
 Open access Journal Article DOI:10.1007/S10817-015-9341-5

Automated Proofs of Block Cipher Modes of Operation — Source link

Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, Reihaneh Safavi-Naini

Institutions: Wheaton College (Massachusetts), University of Auvergne, Joseph Fourier University,
University of Calgary

Published on: 01 Jan 2016 - Journal of Automated Reasoning (Springer Netherlands)

Topics: Ciphertext stealing, CBC-MAC, Triple DES, Block cipher mode of operation and Stream cipher

Related papers:

 Automated security proof for symmetric encryption modes

 Generalized Construction of Compression Function to Build a Cryptographic Hash

 Manticore and CS Mode: Parallelizable Encryption with Joint Cipher-State Authentication

 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

 Shared Key Encryption by the State Machine with Two-Dimensional Random Look-up Table.

Share this paper:

View more about this paper here: https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-
30sthwc3q4

https://typeset.io/
https://www.doi.org/10.1007/S10817-015-9341-5
https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-30sthwc3q4
https://typeset.io/authors/martin-gagne-537sl7xh43
https://typeset.io/authors/pascal-lafourcade-5ff23t65bs
https://typeset.io/authors/yassine-lakhnech-2obi3dr026
https://typeset.io/authors/reihaneh-safavi-naini-2xdfob79xx
https://typeset.io/institutions/wheaton-college-massachusetts-1q44vkbe
https://typeset.io/institutions/university-of-auvergne-18c250o7
https://typeset.io/institutions/joseph-fourier-university-2k6m7wi4
https://typeset.io/institutions/university-of-calgary-3rbzln32
https://typeset.io/journals/journal-of-automated-reasoning-p7aqqv75
https://typeset.io/topics/ciphertext-stealing-1ak3oswn
https://typeset.io/topics/cbc-mac-pyqzhmgq
https://typeset.io/topics/triple-des-2be3fwdb
https://typeset.io/topics/block-cipher-mode-of-operation-1eflwkom
https://typeset.io/topics/stream-cipher-2fxdpfi7
https://typeset.io/papers/automated-security-proof-for-symmetric-encryption-modes-2qly37irdx
https://typeset.io/papers/generalized-construction-of-compression-function-to-build-a-f86ap21tjh
https://typeset.io/papers/manticore-and-cs-mode-parallelizable-encryption-with-joint-2irb00xcf4
https://typeset.io/papers/saturnin-a-suite-of-lightweight-symmetric-algorithms-for-2nt4cqhe3t
https://typeset.io/papers/shared-key-encryption-by-the-state-machine-with-two-2lrkvqyrhn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-30sthwc3q4
https://twitter.com/intent/tweet?text=Automated%20Proofs%20of%20Block%20Cipher%20Modes%20of%20Operation&url=https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-30sthwc3q4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-30sthwc3q4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-30sthwc3q4
https://typeset.io/papers/automated-proofs-of-block-cipher-modes-of-operation-30sthwc3q4

HAL Id: hal-01707712
https://hal.archives-ouvertes.fr/hal-01707712

Submitted on 13 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Proofs of Block Cipher Modes of Operation
Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, Reihaneh Safavi-Naini

To cite this version:
Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, Reihaneh Safavi-Naini. Automated Proofs of
Block Cipher Modes of Operation. Journal of Automated Reasoning, Springer Verlag, 2016, 56 (1),
pp.49–94. hal-01707712

https://hal.archives-ouvertes.fr/hal-01707712
https://hal.archives-ouvertes.fr

J Autom Reasoning manuscript No.
(will be inserted by the editor)

Automated Proofs of Block Cipher Modes of

Operation

Martin Gagné · Pascal Lafourcade ·

Yassine Lakhnech · Reihaneh Safavi-Naini

Received: date / Accepted: date

Abstract We present a Hoare logic for proving semantic security and determining
exact security bounds of a block cipher mode of operation. We propose a simple yet
expressive programming language to specify encryption modes, semantic functions
for each command (statement) in the language, an assertion language that allows
to state predicates and axioms, and rules to propagate the predicates through the
commands of a program. We also provide heuristics for finding loop invariants
that are necessary for the application of our rule on for-loops. This enables us
to prove the security of protocols that take arbitrary length messages as input.
We implemented a prototype that uses this logic to automatically prove the secu-
rity of block cipher modes of operation. This prototype can prove the security of
many standard modes of operation, such as Cipher Block Chaining (CBC), Cipher
FeedBack mode (CFB), Output FeedBack (OFB), and CounTeR mode (CTR).

Keywords Automated Verification · Hoare Logic · Provable Cryptography ·
Symmetric Encryption · Block Cipher

1 Introduction

Block ciphers are symmetric key cryptographic primitives that take a fixed-length
plaintext message, together with a key, and output a fixed-length ciphertext. A

Martin Gagné
Wheaton College, Norton, United States of America
E-mail: gagne_martin@wheatoncollege.edu

Pascal Lafourcade
LIMOS, Université Clermont 1
E-mail: lafourcade@sancy.univ-bpclermont.fr

Yassine Lakhnech
Université Joseph Fourier (Grenoble 1), CNRS, Grenoble, France
E-mail: yassine.lakhnech@imag.fr

Reihaneh Safavi-Naini
University of Calgary, Calgary, Canada
E-mail: rei@ucalgary.ca

2 Martin Gagné et al.

mode of operation is a symmetric encryption scheme that uses a block cipher
to encrypt arbitrary length messages. Modes of operation are commonly used
to ensure the confidentiality of messages exchanged over a public channel. Their
semantic security is proven by reducing the security of the scheme to the security
of the block cipher.

While the security of early modes of operation, such as Cipher Block Chain-
ing mode (CBC), Cipher FeedBack mode (CFB), Output Feedback mode (OFB),
and CounTeR mode (CTR), can be proven relatively easily, the same cannot be
said about more recent modes of operation. Many new modes of operation were
designed in the past few years ([Jut01,LRW02,HR03,MV04,BRW04,HR04,Hal04,
WFW05,CS06,MF07,Hal07,CN08,CS08] to name only a few), which often offer
security properties that early modes did not possess. However, additional prop-
erties often come with increased complexity of the mode of operation, which, in
turn, increase the complexity of the proof of security.

Automated verification tools can be used to provide an additional security
argument for modes of operation using the security definition of block ciphers
and the structure of the mode. In this paper, we propose an approach towards
automating the process of providing a security proof for block cipher modes of
operation that takes advantage of the structure of modes, expressed as a set of
basic operations.

1.1 Contributions

We proposed a method based on a Hoare logic for proving the semantic secu-
rity of modes of operation for symmetric key block ciphers. A Hoare logic is
a set of logical rules used to propagate predicates through a program and has
been originally designed to reason about the correctness of programs. In this pa-
per, we adapt the technique for proving semantic security using the traditional
indistinguishability-based security definition of symmetric encryption schemes.
Constructing our method requires the following elements:
⋄ Simple Programming Language. We notice that many modes use a small
set of operations such as XOR, concatenation, computation of the block cipher,
and sampling of random values. We introduce a programming language describing
these operations which, while quite simple, is expressive enough to describe all
traditional modes of operation.
⋄ Semantics. We associate an initial state to the initial variables describing all
the internal information needed to run the program of the mode of operation,
and define a corresponding initial distribution of configurations. We define the
effect of each command as a function on distributions of configurations. We found
that using a straightforward definition for the semantic function of the block cipher
greatly complicates the analysis, so we present an alternative, ‘simulated’ semantic
function for the block cipher and show the precise event that causes the alternative
semantic function to become distinguishable from the natural one.
⋄ Assertion Language. The assertion language for our logic consists of six pred-
icates, each with a precise definition based on properties of distributions of config-
urations. Intuitively, the predicates can be described as follows: one that indicates
that the value of a variable is uniformly distributed, and is independent from the

Automated Proofs of Block Cipher Modes of Operation 3

values of a set of variables, three predicates that allow us to determine which vari-
ables are used as counters, one keeps track of the probability that the simulated
semantics can be distinguished from the natural semantics, and one that ensures
that the values on which the block cipher is computed are properly distributed.
We prove relationships between these predicates and show which predicates hold
in every initial distribution of configurations.

