-ons. All image processing and
analysis were implemented using MATLAB ~version 2012a,
64 bit! and the DIPimage ~v2.4! toolbox.

RESULTS

Performance of the Algorithm
To assess the performance of the algorithm we collected a
representative wide-field microscopy image of DCs, seeded
onto glass coverslips, and subsequently stained with Texas
Red-conjugated phalloidin and a monoclonal anti-vinculin
antibody ~Supplementary Fig. 1!.

Figure 2A displays a cropped region of the F-actin
image, clearly revealing the difficulties that arise for the
automated segmentation of podosome cores. First, the
F-actin content of podosome cores differed a lot between
podosomes; therefore, some podosomes appeared much
brighter than the background, whereas others were only just
above background intensity, which made the automatic
identification difficult. Second, not all small bright objects
within the image were podosomes. Many objects within the
image remained difficult to evaluate, even by an experi-
enced researcher. We assessed the performance of the algo-
rithm by comparing its outcome with podosome
identifications by experienced researchers. All three experts,
who have extensive experience in the interpretation of po-
dosome images, used the vinculin co-staining along with
the F-actin staining to identify podosomes within the image

Supplementary Material

To view Supplementary Material for this article, please
visit http://dx.doi.org/10.1017/S1431927612014018.
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shown in Supplementary Figure 1. The experts selected ~by
mouse click! each object they identified as a podosome
core, and the coordinates of these positions were saved.
Next, the algorithm was applied to the F-actin image only.
An object segmented by the algorithm was considered to be
the same as an expert’s identification when the coordinates
of the expert’s position were within a 3 pixel radius of the
object. Table 1 shows the overlap between experts and the
algorithm. Although the algorithm detected fewer podo-
somes than the experts, the overlap among experts was
comparable to that of the algorithm. This demonstrates that
the algorithm can be considered a solid tool for the detec-
tion of podosomes within phalloidin stained samples.

To assess the performance of the algorithm in images
with fewer F-actin rich structures besides podosome cores,
we manually cropped the image in Supplementary Figure 1
around podosome clusters. This resulted in 17 cropped
images of podosome clusters on which we then applied the
algorithm to identify the podosome cores. Again, we com-
pared the segmented areas to the expert’s identifications. An
object was considered to be a podosome core when at least

two expert’s positions were within a 3 pixel radius of the
segmented area. Cropping the image increased the sensitiv-
ity of podosome core detection from 73% to 76% while the
false positives decreased from 16% to 5% ~Table 2!, indicat-
ing that the performance of the algorithm is even better in
images with isolated podosome clusters.

To study the dynamics of podosomes, live cell imaging
is mostly carried out on cells transfected with a fluorescent
protein linked to either G-actin or an F-actin probe. To
assess the performance of the algorithm in this type of
image, we performed confocal microscopy on DCs electro-
porated with LifeAct-GFP, which is an F-actin specific probe.
In the resulting time-lapse movies, only one cell was visible
per image. The performance of the algorithm was assessed
in the same way as described above for three independent
LifeAct-GFP images, of which one is shown in Figure 2C.
The output of the algorithm for the image in Figure 2C is
shown in Figure 2D. The average sensitivity of the algo-
rithm on the three images was 76% with 5% false positives.
The performance of the algorithm in live cell confocal
microscopy was comparable to the performance in fixed,

Figure 2. Segmentation of podosomes in images of fixed and live cells. DCs were seeded on glass coverslips, fixed and
stained with Texas Red-conjugated phalloidin and imaged in widefield ~A!; insets show podosomes and other F-actin
rich features. DCs were electroporated with LifeAct-GFP, seeded on glass Willco dishes, and live cell imaging was
performed on a confocal microscope ~C!. The algorithm was applied to the images in A and C; the output is shown as
labeled podosome core segmentations in B and D. Scale bars represent 10 mm.

Table 1. Performance of the Algorithm on Image in Supplementary Figure 1A.

Number of
Podosomes
Identified

Overlap with
Expert 1

Overlap with
Expert 2

Overlap with
Expert 3

Overlap with
Algorithm

Expert 1 1,217 — 1,066 893 901
Expert 2 1,236 1,066 — 938 906
Expert 3 1,301 893 938 — 881
Algorithm 1,070 901 906 881 —
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wide-field microscopy, showing the applicability of the algo-
rithm to study podosome dynamics in live cell movies.

