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Abstract. We present a visually based method for the taxonomic identification of benthic invertebrates
that automates image capture, image processing, and specimen classification. The BugID system
automatically positions and images specimens with minimal user input. Images are then processed with
interest operators (machine-learning algorithms for locating informative visual regions) to identify
informative pattern features, and this information is used to train a classifier algorithm. Naı̈ve Bayes
modeling of stacked decision trees is used to determine whether a specimen is an unknown distractor
(taxon not in the training data set) or one of the species in the training set. When tested on images from 9
larval stonefly taxa, BugID correctly identified 94.5% of images, even though small or damaged specimens
were included in testing. When distractor taxa (10 common invertebrates not present in the training set)
were included to make classification more challenging, overall accuracy decreased but generally was close
to 90%. At the equal error rate (EER), 89.5% of stonefly images were correctly classified and the accuracy of
nonrejected stoneflies increased to 96.4%, a result suggesting that many difficult-to-identify or poorly imaged
stonefly specimens had been rejected prior to classification. BugID is the first system of its kind that allows
users to select thresholds for rejection depending on the required use. Rejected images of distractor taxa or
difficult specimens can be identified later by a taxonomic expert, and new taxa ultimately can be incorporated
into the training set of known taxa. BugID has several advantages over other automated insect classification
systems, including automated handling of specimens, the ability to isolate nontarget and novel species, and
the ability to identify specimens across different stages of larval development.
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Automated taxonomic identification is an area of
rapid innovation, and computer vision methods are
being developed for visual classification of spiders
(Do et al. 1999), butterflies (Watson et al. 2004, Bhanu
et al. 2008), plants (Clark 2007), plankton (Rodenacker
et al. 2006), and other groups (reviewed in MacLeod
2007). Many of these approaches achieve high levels
of accuracy with specific data sets, but considerable
challenges remain before automated classification can
be deployed on a large scale. First, automated
methods for specimen handling and image processing
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are needed in addition to automated image classifi-
cation. Most approaches currently rely on significant
input from human users, such as landmarking of
morphological features on each image by hand, which
considerably slows the classification process. This
step requires too much time to be practical for insect
studies that might have hundreds of specimens per
sample. Second, new methods must be able to
recognize and reject novel species that lie outside
their training set of known species. With current
approaches, samples must be prescreened to ensure
that nontarget specimens are removed, a requirement
that necessitates some amount of a priori specimen
classification and that undercuts the utility of auto-
mated classification systems in the first place. Last,
methods must be robust to variability arising from
ontogenetic changes within species, damaged speci-
mens, and variable imaging conditions.

These challenges are especially apparent in benthic
invertebrate samples collected as part of bioassess-
ment projects. A benthic invertebrate sample can be
collected in a matter of minutes, but sample process-
ing might require hours or even days of laboratory
work. Thus, an automated method for benthic
invertebrate sample processing and classification
could greatly increase the number of samples used
for monitoring and conservation efforts. Sample
processing usually involves separating target taxa
from detritus (fragments of leaves, sand, and other
debris) and nontarget species and then classification
of specimens to an appropriate taxonomic level
(usually genus or species), so the ability to isolate
unknown specimens is important. Last, invertebrate
specimens span a large range of ontogenetic diversity
because most taxa are collected during the larval
stage, and specimens are often bent, broken, and
discolored with sediment.

Our BugID approach automates specimen han-
dling, image capture, and image classification into a
single process (Sarpola et al. 2008). The method is not
fully integrated from sample jar to identified speci-
mens, but we have automated several key steps. We
begin with an apparatus that automatically positions
specimens under a microscope and captures images.
Images are then rescaled and processed to remove
background noise. The classification method uses
feature-based classification techniques developed by
our group (Larios et al. 2007, Mortensen et al. 2007,
Martı́nez-Muñoz 2009). Rather than focus on specific
diagnostic features typically used by human taxono-
mists, this feature-based approach applies machine
learning techniques to find multiple regions of
interest within images that are informative for species
classification. These regions are analyzed simulta-

neously to provide a classification; the method is
similar to an experienced taxonomist integrating
many subtle visual cues to sight-identify a specimen
by gestalt, or overall appearance. This approach
minimizes reliance on specific diagnostic characters
that might require manipulation, dissection, or other
labor-intensive handling.

Here we describe the general BugID approach. We
trained it using images from 9 larval stonefly taxa
commonly found in Pacific Northwest streams and
rivers, and then tested its ability to classify images
from novel specimens of these 9 taxa. We then tested
BugID’s accuracy in the context of distractors, images
from 10 common invertebrates that were not in the
training set.