⋄ Encoding Security. We prove that a symmetric mode of operation is seman-
tically secure (IND-CPA) if a certain conjunction of predicates holds at the end
of the execution of the program. Our theorem also shows how to derive precise
security bounds on the security of the scheme from these predicates.

⋄Hoare Logic. Finally, we present a set of rules for a Hoare logic that can be used
to propagate the predicates through the code (program) of the mode of operation.

With all these elements in place, proving the security of a mode of operation
becomes a relatively simple matter: starting with the predicates holding in all the
initial distributions, we use the Hoare logic to propagate the predicates through
the entire program describing the mode of operation, and we verify whether the
predicates that imply semantic security hold at the end.

We also show how to reason about for-loops, which enables us to argue about
the security of modes of operation when applied to arbitrary length messages: we
present two heuristics that can be used to discover stable loop invariants, and
show how they can be applied, using examples. The first heuristic is designed
specifically for modes that consist of a few initial steps followed by a single loop,
each iteration of which produces a cipher block corresponding to a message block
(this is how the overwhelming majority of modes of operation are designed). The
heuristic examines the predicates that hold at the end of an iteration of the loop
to determine if these predicates will be sufficient to prove the security of the mode,
and if they are sufficient to obtain the same predicates at the end of a subsequent
iteration of the loop. While relatively simple, this heuristic can successfully discover
loop invariants for all single-loop modes of operations we examined.

In the interest of generality, we also present a second, far more robust heuristic
based on widening in abstract interpretation. This heuristic attempts to find pat-
terns that can be extrapolated after executing the loop a fixed number of times.
While relatively easy to describe, this heuristic can quickly become very fastidious
to implement since it requires the programmer to figure out every possible ways
in which fields within predicates could be extrapolated, or predicates could be ac-
cumulated, for each predicate used in the analysis. In this, we greatly benefit from
the relative simplicity of our predicates. This heuristic is capable of discovering
loop invariants even when the loop causes an accumulation of new predicates at
each iteration of the loop, and is particularly useful when the mode of operation
is implemented using multiple loops.

Our method was implemented into an OCaml prototype [GLLSN]. The pro-
totype requires about 2000 lines of code and can automatically produce proofs of
security for several encryption modes including CBC, CFB, CTR and OFB. Of
course our system does not prove ECB mode, because ECB is not semantically
secure.

4 Martin Gagné et al.

1.2 Related Work

The security of symmetric encryption has been extensively studied by cryptog-
raphers in the past twenty years. An extensive discussion on different security
notions for symmetric encryption and a proof of the CBC mode of encryption is
presented in [BDJR97]. A security analysis of the encryption mode CBC-MAC is
given in [BKR00] and [ÉJJV01].

Another approach is to describe the security of symmetric encryption modes
as a non-interference property. For example, Courant et al. [CEL07] present a
computationally sound type system with exact security bounds for such programs
describing deterministic encryption schemes. This type system has been applied
to verify some symmetric encryption modes.

In [CDE+08], the authors proposed a Hoare logic for proving semantic security
of asymmetric encryption schemes in the random oracle model. A similar method
is used in [GLLSN09], and extended in [GLLSN11], to verify the security of block-
cipher-based symmetric encryption modes, and in [GLL13] to verify the security of
almost-universal hash functions and message authentication codes. This paper pro-
vides improvements over the techniques presented in [GLLSN09] and [GLLSN11]
in the following ways:

– we present new heuristics that allow us to model and analyse for-loops and so
handle encryption of arbitrarily long messages. Designing such heuristics is one
of the hardest problems in program verification, and required us to create our
own techniques, and adapt an existing method to the specifics of our analysis.

– our predicates now have clear semantic meanings, whereas in our previous
work, predicates were sometimes ad hoc or purely syntactic.

– the predicates dealing with counters have been improved to be less dependent
on the order of instructions than previous works [GLLSN09,GLLSN11]. In our
previous work, inverting the order of two commands could sometimes prevent
our logic from proving the security of a scheme. With the improved predicates,
our analysis now succeeds regardless of the order of the commands.

– we provide exact security bounds on the reduction of the security of the mode
to the security of the underlying block cipher. This required major modification
to our semantics and to the definition of our predicates, which in turn required
us to adapt the proof of all our rules.

The work [BDK+10] was a first step in order to define equality reasoning on
probabilitic terms. This idea has been used in the construction of EasyCrypt. In
our work we use an approach based on propagation of predicates and we do not
consider direct equality of term, as is done in EasyCrypt [BGLB11,BGHB11] or
in CIL [BDKL10].

While previous tools, such as Cryptoverif [BP06] and EasyCrypt [BGLB11,
BGHB11], can be used to verify the security of cryptographic schemes, they are
not well-suited to the task of proving the security of encryption schemes. Cryp-
toverif does not support loop constructs, which are necessary for arguing about
the security of schemes for arbitrarily long messages. Easycrypt uses a game-based
approach and requires a human to enter the sequence of games. Our method is
complementary to these two papers, and could be integrated with the above tools
to enable a more comprehensive analysis of cryptographic protocols.

Automated Proofs of Block Cipher Modes of Operation 5

Our prototype can be extended to construct a tool that automatically con-
structs and proves the security of new block cipher modes of operation, similar to
what Zoocrypt does for padding-based public key encryption schemes [BCG+13].

Such an automated synthesizer for block cipher modes of operations has been
published [MKG14], but their method for proving the security of the scheme is
fundamentally different from ours. They model the mode of operation as a directed
acyclic graph, then show that if there exists a labeling for the associated graph
then the mode is secure against chosen-plaintext attacks. In order to construct the
labeling they transform the problem into a constraint-satisfaction problem and
they rely on an SMT solver to decide if the block cipher is secure or not. Their
approach can be seen as a global approach, whereas our work consist in a local
analysis of each command, hence our two works follow two different point of view.
The fact that our method processes each command essentially out of its context
necessitates the use of more complex predicates, but these complex predicates, in
turn, enable to gather more information for our analysis, particularly concerning
the analysis of counters. Moreover, they make a few simplifying assumptions (the
mode is described in a single loop, little information passed from one iteration to
the next) to reduce the search space for synthesis and to simplify the analysis.
Using our method would enable the discovery of a greater variety of modes of
operation thanks to our more flexible treatment of the increment operation, and
loop invariant discovery. Finally, we are now able to automatically generate a
security bound, which provides a more complete analysis of the mode.

1.3 Organization

Section 2 recalls the cryptographic background that is needed in the remainder of
the paper. In Section 3, we present our grammar, the semantic functions of the
commands and the assertion language that is used by our logic. In Section 4, we
prove that if the ciphertext obtained by running the program is indistinguishable
from a random value, as described in our predicates, then the mode of operation is
semantically secure. In Section 5, we present the set of rules that is used to propa-
gate the predicates. Section 6 combines the results of the two previous sections to
prove the soundness of our method for proving semantic security. In Section 7, we
present a set of heuristics for finding stable loop invariants and show how to use
them to prove the security of some example cases. Section 8 concludes the paper.

2 Background

We describe the notation and cryptographic definitions that are used in this paper.

