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We have developed a method for automated probabilistic reconstruction of a set of major

white-matter pathways from diffusion-weighted MR images. Our method is called TRAC-

ULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the

anatomy of the pathways from a set of training subjects. By incorporating this prior knowl-

edge in the reconstruction procedure, our method obviates the need for manual interaction

with the tract solutions at a later stage and thus facilitates the application of tractography

to large studies. In this paper we illustrate the application of the method on data from

a schizophrenia study and investigate whether the inclusion of both patients and healthy

subjects in the training set affects our ability to reconstruct the pathways reliably. We show

that, since our method does not constrain the exact spatial location or shape of the path-

ways but only their trajectory relative to the surrounding anatomical structures, a set a of

healthy training subjects can be used to reconstruct the pathways accurately in patients

as well as in controls.
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1. INTRODUCTION

Diffusion MRI has become an important tool in the study of a

wide range of diseases affecting the brain, as it allows us to probe

the shape and integrity of the white-matter pathways that connect

functionally related cortical and subcortical regions. Although it is

possible to compare diffusion measures between populations on

a voxel-by-voxel basis, more specific hypotheses on disease pro-

gression can be tested if aggregate measures can be computed for

specific pathways that are known or assumed to serve different

brain networks.

Several diffusion tractography methods have been proposed

over the years to reconstruct white-matter pathways. Most early

methods were deterministic and followed the streamline approach,

which modeled a path as a one-dimensional curve. The curve

was grown from a starting point by taking steps in directions

that were determined by the diffusion orientation in the under-

lying voxels (Conturo et al., 1999; Mori et al., 1999; Basser et al.,

2000; Poupon et al., 2000; Lazar et al., 2003). Other determin-

istic methods were volumetric, modeling the path as a volume,

and allowing it to grow in three dimensions (Jones et al., 1999;

O’Donnell et al., 2002; Parker et al., 2002; Jackowski et al., 2005;

Pichon et al., 2005). Both streamline and volumetric approaches

were local, in the sense that the algorithm considered the image

data at a single location to determine how to grow the path at each

step. Statistical extensions to local streamline tractography were

introduced to model uncertainty in the image data by drawing

samples from an assumed local distribution of diffusion directions

at each voxel (Behrens et al., 2003; Hagmann et al., 2003; Cook

et al., 2005; Parker and Alexander, 2005; Friman et al., 2006) or by

boot-strapping (Jones and Pierpaoli, 2005; Lazar and Alexander,

2005).

Local tractography algorithms, whether deterministic or prob-

abilistic, are best suited for exploring all possible connections from

one brain region, which is used as the tractography seed, to any

other region. However, if the goal is to isolate specific white-

matter pathways, the required post-processing of the streamlines

poses various challenges. Typically a user with substantial neu-

roanatomical expertise needs to interact manually with the data

on a pathway-by-pathway and subject-by-subject basis. For exam-

ple, thresholds on the curvature of each pathway need to be

adjusted by trial-and-error and regions that each pathway does

or does not intersect need to be defined. This makes tractogra-

phy studies time-consuming and compromises their robustness

and reliability. Even if an automated method is used to cluster the

streamlines into larger bundles a posteriori (O’Donnell and Westin,

2007; Maddah et al., 2008; Wassermann et al., 2010), the results are

largely dependent on the quality of the original streamlines. For

example streamline tractography might miss a sparser pathway if

Frontiers in Neuroinformatics www.frontiersin.org October 2011 | Volume 5 | Article 23 | 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.00023/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=29975&d=3&sname=AnastasiaYendiki&name=Technology
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=40014&d=3&sname=PritiSrinivasan&name=Technology
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=7006&d=1&sname=Lilla_Z�llei&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=6257&d=1&sname=JeanAugustinack&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=5565&d=1&sname=TimBehrens&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=29977&d=1&sname=SaadJbabdi&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=6204&d=1&sname=BruceFischl&name=Science
mailto:ayendiki@nmr.mgh.\penalty -\@M harvard.edu
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Yendiki et al. Automated probabilistic reconstruction of white-matter pathways

it is dominated by other, denser pathways that intersect it or that

originate in the same region.

Global tractography methods were suggested as an alternative

approach to address the problem of identifying specific white-

matter pathways (Fletcher et al., 2007; Jbabdi et al., 2007; Melon-

akos et al., 2007). The global approach defines both end regions

where the pathway is thought to terminate and searches the space

of all possible connections between these two regions for the con-

nection that best fits the data. Thus the entire pathway is estimated

at once, rather than step-by-step. The solution is symmetric with

respect to the two end regions, instead of treating one as the

“seed” and the other as the “target.” Since global optimization

integrates along the length of the pathway, it is less sensitive to

localized regions of high uncertainty (e.g., pathway crossings) than

the streamline approach. A challenge with global tractography is

the size of the solution space, which consists of all possible con-

nections between two regions. Although the pathway is typically

parameterized in some way to contain the size of this space, search-

ing through it remains cumbersome and sensitive to initialization,

especially for large end regions.

