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Background: Histopathological prognostication relies on morphological pattern recognition, but as numbers of biomarkers

increase, human prognostic pattern-recognition ability decreases. Follicular lymphoma (FL) has a variable outcome, partly

determined by FOXP3 Tregs. We have developed an automated method, hypothesised interaction distribution (HID) analysis, to

analyse spatial patterns of multiple biomarkers which we have applied to tumour-infiltrating lymphocytes in FL.

Methods: A tissue microarray of 40 patient samples was used in triplex immunohistochemistry for FOXP3, CD3 and CD69, and

multispectral imaging used to determine the numbers and locations of CD3þ , FOXP3/CD3þ and CD69/CD3þ T cells. HID

analysis was used to identify associations between cellular pattern and outcome.

Results: Higher numbers of CD3þ (P¼ 0.0001), FOXP3/CD3þ (P¼ 0.0031) and CD69/CD3þ (P¼ 0.0006) cells were favourable. Cross-

validated HID analysis of cell pattern identified patient subgroups with statistically significantly different survival (35.5 vs 142 months,

P¼ 0.00255), a more diffuse pattern associated with favourable outcome and an aggregated pattern with unfavourable outcome.

Conclusions: A diffuse pattern of FOXP3 and CD69 positivity was favourable, demonstrating ability of HID analysis to

automatically identify prognostic cellular patterns. It is applicable to large numbers of biomarkers, representing an unsupervised,

automated method for identification of undiscovered prognostic cellular patterns in cancer tissue samples.

Follicular lymphoma (FL) follows an indolent clinical course in the
majority of patients although outcome is highly variable
(Freedman, 2012). Tumour histological grade and FLIPI score
(Solal-Celigny et al, 2004) form the basis of prognostic assessments
but these methods lack precision and more reliable biomarkers are
needed (Gascoyne et al, 2010). Immunohistochemical studies have
identified T-cell infiltration (Dave et al, 2004), in particular FOXP3
positive T regulatory (Treg) cells (Farinha et al, 2010), as being of
prognostic significance. Tregs represent a subpopulation of T cells

that act to suppress the immune responses of other cells,
responsible for physiological prevention of excessive immune
reactions and autoimmunity (Corthay, 2009), though altered
numbers in tumours can influence survival, due in part to
modulation of anti-tumoral immune response (Dranoff, 2005).
Some studies report association of T cells with a poor outcome
(Richendollar et al, 2011), though the majority of studies
demonstrate association of T cells and Tregs with a favourable
outcome (Carreras et al, 2006; Lee et al, 2006; Wahlin et al, 2007;
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Carreras et al, 2009; de Jong et al, 2009; Farinha et al, 2010;
Gribben, 2010; Solal-Céligny et al, 2010; Wahlin et al, 2010;
de Jong and Fest, 2011; Wahlin et al, 2011; Koch et al, 2012).
Differences in prognostic significance exist between studies and
this may in part be due to variable precision of T-cell subset
identification, with several markers being required to identify
particular types of T cells. For example, Richendollar et al (2011)
demonstrated an unfavourable association for PD-1 positive T
helper cells, whilst most favourable studies focus on Tregs (Wahlin
et al, 2010). Several studies have also shown that the pattern of T
cells is important for prognosis (Lee et al, 2006; de Jong et al, 2009;
Farinha et al, 2010). There is therefore, (i) a need to co-localise
several biomarkers/antigens in the same tissue section in order to
identify tumour-infiltrating lymphocytes (TILs) more precisely,
and (ii) a need to interpret patterns of TILs and to relate these
patterns to prognosis. The first can be overcome by multiplex
biomarker staining, as we have previously demonstrated (Tholouli
et al, 2008). The second related but more subtle factor—the pattern
of TILs positive for one or more biomarkers—is likely to be of
biological and prognostic importance, as this in addition to the
number of positive cells reflect biologically meaningful cellular
interactions. Pattern identification using one or two biomarkers is
feasible for an experienced pathologist but interpreting larger
numbers (as expected with identification of increasingly complex
immune cell interactions) is beyond unaided human interpretation.
We have developed an automated prognostic feature/pattern-
recognition tool, namely hypothesised interaction distribution
(HID) analysis (Rose et al, 2013) to automatically and objectively
identify prognostic patterns of different cells and biomarkers, and
have tested this in FL. A diffuse pattern of FOXP3 positive cells has
previously been shown to be associated with a favourable outcome
in a subjective study using visual inspection and rating (Farinha
et al, 2010) and in the present study we used this as a test scenario
for automated prognostic feature identification, aiming to auto-
matically and objectively determine, without prior knowledge, the
presence/absence and type of prognostic pattern of FOXP3 and
CD69 positive T cells in FL.

