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Abstract—A method for the automatic processing of the
electrocardiogram (ECG) for the detection of obstructive apnoea
is presented. The method screens nighttime single-lead ECG
recordings for the presence of major sleep apnoea and provides
a minute-by-minute analysis of disordered breathing. A large
independently validated database of 70 ECG recordings acquired
from normal subjects and subjects with obstructive and mixed
sleep apnoea, each of approximately eight hours in duration,
was used throughout the study. Thirty-five of these recordings
were used for training and 35 retained for independent testing.
A wide variety of features based on heartbeat intervals and an
ECG-derived respiratory signal were considered. Classifiers based
on linear and quadratic discriminants were compared. Feature
selection and regularization of classifier parameters were used
to optimize classifier performance. Results show that the normal
recordings could be separated from the apnoea recordings with a
100% success rate and a minute-by-minute classification accuracy
of over 90% is achievable.

Index Terms—Electrocardiogram, estimated respiration, heart
rate variability, pattern recognition, sleep apnoea.

I. INTRODUCTION

SLEEP apnoea [1] is commonly defined as the cessation of
breathing during sleep. If breathing does not stop but the

volume of air entering the lungs with each breath is signifi-
cantly reduced, then the respiratory event is called a hypop-
noea. Clinicians usually divide sleep apnoea into three major
categories—obstructive, central, and mixed apnoea. Obstructive
sleep apnoea (OSA) is characterized by intermittent pauses in
breathing during sleep caused by the obstruction of the upper
airway. The airway is blocked at the level of the tongue or soft
palate, so that air cannot enter the lungs in spite of continued
efforts to breathe. This is typically accompanied by a reduction
in blood oxygen saturation and leads to wakening from sleep in
order to breathe. Central sleep apnoea (CSA) is a neurological
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condition which causes the loss of all respiratory effort during
sleep and is also usually marked by decreases in blood oxygen
saturation. With CSA the airway is not necessarily obstructed.
Mixed sleep apnoea combines components of both CSA and
OSA, where an initial failure in breathing efforts allows the
upper airway to collapse.

Currently, a definitive diagnosis of sleep apnoea is made by
counting the number of apnoea and hypopnoea events over a
given period of time (e.g., a night’s sleep). Averaging these
counts on a per-hour basis leads to commonly used standards
such as the apnoea/hypopnoea index (AHI) or the respiratory
disturbance index (RDI) [1]. Standard criteria have been
developed to categorize the severity of the apnoea. Accurate
identification of an apnoea or hypopnoea event requires direct
measurement of upper airway airflow and of respiratory effort.
Definitive measurements of these quantities require a subject to
use an esophageal balloon and wear a full-faced mask which,
being invasive, disturbs sleep. Consequently, this method is not
often used and instead the less invasive polysomnogram [1]
is used.

The polysomnogram requires the recording of electroen-
cephalogram, electrooculogram, and electromyogram to
determine sleep stages, oronasal airflow, and chest wall ab-
dominal wall movements for respiratory effort, and oxygen
saturation to monitor the effect of respiration and the electro-
cardiogram (ECG) for heart rate monitoring and arrhythmia
screening. Typically, a full night’s sleep is observed before
a diagnosis is reached and in some subjects a second night’s
recording is required. The polysomnogram provides indirect
evidence of apnoea and hypopnoea events and studies have
shown there is a significant intraobserver and interobserver
variability when used to identify these events [2].

Sleep studies are expensive because they require overnight
evaluation in sleep laboratories with dedicated systems and at-
tending personnel. Due to the cost and relative scarcity of di-
agnostic sleep laboratories, it is estimated that sleep apnoea is
widely under diagnosed [3]. Hence, techniques which provide a
reliable diagnosis of sleep apnoea with fewer and simpler mea-
surements and without the need for a specialized sleep labora-
tory may be of benefit.

This paper outlines a scheme for providing a reliable diag-
nostic measure of OSA based solely on measurement of the
ECG. The motivation for this study arose from a joint initia-
tive of Physionetand the organizers of the2000 Computers in
Cardiology Conference, in which they conducted a competition
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Fig. 1. Schematic representation of an automated system for the detection of OSA using single-lead ECG measurements. The processing steps include detection
of QRS complexes leading to an RR-interval data set and the calculation of an ECG-derived respiratory (EDR) signal. Using these RR-intervals and the EDR
signal, features were constructed for each 1-min segment of recording. Using a variety of classifier techniques, each minute can then be assigned a probability of
representing apnea or normal breathing, to produce a “Segment classification.” Combining these classifications over a longer period of time, results in a “Recording
classification,” which can be used by a physician as a diagnostic measure.