To address these issues, we have developed TRACULA (TRActs

Constrained by UnderLying Anatomy), a method for automated

reconstruction of major white-matter pathways that is based on

the global probabilistic approach of Jbabdi et al. (2007) and utilizes

prior information on the anatomy of the pathways from a set of

training subjects. Once the pathways have been labeled manually

in the training set, their trajectories are combined with an auto-

matic anatomical segmentation of the same subject (Dale et al.,

1999; Fischl et al., 1999a,b, 2002, 2004a,b; Fischl and Dale, 2000)

to derive a description of the pathways in terms of the structures

that they intersect and neighbor. The knowledge on path anatomy

that is extracted from the training set is then used to initialize a

global probabilistic tractography algorithm and also to constrain

its search space by penalizing connections that do not match our

prior anatomical knowledge. This allows the algorithm to recon-

struct the pathways reliably in a novel subject with no manual

intervention, facilitating the analysis of large data sets.

An important question regarding our method is whether a

training set consisting entirely of healthy subjects can be used

to reconstruct pathways in a diseased population. As a test case,

we applied our method to a schizophrenia study, using training

sets with different proportions of patients and healthy controls.

Several studies of schizophrenia using diffusion MRI have been

published to date (see, e.g., Kubicki et al., 2007 for a review).

Although several early region-based studies showed anisotropy

decreases in patients compared to controls (Lim et al., 1999; Foong

et al., 2000; Agartz et al., 2001; Ardekani et al., 2003), others did not

find such a decrease (Steel et al., 2001; Kubicki et al., 2002, 2003;

Begré et al., 2003). Studies of how white-matter integrity relates

to age in schizophrenia patients vs. controls have yielded contra-

dictory results (Jones et al., 2006; Mori et al., 2007; Rosenberger

et al., 2008; Voineskos et al., 2010). Although any discrepancies

between studies are likely partly due to differences in data acqui-

sition and variability in disease subtypes, part of the challenge

has also been defining the regions of interest in a manner that is

accurate and repeatable across subjects and studies. Thus inves-

tigators have been turning increasingly to tractography for better

localization of the effects of schizophrenia in specific pathways

(e.g., Buchsbaum et al., 2006; Price et al., 2008; Jeong et al., 2009;

Kubicki et al., 2009, 2011; Oh et al., 2009; Skudlarski et al., 2010;

Whitford et al., 2010). In this work we show that our automated

method for reconstructing white-matter fascicles can be applied

to data from schizophrenia patients, even if the training subjects

are healthy. This development should allow automatic tractogra-

phy analyses of even larger data sets to investigate subtle changes

in specific fascicles, not only in schizophrenia but in a wide

variety of neurological disorders, as well as brain development

and aging.

2. MATERIALS AND METHODS

2.1. IMAGE DATA

We used image data from 34 schizophrenia patients (ages 37 ± 10,

9 female) and 33 healthy controls (ages 42 ± 10, 14 female). The

data was all collected at MGH as part of a multi-site MIND Clini-

cal Imaging Consortium (Magnotta et al., 2008; Roffman et al.,

2008; Ehrlich et al., 2010; White et al., 2011). Patients had to

meet DSM-IV diagnostic criteria for schizophrenia. Information

on their average duration of illness, symptoms, and antipsychotic

medication history is given in Table 1. More details on the multi-

site patient population that this data set is part of can be found

in Ehrlich et al. (2010). Healthy controls had no history of psy-

chiatric diagnosis and were matched to the patient cohort for age,

gender, and parental education. Exclusion criteria for both patients

and controls were IQ lower than 70 based on a standardized IQ

test, history of a head injury resulting in prolonged loss of con-

sciousness, neurosurgical procedure, neurological disease, history

of skull fracture, severe or disabling medical conditions, or any

contraindication for MRI scanning. All subjects spoke English as

their native language. They provided informed consent to partici-

pate in the study in accordance with MGH Internal Review Board

regulations.

The subjects were scanned in a 1.5 T Siemens scanner with

an 8-channel head coil. Diffusion-weighted images were acquired

with axial in-plane isotropic resolution 2 mm, slice thickness

2 mm, 128 × 128 × 60 image matrix, TR= 8900 ms, TE = 80 ms,

NEX = 1, BW = 1860 Hz/pixel, GRAPPA acceleration factor 2.

The series included images acquired with diffusion weight-

ing along 60 non-collinear directions (b = 700 sm−2), and 10

images acquired without diffusion weighting (b = 0). T 1-weighted

images were acquired in the same session with an oblique axial

GRE sequence, in-plane isotropic resolution 0.625 mm, slice

thickness 1.5 mm, 256 × 256 × 144 image matrix, TR = 12 ms,

TE = 4.76 ms, FA = 20, NEX = 3, BW = 110 Hz/pixel.

2.2. IMAGE PREPROCESSING

We used a standard method, available in FSL1, for mitigating dis-

tortions induced by eddy currents and motion by registering the

diffusion-weighted to the b = 0 images. For each subject, we reg-

istered the b = 0 image to the T 1-weighted image by an affine

registration method that seeks to maximize the intensity contrast

of the b = 0 image across the cortical gray/white boundary, which

1http://www.fmrib.ox.ac.uk/fsl
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Table 1 | Details on symptoms and medication history of

schizophrenia patient population.