MATERIALS AND METHODS

Patients and sample selection. Forty archived human lymph
nodes from patients with a diagnosis of FL were obtained with
informed consent from the archives of The Christie NHS
Foundation Trust (TCFT), Manchester, UK. All biopsies were
obtained at initial presentation prior to treatment and were
routinely processed in 10% buffered formalin and paraffin
embedded. Ethical permission for this study was granted by the
Central Manchester Multicentre Research Ethical Committee (03/
8/016). Diagnosis and grade in all cases were confirmed following
consensus review by two pathologists (RJB and LPM). Where
possible, FLIPI score was calculated using conventional criteria
(Solal-Celigny et al, 2004).

Tissue microarray construction. Patient samples were analysed in
a tissue microarray (TMA) to reduce reagent costs and facilitate

imaging (Ilyas et al, 2013); we and others have used TMAs for analysis
of FL in a wide range of studies, demonstrating validity of their use for
this tumour type (Hedvat et al, 2002; De and Brown, 2010; Hipp et al,
2012; Sandison et al, 2013; Horn et al, 2014; McCarthy et al, 2014).
TMA s were prepared using a Manual Tissue Arrayer (Beecher
Instruments, Sun Prairie, WI, USA), each patient sample being
represented in triplicate. Three cylindrical 1mm diameter 100%
tumour cores were taken from each paraffin-embedded FL sample
and inserted into a recipient paraffin wax block.

Triplex immunohistochemistry. Triplex immunohistochemistry
was performed for CD3, FOXP3 and CD69 on a Ventana
Benchmark automated stainer (Ventana Systems, Oro Valley,
AZ, USA) according to the manufacturer’s instructions and using
the antibodies and detection reagents described in Table 1; a
detailed description is given in Supplementary Information.
Identification of TILs such as the Treg cells studied in this work
require multiple staining for their identification, as a consequence
of which CD3 was used in conjunction with FOXP3 and CD69 for
multiplex T-cell staining required for TIL identification. T cells are
of many subtypes as a consequence of which the pan T-cell marker
CD3 alone is insufficient for identification of the Treg subset,
necessitating additional use of the transcription factor FOXP3,
which is a lineage-specific marker of the majority of Treg cells
(Rudensky, 2011), together with CD69 which has been shown to
identify a further subgroup of Tregs (Han et al, 2009).

Spectral imaging. A PerkinElmer Vectra (Hopkinton, MA, USA)
multispectral slide scanner was used to capture image files at 10nm
intervals across the visible range (440 to 700nm) and at � 200
magnification from which grey-scale distribution maps for CD3,
FOXP3 and CD69 positivity for each core were derived by spectral
un-mixing as previously described (Mansfield et al, 2008). Using these
distribution maps, two multispectral image analyses were performed.
Firstly Inform software (PerkinElmer, Hopkinton, MA, USA) was
used to identify single positive CD3þ cells and double positive CD3/
FOXP3þ and CD3/CD69þ cells, and the number and density
of these measured in each core. Secondly Nuance software
(PerkinElmer) was used to separately identify positive regions and
their centroid co-ordinates for CD3, FOXP3 and CD69 positive
staining, as required for HID analysis (Rose et al, 2013). The results of
these two analyses were exported to Excel (Microsoft Corporation,
Redmond, WA, USA) for use in Kaplan–Meier (K–M) survival and
HID analyses, respectively, as detailed below.

K–M survival analysis. K–M survival analysis was performed
using the number per core of either CD3 single positive,
CD3/FOXP3 double positive or CD3/CD69 double positive cells,
collected using Inform. For K–M analysis, the cell numbers were
split at the 25th centile, the median and the 75th centile, such that
quartile one was compared with quartiles two to four, quartiles one
and two were compared with quartiles three and four, and quartiles
one to three were compared with quartile four, respectively. All
statistical analyses were performed using MedCalc version 11.4.40
(MedCalc Software, Ostend, Belgium).