[4], [5] to determine the efficacy of ECG-based methods for ap-
noea detection using a large, well-characterized and representa-
tive database. Computers in Cardiology is an annual IEEE-spon-
sored conference. PhysioNet is a web-based library of physio-
logic data and analytic software sponsored by the US National
Institutes of Health’s National Center for Research Resources
[6] and it provided free access to the database of ECGs.

Our group participated in the competition and arising from
this work we have developed an automated system for detection
of OSA using ECG measurements (Fig. 1). The system pro-
vides two outputs. The first output is a minute-by-minute se-
quence of classifications of “normal” or “apnoea.” The second
output provides an overall summary of the presence of clini-
cally significant apnoea and it is derived on the basis of the
minute-by-minute annotation sequence.

This paper is organized as follows. Section II describes the
database. Section III details the methodology of the paper in-
cluding preprocessing of QRS data, derivation of an ECG-de-
rived respiratory signal, choice of ECG feature sets, choice of
classifier model and methods for improving classifier perfor-
mance. In Section IV, we detail the results of our automated
system. In Section V, a discussion of our results is presented
and we draw some conclusions regarding the potential useful-
ness of this system in Section VI.

II. DATABASE

The database was provided by the competition organizers
[4], [7]. It contains 70 nighttime recordings of a single contin-
uous ECG signal of approximately 8 hours duration. The ECG
recordings were extracted from a larger database of simulta-
neously recorded polysomnogram measurements provided by
Philipps-University, Marburg, Germany. The ECG signal was
sampled at 100 Hz, with 16-bit resolution, with one sample bit
representing 5V. The standard sleep laboratory ECG electrode
positions were used (modified lead V2).

The database does not contain episodes of pure central
apnoea or of Cheyne–Stokes respiration; all apnoeas in these

recordings are either obstructive or mixed. The subjects of these
recordings were men and women between 27 and 63 years of
age (mean: 43.8 10.8 years) with weights between 53 and
135 kg (mean: 86.3 22.2 kg). The sleep recordings originated
from 32 subjects (25 men, 7 female) that were recruited for
previous studies on healthy volunteers and patients with OSA.
Four subjects contributed a single recording each, 22 subjects
contributed two recordings each, two subjects contributed three
recordings each and four subjects contributed four recordings
each. The duration of the recordings varied between 401 and
578 min (mean: 492 32 min). The AHI ranges from 0 to
93.5 in these recordings. The initial scoring of apnoeas and
hypopnoeas in the recordings was done according to standard
criteria [1]. One expert rescored the database as follows: The
polysomnogram recordings were divided into a set of 1-min
segments. Each segment was annotated on the basis of respi-
ration and oxygen saturation signals using amplitude criteria
for airflow and desaturation and if at any time during that
minute there was evidence of sleep apnoea the segment was
classified as “apnoea;” otherwise it was classified as “normal.”
The total number of recorded minutes classified in this manner
was 34 313. This provided a minute-by-minute sequence of
gold-standard annotations for the ECG recordings. Segments
containing hypopnoeas (defined as intermittent drops in the
volume of air entering the lungs on each breath below 50% of
normal, accompanied by drops in oxygen saturation of at least
4% and followed by compensating hyperventilation) were also
classed as apnoea.

In addition, eachrecordingwas screened for the presence of
clinically significant apnoea and classified as “apnoea,” “bor-
derline,” or “normal.” The assessment was made on the basis
of the number of apnoeas and the apnoea index. The following
criteria were used in classifying the recordings:

• Recordings classed as apnoea contained at least 60 min
with an apnoea index of ten or more and at least 100 min
with apnoea during the recording. There were 40 record-
ings in this class.

• Recordings classed as borderline contained at least 60 min
with an apnoea index of five or more and between five and
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99 min with apnoea during the recording. There were ten
recordings in this class.

• Recordings classed as normal (or control) contained fewer
than 5 min with apnoea during the recording. There were
20 recordings in this class.

The database was divided into two sets each containing 35
recordings. The first set (released-set) was used to develop our
classification algorithms and the second set (withheld-set) was
used by the competition organizers to provide an independent
performance assessment. The recordings were split so each set
had 20 apnoea, 5 borderline, and 10 normal recordings. The
1-min segments were almost equally balanced between the re-
leased-set ( 17 045) and the withheld-set ( 17 268). Sev-
enteen subjects contributed recordings to both the released and
withheld-set. Eight subjects’ recordings were only in the with-
held-set, while the recordings of the remaining seven subjects
were in the released-set only.