Mean and standard

deviation

Duration of illness [years] 14 ± 12

Positive symptom composite score 4.82 ± 3.29

Negative symptom composite score 7.03 ± 4.48

Disorganized symptom composite score 1.26 ± 1.68

Lifetime antipsychotic exposure [CPZ dose years] 78.80 ± 180.16

Current antipsychotic dose [CPZ units] 539.53 ± 497.79

Positive symptom composite score: Sum of the global rating of severity of delu-

sions and the global rating of severity of hallucinations from the scale for the

assessment of positive symptoms SAPS; (Andreasen, 1984). Negative symptom

composite score: Sum of the values from the global rating of affective flattening,

the global rating of alogia, the global rating of avolition-apathy, and the global rating

of anhedonia-asociality from the scale for the assessment of negative symptoms

SANS; (Andreasen, 1983). Disorganized symptom composite score: Sum of the

values from the global rating of severity of bizarre behavior and the global rating

of positive formal thought disorder from the scale for the assessment of positive

symptoms SAPS; (Andreasen, 1984). Cumulative antipsychotic drug exposures:

Given in chlorpromazine dose years, where 1 dose year = 100 chlorpromazine

equivalents per day for 1 year. Current antipsychotic drug dose: Given in chlor-

promazine units. Antipsychotic history was collected as part of the psychiatric

assessment using the PSYCH instrument (Andreasen, 1987). Cumulative and

current antipsychotic exposure was calculated using the chlorpromazine (CPZ)

conversion factors of Andreasen et al. (2010).

is obtained from the T 1 scan (Greve and Fischl, 2009). We regis-

tered each individual’s T 1-weighted image to the 1 mm-resolution

MNI-152 atlas (Talairach and Tournoux, 1988), using affine reg-

istration (Jenkinson et al., 2002). We used the automated tools in

FreeSurfer2 to obtain a cortical parcellation and subcortical seg-

mentation for each subject from its T 1-weighted image (Dale et al.,

1999; Fischl et al., 1999a,b, 2002, 2004a,b; Fischl and Dale, 2000).

2.3. MANUAL LABELING

Our automated tractography method relies on prior anatomical

information derived from a set of training subjects. We obtained

this training data by labeling a set of major white-matter pathways

manually in each subject from our cohort. The manual labeling

was performed on the eddy-current corrected diffusion images

in Trackvis3. Conventional deterministic streamline tractography

was performed on the whole brain using the FACT method (Mori

et al., 1999). Then an expert interacted with the streamlines in

Trackvis to isolate the ones belonging to specific white-matter

pathways. For each pathway the expert drew at least two regions of

interest (ROIs) in anatomical locations that the pathway is known

to traverse. We followed an established protocol for identifying

these locations and drawing the ROIs (Wakana et al., 2007). Addi-

tional ROIs were placed as needed to eliminate streamlines that

did not belong to the pathway of interest or to cut streamlines

where they merged erroneously with other pathways. Most ROIs

2http://surfer.nmr.mgh.harvard.edu
3http://trackvis.org

were hand-drawn on single slices of the individual’s fractional

anisotropy (FA) map, except for the end ROIs for the CST, which

came from the FreeSurfer anatomical segmentation.

This was done for all the pathways listed in Wakana et al. (2007)

except for the inferior fronto-occipital fasciculus, which we chose

not to label due to the controversy surrounding its existence as a

separate fascicle (Schmahmann and Pandya, 2007). The pathways

that we did label were:

• Corticospinal tract (CST)

• Inferior longitudinal fasciculus (ILF)

• Uncinate fasciculus (UNC)

• Anterior thalamic radiation (ATR)

• Cingulum – cingulate gyrus (supracallosal) bundle (CCG)

• Cingulum – angular (infracallosal) bundle (CAB)

• Superior longitudinal fasciculus – parietal bundle (SLFP)

• Superior longitudinal fasciculus – temporal bundle (SLFT)

• Corpus callosum – forceps major (FMAJ)

• Corpus callosum – forceps minor (FMIN)

Based on the subdivision of the SLF that has been suggested in

the literature (Makris et al., 2005), the SLFP and SLFT above

correspond most closely to SLF III and the arcuate fasciculus,

respectively. Except for FMAJ and FMIN, which are interhemi-

spheric connections, all other pathways were labeled on the left and

right hemisphere. Thus we ended up with a total of 18 pathways

per subject. Figure 1 shows an example of a full set of manually

labeled pathways and all the ROIs that were drawn for the labeling.

We assessed the intra- and inter-rater reliability of the man-

ual labeling method in the left and right uncinate. The uncinate

was labeled twice by rater 1 and once each by raters 2 and 3 in

10 healthy subjects. Intra-rater reliability was quantified as the

modified Hausdorff distance between the two labels of the same

pathway produced by rater 1. Inter-rater reliability was quantified

as the modified Hausdorff distance between labels of the same

pathway produced by raters 1 and 2 or raters 1 and 3. We define the

modified Hausdorff distance between two labels as the minimum

distance of each point on one label from the other label, averaged

over all points on the two labels. The means and standard errors

of the distances over the 10 subjects are shown in Figure 2.