Table 1. Antibodies and detection methods used in triplex immunohistochemistry

Antigen
Antibody
clone

Manufacturer
Antibody
dilution

Detection system

CD3 SP7 rb Thermo
(Waltham, MA, USA)

1 : 1000 BrightVison anti-rabbit polymer/HRP, disclosured using DyoBlue

FOXP3 236A/E7 Abcam
(Cambridge, UK)

1 : 100 BrightVison anti-mouse/AP secondary antibody, signal disclosure using VRed

CD69 CH11 Novacastra
(Leica Biosystems,

Buffalo Grove, IL, USA)

1 : 150 BrightVison anti-mouse polymer/HRP, signal disclosure using BrightDABþ
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Hypothesised interaction distance analysis. Spatial patterns of
cells positive for FOXP3, CD69 or both were analysed using HID
matrices (Rose et al, 2013). Briefly, a HID matrix is a two-
dimensional statistical distribution (histogram) that records the
absolute or relative frequencies of proximal pairs of regions
(assumed to be individual cells) that are positive for each possible
combination of marker (� þ , þ � , þ þ ). A pair of regions was
considered proximal if the regions were within an objectively chosen
interaction distance of one another. A statistical approach was used
to identify pairs of regions likely to correspond to individual cells;
region centroid co-ordinates were collapsed into a single co-ordinate
(Rose et al, 2013). Regions with areas greater than expected for
single cells (200 pixels) were rejected. Absolute and relative
frequency HID matrices were computed for each core. These were
summarised using five scalar summary statistics (‘energy’ and
maximum value of the absolute and relative frequencies, and the
Shannon entropy of relative frequencies as detailed in Rose et al
(2013); entropy is a measure of order of the arrangement of the cells.
Each patient had multiple cores (i.e., multiple HID matrices) and so
an average of each summary statistic was computed for each patient.
A threshold can be applied to the average summary statistics to
dichotomise patients into two groups; survival analysis was
performed to determine if the groups had distinct survival functions
and hence whether cell pattern is related to survival.

To estimate how well the approach would be able to predict
whether an FL patient in the general population (as opposed to this
sample) would have good vs poor survival, leave-one-out cross-
validation was used to perform survival analyses and construct
K–M curves. Each patient was left-out in turn and an optimal
threshold was chosen automatically for each summary statistic
using data from the left-in patients; for each summary statistic, its
optimal threshold was used to assign the left-out patient to one of
two survival groups (short or long survival). The null hypothesis of
no difference in survival functions was tested for each summary
statistic. HID analysis was performed with software written in-
house using R version 2.13.0 (R-Core-Team, 2012).

To assess which cell pairs may be important in discriminating
between FL survival groups, we used a random forest classifier
(Breiman, 2001). Random forest classifiers can accurately model
highly nonlinear relationships between multiple variables (here, the
HID matrix entries) and their dependent classes—here, survival
group, S (short) or L (long), as assigned using the entropy scalar
summary. Random forest classifiers also maintain an internal
estimate of the relative importance of each independent variable
that is calculated using an internal cross-validation process. A
random forest with 500 trees was built using version 4.6–7 of the
randomForest R package (Liaw and Wiener, 2002). Cell pairings
predictive of survival were identified as those associated with the
best decrease in expected misclassification frequency (Gini index).

In addition, as entropy may be related to cell number and density,
R^2 correlation (square of Pearson’s product–moment correlation
coefficient) was performed against numbers and density of CD3,
FOXP3 and CD69 positive cells with entropy value. Cox regression
was performed using FLIPI, entropy score and tumour grade to
determine whether entropy is predictive of outcome independent of
FLIPI. To test the hypothesis that entropy is an independent predictor
of survival, bivariate Cox regressions were performed for entropy
against cell number or density for CD3, FOXP3 and CD69; single
multivariate Cox regression for entropy against cell number or density
was not performed owing to small sample size.

RESULTS

Patient samples. A total of 40 patient samples had adequate tissue
cores in the TMA and full clinical follow-up to death or to a
maximum of 171 months (24 male, 16 female, median age 55.5

years at diagnosis, range 34–75 years). At the time of analysis, 29
patients had died and 11 were alive (median survival 56 months,
range 8–171 months); the cohort of patients was treated at The
Christie Hospital prior to the use of Rituximab and had a higher
than usual rate of transformation reflective of referral to a cancer
centre, resulting in relatively poor overall survival compared with
present outcomes. Patient demographics including tumour grade
and FLIPI are detailed in Table 2.

Triplex immunohistochemistry. Triplex immunohistochemistry
was successfully performed for CD3, FOXP3 and CD69, with an
expected pattern and cellular localisation of positive staining.
Representative images of triplex staining and grey-scale spectrally
unmixed positive-distribution maps for CD3, FOXP3 and CD69
are shown in Figure 1.