2.1 Notation and Conventions

For a probability distribution D, we denote by x
$
←− D the operation of sampling

a value x according to distribution D. If S is a finite set, we denote by x
$
←− S

the operation of sampling x uniformly at random from the values in S. For a

probabilistic algorithm A, we denote by x
$
←− A the process of running algorithm

6 Martin Gagné et al.

A on uniform random coins and assigning the result to x. If η is a positive integer,
we denote by 1η the string consisting of η consecutive 1’s. The function len :
{0, 1}∗ → N is the function that takes a string and returns the length of the
string. For a set V and an element x, we write “V, x” as a shorthand for V ∪ {x}
and “V − x” as a shorthand for V \ {x}. We say that a function f : N → R is
negligible in η iff for any polynomial p, there exists a number η0 such that for all
η ≥ η0, f(η) ≤ 1

p(η) .

2.2 Security Model

We recall the formal definition of symmetric encryption schemes, and show how
their security is defined.

Definition 1 (Symmetric Encryption) A symmetric encryption scheme is a
triple of probabilistic polynomial-time algorithms (K,E,D) where,

– the key generation algorithm K(1η) takes a security parameter η1 and outputs
a key k;

– the encryption algorithm E(k,m) takes a key k and a message m, and outputs
a ciphertext; and

– the decryption algorithm D(k, c) takes a key k and a ciphertext c, and outputs
a message.

These algorithms must satisfy the standard correctness requirement that for any
key k generated by K and any message m, we have D(k,E(k,m)) = m.

Informally, we say that an encryption scheme is secure if no polynomial-time
algorithm can distinguish between the encryption of two equal-length messages
of its own choosing. To define security formally, we first describe a “left-right”
selection function that, given two messages and a bit, chooses one of the messages
depending on the value of the bit. We define the function LR : {0, 1}∗ × {0, 1}∗ ×
{0, 1} → {0, 1}∗, as follows:

LR(M0,M1, b) =

⊥ if |M0| 6= |M1|
M0 if |M0| = |M1| and b = 0,
M1 if |M0| = |M1| and b = 1.

We recall the formal definition of security for symmetric encryption, given by
Bellare et al. in [BDJR97]. In the definition, the adversary has access to an oracle
which, given two equal length messages, either always encrypts the first message,
or always encrypts the second one (for the sake of definiteness, the oracle returns
⊥ if the messages are not of equal length). The objective of the adversary is
then to determine which of the two messages is encrypted by his oracle, and the
encryption scheme is considered secure if no polynomial-time adversary is able to
reliably distinguish between the two scenarios.

1 The parameter η is given in unary notation because the algorithm K is required to run in
time polynomial in the length of its input.

Automated Proofs of Block Cipher Modes of Operation 7

Definition 2 (LoR-CPA security [BDJR97]) Let S = (K,E,D) be a symmet-
ric encryption scheme. An LoR-CPA adversary is a probabilistic algorithm A that
has access to an oracle E(k, LR(·, ·, b)),2 takes a security parameter η and outputs
a bit b′. Consider the following experiment:

Experiment Exp
LoR-CPA−b
S (A, η):

k
$
←− K(1η)

b′
$
←− AE(k,LR(·,·,b))(1η)

return b′

We define the LoR-CPA advantage of A as follows:

Adv
LoR-CPA
S (A, η) =

∣

∣

∣
Pr[Exp

LoR-CPA−1
S (A, η) = 1]− Pr[Exp

LoR-CPA−0
S (A, η) = 1]

∣

∣

∣
.

We say that a symmetric encryption scheme is LoR-CPA-secure if AdvLoR-CPA
S (A, η)

is negligible for every LoR-CPA adversary A that runs in time polynomial in η.

This definition corresponds to the intuition that no information other than the
length of the message should be leaked by the ciphertext.

We are interested in symmetric encryption schemes built using block ciphers,
so we recall the definition of block ciphers and their security definition.

A block cipher is a family of efficiently computable permutations E : K ×
{0, 1}η → {0, 1}η such that for each key k ∈ K, the function Ek : {0, 1}η → {0, 1}η

defined by Ek(s) = E(k, s) is a permutation. In most cases, K is equal to {0, 1}p(η)

for some polynomial p.
A block cipher is secure if, for a randomly sampled key, the block cipher is

indistinguishable from a function sampled at random from the set of all functions
{0, 1}η → {0, 1}η. It is standard to model block ciphers as pseudo-random func-
tions (PRF) instead of pseudo-random permutations (PRP) because PRFs and
PRPs are statistically close [BDJR97] (this is often called the PRP-PRF switch-
ing lemma), and doing so makes the security arguments easier.

Definition 3 (Pseudo-Random Function) Let F : K×{0, 1}η → {0, 1}η be a
family of functions and let A be an algorithm that takes an oracle and returns a
bit. The PRF-advantage of an adversary A is defined as follows.

Adv
PRF
A,F =

∣

∣

∣
Pr[K

$
←− K : AF (K,·)(1η) = 1]− Pr[R

$
←− Φη : AR(·)(1η) = 1]

∣

∣

∣

where Φη is the set of all functions from {0, 1}η to {0, 1}η. We say that F is a family
of pseudo-random functions if, for any polynomial-time adversary A, AdvPRF

A,F is a
negligible function of η.

3 Model

In this section, we introduce a grammar for generating encryption modes. We
present the semantics of each command and introduce the assertion language that
will be used by our Hoare logic.

2 Again, for the sake of definiteness, we define E(k,⊥) = ⊥ for any key k.

8 Martin Gagné et al.

3.1 Grammar

We consider the language defined by the BNF grammar of Figure 1, where x, y and
z are variables, and p and q are positive integers. For our purpose here, variables
are simply strings of characters. The method for assigning them a value will be
discussed in Section 3.2, which presents the semantics of the language. We refer
to individual instructions as commands, and to lists of commands as programs.
Informally, each command has the following effect:

– x
$
←− U(l) denotes the assignment to x of a value sampled uniformly at random

from {0, 1}l.
– x := y denotes the assignment to x of the value of y.
– x := y ⊕ z denotes the assignment to x of the XOR of the values of y and z.
– x := y‖z denotes the assignment to x of the concatenation of the values of y

and z.
– x := y + 1 denotes the assignment to x of the value obtained by incrementing

the value of y by 1. The string value of y is interpreted as a binary number,
this number is incremented by one modulo 2len(y) (the length of y as a string)
and the result is converted back into a string of length len(y) by adding leading
zeros if necessary.

– x := E(y) denotes the assignment to x of the value obtained by computing the
function E on the value of y.

– for l = p to q do: [cl] denotes the successive execution of cp, . . . , cq where p ≤ q.
For definiteness, if p > q, the command has no effect.

– c1; c2 denotes that c2 is executed after c1 is completed.

We assume that the encryption scheme uses only one block cipher. This allows
us to simplify the notation by writing E(y) instead of E(k, y). It is understood
that a key is selected at the initialization of the scheme, and remains the same
throughout. This assumption allows us to greatly simplify the notation in the
program and the semantics, and we show in Section 3.2 how one could remove this
assumption if necessary.

cmd ::= x
$
←− U(l) | x := y | x := E(y) | x := y ⊕ z | x := y‖z
| x := y + 1 | for l = p to q do: [cmdl] | cmd1; cmd2

Fig. 1 Grammar describing our programming language

Definition 4 (Generic Encryption Mode) A generic encryption mode on n

message blocks is represented by M(m1‖ . . . ‖mn, cn) : cmd, where m1, . . . ,mn

are the input variables containing equal length message blocks, cn is the output
variable, and the program cmd is built using the grammar of Figure 1.

We assume that, prior to executing the encryption mode, the message has
been padded using some unambiguous padding scheme, so that all the message
blocks m1, . . . ,mn are of equal and appropriate length for the scheme, usually
the input length of the block cipher. We also assume that each variable in cmd is
assigned a value at most once by the program (this is analogous to static single

Automated Proofs of Block Cipher Modes of Operation 9

assignment). Any program can be transformed into an equivalent program with
this property using standard methods [CFR+91]. Finally, we note that, apart for
the input variables, it would not make sense for any variable to appear on the
right side of a command before appearing on the left side of a previous command,
so we assume that this does not happen.