Methods

Sample collection and processing

Benthic macroinvertebrates were collected from
Oregon rivers and streams with standard Oregon
Department of Environmental Quality protocols (Ha-
fele and Mulvey 1998). Collection sites were distribut-
ed across several biotic provinces, including temperate
coastal rainforest, alpine forest, high desert, and valley
floodplain. In the laboratory, specimens were separat-
ed and identified to genus or species. All larval stages
and damaged specimens (missing legs, antennae) were
included, and each specimen was identified indepen-
dently by 2 taxonomists. All specimens were kept in
individual vials, assigned unique numbers, and acces-
sioned into the Oregon State Arthropod Collection
after imaging (OSAC lot #0278).

Our main focus was on the larval stage of 9 stonefly
taxa spanning 7 families. Each taxon was common in
streams in the Pacific Northwest: Calineuria californica,
Doroneuria baumanni, Hesperoperla pacifica (Perlidae),
Isoperla sp. (Perlodidae), Moselia infuscata (Leuctridae),
Pteronarcys sp. (Pteronarcyidae), Sweltsa sp. (Chlor-
operlidae), Yoraperla sp. (Peltoperlidae), and Zapada
sp. (Nemouridae). These names were abbreviated in
our analyses as CAL, DOR, HES, ISO, MOS, PTE,
SWE, YOR, and ZAP, respectively. We obtained ,100
specimens for most species, except Moselia (24
specimens) and Pteronarcys (45 specimens).

To test the ability of the algorithms to discern
known stonefly species from unknown or novel
specimens, we used larval specimens of 10 distractor
taxa that are commonly found in benthic invertebrate
samples (10 specimens per taxon): the ephemeropter-
ans Baetis (Baetidae), Ameletus (Ameletidae), Ephemer-
ella (Ephemerellidae), Caudatella (Ephemerellidae),
Ironodes (Heptageniidae), and Rhithrogena (Heptagen-
iidae); the trichopterans Brachycentrus (Brachycentri-
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dae) and Neophylax (Uenoidae); the plecopteran
Taenionema (Taeniopterygidae); and the amphipod
Hyalella (Hyalellidae). These specimens were consid-
ered distractors in the sense that we did not include
them in our initial training set. However, they could
be incorporated into the BugID system as known taxa
at a future date.

Image capture

We processed and imaged specimens with an
updated version of the BugID system described in
Sarpola et al. (2008). Specimens are dropped singly
into a PlexiglasH tube filled with 70% ethanol, and a
recirculating pump moves individuals to the stage of
a standard dissecting microscope (Leica MZ9.5) fitted
with a 5-megapixel camera. An infrared sensor
automatically detects a specimen in the field of view
and causes the pump to cease. A pulse jet rotates
specimens until a dorsal view is available, and the
operator chooses when to take an image. We captured
4 to 5 dorsal images per specimen for our 9 stonefly
taxa, rotating specimens between each image so that
no 2 images were exactly alike. Partial images
(antennae, legs, or cerci out of the field of view) were
retained in our image set. We collected a total of 349
images of the distractor taxa (3–4/specimen).

We divided specimens at random into 3 sets (called
folds) with approximately the same number of
specimens per set. The folds were generated by
selecting the specimens at random, but with the
constraint that all images of a single specimen were
always in the same fold. The experiments were
carried out with 3-fold cross-validation. This step
involved 3 iterations of experiments where, in each
round, 2 of the folds were used for classifier training
and estimation of rejection parameters, and the 3rd

fold was used for testing. Hence, every image was
used twice for training and once for testing, but never
for both training and testing in the same iteration.

Classification process

The first step before training any classification
algorithm is to apply interest operators to the images.
In our case we computed Hessian affine regions
(Mikolajczyk and Schmid 2002), saliency regions
(Kadir and Brady 2001), principal curvature-based
regions (PCBRs; Deng et al. 2007), and regularly
sampled points (Martı́nez-Muñoz et al. 2009). These
operators find points of interest in the images, such as
corners, ridges, lobes, patterning, and other morpho-
logical features. The detected regions were then
described using the Scale Invariant Feature Transform
(SIFT) descriptor (Lowe 2004). Each SIFT describes a

region as a vector of 128 numerical values that are
approximately viewpoint-invariant and illumination-
invariant. The classification system was built by
analyzing these extracted SIFT descriptors.