K–M survival analysis demonstrated favourable outcome with
higher numbers of CD3þ , FOXP3þ /CD3þ and CD69þ /CD3þ

cells. Higher numbers of CD3 single positive cells were signifi-
cantly associated with a favourable outcome by K–M analysis for
cell numbers whether split at the lower quartile (P¼ 0.0072), the
median (P¼ 0.0001) or the upper quartile (P¼ 0.0011; Figure 2A).

Higher numbers of FOXP3/CD3 double positive cells were also
significantly associated with a favourable outcome by K–M analysis
for cell numbers, whether split at the lower quartile (P¼ 0.0232),
the median (P¼ 0.004) or the upper quartile (P¼ 0.0031;
Figure 2B).

Higher numbers of CD69/CD3 double positive cells were
significantly associated with a favourable outcome by K–M analysis
for cell numbers split at the median (P¼ 0.0152) and at the upper
quartile (P¼ 0.0006; Figure 2C).

Hypothesised interaction distance analysis demonstrated asso-
ciation of favourable outcome with a high entropy/diffuse

Table 2. Patient demographics

Age (years) Median 55.5 (range 34–73)

Sex

Male 24 (60%)
Female 16 (40%)

FL grade

1 21
2 12
3a 7

Stage

l 3
ll 5
lll 12
lV 12
Undetermined 8

Bone marrow

Normal 18
Abnormal 13
Undetermined 9

LDH

Normal 27
Abnormal 5
Undetermined 8

FLIPI score

0 0
1 4
2 7
3 4
4 10
5 4
6 3
Not known 8

Abbreviations: FL¼ follicular lymphoma; LDH¼ lactate dehydrogenase.
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pattern of FOXP3 positive and CD69 positive cells. Each of the
five summary statistics was significantly associated with a
difference in survival, as shown in Table 3a. For each summary
statistic, Table 3a presents the median value of the summary
statistic in each survival group, the median survival time of each
group, the difference in median survival between each group and

the P-value from the survival analysis. The P-values have not been
corrected for multiple comparisons, but all except that for energy
computed for relative frequencies would survive Bonferroni’s
correction at a significance level of 0.05.

For the entropy summary statistic in particular, patients with a
higher entropy value had significantly better outcome
(P¼ 0.00255) than patients with low entropy, with a median
survival of 142 months compared with a median survival of 35.5
months (Figure 3A). High entropy represents a more dispersed/
diffuse pattern of T cells compared with those patients with lower
entropy, where the pattern of T cells was more aggregated.
Representative core images are shown for patients with high
entropy/favourable outcome and low entropy/unfavourable out-
comes in Figure 3B and C.

Only 5.66% of patients were misclassified using the random
forest. Inspecting the relative importance estimates for the random
forest suggested that all entries of the HID matrices carry
information that allows patients with short vs long survival to be
discriminated, as shown in Table 3b for two typical patients, one
with short survival, another with long survival. Therefore the
spatial pattern of FOXP3 and CD69 positive cells is likely
predictive of survival. However, three types of cell pairs had
particularly large values of relative importance. In order of
decreasing relative importance these were as follows: (i) both cells
in the pair positive for FOXP3 only, (ii) both cells in the pair
positive for CD69 only and (iii) pairs with one cell positive for
FOXP3 only and the other for CD69 only. Examples of the way in
which patients with short and long survival differ in terms of these
cell pairings is shown in Table 3b. The most commonly occurring

Composite

A

CD 3

FOXP3 CD 69

B

C D

Figure 1. Triplex immunohistochemistry for CD3, FOXP3 and CD69.
Representative images of (A) triplex immunohistochemistry for CD3,
FOXP3 and CD69, and of grey scale displayed spectrally unmixed
positive-distribution maps/images for (B) CD3, (C) FOXP3 and
(D) CD69; all images: magnification �20, imaged using a Perkin-Elmer
Vectra multispectral imaging system and acquired and processed using
Perkin-Elmer Inform and Nuance software.
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Figure 2. (A) Association of CD3 single positive cells with outcome. K–M survival analysis based on numbers of CD3 single positive cells. Analyses
are shown using either (i) the 25th centile, (ii) median or (iii) 75th centile to split the patients into two groups. Higher numbers of CD3 single
positive cells were significantly associated with favourable outcome with patients split at the 25th centile (P¼0.0072), the median (P¼0.0001) or
the 75th centile (P¼0.0011). For each K–M plot survival probability as a percentage is plotted on the vertical axis and survival time in months is on
the horizontal axis. (B) Association of FOP3/CD3 double positive cells with outcome. K–M survival analysis based on numbers of FOXP3/CD3
double positive cells. Analyses are shown using either (i) the 25th centile, (ii) median or (iii) 75th centile to split the patients into two groups. Higher
numbers of FOP3/CD3 double positive cells were significantly associated with favourable outcome with patients split at the 25th centile
(P¼0.0013), the median (P¼0.001) or the 75th centile (P¼ 0.002). For each K–M plot survival probability as a percentage is plotted on the vertical
axis and survival time in months is on the horizontal axis. (C) Association of CD69/CD3 double positive cells with outcome. K–M survival analysis
based on numbers of CD69/CD3 double positive cells. Analyses are shown using either (i) the 25th centile, (ii) median or (iii) 75th centile to split the
patients into two groups. Higher numbers of CD69/CD3 double positive cells were significantly associated with favourable outcome with patients
split at the 25th centile (P¼ 0.9925), the median (P¼ 0.0152) or the 75th centile (P¼0.0006). For each K–M plot survival probability as a
percentage is plotted on the vertical axis and survival time in months is on the horizontal axis.
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cell pairing in all patients (i.e., the mode of the HID matrices)
was for cell pairs where both cells in the pair were positive for
FOXP3 only.