2.4. AUTOMATED TRACTOGRAPHY

Our method for automated reconstruction of white-matter path-

ways is based on the Bayesian framework for global tractography

proposed in Jbabdi et al. (2007). In this framework the unknown

pathway F in any new test subject is estimated from the diffusion-

weighted images Y of that subject via the posterior probability

distribution of F given Y,

p(F |Y ) ∝ p(Y |F)p(F). (1)

We can think of the likelihood p(Y | F) as the variability in

the measured data given the shape of the pathway in the specific

subject and the prior distribution p(F) as the variability in the

pathway shape from subject to subject. Therefore the likelihood

represents uncertainty in the data due to measurement noise

and the prior represents uncertainty due to individual anatomical

variation.
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FIGURE 1 | Manual labeling of all 18 pathways in a single subject, shown inTrackvis with the disks and manually drawn ROIs that were used to define

the pathways. An axial (A) and sagittal (B) view is shown, with some ROIs hidden in each case to provide an unobstructed view.

FIGURE 2 | Intra- and inter-rater reliability of the manual labeling of the

left and right uncinate. Reliability is quantified as the modified Hausdorff

distance between two labels of the same pathway produced by the same

rater or by two different raters.

In our approach we use the same formulation for the likeli-

hood p(Y | F) as Jbabdi et al. (2007), which assumes Gaussian

noise and uses the “ball-and-stick” model of diffusion (Behrens

et al., 2003). This model allows for multiple compartments of

anisotropic diffusion and one compartment of isotropic diffusion

per voxel, expressing the diffusion image data at that voxel as a

function of the volumes and orientations of these compartments

(Behrens et al., 2007). We used the bedpostx tool in FSL to esti-

mate the distributions of the ball-and-stick model parameters at

each voxel from the diffusion data, assuming up to two anisotropic

compartments per voxel.

Our departure from Jbabdi et al. (2007) is that, instead of

assuming equal prior probability for all possible paths connecting

two regions of interest, we use a prior of the form:

p(F) = p
(

F |A, {Fk}
Nt

k=1 , {AK }
Nt

k=1

)

, (2)

where A is the anatomical segmentation map of the test subject,

Fk , k = 1,. . ., Nt, is the pathway of interest in each of the Nt train-

ing subjects, and Ak , k = 1,. . ., Nt the anatomical segmentation

map of each training subject. Thus we allow our prior knowledge

on the anatomy of the pathway in the training subjects to inform

our belief on the anatomy of the pathway in the test subject.

Specifically, the information that we glean from the training set

is which anatomical regions the pathway intersects and neighbors

along its trajectory. For each training subject, the anatomical seg-

mentation map Ak, obtained from the T 1 image using FreeSurfer,

and the pathway Fk , obtained from the manual labeling of stream-

lines in Trackvis, are coregistered using the intra- and inter-subject

registration methods described in section 2.2. Once they have been

mapped to the common space (here MNI space), the streamlines

from the manual labeling of the training subjects are divided into

Ns segments along their arc length. The number of segments Ns

is chosen separately for each of the 18 pathways so that every

training streamline has at least 3 voxels in each segment. For

each segment i = 1,. . ., Ns along the streamlines of Fk we com-

pute histograms of how often each segmentation label a occurs

in the anatomical segmentation map Ak at the voxels that the

streamlines traverse, or at the nearest neighboring structures of

the streamlines in the left, right, anterior, posterior, superior, and

inferior directions. This yields estimates of the a priori probability

p0
i (a) that a voxel in the pathway’s i-th segment intersects a seg-

mentation label a, and of the a priori probabilities pL
i (a), pR

i (a),

pA
i (a), pP

i (a), pI
i (a), pS

i (a) that the nearest neighboring segmen-

tation label to a voxel in the pathway’s i-th segment in the left,

right, anterior, posterior, superior, and inferior directions, respec-

tively, is label a. These probabilities form a statistical framework

for introducing into the tractography algorithm the same type

of anatomical knowledge that an expert would use to label the

pathways manually.

The prior probability p(F |A, {Fk}
Nt

k=1, {Ak}
Nt

k=1) of a path in

the test subject given the training data is computed by splitting the

path into the same number of segments N v as the training paths.