III. M ETHODS

A. Classification Philosophy

Rather than trying to use our knowledge of the physiological
underpinnings of OSA, we adopted a standard “black-box” pat-
tern recognition approach using supervised learning. We con-
sidered various representations of the ECG using different fea-
tures. Previous studies had shown that features based on the
timing of QRS complexes [8]–[11] and the amplitude of the
ECG [12]–[14] might be useful for apnoea identification. Both
types of features were considered for classification. Two dif-
ferent classifier methods were explored and the classifier per-
formance was optimized using the available ECG data and our
selected features. The classifier methods used in this study were
linear and quadratic discriminants [15].

B. QRS Detection

All the features used in this study required QRS detection
times. A “QRS detection time” is loosely defined as the time of
occurrence of the QRS complex in an ECG signal. QRS detec-
tion times were generated automatically for all recordings using
an algorithm described in [16]. This algorithm provides detec-
tion times, which occur close to the onset of the QRS complex.
A second set of QRS detections was formed after manual ver-
ification and correction of the first set. The two sets were used
separately to generate features to determine the importance of
QRS detection on classification accuracy.

C. RR-Interval Correction

RR-intervals were defined as the interval between successive
QRS detection points. Due to poor signal quality and errors in
the automatically generated QRS detections, the RR-interval se-
quences generated from both sets of QRS detection times con-
tained physiologically unreasonable times. A first preprocessing
step prior to calculating the ECG features was to calculate a
corrected RR-interval sequence where all intervals were phys-
iologically reasonable. The following automatic algorithm was
developed for this purpose.

Suspect RR-intervals were found by applying a median filter
of width five to the sequence of RR-intervals. This provided
a robust estimate of the expected value for each RR-interval.
Significant variations from this expected value led to it being
flagged as a suspect RR-interval. Suspect RR-intervals could
be due to either spurious QRS detections, or missed QRS
complexes.

Spurious QRS detections were found by comparing the sum
of adjacent RR-intervals with the robust RR-interval estimate.
If this sum was numerically closer to the robust estimate than
either of the individual RR-intervals then a spurious detection
was deemed to be present. The two RR-intervals were merged
to form a single RR-interval.

Conversely, we determined heuristically that if an RR-in-
terval was a factor of 1.8 times or greater than the robust
estimate then it was probable that one or more QRS complexes
were missed. To estimate (interpolate) the times of the missing
QRS complexes the RR-interval was divided by the sequence
of integers 2, 3, 4, , until it best matched the robust estimate
of the RR-interval. The single RR-interval was then subdivided
by the appropriate integer to form a series of new detections.

D. ECG-Derived Respiratory Signal

During the breathing cycle, the body-surface ECG is influ-
enced by electrode motion relative to the heart and by changes
in thoracic electrical impedance as the lungs fill and empty with
air. The effect is most obviously seen as a slow modulation of
the ECG amplitude at the same frequency as the breathing cycle
[12]–[14]. To access this signal the original ECG signal was fil-
tered with two median filters to remove the baseline wander.
The original ECG signal was processed with a median filter of
200-ms width to removed QRS complexes and P waves. The re-
sulting signal was then processed with a median filter of 600-ms
width to remove T waves. The signal resulting from the second
filter operation contained the baseline of the ECG signal, which
was then subtracted from the original signal to produce the base-
line corrected ECG signal.

A sample point of an ECG-derived respiratory signal (EDR)
was then obtained by calculating the area enclosed by the base-
line corrected ECG in the region 100 ms beyond the QRS de-
tection point.

E. Feature Sets

The processing steps outlined above resulted in discrete index
sequences of the RR-intervals and the EDR signal. Based on
these, a large set of features that could potentially be used for
classification were considered. Since the database classifica-
tions were provided for 1-min segments of data, features were
generated for each of these 1-min segments. The features con-
sidered in this study were as follows.

• mean RR-interval;
• standard deviation of the RR-interval;
• the first five serial correlation coefficients of the RR-inter-

vals [17];
• the NN50 measure (variant 1), defined as the number of

pairs of adjacent RR-intervals where the first RR-interval
exceeds the second RR-interval by more than 50 ms;
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• the NN50 measure (variant 2), defined as the number of
pairs of adjacent RR-intervals where the second RR-in-
terval exceeds the first RR-interval by more than 50 ms;

• two pNN50 measures, defined as each NN50 measure di-
vided by the total number of RR-intervals;

• the SDSD measures, defined as the standard deviation of
the differences between adjacent RR-intervals;

• the RMSSD measure defined as the square root of the
mean of the sum of the squares of differences between ad-
jacent RR-intervals;

• the Allan factor evaluated at a time scale of 5,
10, 15, 20, and 25 s where the Allan factor is defined
as ,

is the number of QRS detection points occurring
in a window of length stretching from to
and is the expectation operator [18];

• interval-based power spectral density (PSD) of the RR-in-
tervals [19];

• mean EDR amplitude;
• standard deviation of the EDR amplitude;
• the PSD of the EDR signal.