Both the number and density of CD3, FOXP3 and CD69
positive cells were correlated with entropy, that is, higher entropy/
dispersed pattern was associated with higher number and density
of cells for all the three markers except FOXP3 density (CD3
number P¼ 0.0002, CD3 density P¼ 0.0007, FOXP3 number
P¼ 0.0317, FOXP3 density P¼ 0.0692, CD69 number Po0.0001,
CD69 density Po0.0001; Table 4a).

Entropy score (high or low) was not associated with FLIPI score
(P¼ 0.3696) or grade (P¼ 0.1923). Cox regression demonstrated
lack of significance for FLIPI (P¼ 0.2219), entropy (P¼ 0.2486)
and grade (P¼ 0.6183). Bivariate Cox regression analysis demon-
strated significance for entropy in the models including number of
FOXP3 cells and density of FOXP3 cells (Table 4b). In both these
models the estimate of hazard ratio for entropy was less than one,
indicating that higher entropy is associated with longer survival.
The two models in which the non-entropy variable was significant
were those for CD3 cell number and CD3 cell density though for
both of these models the estimate of hazard ratio for CD3 number
or density was essentially equal to one, and the very narrow
confidence interval may indicate that those results were unreliable.

These results indicate that following control for entropy in
bivariate Cox regressions, entropy was the only variable useful
for explaining survival.

DISCUSSION

Histopathological diagnosis relies on the visual study of cell
morphology, often with additional immunohistochemical staining,
usually for just one or two markers at a time. Increasingly,
personalised therapy is creating a need for multiple biomarkers to
enable more precise characterisation of cancer cells and facilitate
theragnosis. This is true for TILs, which are important in novel
immunological therapies and require multiple markers for their
identification. Cells positive for any given number of biomarkers
can be enumerated and quantified but there are currently no
commercially available methods for objectively analysing the
spatial pattern of cells positive for multiple biomarkers. This is
an important requirement as patterns are likely to reflect cellular
interactions and, in turn, cellular behaviour and clinical outcomes.
We have developed an automated method, HID analysis, for
analysing the spatial patterns of multiple cellular markers, using
multispectral imaging and HID analysis (Rose et al, 2013).

The present study used this approach in automated and
objective prognostic feature identification to determine, without
prior knowledge, the presence or absence of a prognostic pattern
for FOXP3 and CD69 positive T cells in FL. HID matrices and
hence entropy values were constructed as previously described
(Rose et al, 2013). Briefly, the pairing distance (the distance within
which a pair of regions positive for distinct stains are assumed to
correspond to the same cell) and the interaction distance (the
distance within which regions assumed to be distinct cells are
assumed to be able to interact), are chosen objectively via a
statistical optimisation that is performed across the patient cohort.
As stated in Rose et al (2013), for full objectivity these distances
would ideally be computed within an overarching leave-one-out
framework (or similar), but this is not computationally tractable.