The first step of the learning process involved
learning random forest classifiers directly from the
descriptors. A random forest classifier (Breiman 2001)
is an ensemble of decision trees, where each tree is a
computer-generated structure analogous to a dichot-
omous key. Each step in the tree compares a chosen
element of the SIFT vector against a chosen threshold,
and branches on the result. In a random forest, each
tree is constructed by a process that incorporates a
random component to introduce variation amongst
the trees. Each of our random forest classifiers
contained 100 decision trees. A separate 100-tree
random forest was trained for each of the 3 interest
operators. The random forest classifier took as input a
single SIFT vector. Each tree analyzed this SIFT vector
and predicted the taxon of the specimen based on it.
The classifications from all of the SIFTs and all of the
trees were accumulated as votes. Hence, there were
(D1 + D2 + D3) 3 100 votes, where D1 denotes the
number of detected Hessian Affine regions, D2

denotes the number of detected Kadir regions, and
D3 denotes the number of detected PCBR regions.
These votes were combined by a 2nd-level stacked
classifier to make the final prediction of the taxon (see
Martı́nez-Muñoz et al. 2009 for more details on the
algorithm).

Distinguishing between unknown distractor taxa
and known taxa that were included in the training set
presented a number of challenges. Because this
classification system was trained only on 9 stonefly
taxa, it could categorize images only as belonging to
one of these taxa. Hence, before classifying an image,
the system had to determine whether the image
belonged to this group of taxa. This task was
challenging because only the 9 taxa of interest were
available during training, so the system had no way of
modeling the distractor taxa. Our approach was to
estimate the probability of a specimen belonging to
any of the stonefly taxa of interest, rather than
modeling all possible distractor species (probably an
impossible task). Unlike classification, which seeks to
find parts of the stoneflies that discriminate among
the different taxa, rejection of distractors required us
to locate parts of the training images that were shared
across taxa. We accomplished this task with the
following steps. First, the SIFT descriptors were
clustered (via K-means clustering) to form a visual
dictionary (Csurka et al. 2004). Next, each SIFT
descriptor in an image was mapped to the nearest
dictionary entry, and those indices were accumulated
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into a histogram that represented the image in terms
of the number of interest regions belonging to each
dictionary entry. Last, a Naı̈ve Bayes probabilistic
model was fitted to these histograms. This model
could be applied to a new image to estimate the
probability that the image belongs to any of the 9
stonefly taxa. New specimens were rejected as being
nonstoneflies based on a threshold or operating point
(OP) for this probability. For the results reported in
this paper, we selected the OP at the equal error rate
(EER; the EER OP is where the proportion of
distracters rejected equals the proportion of stoneflies
accepted). We estimated the OP threshold using only
the training set (without distractors) by averaging
over the 9 EER thresholds obtained by treating 1
stonefly taxon at a time as a distractor and using the
Naı̈ve Bayes model trained on the remaining 8 taxa.

Given a new image, the system operated as follows.
First, the Naı̈ve Bayes model was evaluated, and the
output probability was compared to the OP threshold.
If it was less than the threshold, the image was
rejected as being a nonstonefly. Otherwise, the SIFT
descriptors were passed to the classifier, which
assigned the image to one of the 9 stonefly taxa.

We explored 2 scenarios commonly encountered
with sample processing. First, we tested BugID’s
performance when all specimens belonged to known
species (i.e., species present in the training set). This
situation occurs, for instance, in samples from exper-
iments where the species pool is controlled or in
samples that have been presorted by technicians to
remove groups that are not in the training set. Second,
we tested BugID’s ability to remove unknowns
automatically and then to identify the remaining
specimens correctly. This scenario is encountered with
most field-collected samples, where novel species (not
in training set) often are found in samples.

To put our automated results into perspective, we
compared them with results from humans asked to
identify the same images (Larios et al. 2007). Twenty-
six graduate students and faculty (entomologists,
ecologists, computer scientists, and mechanical engi-
neers) were trained by showing them 50 labeled
images of Calineuria and Doroneuria drawn at random
from the image set. Their ability to identify 50
unlabeled images was then tested.

Results

BugID correctly identified 94.5% of stonefly images
when distractors were excluded (Table 1). The similar
perlids Calineuria and Doroneuria were most often
confused, and Sweltsa was confused with many of the
other taxa. Yoraperla, which has a distinctive body
shape that is different from most of the other taxa, had
the highest correct classification rate at 98.2%.