Quantification of Podosome Numbers
Podosome numbers vary greatly between different cells and
conditions. To facilitate fast and reliable quantification of
podosome numbers, automated detection is required. We
assessed the ability of the algorithm to quantify differences
in podosome numbers. Therefore, we performed a time
course of PGE2 stimulation, which is known to induce rapid
podosome dissolution in DCs ~van Helden et al., 2006,
2008!. DCs were seeded on glass coverslips and either left
untreated or incubated for up to 10 min with 10 mM PGE2,
before being fixed and stained for F-actin and vinculin. For
each condition five images containing multiple cells were
taken on a wide-field fluorescence microscope. To avoid
over- or underestimation of the number of podosomes per
cell, only cells that were completely visible within an image
were analyzed. This resulted in at least 21 cells per condition
that were analyzed. The outcome of the algorithm was
compared with podosome counts from experienced research-
ers. The experts used the vinculin co-staining along with the
F-actin staining to count the number of podosomes per cell,
whereas the algorithm was applied to the F-actin image
only.

Visual inspection of the images showed a time depen-
dent decrease in the number of podosomes per cell ~Fig. 3A!,
which was confirmed by the manual quantification of the
three experts ~Fig. 3B, dashed lines!. The average number of
podosomes per cell decreased from 178 before PGE2 stimu-
lation to 17 after 10 min PGE2 stimulation. The results that
were obtained with the algorithm were very similar to the
expert counts with only a small underestimation observed
for the first three time points. This demonstrates the appli-
cability of our algorithm to quantify podosome numbers
with high accuracy, in a fast, reliable way.

Actin Density in Podosome Core and Network
Podosomes consist of dense actin cores, which are sur-
rounded by actin filaments that are associated with myosin
II ~Gawden-Bone et al., 2010!. These actin filaments are
collectively called the actin network ~Luxenburg et al.,
2007!, and since this network cannot be resolved by conven-
tional microscopy, it appears as a cloud that surrounds the
actin cores within low resolution images ~Destaing et al.,
2003!. To further evaluate our image analysis algorithm, we
have tested whether we could assess changes in the F-actin

intensity in the core and the surrounding network upon
myosin II inhibition by blebbistatin ~blebb! and inhibition
of actin polymerization by cytochalasin D ~cytoD!, two
frequently used compounds to study actin-based adhesion
structures. For this purpose, DCs were seeded onto glass

Table 2. Performance of the Algorithm Compared to Combined
Identifications of Three Experts.

Sensitivity
% False
Positives

Large image 73% 16%
Podosome cluster crop 76% 5%
Life-Act-GFP movie 73% 17%

Figure 3. Quantification of podosome numbers. DCs were seeded
on glass coverslips; cells were left untreated or were treated for the
indicated times with 10 mM PGE2. Afterward, the cells were fixed
and labeled with Texas Red-conjugated phalloidin ~A!. Podosome
numbers were quantified for at least 21 cells per condition, and the
average number of podosomes per cell is shown in B. The dashed
lines show manual counts of three experts, and the solid line shows
the quantification by the algorithm. Scale bars represent 10 mm.
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coverslips and were either left untreated or were incubated
with 20 mM blebb or 10 mM cytoD, before being fixed and
stained for F-actin. For each condition at least five images,
containing multiple cells, were taken on a confocal micro-
scope, allowing the comparison of over 800 podosomes per
condition. The F-actin intensity in the core was determined
by measuring the mean fluorescence intensity for each
segmented podosome in the original image. To determine
the F-actin intensity in the actin network, a segmentation
mask was created to select the network area for each
podosome. The distance transform was used to select pixels
closer than four pixels distance to the edge of the nearest
segmentation outside the core and closer than one pixel
distance inside the core segmentation. By comparison to the
distance transform of each individual segmentation, each
pixel was assigned to a specific podosome core. The result-
ing segmentation masks were subsequently used to calculate
the mean fluorescence intensity for actin in the network. By
visual inspection of the images, no clear differences between
treated and untreated samples could be observed. Instead,
the large-scale analysis clearly showed a statistically signifi-
cant increase in F-actin intensity in the core and the
surrounding network upon myosin II inhibition ~Figs. 4A,
4B!. On the contrary, inhibition of actin polymerization
decreased the F-actin intensity around the core as well as in
the core itself. These results show the applicability of
automated assessment of individual podosomes to deter-
mine intensity levels of podosome components, with a
statistical power not afforded before.

Podosome Ring Composition
To further exploit the use of our image analysis algorithm,
we set out to measure the distribution of podosome ring
components with respect to the podosome core. To deter-
mine the intensity of ring components, cells were stained
for both F-actin and a ring component ~Fig. 4C, upper left
panel!. Podosome cores were segmented in the F-actin
image ~upper middle and right panels! and a distance
transform was calculated for both the segmentation mask
and its logical complement. From these distance transforms
masks were created for pixels at each distance from the
boundary of the segmented area, both within the seg-
mented area ~lower left panel! and in the background ~lower
right panel!. These masks were subsequently used to mea-
sure the average pixel intensities in the co-staining of the
ring components ~Fig. 4!. For each condition five images,
together containing at least 1,120 podosomes, were measured.