Higher numbers of CD3 single positive, FOXP3/CD3 double
positive and CD69/CD3 double positive cells were significantly
associated with a favourable outcome by K–M analysis whilst HID
analysis demonstrated a significant association of cellular pattern
with favourable outcome, for example, with higher entropy being
associated with longer median survival (142 months) compared
with those with lower entropy (35.5 months; P¼ 0.00255). Because
higher entropy reflects a more diffuse cellular pattern, a diffuse

Table 3b. Example HID matrices (relative frequency data) for
a patient with median survival from group S (short survival)
and the patient with median survival from group L (long
survival), for Shannon entropy

Patient with median
short survival within the

survival group S

Patient with median
long survival within the

survival group L

FOXP3 CD69
FOXP3,
CD69 FOXP3 CD69

FOXP3,
CD69

FOXP3 0.803 0.0634 0.0607 0.471 0.183 0.116

CD69 0.0634 0.0110 0.0166 0.183 0.120 0.0471

FOXP3, CD69 0.0607 0.0166 0.0455 0.116 0.0471 0.0622

Abbreviation: HID¼ hypothesised interaction distribution. Row and column labels indicate

the markers for which cells may be positive (FOXP3 only, CD69 only, or both). Matrix entries

show the relative frequencies with which cells with particular IHC characteristics were

observed proximally to one another. Comparing group S and L patients, pairs of cells

positive for: FOXP3 only were observed with almost twice the frequency (0.803 vs 0.471);

CD69 only with about one-tenth the frequency (0.0110 vs 0.120); and cell pairs with one cell

positive for FOXP3 only and the other cell positive for CD69 only were observed with about

one-third the frequency (0.0643 vs 0.183).

Table 3a. HID analysis results

HID matrix type Scalar summary Survival group
Median scalar

summary
Median survival

(months)
Median survival

difference (months) P-value

Absolute
Energy

L 416 142
102 0.00298*

S 12.0 40.0

Maximum
L 32.0 113

70.0 0.00892*
S 6.00 43.0

Relative
Energy

L 0.219 111
78.0 0.0141

S 0.932 33.0

Maximum
L 0.363 113

79.0 0.00204*
S 0.879 34.0

Entropy
L 2.41 142

107 0.00255*
S 0.361 35.5

Abbreviation: HID¼ hypothesised interaction distribution. The table shows: the type of HID matrices computed (absolute or relative frequencies of cell couplets); the scalar summaries used

(‘energy’, no units; ‘maximum value’, no units; Shannon entropy, measured in bits); the groups with long (L) and short (S) survival to which patients were assigned on the basis of scalar

summaries; the median scalar summaries of, median survival of, and difference in median survival between, patients in those groups; and the P-value on the null hypothesis of equal survival

functions between those groups. P-values marked with an * would survive Bonferroni’s correction at the a¼ 0.05 significance level. Shannon entropy is the best discriminator.
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pattern of FOXP3 and CD69 positive T cells was therefore
associated with favourable outcome. These results demonstrate the
ability of HID analysis to automatically and objectively identify the

prognostic patterns of cellular distribution. We have demonstrated
that a diffuse pattern of FOXP3 and CD69 cells is associated with a
favourable outcome in FL, replicating, in an automated and
objective manner, the subjective finding by Farinha et al (2010)
that a diffuse pattern of FOXP3 positive Tregs is a favourable
prognostic feature. Entropy was not significantly associated with
either FLIPI score or tumour grade, but was inversely correlated
with the number and density of CD3, FOXP3 and CD69 positive
cells (CD3 number P¼ 0.0003, CD3 density P¼ 0.0015, FOXP3
number P¼ 0.0010, FOXP3 density P¼ 0.0035, CD69 number
Po0.0001, CD69 density Po0.0001).

Many previous studies have identified T-cell infiltration (Dave
et al, 2004), in particular FOXP3 positive Treg cells (Farinha et al,
2010), as being of prognostic significance in FL. Most demonstrate
an association of T cells and Tregs with favourable outcome
(Carreras et al, 2006; Lee et al, 2006; Wahlin et al, 2007; Carreras
et al, 2009; de Jong et al, 2009; Farinha et al, 2010; Gribben, 2010;
Solal-Céligny et al, 2010; Wahlin et al, 2010; de Jong and Fest,
2011; Wahlin et al, 2011; Koch et al, 2012) although some report
an unfavourable outcome (Richendollar et al, 2011). Discrepancy
between studies may be owing to differences in precision of T-cell
subset identification, or in pattern analysis, the pattern of T cells
being important for prognosis (Lee et al, 2006; de Jong et al, 2009;
Farinha et al, 2010), whilst the present study concords with the
majority of previous studies in which higher levels of T cells are
associated with longer survival in FL (Dave et al, 2004).