A useful summary of RR-interval based measures and their
uses is contained in [20]. It is worth noting that none of the
measures listed above consider the morphology of the ECG. It
is implicitly assumed that the processes leading to apnoea occur
at a location external to the heart and, thus, do not directly affect
the generated cardiac potentials.

Since our results show that the interval-based RR-interval and
the EDR PSDs are among the most useful features for classifi-
cation, it is worth carefully defining how these quantities are
calculated. The interval-based RR-interval PSD was calculated
in the following way. A sequence of RR-intervals was asso-
ciated with each 1-min segment. The index for this sequence
was beat number, not time. The mean RR-interval for that seg-
ment was removed from each value, to yield a zero-mean se-
quence. The sequence was zero-padded to length 256 and the
fast Fourier transform (FFT) was taken of the entire sequence.
The magnitudes of the FFT coefficients were squared to yield a
periodogram estimate of the PSD, which had high variance. Av-
eraging of four adjacent frequency bins yielded a 64-point PSD
estimate of which only the first 32 points were used as features
(due to the symmetry of the upper and lower PSD point esti-
mates). The axis has units of cycles/interval. The EDR PSD
was calculated in an identical fashion, with the spectral variable
also defined as cycles/interval.

The features have been divided into labeled sets. The RR
set contains 52 features derived from the RR-intervals com-
prising the following: 32 features from the interval-based PSD,
the mean and standard deviation of the RR-intervals per seg-
ment, the mean and standard deviation of the RR-intervals per
recording, the first five serial correlation coefficients, one SDSD
feature, one RMSSD feature, two NN50 features, two pNN50
features and five Allan variance measures calculated at different
time scales. The EDR set contains 36 features derived from the
EDR signal. The PSD provided 32 features, two features were
the mean and standard deviation of the EDR areas per segment
and two features were the mean and standard deviation of the

EDR areas per recording. Both of these sets were combined to
form the set.

F. Classifier Models

A supervised training technique was used to derive all classi-
fiers [21]. In this study, linear discriminant (LD) and quadratic
discriminant (QD) models were considered. Optimization of
both models was achieved by the method of maximum likeli-
hood (ML). Both models provide a posterior probability esti-
mate of each class. A final classification is obtained by choosing
the class with the highest posterior probability estimate.

Training of the LD and QD classifiers using “plug-in” ML es-
timates of classifier parameters proceeded as follows [21]. Let
be a column vector containingfeature values. Assume that we
wish to assign to one of possible classes. A total of fea-
ture vectors are available for training the classifier. The number
of feature vectors available for training for classis and,
hence

(1)

The th feature vector for training in classis designated as
. Training of both models involves determining the class-

conditional mean vectors using

(2)

For an LD classifier the common covariance matrixis cal-
culated using

(3)

For a QD classifier the class-conditional covariance matrices,
, are calculated using

(4)

To classify a feature vector, values are assumed for the prior
probabilities and the discriminant value for each class is
calculated using

(5)

for LD classifiers and

(6)

for QD classifiers.
In this paper, the estimated posterior probabilities, ,

are used. They are easily calculated from the discriminant values
using

(7)

The final class is the class with the highest posterior proba-
bility or, equivalently, the highest discriminant value.
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G. Transformations

The classifier models considered in this study implicitly
assume that the feature data have a class-dependent Gaussian
distribution. Classifier performance will be degraded when
the actual feature statistics differ significantly from this as-
sumption. Therefore, where appropriate, a transformation was
applied to the features so that the histogram of the transformed
feature more closely approximated a Guassian distribution. A
logarithmic transform was applied to all standard deviation,
PSD, RMSSD, and SDSD features. A square-root transform
was applied to the Allan variance features.

H. Classification Performance Estimation

Classifier performance has been estimated using two methods
in this paper. In the first method, the cross-validation scheme
[21], [22] was applied to the 35 recordings in the released-set.
This data was divided into 35 folds with each fold containing the
data from one recording. This method was used to assess the
performance of different candidate classifiers and identify the
best performing classifiers for a second performance estimation.

The second method of performance estimation was to process
the 35 recordings in the withheld-set and submit the annotations
to the competition organizers for assessment. They responded
with a single figure representing the total number of correct clas-
sifications. Fig. 2 shows how the data was divided in this study
into separate sets for performance assessment.

In this study, we considered the overall classification accu-
racy, sensitivity and specificity defined as follows. The overall
accuracy is the percentage of total segments correctly classified.
The sensitivity is the percentage of apnoea segments correctly
classified and the specificity is the percentage of normal seg-
ments correctly classified.