All of the receiver–operator characteristic (ROC)
curves in our experiments approached the upper left
corner of the graph, suggesting a favorable tradeoff
between correct rejection of distractors and incorrect
rejection of stoneflies (Fig. 1). The total area under the
curve for each of the 3 folds was 87.5%, 87.5%, and
85.9% (perfect discrimination is 100%). Results from
the 1st fold are shown in Fig. 1. Operating point P2

represents the EER, where the percentage of stonefly
images misidentified as distractors equaled the
percentage of distractors misidentified as stoneflies.
The EER was similar for each of the 3 folds (20.6%,
20.1%, and 23.2%), and at this point, the overall
accuracy with distractors included was 89.4%. How-
ever, 96.4% of the nonrejected stonefly images were
correctly identified, suggesting that some of the more
problematic stonefly images were rejected and not
classified (Table 2). Each point in the ROC curve is
computed by setting a different threshold on the

TABLE 1. Confusion matrix for the 9 stonefly taxa with no distractors present. Rows show true taxonomic identities and
columns show the identities output by the classifier. Each entry records the number of images whose true taxonomic group
corresponds to the row and whose predicted group corresponds to the column. Overall, 94.5% of images were correctly identified.
(CAL = Calineuria californica, DOR = Doroneuria baumanni, HES = Hesperoperla pacifica, ISO = Isogenoides sp., MOS = Moselia
infuscata, PTE = Pteronarcys sp., SWE = Sweltsa sp., YOR = Yoraperla sp., ZAP = Zapata sp.).

Taxon CAL DOR HES ISO MOS PTE SWE YOR ZAP Correct

CAL 459 11 3 1 1 2 12 0 3 93.3%
DOR 10 505 2 3 0 1 10 0 1 94.9%
HES 5 2 464 2 0 1 17 0 0 94.5%
ISO 2 7 1 460 0 0 26 0 4 92.0%
MOS 0 0 0 0 107 1 3 0 8 89.9%
PTE 0 0 0 0 0 218 5 0 0 97.8%
SWE 0 12 0 13 2 3 442 0 7 92.3%
YOR 1 1 0 0 0 0 4 483 3 98.2%
ZAP 1 0 1 4 2 1 8 3 478 96.0%
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probability of being a distractor. The points P1 and P3

were obtained by multiplying the EER threshold by
0.95 and 1.05 respectively. Operating point P1 repre-
sents a scenario where inclusiveness is more impor-
tant (it is more important to identify many stonefly
specimens than to reject distractors). In this case, the
accuracy decreased to 86.0%. Operating point P3

represents the opposite scenario where removing
distractors is paramount, even at the expense of
rejecting many stoneflies as distractors. Here, 38.9% of
stonefly images were rejected incorrectly, but 89.8% of
distractors were also removed prior to classification.

In the human study, the 26 graduate students and
faculty successfully identified an average of 78.6%

(SD = 8.4) of Calineuria and Doroneuria images. This
performance was substantially less accurate than the
BugID system, which correctly identified .90% of
both taxa, even when faced with rejecting distractors
and classifying 9 rather than 2 taxa.

Discussion

Our experiments emphasize the importance of
detecting and removing distractors prior to classifi-
cation. We found a clear tradeoff between rejection of
unknown taxa and incorrect rejection of stonefly
specimens, although the ROC curves suggest a
reasonable compromise is possible. In our experi-

FIG. 1. Receiver–operator characteristic (ROC) curves showing the tradeoff between correct rejection of distractors and
incorrect rejection of selected stonefly taxa. Operating point P2 is the equal error rate (ERR); P1 represents greater inclusion of
images for classification; P3 represents more conservative rejection of images prior to classification. Pteronarcys and Doroneuria had
the best and worst ROC curves, respectively, with all other taxa occurring in between.
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ments, the ratio of distractor to stonefly images was
quite high, ,1 distractor image for every 3.5 stonefly
images. The operating thresholds probably would
improve (ROC curves would move toward 100% area
under curve) if distractors were less frequent in
samples. One advantage of our method is that the
user can set the threshold for rejection to be high or
low. As more taxa are included in the training set, this
threshold could be relaxed to ensure that a high
proportion of specimens is classified. When accuracy
is desired, a stringent rejection threshold could be
used, and the rejected specimens could be identified
later by a specialist. This practice would be most
important when processing samples that contain a
high proportion of unknown taxa or poor-quality
specimens. In our experiments, we saw that accuracy
of nonrejected stoneflies jumped up to 96.4% at the
EER, probably because many poor-quality images and
difficult-to-identify specimens had been rejected prior
to classification.