Although there is a large body of evidence supporting a
favourable prognostic role for T cells in general, Tregs, which are a
subset of CD4þ cells, are of particular importance. Farinha et al
(2010) demonstrated a favourable association of a diffuse pattern
of FOXP3 positive Tregs, whilst a follicular or peri-follicular
pattern was unfavourable. Interestingly, and consequent upon their
role in immune tolerance, higher numbers of FOXP3 Tregs are
associated with a poor outcome in some non-haematological
cancers (deLeeuw et al, 2012), whilst cases of adult T-cell
leukaemia/lymphoma expressing higher levels of FOXP3 also have
a worse prognosis (Roncador et al, 2005; Marzano et al, 2009).
Conversely studies in FL have reported a positive association
between Tregs and overall survival (Carreras et al, 2006; Farinha
et al, 2010), which the present study supports. Available evidence
indicates that the increase of Tregs seen in haematological
malignancies is because of a proliferative response and not owing
to the disruption of senescence suggesting a tumour-specific
recruitment. However, the exact mechanisms responsible for their
effects in FL remain unknown. Tregs have two suppressive
mechanisms involving direct cell–cell contact and cytokine
production (Mougiakakos et al, 2010). The deployed mechanism
ultimately depends on the nature of the tumour micro-environ-
ment. Immunosuppressive cytokines (IL-10 and TGF-b) secreted
by Tregs suppress tumour-promoting mechanisms and/or induce
tumour cell death (Whiteside, 2010) and may thus represent an
explanation for the relationship between increased number of
Tregs and improved patient survival.

It is known that Tregs are involved in immune tolerance and act
to suppress the activity of T cells, B cells and antigen presenting
cells, preventing self-reactivity. FOXP3 is thought to have a role in
this via binding to the promotors of genes involved in Treg
function, with repression of gene transcription following T-cell
receptor stimulation (Marson et al, 2007). The specific dynamics of
FOXP3þ Treg interaction with malignant B cells is therefore
important in determining outcome. Reactive lymph nodes contain
FOXP3þ Tregs at the interface of the T cell and B cell areas, where
they act to suppress CD4þ T cells, and they are increased in FL
compared with reactive nodes (Lim et al, 2005). They also act
to induce the pro-tumourigenic M2 macrophage phenotype
(Tiemessen et al, 2007) and, where they have a follicular pattern,
are associated with ineffective tumour immunity. This allows FL
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Figure 3. Higher Shannon entropy, representing a more diffuse

pattern of FOXP3 and CD69 positivity, is associated with favourable
outcome. (A) K–M analysis for Shannon entropy calculated by HID
analysis, demonstrating association of higher entropy level, above the
median, with favourable outcome (P¼0.00255). Representative images
of patient samples with (B) high Shannon entropy, demonstrating
diffuse pattern of FOXP3 positive cells and (C) low Shannon entropy,
demonstrating an aggregated pattern of FOXP3 positive cells;
magnification: �20.

Table 4a. R2 correlation of entropy with cell numbers and
density for CD3, FOXP3 and CD69

R
2

P-value
Confidence
intervals

CD3 number 0.3665 0.0002 0.33, 0.79

CD69 number 0.6418 0.0000 0.63, 0.90

FOXP3 number 0.1404 0.0317 0.04, 0.64

CD3 density 0.3139 0.0007 0.27, 0.76

CD69 density 0.6494 0.0000 0.64, 0.90

FOXP3 density 0.1026 0.0692 � 0.03, 0.60
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cells to avoid immunosurveillance, resulting in inferior survival
and increased risk of transformation (Farinha et al, 2010).
Enrichment of Tregs in the follicles directly interacting with the
tumour cells would therefore clearly contribute to a poorer
outcome in FL. Tregs are activated in the T-cell zone outside of
the follicle, exerting their immunosuppressive effect upon migra-
tion to the follicles where they interact with the centrocytes
(Linterman et al, 2012). Our finding of poor outcome in patients
with a more aggregated pattern may therefore represent a higher
degree of interaction between Tregs and malignant B cells, with
greater pro-tumoural immunity, underlining the importance of the
pattern of cellular interaction.

Farinha et al (2010) demonstrated prognostic importance of
FOXP3 Tregs using expert morphological assessment, which is
difficult to determine ‘by eye’ for more than one and certainly not
more than two markers. Figure 4 illustrates two subtly different
distributions; one, in panel 4A, is more diffuse and of higher
entropy, compared with another, in panel 4B, which is more
aggregated and of lower entropy. Distinction of these patterns by