I. Improving the Classifier Performance

The performance of most classifier training algorithms is de-
graded when there are too many parameters of the classifier to be
estimated relative to the size of the training data. This occurs be-
cause of the so-called “curse of dimensionality” [23] which, ap-
plied to classification problems, refers to the exponential growth
of training data required to successfully train a classifier with
the number of classifier parameters. In these cases, techniques
are available that may improve classification performance. Two
techniques applicable to LD and QD classifiers were used in this
study. The first was to use feature selection to find a subset of
the available features with good classification performance for
the classifier model used. The second method was to regularize
the covariance matrices.

When attempting to improve the classifier performance two
nested loops of cross-validation were used to obtain unbiased
estimates of classifier performance (see Fig. 2). The inner loop
was used to measure the accuracy of the different classifier con-
figurations. Although these performance figures used test-set
values, these values are optimistically biased as they were used
during the configuration selection process.

Fig. 2. Division of the data into training and testing sets for performance
boosting and classifier evaluation using the cross-validation scheme. Final
performance evaluation is performed on an independent set (the withheld-set).

The outer cross-validation loop was used to test the classifier
configuration that was selected by the inner loop. As before,
the outer loop used 35-fold cross-validation. The inner-loop of
cross-validation further divided the 34 recordings available for
training from the outer loop into 34 folds each containing data
from one subject.

1) Feature Selection:Given a set of features it is often pos-
sible to find a subset with better classification performance than
the full set of features. However, the interaction of features is
difficult to determine so, in general, the only way to optimize
the classification performance of a set of features is to deter-
mine the performance of all possible subsets and choose the best
performing subset. This approach is often computationally in-
tractable as feature sets of sizegenerate subsets. To ease
the computational burden, a heuristic search is used to search
the feature set space so that subsets with probable good perfor-
mance are evaluated first. The simplest procedures are the step-
wise searches [24] but they are not guaranteed to find the op-
timal subset. In this paper, the best-first search procedure [22]
has been used, which, although slightly more complicated than
the stepwise searches will (eventually) find the optimal subset.

2) Regularizing the Covariance Matrices:For an LD classi-
fier the covariance matrix may be “shrunk” toward the identity
matrix using [21]

with (8)

and substituting for in (5). However, this is only appro-
priate if the training data has been rescaled so that the variance
of each feature is equal to unity. When , then
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Fig. 3. An example of RR-intervals calculated from the (a) uncorrected and
(b) corrected automatically determined QRS detection times for the first to
second hour of recording 2 of the released-set.

and a special case occurs in which the features are assumed to
be statistically independent (and, hence, have no covariance).

For the QD classifier each covariance matrix can be “shrunk”
toward the common covariance matrix [21] using

with (9)

and substitute these new matrices in for the in (6). When
then a LD classifier results as all . In prac-

tice, for both LD and QD classifiers, various values ofin the
range 0 to 1 can be evaluated and the classifier performance de-
termined. A value of that optimizes classifier performance can
then be chosen.

J. The Temporal Relationship of Segments

Observation of sequences of the minute-by-minute classifica-
tions revealed that there was a temporal association of the clas-
sifications. For example, if the 11th–13th 1-min segments were
classed as normal, then there was a high probability that 10th
and 14th 1-min segments were also classed as normal. In light
of this observation, two techniques were found to boost classifi-
cation performance. The first was to average the posterior prob-
abilities calculated for a segment with the posterior probabilities
obtained from chronologically close segments. The second was
to average the input features of a segment with the input features
from chronologically close segments.

K. Overall Screening For Clinically Significant Apnoea

The screening for clinically significant apnoea for each
recording was achieved by calculating the average number
of minutes per hour (min/h) spent in apnoea from the
minute-by-minute classifications. A threshold value was
determined to best separate the normal and apnoea recordings.

TABLE I
THE CLASSIFICATION ACCURACY (%) FOR DIFFERENTLEVELS OFTEMPORAL

INPUT FEATURE AND POSTERIORPROBABILITY AVERAGING

IV. RESULTS

A. QRS Detections and RR-Interval Correction

The two sets of QRS detection times were compared to de-
termine the accuracy of the automatically generated set. If an
automatically generated QRS detection time was within 100 ms
of a manually verified QRS detection time it was regarded as
correct. Using this method, 98.6% of the automatically gener-
ated QRS detections were correct.

Fig. 3(a) shows the RR-intervals calculated from the automat-
ically generated QRS detections determined from a very noisy
recording. Fig. 3(b) shows the same recording after RR-interval
correction. A visual inspection of the RR-intervals associated
with the corrected QRS detections for all recordings showed a
significant reduction in the number of physiologically unreason-
able RR-intervals.