In Figure 2, we present the standard encryption modes cipher block chaining
(CBC) [EMST76] and counter mode (CTR). These two modes of operation will
be used as examples in this paper.

CBC(m1‖m2‖ . . . ‖mn, cn) : CTR(m1‖m2‖ . . . ‖mn, cn) :

z0
$
←− U(η); ctr0

$
←− U(η);

c0 := z0; c0 := ctr0;
for i = 1 to n do: for i = 1 to n do:

[yi := zi−1 ⊕mi; [ctri := ctri−1 + 1;
zi := E(yi); yi := E(ctri);
ci = ci−1‖zi] zi := yi ⊕mi;

ci := ci−1‖zi]

Fig. 2 Description of CBC and CTR

3.2 Semantics

The precise effect of a command is given by its semantic function, which describes
how the command modifies distributions of configurations. A configuration de-
scribes all the internal information needed to run a program, and includes a state,
which assigns values to the variables, and a few more sets, functions and strings,
which keep track of information needed for our analysis.

More formally, a configuration is a tuple of the form (S, T ,Q, E ,LE , σ) where:

– The state S is a function S : Var → {0, 1}∗ ∪ ⊥, where Var is the full set of
variables in the program, that assigns bitstrings to variables. If x is a variable
and S(x) = s, we call s the value of variable x. The symbol ⊥ is used to denote
that no value has been assigned to the variable yet.

– The set T contains arrays denoted by Tx. A new array Tx is added to T
whenever the result of a random sampling or a fresh query to the block cipher
is assigned to the variable x, and for each integer i ≥ 0, Tx[i] contains the set
of variables whose values are known to be S(x) + i. The set T is used to keep
track of the variables that contain values used as counters, that is, variables
whose value is obtained by repeatedly adding 1 to a randomly sampled value,
or to a value obtained from a new query to the block cipher. Each array Tx
keeps track of the variables that contain values from a counter started at x.

– The set Q contains sets denoted by Qx, each associated with a corresponding
array Tx ∈ T . Therefore, as in T , a new set Qx is added to Q whenever the
result of a random sampling or a fresh query to the block cipher is assigned
to the variable x. A set Qx contains variables whose values are the result of a
computation involving a variable in {v ∈ Var | ∃i ≥ 0, v ∈ Tx[i]}, or a variable
already in Qx. That is, Qx contains variables that are not themselves counters,

10 Martin Gagné et al.

but whose value might3 depend on the value from a counter started at x. The
set Qx therefore contains all the values that are deemed “unsafe” when using
x as a counter, and the use of x as a counter will be considered insecure if the
block cipher is computed on any of the variables in Qx.

– E is a block cipher, and the multiset LE contains pairs (s, x) where s is a
bitstring and x is a variable or the symbol ⊥. A pair (s, x) for x ∈ Var is
added to LE every time a command of the form y := E(x) is executed in the
program, and S(x) = s. A pair (s,⊥) is added to LE when the block cipher is
computed in a previous encryption query on a value s. We write LE .dom and
LE .res to denote the multisets obtained by projecting each pair in LE to its
first or second element, respectively (we note that we could easily generalize
our method for modes of operation that require more than one block cipher by
adding more block ciphers E ′ and corresponding lists LE′ to configurations).

– The tuple σ = (σ0, . . . , σn) is an information-passing parameter. The bitstring
σ0 is used to store all the state information of the LoR-CPA adversary from
Definition 2 when it makes an encryption query, so that the adversary may con-
tinue its execution with its previous state after the query is answered, whereas
the bitstrings σ1 to σn contain the values of the message blocks to be encrypted
– that is, σ1 = S(m1), . . . , σn = S(mn).

For any x ∈ Var for which there is an array Tx ∈ T , we denote by Set(Tx) the set
{v ∈ Var : v ∈ Tx[i] for some integer i}.

3.2.1 Initial and Constructible Distributions

While the semantic function of commands will be defined for any distribution of
configurations, it is useful to first examine which distributions of configurations can
occur during the course of our analysis. To define the set of initial distributions,
the distributions that can occur when a LoR-CPA adversary has just issued an
encryption query, we note the following:

– The LoR-CPA adversary may have already issued some encryption queries be-
fore issuing the query that is currently under study, so the multiset LE must
already contain the value on which the block cipher has been computed to
answer these queries. Those are the queries that will have the form (s,⊥) in
LE .

– Since our analysis models the block cipher as a random function, the function
E is sampled from the set of all functions from {0, 1}η to {0, 1}η.

– When issuing the encryption query, all the state information of the LoR-CPA

adversary is stored somewhere so that the adversary can be ‘restarted’ and
given the ciphertext answering its encryption query. It is this state information
that is stored in σ0.

– For the purpose of defining the initial distributions, we assume that the bit b
used in the LR function has already been sampled, and that the selection by
the LR function has already been made, so that we have a single message to
encrypt, whose blocks are σ1, . . . , σn.

3 Note that our analysis will be very conservative, so a variable may be put in Qx even if,
on a closer analysis, one may discover that the value of the variable is not actually dependent
on x.

Automated Proofs of Block Cipher Modes of Operation 11

– Since we assume that all the variables that are not input variables are assigned
a value before appearing on the right side of a command, we can, without loss
of generality, assign them all an initial value of ⊥.

– We discard the values used as counters to answer the previous encryption
queries, so the sets T and Q are initially empty.

Let M(m1‖ . . . ‖mn, cn) : cmd be a generic encryption mode. Taking all the
observations above into account, we define the set of initial distributions, denoted
CDist

M
0 (Γ), as the set of all distributions of the form:

[E
$
← Φη;σ

$
← AM(·)(1η) : (Sσ, ∅, ∅, E ,LE , σ)]

where A is a polynomial-time algorithm with oracle access toM(·), the encryption
algorithm corresponding to the generic encryption mode M(m1‖ . . . ‖mn, cn) :
cmd. The tuple σ must have the structure σ = (σ0, . . . , σn) described above, and
the state Sσ is the function that assigns the value σi to variable mi for 1 ≤ i ≤ n,
and assigns ⊥ to all other variables. All the block cipher computations that are
required to answer A’s calls to the oracleM(·) are recorded in LE as pairs of the
form (s,⊥).

The set CDist
M(Γ) of constructible distributions is the set of distributions

{[[p]]X : X ∈ CDist
M
0 (Γ) and p is a program produced by the grammar of Fig-

ure 1}. We describe how to compute the effect of each command on a distribution
of configurations in the next section.

3.2.2 Natural Semantics

We first introduce a few notational shortcuts to simplify the writing of the seman-
tic function of each command. We write the semantic functions of commands as
functions cmd : Γ → Dist(Γ), where Γ is the set of all configurations Dist(Γ) is
the set of all possible distributions on configurations, and it should be clear that
each of these functions uniquely determines a function cmd : Dist(Γ)→ Dist(Γ)
obtained by point-wise application (by abuse of notation, we denote both func-
tions the same way). We write δ(γ) to denote the Dirac distribution, in which
configuration γ has probability 1 and all other configurations have probability 0.
The notation S{x 7→ v} denotes the function such that S{x 7→ v}(y) = S(y) for
all variables y in the domain of S except for the variable x, for which we have
S{x 7→ v}(x) = v. We denote by new(Tx) the array that has Tx[0] = {x} and
Tx[i] = ∅ for any i > 0, and by new(Qx) an empty set associated with the variable
x.

The effect of commands on the state is essentially what one would expect from
the description of the commands. The process for updating T andQ is as explained
below.

– When we execute a command x
$
←− U(l) or a command x := E(y) with S(y) 6∈

LE .dom, a new array Tx and a new set Qx is added to T and Q respectively.
The array Tx has Tx[0] = {x} and, initially, Tx[i] = ∅ for i > 0, and set Qx is
initially empty. This identifies the variable x as a possible starting point for a
counter.