Let the test path F go through N v voxels in the common space and

i(j), j = 1,. . ., N v be the segment along the path that the j-th voxel

belongs to, where i ∈ {1,. . ., N s}. From the test subject’s segmen-

tation map A we obtain the segmentation label a0
j that the j-th

voxel intersects and its nearest neighboring segmentation labels

aL
j , aR

j , aA
j , aP

j , aI
j , aS

j in the left, right, anterior, posterior, superior,

and inferior directions, respectively. The prior probability of the
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path is assumed to be the product of the prior probabilities of each

voxel along the path:

p
(

F |A, {Fk}
n
k=1 , {Ak}

n
k=1

)

=

Nv
∏

j=1

p0
i(j)

(

a0
j

)

pL
i(j)

(

aL
j

)

pR
i(j)

(

aR
j

)

× pA
i(j)

(

aA
j

)

pP
i(j)

(

aP
j

)

pI
i(j)

(

aI
j

)

pS
i(j)

(

aS
j

)

(3)

We estimate the posterior distribution p(F | Y) for the test subject

via a Markov Chain Monte Carlo (MCMC) algorithm. The path-

way F is modeled as a cubic spline with a fixed number of control

points. For the results shown here we used 5 control points to

model all pathways. Further investigation is needed to determine

the optimal number of control points, as it is possible that increas-

ing it could yield better results for higher-curvature paths such as

the corpus callosum. In addition to the estimation of anatomical

priors, the training data is also used to derive the initialization of

the control points and the end ROIs that are used to constrain the

two end points of each pathway. The initialization is obtained by

fitting a spline to the median of the training set of streamlines. The

end ROIs are obtained by dilating the end points of the training

streamlines and finding their intersection with the cortex of the

test subject.

The MCMC algorithm generates samples from the posterior

distribution p(F | Y) of the path by perturbing the control points,

thus changing the shape of the spline, and computing the like-

lihood and prior probability of the new spline. The likelihood

expresses how well the spline fits the diffusion data, that is, how

closely the orientation of the spline at each voxel that the spline

goes through matches the orientation of the anisotropic diffusion

compartments of the ball-and-stick model at the same voxel. The

prior expresses how well the spline fits the training set, that is,

how well the anatomical regions that the spline goes through or

passes next to in the test subject match those found in the train-

ing subjects. In each iteration of the algorithm the control points

are perturbed in random order. If the perturbed control point is

one of the two end points of the path and the perturbation has

placed it outside the end ROI obtained from the training set, it is

rejected. Otherwise, every time a control point is perturbed, the

likelihood and prior distribution is computed for every voxel along

the spline. The control point perturbation and likelihood compu-

tation is performed in the native diffusion space, so that the DWI

data itself does not need to be mapped to another space. How-

ever, the anatomical prior computation requires that each voxel

on the spline is mapped to the common coordinate system where

all training subjects and the corresponding anatomical segmenta-

tions have been normalized (here MNI space). The likelihood and

prior are integrated over all voxels along the spline to compute

its posterior probability, which is then compared to the posterior

probability of the spline from the previous iteration to determine if

the new spline will be accepted or rejected. A number of “burn-in”

iterations (200 in this experiment) are performed in the begin-

ning of the algorithm. The splines sampled during the burn-in

period are discarded to ensure that the spline is initialized close

to the center of the distribution. Then the main set of iterations

(5000 in this experiment) are run. The splines that are sampled

and accepted during this set of iterations are summed to yield an

estimate of the posterior distribution of the pathway in the test

subject. The optimal number of burn-in and sampling iterations

that are needed to ensure convergence for each pathway is a topic

for future investigation.

For this paper we investigated how the inclusion of both

patients and healthy subjects in the training set affected our abil-

ity to reconstruct the pathways reliably in either population. We

tested our method by a leave-N-out approach,where we performed

automated tractography in each subject using the manual labels

from a set of the remaining subjects as training data. We repeated

this three times per subject, each time using a different combi-

nation of 30 training subjects: (i) all 30 healthy, (ii) 15 healthy

and 15 diseased, and (iii) all 30 diseased. Training subjects were

selected randomly from the healthy and diseased groups. We also

performed the reconstruction using the healthy training data only

to initialize the algorithm but not in the pathway prior. This was

equivalent to assuming a uniform prior probability and relying on

the likelihood term alone for estimating the pathway posterior. We

compared the results by computing the distance of an automat-

ically reconstructed pathway in the test subject to the respective

manually labeled pathway for the same subject, which had been

excluded from the training set.

3. RESULTS

Our method yields volumetric distributions of the pathways. As

an example, Figure 3 shows the estimated pathway distributions

in three healthy controls and three schizophrenia patients, dis-

played as isosurfaces at 20% of the maximum value of each

distribution.

Figure 4 shows plots of the distances between the manually

labeled pathways and automatically reconstructed pathways that

were estimated with different sets of training subjects. In each case

we computed a modified Hausdorff distance between the automat-

ically reconstructed pathway and the manually defined pathway.

Before computing the modified Hausdorff distance, the distribu-

tion estimates were thresholded by masking out all values below

20% of the maximum. Thus the comparison is based on the center

of the distribution and not its tails, as we expect the center and not

the tails to overlap with the manual labels. In all cases, the paths

reconstructed with the anatomical priors were closer to the man-

ual labels than the ones reconstructed without prior information.

The priors reduced both the mean distance and the variance of

the distance from the manual labels, thus improving accuracy and

robustness.