B. Classifier Performance Measured Using the Released-Set

There were 17 045 segments in the released-set with 10 531
(61.78%) labeled normal and 6514 (38.22%) labeled apnoea.
All results in this section were calculated using the cross-valida-
tion scheme. Features were derived from the manually verified
QRS detection times.

1) Temporal Averaging:Different length equally weighted
temporally averaging filters were applied to the input features
and posterior probabilities and the effect on classification per-
formance observed. All input features and the LD classifier were
used. The filter length was varied between one and ten segments
and the results are shown Table I. The accuracy was maximized
when using temporal averaging of three segments of features
and six segments of posterior probabilities. The temporal aver-
aging was set at these values for the rest of the study.

2) Temporal Averaging—Performance of Different Feature
Sets: Table II(a) shows the classification results of different
feature sets using the standard classifiers. Table II(b) shows the
classification results after feature selection was applied to the
three feature sets. For feature selection the best first search was
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Fig. 4. Best-first search algorithm applied to feature selection using the
LD classifier with theRR + EDR set using the 35 ECG recordings of the
released-set. (a) Accuracy of the best performing features set versus iteration
number. (b) Number of features in the chosen subset. The search algorithm was
terminated after 25 consecutive iterations with no improvement in accuracy.
The point of maximum classification accuracy is shown with an arrow.

terminated after 25 iterations with no improvement in accuracy.
The starting point was the empty feature set. Fig. 4(a) shows an
example plot of the accuracy of the best set at each iteration step
and Fig. 4(b) shows the number of features in the best set. Note
that the values in the third column of Table II(b) are noninteger
as each is the average of individual results from the different
data splits of the cross-validation process. Table II(c) shows the
classification results obtained through regularization of the co-
variance matrices.

C. Classifier Performance Measured On the Withheld-Set

The assessment of classifier performance on the withheld-set
was provided by the competition organizers and contains only
overall accuracy assessments (i.e., breakdown by sensitivity and
specificity is not known).

The best performing classifiers (as measured with cross-vali-
dation on the released-set) were retrained using all recordings of
the released-set and then tested using all recordings of the with-
held-set. Four classifiers were validated [see Table III(a)] and
all processed the set. The features for the first three
classifiers were calculated using the manually verified QRS de-
tection times. These classifiers were the best performing stan-
dard classifier (an LD classifier), the best performing classifier
after feature selection (an LD classifier) and the best classifier
after regularization of the covariance matrices (a QD classifier).
The fourth classifier was the best of the above three classifiers
(as measured on the withheld-set) retrained using features cal-
culated using the automatically generated QRS detection times.
This last classifier is a fully automatic system.

D. Automatic Screening of Recordings For the Presence of
Clinically Significant Sleep Apnoea

Using the fully automatic system described above the number
of minutes per hour spent in apnoea calculations were generated
for the released-set. Fig. 5 shows the results of these calcula-
tions. A threshold of 5 min/h, allows complete separation of the
subjects classed as “normal” from those classed as “apnoea.”
Table III(b) presents the classification results on the released-
and withheld-sets for discriminating between normal and ap-
noea subjects using the above threshold value. The withheld-set
accuracy assessment was provided by competition organizers.

E. PSD Features

The PSD features made up the majority of our features and
contributed significantly to the overall classification perfor-
mance of our system. Fig. 6(a) shows the class-dependent PSD
values of the RR signals over the normal and apnoea segments
of the released-set. For each frequency bin the median value
is shown along with vertical bars indicating the range of the
25%–75% values. As both spectra have a log-normal amplitude
distribution a log scale has been used on theaxis. Fig. 6(b)
shows the class-dependent PSDs of the EDR signal. Again a
log scale has been used on theaxis.

V. DISCUSSION

A. Released-Set

In the following, all the performance figures discussed are the
test-set figures from Tables I and II.

1) Temporal Averaging:Temporal averaging significantly
boosted the classification performance. Using no temporal
averaging, the classification accuracy was 85.1%. Introducing
temporal averaging of the posterior probabilities resulted in a
maximum accuracy of 88.5% and occurred when six segments
were averaged. Temporal averaging of features produced a
maximum accuracy of 89.4% and occurred when averaging six
segments. The maximum accuracy of 90.0% occurred when
using both types of temporal averaging simultaneously. It
occurred when features were averaged over three segments and
posterior probabilities were averaged over six segments.

2) Feature Selection and Covariance Regularization:The
results in Table II(b) and (c) show feature selection and covari-
ance regularization slightly reduced the classification accuracy
of the best performing standard classifier. The best overall ac-
curacy (90.0%) was the standard LD classifier processing the

set. The sensitivity was 86.4% and the specificity
was 92.3%. Feature selection applied to this classifier reduced
the average number of features selected to 27.0 and the overall
accuracy to 89.5%. When covariance regularization was applied
the overall accuracy was 89.8%.