– When we execute the command x := y + 1 on a variable y ∈ Tw[i] for some
variable w and integer i, then we add x to Tw[i+ 1] because clearly the value
of x is one more than the value of y.

12 Martin Gagné et al.

[[x
$
← U(l)]](S, T ,Q, E,LE , σ) =

[u
$
← U(l) : (S{x 7→ u}, T ∪ {new(Tx)},Q ∪ {new(Qx)}, E,LE , σ)]
where Tx[0] = {x} and Tx[i] = ∅ for i > 0, and Qx = ∅.

[[x := y]](S, T ,Q, E,LE , σ) =
{

δ(S{x 7→ S(y), T {Tz [i] 7→ Tz [i] ∪ {x}},Q, E,LE , σ) if ∃z for which y ∈ Tz [i],
δ(S{x 7→ S(y), T ,Q+(x, {y}), E,LE , σ) otherwise.

[[x := y ⊕ z]](S, T ,Q, E,LE , σ) = δ(S{x 7→ S(y)⊕ S(z)}, T ,Q+(x, {y, z}), E,LE , σ)
[[x := y||z]](S, T ,Q, E,LE , σ) = δ(S{x 7→ S(y)||S(z)}, T ,Q+(x, {y, z}), E,LE , σ)
[[x := y + 1]](S, T ,Q, E,LE , σ) =

{

δ(S{x 7→ S(y) + 1, T {Tz [i+ 1] 7→ Tz [i+ 1] ∪ {x}},Q, E,LE , σ) if ∃z for which y ∈ Tz [i],
δ(S{x 7→ S(y) + 1, T ,Q+(x, {y}), E,LE , σ) otherwise.

[[for l = p to q do: [cl]]]γ =

{

[[cq]] ◦ [[cq−1]] ◦ . . . ◦ [[cp]]γ if p ≤ q
γ otherwise

[[x := E(y)]](S, T ,Q, E,LE , σ) =

δ(S{x 7→ E(S(y))}, T ∪ {new(Tx)},Q ∪ {new(Qx)}, E,LE ∪ {(S(y), y)}, σ)
if S(y) 6∈ LE .dom .

δ(S{x 7→ E(S(y))}, T ,Q, E,LE ∪ {(S(y), y)}, σ) otherwise
[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 1 Natural semantics of the programming language

– When we execute the command x := y on a variable y ∈ Tw[i] for some variable
w and integer i, then we add x to Tw[i] because clearly x and y contain the
same value.

– When we execute either the command x := y + 1 or x := y for a variable
y ∈ Qw for some variable w, or a XOR or concatenation command in which
the variable y appears on the right side of the command and either y ∈ Tw[i]
for some variable w and integer i or y ∈ Qw, then the value assigned to x could
be equal to that of one of the counters in Set(Tw), so we add x to Qw.

– If none of the variables on the right side of the command appear in either
Set(Tw) or Qw, then the set Qw is unchanged by the command.

We denote by Q+(x, V) the set obtained from Q by adding the variable x to all
the sets Qw for variables w such that one of the variables in V is either in Set(Tw)
or Qw, that is:

Q+(x, V) ={Qy ∪ {x} : V ∩ (Set(Ty) ∪Qy) 6= ∅} ∪

{Qy : V ∩ (Set(Ty) ∪Qy) = ∅}.

This variable is used in the semantics to update the set Q. Typically, the variable x
is the variable appearing on the left side of the command, while the set V contains
the variables from the right side of the command. For example, if the command
x := y ⊕ z is executed, the set Q gets updated to Q+(x, {y, z}).

The ‘natural’ semantic function of each command is given in Table 1.

3.2.3 Simulated Semantics

Studying the distribution of the values of the output of the block cipher becomes
hard when the block cipher is computed more than once on any given input. We
would like to be able to say that, since the block cipher is modeled as a function

Automated Proofs of Block Cipher Modes of Operation 13

[[x := E(y)]](S, T ,Q, E,LE , σ) =

[u
$
← U(η) : (S{x 7→ u}, T ∪ {new(Tx)},Q ∪ {new(Qx)}, E,LE ∪ {(S(y), y)}, σ)]
where Tx[0] = {x}, Tx[i] = ∅ for i > 0, and Qx = ∅.

Table 2 Idealized semantics of the block cipher used in our analysis

sampled at random from Φη, whenever the block cipher is computed, the output
of the function is indistinguishable from new randomly sampled values. However,
this statement is clearly false when we compute the block cipher on a value on
which it has been computed before, as the output of the block cipher on these
values is clearly predictable. Still, as long as the block cipher is only queried on
non-repeating input values, the output of the block cipher is indistinguishable
from a random sampling. For this reason, we introduce a new semantics in Table 2
in which the semantic of the block cipher command is replaced precisely by the
sampling of an independent random value (the semantic functions of all other
commands are the same as in Table 1). As long as inputs to the block cipher do
not repeat, this is indistinguishable from the first semantics because sampling the
block cipher from Φη is the same as sampling in advance all the outputs of the
block cipher. Therefore, we can use this second semantics for our analysis, provided
that we also keep track of the probability that the block cipher is computed more
than once on a value.

Noting that every value on which the block cipher is computed is added to LE ,
the following allows us to determine when the block cipher has been computed on
the same input more than once.

Definition 5 A configuration γ = (S, T ,Q, E ,LE , σ) is bad if there exists two
distinct elements (s, v) and (s′, v′) in LE with s = s′. For a configuration γ, the
predicate Bad(γ) is true if γ is bad, and false otherwise.

For any configuration γ, we define the function NoBad as follows:

NoBad(γ) =

{

γ if γ is not bad,
⊥ otherwise.

Theorem 1 Let X ∈ CDist
M
0 (Γ) be an initial distribution and cmd be a pro-

gram. Let Xnat = [[cmd]]X using the “natural” semantic function of Table 1 for the
block cipher command and Xsim = [[cmd]]X using the “idealized” semantic function
of Table 2. Then, the following holds:

[γ
$
← Xnat : NoBad(γ)] = [γ

$
← Xsim : NoBad(γ)].

Proof We easily see that, as long as the block cipher is never computed on any
value more than once, then the simulated semantic function simply delays the
sampling of the value assigned until the command is executed, whereas the natural
semantics samples the value corresponding to each domain point of the function
E up front when sampling E from Φη. This change in the timing of the sampling
clearly cannot change the distribution output of the function NoBad.

14 Martin Gagné et al.

3.3 Assertion Language

Before we introduce the predicates that are the basis of our Hoare logic, we in-
troduce a refinement on our definition of bad configuration that allows us to dis-
tinguish between the case when a configuration was bad before the program was
executed – that is, the configuration is bad because there exists (s, v) and (s′, v′)
in LE with s = s′ and v = v′ = ⊥ – and the case when a configuration becomes
bad as a result of the execution of a program.

Definition 6 A configuration (S, T ,Q, E ,LE , σ) is locally bad if there exists two
elements (s, v) and (s′, v′) in LE with s = s′ and at least one of v or v′ is not ⊥.
For a configuration γ, the predicate Lbad(γ) is true if γ is locally bad, and false
otherwise.