Changing the make-up of our training set did not affect this

result significantly. In particular our results indicate that it is pos-

sible to reconstruct the pathways accurately in the entire study

cohort using a training set consisting of healthy subjects only. We

computed uncorrected p-values from T -tests on the difference

in the modified Hausdorff distances between the case where a

healthy-only training set was used and the other three cases. The

differences between the cases using a healthy-only training set and

no anatomical priors were significant (p < 0.01) for all pathways

except for the left ILF. The differences between the cases using a

healthy-only and a mixed or patient-only training set were not

significant.
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FIGURE 3 | Pathways reconstructed automatically withTRACULA in three healthy controls (A–C) and three schizophrenia patients (D–F). The posterior

distribution of each pathway, estimated using 30 healthy subjects as the training set and thresholded at 20% of its maximum, is displayed as an isosurface over

each individual’s FreeSurfer segmentation.

FIGURE 4 | Modified Hausdorff distances (MHD) between the manually labeled pathways and automatically reconstructed pathways. Pathway

posteriors were estimated without an anatomical prior (green) and with anatomical priors derived from 3 different sets of training subjects: 30 healthy training

subjects (red), 15 healthy and 15 patients (magenta), and 30 patients (blue).

Figure 5 illustrates the amount of anatomical variability that

is captured by the priors for an example training set consisting of

30 healthy subjects. To quantify this variability we found the max-

imum fraction of training samples that corresponded to a single

label, i.e., the fraction of training samples corresponding to the

most commonly encountered label. The higher this fraction, the

lower the variability in the segmentation labels encountered across

the samples. We averaged the fraction over all segments along the

length of a pathway. We calculated this average maximum fraction

for the labels that intersect the pathway (f0) and for the nearest

neighboring labels in the left, right, anterior, posterior, superior,

and inferior directions (fL, fR, fA, fP, fS, and fI, respectively). The
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segmentation labels intersected by the pathways were the least vari-

able (f0 was 0.8 on average), as these are most commonly white

matter. The fractions for the neighboring segmentation labels were

0.5 on average. The left and right CAB were the pathways with the

most anatomical variability.

As an illustration of the utility of the tract-based approach

in localizing white-matter degeneration in schizophrenia, and to

confirm that our data set is consistent with prior findings from

the literature, Figure 6 shows group averages and correspond-

ing standard errors of the average fractional anisotropy (FA) in

each pathway. Based on uncorrected p-values from a T -test on

the difference between groups, we found average FA to be signif-

icantly lower in patients compared to controls in the left UNC

(p = 0.005), left ATR (p = 0.019), left CCG (p = 0.011), left CAB

(p = 0.006), right SLFP (p = 0.033), FMAJ (p = 0.00005), and

FMIN (p = 0.034), with trend toward significance in the FA reduc-

tions that were observed in the right UNC (p = 0.067), left ILF

(p = 0.059), right ATR (p = 0.061), and right CCG (p = 0.088).

The average FA over the entire white matter (based on white-

matter masks obtained from the FreeSurfer segmentations) was

also significantly reduced in patients vs. controls (p = 0.006). We

performed similar tests on the average radial diffusivity (RD)

FIGURE 5 | Anatomical variability captured by the priors in an example training set of 30 healthy subjects. The plots show the fraction of training samples

corresponding to the most commonly encountered label, averaged over all segments along the length of each pathway. This was computed for the labels that

intersect the pathway (f 0) and for the nearest neighboring labels in the left, right, anterior, posterior, superior, and inferior directions (fL, fR, fA, fP, fS, and fI,

respectively). The higher the fraction, the lower the variability of the labels across training samples.

FIGURE 6 | Fractional anisotropy (A) and radial diffusivity (B), averaged over individual pathways in schizophrenia patients and healthy controls.

*p < 0.05, •p < 0.1.
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and axial diffusivity (AD) in each pathway. Pathways with sig-

nificantly reduced FA also exhibited increased RD in the patients

compared to the controls. More specifically, significant increases

of RD in patients were found in the left UNC (p = 0.010), left

CCG (p = 0.042), left SLFP (p = 0.044), and FMAJ (p = 0.0003),

with trend toward significance in the right UNC (p = 0.080),

left ATR (p = 0.057), and FMIN (p = 0.054). The average RD

over the whole white matter was also higher in the patients

(p = 0.014). In contrast we found no significant changes in the

average AD over individual pathways or over the entire white

matter.

4. DISCUSSION

We have evaluated TRACULA, a method for automated global

probabilistic tractography, on a population of schizophrenia

patients and healthy controls. Our method yields volumetric

distributions of major pathways in a novel subject without the

need for manual intervention, thus facilitating clinical studies

where large populations need to be analyzed to detect subtle

changes in white-matter integrity. Our experiments showed that

this approach produced results very close to those of conventional,

manually assisted tractography, but without the manual editing.

Further investigation is needed to determine the optimal number

of subjects that should be included in the training set.

Including patients in the training set did not improve the

accuracy of our results. That is, despite the relative clinical het-

erogeneity of our patients (Table 1), we were able to reconstruct

pathways in this population using only healthy training subjects

without a decrease in accuracy. This is not entirely surprising as

our method does not constrain the exact spatial location or shape

of the pathways and is thus impervious to changes in these fea-

tures between populations. Our priors use only the trajectory of

the training paths relative to the surrounding anatomical struc-

tures. As long as the disease that we are studying does not cause a

radical reorganization of the brain and rerouting of white-matter

connections, healthy training subjects could be used to reconstruct

the pathways accurately in patients as well as in controls.