The BugID approach represents several steps
forward in automated specimen classification. We
relied primarily on automated methods to handle and
image the specimens (Sarpola et al. 2008). Our
specimen data set also was realistic because we did
not exclude specimens based on size or condition.
Differences in coloration, size, posture (curled abdo-
mens, legs extended vs contracted), and lighting were
commonplace. Thus, our specimens were representa-
tive of those found in real samples collected for
bioassessment purposes. Last, we confronted the
system with distractor specimens representing un-
known taxa. Despite these challenges, the BugID
system correctly identified .90% of images, and had
.96% accuracy when only nonrejected specimens
were considered.

On average, BugID was able to discriminate
between Calineuria and Doroneuria much more accu-

rately than humans. Part of the explanation for this
result is that the dorsal view images collected by our
apparatus do not capture many of the characters
normally used by taxonomic experts to identify
specimens, and for this reason, separating Calineuria
from Doroneuria using a dorsal view is a difficult task
for either humans or the BugID system. In the absence
of these characters, the humans had to discover new
characters that were present in the dorsal views (see
Fig. 2). We hypothesize that humans were able to find
only a few such pattern characters, whereas BugID
was able to perform a systematic search for a large
number of such pattern characters and combine them
all simultaneously to make the classifications. For
some of the specimens, especially smaller specimens,
the diagnostic dorsal features used by humans were
not always visible, which resulted in errors.

Our system can automatically identify macroinver-
tebrate specimens, but we predict that automated
approaches will increase, rather than diminish, the
need for skilled taxonomists. Sample verification,
incorporation of new taxa and populations, and
identification of specimens rejected as distractors
always will require taxonomic expertise. Systems
such as BugID will serve more to increase the number
of samples, and the number of specimens per sample,
that can be incorporated feasibly into research or
biomonitoring projects. The visually based BugID
method is distinct from DNA-based methods that
identify unique sequences in aggregate samples of
specimens (e.g., DNA barcoding; Savolainen et al.
2005). Unlike current DNA-based methods, visually
based methods count the number of individuals in
each taxon in a sample (DNA methods identify
unique haplotypes or provide only relative estimates
of haplotype frequencies), and specimens are not
destroyed (aggregate DNA analysis generally re-
quires homogenization of samples).

TABLE 2. Confusion matrix for the 9 stonefly taxa plus distractors (Dis). Rows show true taxonomic identities. Results are from
experiments at the equal operating rate. Of the nonrejected stonefly images, 96.4% were identified correctly. (CAL = Calineuria
californica, DOR = Doroneuria baumanni, HES = Hesperoperla pacifica, ISO = Isogenoides sp., MOS = Moselia infuscata, PTE =
Pteronarcys sp., SWE = Sweltsa sp., YOR = Yoraperla sp., ZAP = Zapata sp.).

Taxon CAL DOR HES ISO MOS PTE SWE YOR ZAP Dis Rejected Correct

CAL 373 10 3 1 0 2 5 0 2 96 19.5% 94.2%
DOR 7 398 2 2 0 0 8 0 1 114 21.4% 95.2%
HES 5 1 357 0 0 1 2 0 0 125 25.5% 97.5%
ISO 1 1 0 361 0 0 11 0 0 126 25.2% 96.5%
MOS 0 0 0 0 99 0 3 0 8 9 7.6% 90.0%
PTE 0 0 0 0 0 188 4 0 0 31 13.9% 97.9%
SWE 0 6 0 5 0 1 348 0 2 117 24.4% 96.1%
YOR 1 1 0 0 0 0 1 402 1 86 17.5% 99.0%
ZAP 1 0 1 0 2 1 6 2 432 53 10.6% 97.1%
Dis 5 25 27 61 1 9 41 3 68 807
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FIG. 2. Examples of specimen images used in experiments. Top row to bottom: 3 images each of Calineuria californica,
Doroneuria baumanni, Hesperoperla pacifica, Isogenoides sp., Moselia infuscata, Pteronarcys sp., Sweltsa sp., Yoraperla sp., Zapata sp.
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Prospects for future improvements include: 1)
automated sorting of identified specimens into sepa-
rate containers, which would facilitate sample vouch-
ering and verification by experts, 2) better methods
for detecting and rejecting distractors, and 3) algo-
rithms for identifying specimens in photographs that
contain background clutter, which would enable the
system to identify images collected remotely and then
submitted electronically via email or web-upload.
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