Intuitively, a configuration becomes locally bad after the execution of a com-
mand of the form x := E(y) such that the value of the variable y was already in
LE .dom. Using this, it is easy to find that if X ∈ CDist(Γ,F) and p is a program
generated by our grammar, then

Pr[γ
$
← [[p]]X : Bad(γ)] ≤ Pr[γ

$
← X : Bad(γ)] + Pr[γ

$
← [[p]]X : Lbad(γ)]

In the following, if γ is a configuration, we denote by Sγ , Tγ , Qγ , Eγ , LEγ and
σγ the state, sets, block cipher and information-passing parameter, associated with
γ. For any set V ⊆ Var and configuration γ = (Sγ , Tγ ,Qγ , Eγ ,LEγ , σγ), we denote
by Sγ(V) the multiset resulting from the application of S on each variable in V .
We also extend the domain of Sγ to include the symbol ℓE , a formal symbol which
stands for all the values on which the block cipher has been computed; that is,
Sγ(V, ℓE) = Sγ(V)∪LEγ .dom. Finally, we use Var∗ as a shorthand for Var∪ {ℓE}.

Our Hoare Logic is based on statements in the following language:

ϕ ::= true | ϕ ∧ ϕ | ψ
ψ ::= LBad (ǫ) | Indep | Indis(x;W) |

Lctr(x; y; i;V ;V ′) | Ectr(x; y; i;V ;V ′) | ctr(x; y; i)

where ǫ is a real number between 0 and 1, x, y ∈ Var, V, V ′ ⊆ Var, W ⊆ Var∗ and
i is a non-negative integer. We refer to the statements produced by this grammar
as formulas.

The components of the formula, which we call predicates, are properties of the
distribution of configurations. The first two predicates describe properties of the
values on which the block cipher has been computed, and the remaining predicates
are properties of the distribution of the values of variables within the distribution
of configurations. Informally, our predicates can be described as follows:

LBad (ǫ): means that the probability that a configuration is locally bad is at most
ǫ.

Indep: means that each value on which the program has computed the block ci-
pher is randomly distributed and independent from the value of the message
blocks and from the values on which the block cipher was computed before the
execution of the program. In more concrete terms, this means that for each
element of the form (s, v) ∈ LE in which v 6= ⊥, s is randomly distributed and
independent from all the values s′ in elements of the form (s′,⊥) ∈ LE .

Automated Proofs of Block Cipher Modes of Operation 15

Indis(x;W): means that the value of x is distributed uniformly, independently from
the values S(W) and the value of the message blocks.

Lctr(x; y; i;V ;V ′): means that x contains the most recently computed value of a
counter that started at a random value stored in the variable y, and that the
value of x is S(y) + i. In addition, V contains all the variables with previous
values of the counter (so V = Set(Ty)), V ′ contains all the variables that
are not counters, but whose value are dependent on values of the counter (so
V ′ = Qy).

Ectr(x; y; i;V ;V ′): means that x contains the value of a counter that started at a
random value stored in the variable y, and that the value of x is S(y) + i, and
that the block cipher has not been computed on the value of x. In addition, V
contains all the variables other values of the counter (so V = Set(Ty)) and V ′

contains all the variables that are not counters, but whose value are dependent
on values of the counter (so V ′ = Qy).

ctr(x; y; i): means that x contains a counter that started with the value of y, and
whose value is S(y) + i

The most important distinction between the predicates Ectr(x; y; i;V ;V ′) and
Lctr(x; y; i;V ;V ′) is that Lctr(x; y; i;V ;V ′) is true only for the most recently com-
puted value of the counter (whereas Ectr(z; y; i;V ;V ′) can be true of all the pre-
vious values z simultaneously), and Ectr(x; y; i;V ;V ′) indicates that the block
cipher has not been computed on the value of x (whereas this is not the case
for Lctr(x; y; i;V ;V ′)). For example, if X satisfies both Lctr(x; y; i;V ;V ′) and
Ectr(x; y; i;V ;V ′), then [[z := x+1]]X still satisfies Ectr(x; y; i;V ;V ′) but no longer
satisfies Lctr(x; y; i;V ;V ′); whereas [[z := E(x)]]X still satisfies Lctr(x; y; i;V ;V ′),
but no longer satisfies Ectr(x; y; i;V ;V ′).

For each predicate ψ, we define that a distribution X ∈ Dist(Γ) satisfies ψ,
denoted X |= ψ as follows, where x, y ∈ Var, V, V ′ ⊆ Var and W ⊆ Var∗:

– X |= true.
– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.

– X |= LBad (ǫ) iff Pr[γ
$
← X : LBad(γ)] ≤ ǫ.

– X |= Indep iff for every variable v ∈ Var for which there exists a configuration
γ with non-zero probability in X such that (s, v) ∈ LEγ for some string s, the
following holds:

[γ
$
← X : (Sγ(v), {s

′ : (s′,⊥) ∈ LEγ}, σγ)] =

[γ
$
← X;u

$
← U(len(v)) : (u, {s′ : (s′,⊥) ∈ LEγ}, σγ)]

– X |= Indis(x;W) iff the following holds:

[γ
$
← X : (Sγ(x), Sγ(W − x), σγ)] =

[γ
$
← X;u

$
← U(len(x)) : (u, Sγ(W − x), σγ)]

We note that the variable x is removed from the set W in the equation above to
remove the trivial case that, if x ∈W , we can always distinguish the distribu-
tion of (Sγ(x), Sγ(W), σγ) from (u, Sγ(W), σγ) by simply looking for the value
of Sγ(x) in Sγ(W). Removing the variable x from W simplifies the notation
of the predicate, and as a result, we have that X |= Indis(x;V) if and only if

16 Martin Gagné et al.

X |= Indis(x;V, x). We note also that X |= Indis(x;V) for any set V implies
the independence of x from the message blocks since the message blocks are
contained in the string σγ .

– X |= Lctr(x; y; i;V ;V ′) iff for every configuration (S, T ,Q, E ,LE , σ) that is not
bad and has non-zero probability in X, x ∈ Ty[i], Ty[i+ 1] = ⊥, V = Set(Ty),
V ′ = Qy, and the following holds:

[γ
$
← X : (Sγ(x),W, σγ)] = [γ

$
← X;u

$
← U(len(x)) : (u,W, σγ)]

where the set W is equal to Sγ(Var \ (V ∪ V ′)) ∪ {s : (s, v) ∈ LEγ ∧ v 6∈ V }.
– X |= Ectr(x; y; i;V ;V ′) iff for every configuration (S, T ,Q, E ,LE , σ) that is not

bad and has non-zero probability in X, x ∈ Ty[i], V = Set(Tx), V ′ = Qy, and
the following holds:

[γ
$
← X : (Sγ(x),W, σγ)] = [γ

$
← X;u

$
← U(len(x)) : (u,W, σγ)]

where the set W is equal to Sγ(Var\(V ∪V ′))∪{s : (s, v) ∈ LEγ∧v 6∈ V \Ty[i]}.
– X |= ctr(x; y; i) iff for every configuration (S, T ,Q, E ,LE , σ) that is not bad

and has non-zero probability in X, x ∈ Ty[i].

Note that in all the predicates that involve the indistinguishability of a value
of a variable from a random string (that is, Indep, Indis(x, V), Lctr(x; y; i;V ;V ′)
and Ectr(x; y; i;V ;V ′)), we require that the distribution of the value of the vari-
able is strictly equal to the distribution obtained by replacing the value of the
variable by a random value. This is different from previous works, which only re-
quired the distributions to be computationally indistinguishable. We can use this
stronger definition because we are doing our analysis using the idealized semantics
of Table 2, and so the probability of an adversary distinguishing the value of the
variable from a random value is essentially contained in the probability that the
configuration is bad. This strict equality of the distributions enables us to obtain
better bounds in the security analysis.

The definition of the predicates Lctr(x; y; i;V ;V ′) and Ectr(x; y; i;V ;V ′) are
somewhat complex, so we explain them in a few more details. The goal of the sets
V and V ′ in the predicates is to partition the set of all variables in three sets:

1. The set V consists of the variables containing a counter with the same starting
point as x (this starting point is the value contained in the variable y). We can
easily determine whether or not the value contained in these variable is equal
to the value of x because those variables will always be assigned a predicate
ctr(z; y; i′). If i = i′, then the value of z is equal to the value of x, otherwise,
their values are different. This information can be used to “transfer” predicates
from one variable to another if their value is the same. For example, if, say,
Lctr(x; y; i;V ;V ′) and ctr(z; y; i) are both true, then x and z contain the same
value, therefore Lctr(z; y; i;V ;V ′) will be true as well.