eye is difficult and difficulty increases further as the number of
markers rise above three. HID analysis is able to objectively and
automatically quantitate the different patterns, enabling them to be
used in statistical analyses, in order to identify prognostic patterns
associated with favourable or unfavourable outcome. This is
illustrated in Figure 4; panels c and d show representative patient
samples with diffuse and aggregated cells positive for FOXP3 and
CD69, respectively, in turn representing high- and low-entropy
patterns with favourable and unfavourable outcomes. The method
used in the present study enabled prognostic pattern to be
identified automatically using three markers, CD3, CD69 and
FOXP3, and is theoretically scalable to larger number of markers.
Furthermore, the data in Table 3b indicate that the example patient
with poor survival lacks proximity for cells that are positive for
CD69 (either alone or in combination with FOXP3) to cells that
are positive for FOXP3, and that CD69 positive cells are likely to be
having a regulatory effect on the tumor cells in terms of the driver
of disease progression (transformation, proliferation, etc.). Further,
this can only be determined with an analysis such as HID analysis
that considers the spatial heterogeneity of distinct cellular subtypes.

Although it is true that higher entropy is associated with higher
numbers of T cells and Tregs, bivariate Cox regression analysis
demonstrated, once controlled for entropy, that entropy is
predictive of outcome independent of cell number or density.
Furthermore, though there were significant correlations between
entropy and cell number and density the R^2 values for these
correlations were all relatively low (Table 4a), ranging from 0.1026
to 0.3665 for all except CD69. Consequently entropy is able to
describe an additional feature associated with survival, namely
pattern, either dispersed or aggregated.

Automation will increasingly be needed for multiple biomarker
analysis as part of translational research. However, whilst
automated cell counting is now routine (Ali et al, 2013),
quantitative, automated measurement of cellular spatial distribu-
tion pattern as opposed to pure cell numbers has rarely been
achieved (Beck et al, 2011; Rimm, 2011; Yuan et al, 2012). Setiadi
et al (2010) used a statistic known as the L function, a variant of
Ripley’s K function, to quantify and identify statistically significant
differences in spatial grouping of B and T cells in healthy lymph
nodes and cancer draining lymph nodes in breast cancer patients
showing a lack of B-cell localisation in the extrafollicular region of
the tumour draining lymph nodes. However, the approach used
was unable to correlate cellular pattern with outcome as in the
present study, as the L function does not yield an outcome statistic
usable in K–M survival analysis.

In conclusion, the spatial pattern of cells is important for their
biological behaviour and will therefore be important for prognosis
of tumours. Ability to identify such prognostic patterns ‘by eye’ will
become increasingly difficult as the number of biomarkers increase.
The present study used an objective and quantitative method to
automatically identify prognostic patterns of Tregs in FL, albeit in a
relatively small sample size. The results therefore require additional
validation in large, independent sample sets but provide evidence
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Figure 4. Overview of method taken to identify prognostic patterns of

multiple markers illustrating the ability to automatically and
objectively distinguish between subtly different patterns. (A) and (B)
represent cellular patterns for three cellular phenotypes. The pattern in
(A) is slightly more diffuse than that in (B) but this is difficult to identify
by eye, such that an attempt by eye to determine the association of a
range of such variable patterns with patient outcome would not be
feasible reliably. HID analysis quantifies the nature of the cellular
pattern such that metrics defining the pattern, such as Shannon
entropy, can be used to objectively test the association of pattern with
outcome, using K–M analysis. This can objectively demonstrate
different outcomes for the distributions of cells in (A) and (B), which
correspond to diffuse or aggregated cellular patterns in tissue samples,
as shown at the bottom left of (C) and (D), respectively.

Table 4b. Bivariate Cox regression models of entropy with cell number or density (variable)

Variable
Entropy

hazard ratio
Variable

hazard ratio
Entropy
P-value

Variable
P-value

Entropy hazard
ratio confidence

intervals

Variable hazard
ratio confidence

intervals

CD3 number 0.8379 0.9985 0.4943 0.0039 0.50, 1.39 0.9975, 0.9995

CD69 number 0.8847 0.9992 0.7676 0.1755 0.39, 1.99 0.9979, 1.0004

FOXP3 number 0.5619 0.9991 0.0124 0.5436 0.36, 0.88 0.9963, 1.0020

CD3 density 0.7610 0.9981 0.2636 0.0073 0.47, 1.23 0.9968, 0.9995

CD69 density 0.8572 0.9989 0.7115 0.2052 0.38, 1.94 0.9972, 1.0006

FOXP3 density 0.5523 0.9991 0.0088 0.6247 0.35, 0.86 0.9953, 1.0028
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of confidence for doing such larger studies. Although such patterns
have been identified before, their identification has relied on prior
knowledge and has been manual. Our approach removes the
possibility for investigator bias and is theoretically applicable to
large numbers of biomarkers, representing a novel method for
translational and diagnostic pathology and theragnostics.
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