Cytoskeletal adaptor proteins, such as vinculin, talin,
paxillin, and zyxin, are abundantly present within podo-
somes rings. They are thought to link the integrins in the
ring with the actin in the podosome core. Although these
four proteins are generally being referred to as ring compo-
nents, their localization around the podosome core varies
greatly. For example, vinculin appears as a distinct ring,
whereas talin appears to form a “carpet” that contains holes
at the sites where the podosome cores are located ~Fig. 4D!.
Using our analysis we quantitatively assessed the structural

differences between the localization of the four adaptor
proteins. Therefore, we seeded DCs onto glass coverslips,
fixed and stained them with Texas Red-conjugated phalloi-
din and specific antibodies to visualize F-actin and the ring
components vinculin, talin, paxillin, and zyxin, respectively.
Subsequently, we identified the podosome cores within these
images and created segmentation masks as described above.
The mean fluorescence intensity within each masked area
was measured for at least five images per condition. In this
way the localization of the adaptor proteins with respect to
the core was determined. Figure 4E shows that whereas
vinculin and paxillin both formed a ring with a diameter
larger than the core diameter, talin was more homo-
geneously distributed between podosome cores and zyxin
formed a ring within the diameter of the core. These results
show the applicability of the podosome core detection algo-
rithm to quantitatively assess ring component distribution.
The differential distribution of the cytoskeletal adaptor
proteins in podosome rings most likely correlates with their
many specific interaction partners and their function in
podosome biology.

DISCUSSION

In this study we describe, for the first time, a procedure for
automated detection of podosome cores in fluorescence ~con-
focal! microscopy images. This method combines local and
global thresholding on differentially filtered versions of the
original image and can be used to quantitatively detect and
measure intensities of podosome core and ring components.

Podosomes are most often identified by a staining of
F-actin; however, F-actin is not only present in podosome
cores, but also in many other cellular components such as
focal adhesions and stress fibers. So far, no specific podo-
some core or ring marker has been identified. Therefore, an
algorithm to identify podosomes should be able to detect
podosome cores by other means than based solely on the
intensity of a certain fluorescently labeled protein. In our
algorithm we combine intensity, by local and global thresh-
olding, with size and shape of the objects to discriminate
podosomes from other F-actin rich cellular features. Alter-
natively, rather than an F-actin alone, a co-staining with a
ring component could be used to increase the sensitivity
and specificity of podosome segmentation. However, we
have shown in Figure 4E that ring components are differen-
tially distributed around the podosome core. A podosome
detection algorithm based on the staining of a ring compo-
nent would therefore oblige the user to always measure the
same ring marker, possibly requiring a triple staining for
each experiment. Moreover, the localization of ring compo-
nents can vary between experimental conditions ~Luxen-
burg et al., 2012! making the staining of a ring component
unreliable in experiments aimed at detecting changes in
podosome composition and structure. Therefore, we based
and optimized our algorithm on the F-actin staining only,
to ensure a broad applicability for the investigation of all
aspects of podosome biology.
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The need for automated podosome detection partially
results from the fact that it is very time-consuming to
manually detect podosomes in an image, let alone large
numbers of images derived from different experiments. For
comparison, to identify all podosomes in the image shown
in Supplementary Figure 1, experts needed on average 1 h.

During this hour, the experts only pointed the positions of
the podosome cores. By contrast, the algorithm was finished
in 14 s, and the output of the algorithm does not only
contain the positions but also the boundaries of the core. In
this way, intensity measurements of core components and,
by manipulating the segmented areas, of ring components

Figure 4. Podosome core and ring composition. DCs were seeded on glass coverslips, cells were left untreated ~A, left!,
were treated for 30 min with 20 mM blebbistatin ~A, middle!, or treated for 20 min with 2.5 mg/mL cytoD ~A, right!.
Afterward they were fixed and labeled with Texas Red-conjugated phalloidin ~A!. For each condition median 6
interquartile range of the actin core intensity ~left graph! and actin network intensity ~right graph! for at least 800
podosomes is plotted in B. Data are normalized to the median intensity. Significant differences ~ p , 0.05! are indicated
by asterisks. To measure podosome composition, DCs were seeded on glass coverslips, fixed and stained for F-actin ~red!
with ~in green! either vinculin, talin, zyxin, or paxillin ~C, upper left panel!. The algorithm was applied to the F-actin
image only ~C, upper middle and left panel!. Subsequently segmentation masks were created for all pixels in an image at
a certain distance from the edge of a podosome core. This is done both inside ~C, lower left panel! and outside ~C, lower
right panel! the segmented areas. The numbers of the segmentation masks correspond to the x-axis in E. Each color
represents a separate segmentation mask. Immunolocalizations of vinculin, talin, zyxin, or paxillin are shown in D. The
mean fluorescence intensity ~normalized to maximum! within each segmentation mask is plotted for all five proteins
~E!. The indicated distances ~X axis! are the distances ~in pixels! from the boundary of the podosome core segmenta-
tion, where negative values indicate areas inside and positive values indicate areas outside podosome core segmentations
~C!. For each condition five images, containing at least 1,120 podosomes were taken. Scale bars represent 3 mm.
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were very easy to implement. Another benefit of using an
algorithm over manual identification is the fact that the
algorithm is unbiased, while a researcher’s eye is often
preconceived.