2. The set V ′ consists of the variables whose content might depend on the value of
one of the variables in V , but whose exact values are unknown – in particular,
their value could be equal to the value of one of the variables in V . These
values are deemed “unsafe” when it comes to using x as a counter, and if the
block cipher is queried on any of the values in V ′, the use of x as a counter
will no longer be allowed.

Automated Proofs of Block Cipher Modes of Operation 17

3. Finally, by design, the value of x should be randomly distributed and indepen-
dent from the value of the variables that are not in V or V ′. Therefore, any
operations on variables that are in neither V or V ′ will have no effect on the
use of x as a counter.

We also highlight the distinctions between predicates Ectr(x; y; i;V ;V ′) and
Lctr(x; y; i;V ;V ′). In Lctr(x; y; i;V ;V ′), we require that x ∈ Ty[i] and Ty[i +
1] = ⊥, whereas for Ectr(x;V ;V ′), we only require that x ∈ Ty[i]. In addition,
Lctr(x; y; i;V ;V ′) requires that x is indistinguishable from a random value when
given the values of all the variables except for those in V (= Ty) and V ′ (= Qy),
and all the values in LE .dom, except for those associated with variables in V ,
whereas Ectr(x;V ;V ′) requires that x is indistinguishable from a random values
when given the values of all the variables except for those in V and V ′, and all the
values in LE .dom that are not associated with variables in V \Ty[i]. This enables us
to prove that Ectr(x;V ;V ′) implies that the value of x is unlikely to be in LE .dom.

Our method attempts to prove that when the configurations are not bad, the
security of the mode of operation holds unconditionally. Therefore, the value con-
tained in the predicate LBad (ǫ) is the only value necessary for calculating the
exact security bound in the analysis. This is also why the other predicates require
certain conditions to hold in every configurations that are not bad.

3.4 Properties of Predicates and Useful Lemmas

We present a series of results that show the relations between our predicates. We
also prove a few useful lemmas that we use repeatedly in the proofs of the rules of
our Hoare logic.

We first present three results that should be self-evident, since all they state
is that strong predicates imply weaker ones. We omit the proof since it is a direct
consequence of the definition.

Lemma 1 For any distribution X ∈ Dist(Γ), any variable x, y ∈ Var, any sets
V ′ ⊆ V ⊆ Var and V0, V1 ⊆ Var and any non-negative integer i,

X |= Indis(x;V)⇒ X |= Indis(x;V ′)

X |= Lctr(x; y; i;V0;V1)⇒ X |= Indis(x;Var \ (V0 ∪ V1))

X |= Ectr(x; y; i;V0;V1)⇒ X |= Indis(x;Var \ (V0 ∪ V1))

Proof The first statement is obvious, the other two follow from the observation
that the set S(Var \ {V0 ∪ V1}) is a subset of the set W in the definition of the
predicates Lctr(x; y; i;V0;V1) and Ectr(x; y; i;V0;V1). ⊓⊔

The following lemma enables us to infer predicates on counters when multiple
variables contain the same counter value.

Lemma 2 For any distribution X ∈ Dist(Γ), any variables x, y, z ∈ Var, any
non-negative integer i and any sets V, V ′ ⊆ Var,

X |= Lctr(x; y; i;V ;V ′)⇒ X |= ctr(x; y; i)

X |= Ectr(x; y; i;V ;V ′)⇒ X |= ctr(x; y; i)

X |= Lctr(x; z; i;V ;V ′) ∧ ctr(y; z; i)⇒ X |= Lctr(y; z; i;V ;V ′)

X |= Ectr(x; z; i;V ;V ′) ∧ ctr(y; z; i)⇒ X |= Ectr(y; z; i;V ;V ′)

18 Martin Gagné et al.

Proof The first two statements are straightforward consequences of the definition.
SupposeX |= Lctr(x; z; i;V ;V ′)∧ctr(y; z; i). Therefore, y ∈ Tz[i] and Tz[i+1] =

⊥, V = Set(Ty) and V ′ = Qy. Then

[γ
$
← X : (Sγ(y),W, σγ)] = [γ

$
← X;u

$
← U(len(y)) : (u,W, σγ)]

where the set W is equal to Sγ(Var \ (V ∪ V ′)) ∪ {s : (s, v) ∈ LEγ ∧ v 6∈ V },
trivially follows from X |= Lctr(x; z; i;V ;V ′) and the fact that {x, y} ⊆ Tz[i],
which trivially implies that the values of x and y are the same, and equal to the
value of z plus i.

The proof of the last statement is done similarly. ⊓⊔

The following proves the intuitive observation that if the value of a variable x
is indistinguishable from a random value when given the values of the variables in
V ⊆ Var, then the probability that the value of x is equal to any of the values in
V is negligible.

Lemma 3 For any distribution X ∈ Dist(Γ), any variable x ∈ Var and any set
V ⊆ Var, if X |= Indis(x;V), then

Pr[γ
$
← X : Sγ(x) ∈ Sγ(V − x)] ≤

|Sγ(V − x)|

2len(x)
.

Proof Let X |= Indis(x;V). So we have that

Pr[γ
$
← X : Sγ(x) ∈ Sγ(V − x)] ≤Pr[γ

$
← X;u

$
← U(len(x)) : u ∈ Sγ(V − x)]

≤
|Sγ(V − x)|

2len(x)

as required. ⊓⊔

As a consequence of Lemma 3, if X |= Indis(x;V, ℓE) – note the very important
presence of the symbol ℓE , which means that the value of x has a uniform random
distribution independent from all the values in LE .dom – then the probability that
the value of x is either in V − x or in LE .dom is bounded by |S(V −x)|+|LE .dom|

2len(x) . So
by combining Lemma 3 with Lemma 1, we obtain the following:

Corollary 1 For any distribution X ∈ Dist(Γ), any variables x ∈ Var and any
set V ⊆ Var,

X |= Indis(x;V, ℓE)⇒ Pr[γ
$
← X : Sγ(x) ∈ LEγ .dom] ≤

|LEγ |

2len(x)

Proof We have from Lemma 1 that X |= Indis(x;V, ℓE) implies X |= Indis(x; {ℓE}).
The result follows by applying Lemma 3 on that last predicate. ⊓⊔

Using a similar reasoning, we also obtain the following:

Corollary 2 For any distribution X ∈ Dist(Γ), any variables x, y ∈ Var any sets
V, V ′ ⊆ Var, and any non-negative integer i,

X |= Ectr(x; y; i;V ;V ′)⇒ Pr[γ
$
← X : Sγ(x) ∈ LEγ .dom] ≤

|LEγ |

2len(x)

⊓⊔

Automated Proofs of Block Cipher Modes of Operation 19

In the following lemma, we show that for all the distributions in CDist
M(Γ),

the predicate Indis(x;V) always implies independence from the values contained
in the (input) message variables.

Lemma 4 For any distribution X
$
← CDist

M(Γ), any variable x and set V ⊆
Var∗, if X |= Indis(x;V), then X |= Indis(x;V ∪ {m1, . . . ,mn}).

Proof We know, by definition of CDist
M
0 (Γ) that for any X0

$
← CDist

M
0 (Γ),

for any configuration γ
$
← X0, σγ = (σ0, Sγ(m1), . . . , Sγ(mn)) for some bit-

string σ0. Using the fact that commands never modify σ, we easily obtain, us-

ing a simple induction, that for any X
$
← CDist

M(Γ), for any configuration

(S, T ,Q, E ,LE , σ)
$
← X, σ = (σ0, S(m1), . . . , S(mn)) for some bitstring σ0. There-

fore, the value of σ uniquely determines the value of the message blocks.