Several aspects of the anatomical prior computation can have

an impact on the validity of our method. These include the accu-

racy of the automated segmentation of the T 1-weighted images,

the registration of each individual’s T 1-weighted and diffusion-

weighted images, and the registration across individuals. The

accuracy of the automated anatomical segmentation has been

addressed elsewhere (Fischl et al., 2002, 2004b). The intra-subject

registration method that we used here benefits from information

on the gray/white-matter boundary to improve the alignment of

the diffusion and T 1-weighted image. However, this alignment

remains a difficult problem, most notably due to susceptibility

artifacts that cause distortions in the DWIs. Thus care should

be taken to minimize such distortions to improve the accuracy

of the reconstructed pathways. Nevertheless it is worth noting

that the range of misregistration between the T 1-weighted and

DW images across the training subjects will be reflected in the

anatomical priors as blurring. If any potential misregistration

in the test subject is within the range present in the training

set, this misregistration should be less of a problem for pathway

reconstruction.

The inter-subject alignment for this study was performed by

registering the subjects’ T 1-weighted images to the MNI template.

However, recent work from our group has shown that aligning the

T 1-weighted images to each other by a combined volume- and

surface-based non-linear registration can lead to improved inter-

subject alignment of streamlines from deterministic tractography,

when compared to affine registration (Zöllei et al., 2010). We are

currently investigating the incorporation of this common coordi-

nate system in our tractography framework to replace the MNI

template. We expect that improved spatial normalization will be

particularly beneficial for the initialization of the control points

and for the definition of the end ROIs, as these aspects of the algo-

rithm rely on good spatial correspondence between the training

subjects and the test subject. Beyond that, however, we expect that

our tractography method would be less sensitive to small mis-

registrations between subjects than, for example, a voxel-based

comparison, since our priors use information on the surround-

ing anatomical structures of the pathways and not on their exact

spatial location.

In the experiments presented here we evaluated the accuracy

of the automated tractography by comparing it to the respective

manual labels. Of course, the manual labels cannot be consid-

ered ground truth, as they are limited by the inability of the

deterministic streamline tractography to reach some parts of cer-

tain pathways. For example, the more lateral terminations of the

CST in the motor cortex, e.g., those corresponding to the hand

region, are more challenging to trace than the more medial ones

due to intersecting pathways. Similarly the frontal terminations of

the SLF are longer and thus more challenging to trace than the pre-

frontal and premotor ones. Using a high angular-resolution model

(Q-ball) instead of the tensor model to obtain the streamlines used

for labeling did not yield improvements, since our data acquisition

(b = 700 sm−2, 60 directions) was suboptimal for this purpose.

However, we expect the global probabilistic approach to

explore areas of lower anisotropy and tract crossings that are

unreachable by deterministic tensor tractography, as long as these

areas lie within the same anatomical neighborhood as the training

streamlines. One reason for this is that the multi-fiber ball-and-

stick model can model more than one tract orientation per voxel.

Another reason is that global tractography integrates along the

length of the path and would be less sensitive to a low-anisotropy

crossing somewhere on that trajectory that could cause stream-

line tractography to terminate prematurely. Ultimately the avail-

ability of high-quality training data will be very beneficial to

our method and each tractography approach, manually assisted

or automatic, should be validated further by comparing it to

tracer studies.

The data likelihood model that is used by our method assumes

a Gaussian distribution for the DWI intensity values. This is a good

approximation for magnitude images when the SNR is sufficiently

high but breaks down at low SNR. To test the Gaussianity of the

noise in our data, we used the DWI values in each voxel in the

ventricles, where the intensity is independent of gradient direc-

tion due to isotropic diffusion. For each of these voxels we used

the 60 DWI values available from the 60-direction data to estimate

the SNR and test for Gaussianity using a Kolmogorov-Smirnov

test. A total of 147781 voxels were tested over all subjects. The null
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hypothesis of Gaussianity was rejected in only 0.1% of these tests.

The average SNR was 5.5.

The data set that we chose to both train and test our method

in this work was acquired with the standard DWI sequence that

is used routinely to collect data for research studies at MGH. This

included using the default choices for b-value, gradient direc-

tions, and spatial resolution. It will be important to evaluate

our method further on data acquired with different acquisition

parameters. Beyond the quality of the test data, the quality of

the training data is crucial to our method, since the accuracy of

the reconstructed pathways is strongly dependent on the accuracy

of the prior information used by the algorithm. In the future,

as improved acquisition methods and hardware become avail-

able, training data of higher quality can be collected and used to

increase automated reconstruction accuracy in data sets of routine

quality.