For the LD classifier, feature selection resulted in slightly
lower accuracy figures in all feature sets when compared to the
standard classifier results. The reduction ranged from 0.3% for
the RR set to 1.3% for the EDR set. In all cases, the average
number of features was much less after feature selection. The
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TABLE II
CLASSIFICATION PERFORMANCE ON THERELEASED-SET FOR THE LD AND QD CLASSIFIERS AFTER

(A) NO OPTIMISATION, (B) FEATURE SELECTION, AND (C) COVARIANCE REGULARISATION

TABLE III
CLASSIFICATION PERFORMANCE ON THERELEASED-SET AND WITHHELD-SET OF THE (A) BEST PERFORMING

MINUTE-BY-MINUTE CLASSIFIERS AND(B) SCREENINGCLASSIFIER

EDR set required an average of just 9.7 features and the RR set
required an average of 23.1 features.

Feature selection applied to the QD classifier improved the
performance of all feature sets relative to the standard QD clas-
sifier. The highest gain was for the RR set where the accuracy
increased by 5.9% to 86.1%. The average number of features
chosen with the QD classifier was lower than for the LD clas-
sifier for the RR (18.4) and (22.7) sets, whereas
the EDR set alone required more features than the LD classifier.
The QD classifier has more parameters to be estimated than the
LD classifier for a given feature set size. Therefore, for a fixed
size training set and feature set, the QD classifier can use fewer
features than the LD classifier before the “curse of dimension-
ality” becomes a problem.

For the LD classifier, regularization of the common covari-
ance matrix led to optimal regularization parameters between
0.00 and 0.06, i.e., the regularized covariance matrices in all
cases were very similar to the common covariance matrices
from the unregularized LD classifier. For all feature sets, co-
variance regularization made little difference to the classifica-
tion performance relative to the unregularized LD classifier. The
biggest change was a reduction in performance of 0.2% for the

set.
However, for the QD classifier, covariance regularization sig-

nificantly boosted performance for all feature sets relative to the
unregularized classifier. The optimal regularization parameter
varied between 0.74 and 0.86, thus, the common covariance ma-
trix heavily weighted the covariance matrices.
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Fig. 5. The number of minutes per hour spent in apnoea as estimated by
the regularized QD classifier processing all features for all recordings of the
released-set. Applying a threshold of 5 min/h (as shown by the dotted line)
completely separates the normal and apnoea records.

These results obtained here demonstrate that feature selec-
tion and covariance regularization can lead to an improvement in
classification performance. Although they introduced a signif-
icant amount of extra numerical processing during the training
of a classifier, we believe these methods are worth investigating.

3) Comparison of Feature Sets:Covariance regularization
of the QD classifier resulted in the overall best performing clas-
sifier for both the RR and EDR sets. The overall accuracy figure
for both these feature sets was 86.3%. It is a coincidence that
these two feature sets resulted in the same overall performance
as both feature sets provide separate diagnostic information for
detection of apneas. The RR set provides information on heart-
beat timing whereas the EDR set provides information on chest
wall movement. The combined set feature results
in better classification performance than either set alone, sug-
gesting that the RR and EDR sets provide independent classifi-
cation information.

From a practical viewpoint, the result for the RR set is sig-
nificant as it shows that by considering interbeat timing infor-
mationalone, a classification rate of over 85% is achievable.
Deriving interbeat timing intervals from an ECG is computa-
tionally straightforward, relatively insensitive to electrode posi-
tioning and amenable to real-time processing.

B. Withheld-Set

The independent validation of performance of the best three
performing classifiers on the withheld-set resulted in similar
accuracy figures to those determined on the released-set. The
best accuracy result of 90.6% was from the QD classifier pro-
cessing all features with regularized covariance matrices. The
regularizing parameter was 0.85 so the common covariance ma-
trix heavily weighted the covariance matrices. Feature selection
reduced the set to 31 features and resulted in the
simplest classifier. The overall accuracy was 90.5%. The overall
accuracy of the standard LD classifier was 90.4%.

When the QD classifier processing all features with regu-
larized covariance matrices was retrained using the features
derived from the automatically generated QRS detection times
the withheld-set accuracy was 90.5%. The significance of this
result is that it estimates the performance of a fully automatic
system for minute-by-minute identification of disordered
breathing. This result also demonstrates that the method

presented here is insensitive to imperfect QRS detection times
as using the automatically generated QRS detection points
in place of the manually verified QRS detection points has
resulted in 0.1% decrease in overall accuracy. It is worth
noting that other QRS detection schemes exist (e.g., [25]–[27])
that claim to provide better detection performance than the
98.6% we obtained with our QRS detector, although our results
suggest that these improved QRS detector schemes would
make little difference to the classification performance.