We have tested the performance of the algorithm by
comparing it to expert identifications of podosome cores,
thereby demonstrating that the algorithm has a sensitivity
of 73% with 16% false positives. Importantly, the inter-
expert overlap was also around 80% showing that there is
no clear consensus among experts about which objects in
the image should be defined as podosome cores. One could
therefore argue that among the 16% false positives identi-
fied by the algorithm, there may be multiple objects that are
actually podosome cores.

Since the algorithm can detect podosomes in live cell
images of cells expressing an F-actin probe, it can be used to
study podosome dynamics. In time-lapse movies the speci-
ficity of the detection will increase because unwanted ob-
jects can be disregarded if they are not consistent from
frame to frame and appear in a few frames only. With a
sampling frequency of a few frames per minute, podosomes
are expected to be present in tens of consecutive frames
before dissolving, thereby allowing the removal of segmen-
tation artifacts, when they are present in only a few frames.
The combination of our podosome detection algorithm
with particle tracking algorithms such as described for
receptor tracking ~Jaqaman et al., 2008! will allow the study
of podosome lifetimes as well as fission and fusion events in
time-lapse movies. Another application of automated podo-
some detection could be to quantitatively distinguish be-
tween different meso-scale organizations of podosome
clusters, such as the circumferential organization in osteo-
clasts ~Destaing et al., 2003! or the alignment of podosomes
in dendritic cells ~van den Dries et al., 2012!. Finally, this
method might be useful for other image analysis purposes
as well, where small features have to be separated from an
uneven background resulting from a specific staining or
localization of fluorescent probes.

It is challenging to visually estimate differences in po-
dosome numbers, without manual counting, especially when
large podosome clusters are present. This prompted us to
evaluate the performance of the algorithm in quantifying
podosome numbers, by applying it to images with decreas-
ing podosome numbers per cell. The results of the algo-
rithm were strikingly similar to the results manually obtained
by three experts. The trend in the data is the same for the
manually generated counts as for the algorithm output,
except for a small underestimation in the samples with large
numbers of podosomes. This is probably due to the fact
that at higher densities podosomes that are very close to-
gether could be merged and considered as one feature or
disregarded due to shape constraints. However, the advan-
tage of performing the automatic analysis in minutes, rather
than in hours as needed for manual counting, is the major
advantage of this algorithm, which clearly represents an
important tool for fast and accurate quantification of podo-
some numbers.

To demonstrate the applicability of the algorithm, we
have used it to study podosome core and ring composition.
We have established the effects of cytoD and blebb on the
F-actin intensity in the podosome core and ring. By inhibit-
ing actin polymerization, cytoD decreased F-actin intensity
in both the podosome core and actin network surrounding
the core. By contrast, myosin II inhibition resulted in an
increase in F-actin intensity in both core and actin network.
Because automated detection can very efficiently measure
thousands of podosomes, small but relevant differences in
intensity levels could be detected for different drug treat-
ments with sufficient statistical power.

We also used the algorithm to assess the localization of
podosome ring components with respect to the actin core.
Hereby, we showed that vinculin, talin, paxillin, and zyxin
are differentially distributed around the podosome cores.
Talin displayed a homogeneous distribution between the
cores, whereas vinculin, paxillin, and zyxin are present as a
clear ring around the core. Interestingly, the vinculin and
paxillin rings have a diameter larger than the core while the
zyxin ring is smaller. This type of large-scale analysis of the
localization of podosome components can clearly contrib-
ute to the understanding of podosome structure and the
function of its components. Collectively, we demonstrate
that the algorithm we developed can readily be used to
study podosome numbers and the composition of the po-
dosome actin core, the actin network, and ring compo-
nents, providing a new tool to identify yet unknown changes
in podosome composition.

CONCLUSIONS/SUMMARY

In summary, the proposed method automatically identifies
podosome cores in fluorescence image of cells with high
sensitivity and accuracy compared to expert identifications.
It thereby provides a useful tool to study podosome num-
bers and podosome core and ring composition in a fast,
quantitative, automated, and unbiased way.
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