Tractography can be used to qualify white-matter differences

between populations in much greater detail than it is possible

with a voxel-based or ROI-based approach. Local tractography

can handle exploratory analyses, where the anatomy of a connec-

tion is not known or the connection may not be present in all

subjects. Global tractography is geared toward the reconstruction

of a known connection between two end regions. A feature of

the global approach is that, by constraining both end points of the

pathway, it provides us with a straightforward way to parameterize

the pathway by arc length. With such a parameterization one could

localize effects further by comparing diffusion measures, such as

FA, not only in terms of their averages over a pathway, but also as a

function of position along the length of the pathway. With global

tractography, in particular, we estimate the posterior distribution

of each pathway, from which it is straightforward to calculate the

posterior mean or maximum a posteriori pathway for each subject

and compare FA or other measures at different locations along the

arc length. Since differences may be more pronounced in a par-

ticular portion of a pathway, e.g., due to greater disorganization

of connections in that portion or more crossings with another

pathway, such analyses may be helpful for further interpretation

of population differences.

To illustrate the validity of the data set used here, we have also

presented results from a tract-based comparison of FA between

the schizophrenia patients and matched controls in our cohort. A

superset of this cohort, including data acquired at three additional

sites, was studied previously with an ROI-based approach. FA was

found to be lower in patients than controls when averaged over

large regions (whole brain, frontal, parietal, occipital, and tempo-

ral lobes) (White et al., 2011). We were able to replicate this result

in this much smaller data set and show significant FA reductions

localized in specific pathways, as seen in Figure 6. Our results are

consistent with prior studies on white-matter integrity in schiz-

ophrenia that have sought to localize effects in specific fascicles.

In agreement to what we have found, anterior thalamic radia-

tions (Buchsbaum et al., 2006; Oh et al., 2009), cingulum (Kubicki

et al., 2003, 2005; Manoach et al., 2007; Mori et al., 2007; Nestor

et al., 2007), corpus callosum (Foong et al., 2000; Agartz et al.,

2001; Hubl et al., 2004; Kubicki et al., 2005; Douaud et al., 2007a;

Whitford et al., 2010), inferior longitudinal fasciculus (Hubl et al.,

2004; Jeong et al., 2009), superior longitudinal fasciculus (Hubl

et al., 2004; Kubicki et al., 2005; Jones et al., 2006; Karlsgodt et al.,

2008; Jeong et al., 2009), and uncinate (Kubicki et al., 2002; Burns

et al., 2003; Mori et al., 2007; Price et al., 2008; Szeszko et al., 2008;

Voineskos et al., 2010) are major sites where alterations have been

reported.

Common limitations of diffusion MRI studies, including our

own, are our inability to determine the exact biological causes of

diffusion anisotropy changes, our difficulty in distinguishing the

effects of the disease from those of medication, and the potentially

increased subject motion in patients as compared to controls. His-

tological studies have shown several changes in the white matter of

schizophrenia patients when compared to healthy subjects, includ-

ing differences in myelination and neuronal arborization patterns

(Davis et al., 2003; Flynn et al., 2003). Distinguishing between

potential neurobiological causes based on FA changes alone is not

possible. However, in combination with other measures extracted

from DWIs, such as mean, radial, and axial diffusivity (Kubicki

et al., 2003; Douaud et al., 2007b; Whitford et al., 2010), length of

tractography streamlines (Buchsbaum et al., 2006), or even mea-

sures from magnetization transfer imaging (Kubicki et al., 2005),

these findings have been hypothesized to support either demyeli-

nation or geometric disorganization as their underlying etiology.

Similarly to Whitford et al. (2010), our results show increased

radial but unchanged axial diffusivity in the patients, which has

been interpreted as evidence of myelin abnormalities (Song et al.,

2002).

Whichever the biological cause of changes in white-matter

integrity measures derived from diffusion MRI, several studies

have found these changes to be associated with cognitive deficits

in schizophrenia patients. This includes associations with perfor-

mance in attention and memory tasks (Kubicki et al., 2002, 2003,

2009, 2011; Nestor et al., 2007; Karlsgodt et al., 2008; Szeszko

et al., 2008), with fMRI activation in working memory-related

areas (Schlösser et al., 2007), and with fMRI time course corre-

lations within the semantic network (Jeong et al., 2009). Such

findings illustrate the potential of diffusion MRI to improve our

understanding of the mechanisms of schizophrenia but they also

underline the need for extracting diffusion measures specific to

each affected network. Our tractography method allows the auto-

matic extraction of such measures and can thus facilitate pathway-

specific studies on larger populations than what has been possible

with manually assisted tractography.

CONCLUSION

We have developed TRACULA, a method for automated tractog-

raphy that uses prior information on the anatomy of white-matter

pathways from a set of training subjects. We have evaluated the

accuracy of the method on a population of schizophrenia patients

and healthy volunteers, to determine how it is affected by the inclu-

sion of patients in the training set. We have found that a training

set consisting entirely of healthy subjects could be used to recon-

struct white-matter pathways in both patients and healthy controls

without compromising accuracy. Of course this conclusion cannot

be generalized to every clinical population and further evaluation

on other populations is warranted to determine if the training set

should be tailored to specific studies.

TRACULA is available for download as part of FreeSurfer 5.1.
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