C. Screening

The 30 nonborderline recordings in the withheld-set were all
successfully classified by our system. This is a significant re-
sult. Using only the ECG, the method presented here has suc-
cessfully distinguished between subjects with no apnoea and
subjects with clinically significant apnoea. This result suggests
that adoption of ECG-based diagnostic tests for OSA such as
proposed here could lead to a significant simplification of the
process of screening for OSA.

However, when using the minutes per hour in apnoea calcu-
lation it was not possible to additionally provide perfect sepa-
ration of the class labeled “borderline,” although Fig. 5 shows
it is apparent that the borderline recordings do mostly lie in the
region between the “apnoea” and “normal” recordings.

D. PSD Plots

With reference to Fig. 6(a) the median values of all frequen-
cies of the two RR spectra are very similar, except for the fre-
quency range 0–0.06 cycles/interval. In this range, there is more
power in the PSD of the apnoea segments than in the PSD of the
normal segments and the two spectra show a reduced amount of
overlap of the 25%–75% ranges. There is a small peak at 0.2
cycles/interval of the normal segment PSD which probably cor-
responds to the average breathing frequency. The apnoea spec-
trum does not show the same peak.

The median values of the EDR spectrum of the apnoea seg-
ments shown in Fig. 6(b) have more power at every frequency
than the normal segments. The significance of this is that the
EDR signal has, on average, higher variance from the apnoea
segments than normal segments. Inspection of the 25%–75%
values shows that there is a significant amount of overlap of
the two spectra for the frequency range 0.06–0.5 cycles/interval.
The 25%–75% values for the frequency range 0–0.06 cycles/in-
terval shows a reduced amount of overlap. There are small peaks
in both spectra, probably associated with average breathing fre-
quency. They occur at 0.2 cycles/interval for the normal seg-
ments and 0.25 cycles/interval for the apnoea segments.

These results suggests that most of the information in the
ECG relating to the presence of sleep apnoea is found at rel-
atively low frequencies (i.e, less than 0.06 cycles/interval), cor-
responding approximately to time-scales on the order of 10–15 s
or longer. Since apnoea and hypopnoea events by definition last
for longer than 10 s, it is not surprising that the effect of apnoea
is observed at these low frequencies.

VI. CONCLUSION

This paper has presented a method for screening single-lead
ECG recordings from sleep-study patients for the presence
of significant OSA and for providing a minute-by-minute



DE CHAZAL et al.: AUTOMATED PROCESSING OF THE SINGLE-LEAD ECG 695

Fig. 6. (a) Median PSD derived from the RR-intervals of the normal and apnoea 1-min segments over the 35 ECG recordings of the released-set. Along they

axis, a log scale is used and the median and 25%–75% of the power is shown for each frequency bin. Along thex axis the frequency bins of the apnoea data
are offset by 0.004 cycles/interval to facilitate comparison with the frequency bins of the normal data. (b) Median PSD derived from the EDR for the normal and
apnoea 1-min segments over the 35 ECG recordings of the released-set. As in (a), a log scale is used on they axis, the mean and 25%–75% of the power is shown
for each frequency bin and the frequency bins of the apnoea data are offset by 0.004 cycles/interval to facilitate comparison.

analysis of disordered breathing. Classifiers based on linear and
quadratic discriminants were used. Classifier performance was
optimized by considering feature selection and regularization
of classifier parameters. Both the time of occurrence of the
QRS complex and the EDR were found to be useful features
for classification.

Independent testing has shown that the method separated the
normal recordings from the apnoea recordings with a 100% suc-
cess rate and achieved a minute-by-minute classification rate of
over 90%. By considering features based only on RR-intervals a
minute-by-minute classification rate of over 85% is achievable.
The final structure for the proposed classifier is computationally
efficient and lends itself to real-time implementation.

The method was shown to be insensitive to imperfect QRS de-
tections. The difference in the minute-by-minute classification
accuracy when using manually verified QRS detection points
compared to automatically generated QRS detection points was
0.1%.

The significance of this study is that it provides a simple
scheme for diagnosis of OSA, yet its overall diagnostic accu-
racy is comparable with full polysomnography. ECG-based
diagnostic tests for sleep apnoea are ideally suited to Holter
monitors as no additional hardware is required. Ideally, Holter
recordings would be routinely screened for apnoea and this may
allow a significant reduction in the costs associated with the
detection of OSA. This would be a step toward addressing the
serious public health issue caused by under-diagnosis of OSA.
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