Let X
$
← CDist

M(Γ) be such that X |= Indis(x;V), and let VM be the set
V ∪ {m1, . . . ,mn} Therefore, since X |= Indis(x;V), by definition

[γ
$
← X : (Sγ(x), Sγ(V − x), σγ)] =

[γ
$
← X;u

$
← U(len(x)) : (u, Sγ(V − x), σγ)]

The following is then immediate since the value of σγ uniquely determines the
value of the message blocks

[γ
$
← X : (Sγ(x), Sγ(VM − x), σγ)] =

[γ
$
← X;u

$
← U(len(x)) : (u, Sγ(VM − x), σγ)]

Hence X |= Indis(x;VM), as required. ⊓⊔

Finally, we show which predicates hold at the beginning of the program’s exe-
cution.

Lemma 5 If X ∈ CDist0(Γ), then X |= LBad (0) ∧ Indep.

Proof Since X ∈ CDist0(Γ), then, for any configuration γ that has non-zero
probability in X, all the elements of LEγ are of the form (s,⊥) for some string s,
because only the execution of a program can add an element of the form (s, v) with
v ∈ Var to LE . Therefore, all configurations γ that have non-zero probability in
X are not locally bad, and the criterion for Indep is vacuously satisfied. Therefore
X |= LBad (0) ∧ Indep. ⊓⊔

4 Semantic Security in Predicates

In this section, we prove the following theorem, which states that if the formula
Indis(cn; ∅) ∧ LBad (ǫ(qE, qE)) ∧ Indep holds at the end of the execution of the
program of the mode of operation for some negligible function ǫ(qE, qE), then the
mode of operation is semantically secure.

20 Martin Gagné et al.

Theorem 2 Let M(m1| . . . |mn, cn) : cmd be a generic encryption mode. If for
every distribution X ∈ CDist

M
0 (Γ), [[cmd]]X |= Indis(cn; ∅) ∧ LBad (ǫ(qE, qE)) ∧

Indep, where qE is the number of calls made to the LR encryption oracle by the
algorithm that created the distribution X and qE is the number of computations of
the block cipher made to answer those oracle queries, then, under the assumption
that the block cipher is a random function in Φη, for any LoR-CPA adversary B,
the following holds:

Adv
LoR-CPA

M (B) ≤

Q
∑

i=1

ǫ(i, q
(i)
E)

where Q is an upper bound on the number of queries made by B to the LR encryp-

tion oracle, and q
(i)
E is an upper bound on the number of computations of the block

cipher required to answer the first i encryption queries made by B.

Proof Our strategy for proving this theorem is to show that if answering the LR

encryption queried never causes the block cipher to be computed on the same
value twice, then the adversary is unable to gain any significant advantage in the
LoR-CPA game. This is done using a hybrid argument that progressively replaces
the answer to each query to the LR oracle by random bits. We can then bound
the adversary’s advantage by bounding the probability that the block cipher is
queried on the same value twice using the bound inside the predicate LBad.

Let B be an LoR-CPA adversary. We have that

Adv
LoR-CPA
M (B, η) =

∣

∣

∣
Pr[Exp

LoR-CPA−1
S (B, η) = 1]− Pr[Exp

LoR-CPA−0
S (B, η) = 1]

∣

∣

∣

where Exp
LoR-CPA−b
S (B, η) is the experiment described in Definition 2. For the sake

of conciseness, in the following, we abbreviate Exp
LoR-CPA−b
S (B, η) with Expb(B, η).

The reason for the superscript will soon become clear. Let bad be the event that the
block cipher has to be computed more than once on an input value to answer one
of B’s oracle encryption queries during the execution of Expb(B, η). The event
has the same probability regardless of the bit b since, from [[cmd]]X |= Indep,
the distribution of the calls to the block cipher is independent from the message
encrypted. So, we have that

Adv
LoR-CPA
M (B, η) =

∣

∣

∣
Pr[Exp

1(B, η) = 1]− Pr[Exp
0(B, η) = 1]

∣

∣

∣

=
∣

∣

∣
Pr[Exp

1(B, η) = 1 ∧ ¬bad] + Pr[Exp
1(B, η) = 1 ∧ bad]

− Pr[Exp
0(B, η) = 1 ∧ ¬bad]− Pr[Exp

0(B, η) = 1 ∧ bad]
∣

∣

∣

≤
∣

∣

∣
Pr[Exp

1(B, η) = 1 ∧ ¬bad]− Pr[Exp
0(B, η) = 1 ∧ ¬bad]

∣

∣

∣

+
∣

∣

∣
Pr[Exp

1(B, η) = 1 ∧ bad]− Pr[Exp
0(B, η) = 1 ∧ bad]

∣

∣

∣

≤
∣

∣

∣
Pr[Exp

1(B, η) = 1 ∧ ¬bad]− Pr[Exp
0(B, η) = 1 ∧ ¬bad]

∣

∣

∣

+ Pr[bad]

The first inequality is an application of the triangle inequality, and the second is
a consequence of the fact that the value of both Pr[Exp1(B, η) = 1 ∧ bad] and
Pr[Exp0(B, η) = 1 ∧ bad] is between zero and Pr[bad].

Automated Proofs of Block Cipher Modes of Operation 21

We prove the result by showing that the quantity in absolute value in the last
inequality is equal to zero, and Pr[bad] is equal to the sum in the statement of the
Theorem.

To do this, we first need to define algorithms Cbi and Db
i for 0 ≤ i ≤ Q− 1.

Cbi : is an algorithm that has oracle access to the encryption algorithm M and
outputs a tuple σ = (σ0, . . . , σn). On input 1η, it runs algorithm B on input 1η

until it makes its ith oracle encryption query. Cbi answers B’s i− 1 first encryp-
tion oracle queries (Mj,0,Mj,1) by sending LR(Mj,0,Mj,1, b) to its encryption
oracle and relaying the answer to B. When B makes its ith oracle encryption
query (Mj,0,Mj,1), Cbi splits Mb = LR(Mi,0,Mi,1, b) into blocks of length η

and outputs (σ0, . . . , σn), where σ1 to σn are the blocks of Mb, and σ0 is all
the state information of algorithm B.

Di: is an algorithm that, on input (c, σ), restarts algorithm B just after its ith

oracle encryption query using state information σ0 and c as the answer to the
oracle query. Algorithm Di then answers all of B’s remaining oracle encryption
queries with random strings of the appropriate length.

For 0 ≤ i ≤ Q− 1 and b ∈ {0, 1}, we define Dist
b
i as the following distribution:

[E
$
← Φη;σ

$
← Cbi

M(·)
(1η) : (Sσ, ∅, ∅, E ,LE , σ)].

Clearly, all the Dist
b
i ’s are in CDist0(Γ). We define the experiments E(i,b)(B, η)

as follows:

Experiment E(i,b)(B, η):

γ
$
←− [[cmd]]Dist

b
i

b′
$
←− Di(Sγ(cn), σγ)

return b′

So by definition, E(Q−1,b)(B, η) is exactly the same as Exp
LoR-CPA−b
S (B, η), the

experiment of the LoR-CPA security game, and that as i gets smaller, E(i,b)(B, η)
progressively answers more and more of B’s LoR encryption queries with random
bits, starting from the end.

The result follows from the two following claims.
Claim 1:

Pr[bad] ≤

Q−1
∑

i=0

ǫ(i, q
(i)
E)

Proof It is clear that bad occurs exactly when a configuration in [[cmd]]Dist
b
Q−1

is bad. We have seen in Section 3.3 that

Pr[γ
$
← [[cmd]]Dist

b
Q−1 : Bad(γ)]

≤ Pr[γ
$
← Dist

b
Q−1 : Bad(γ)] + Pr[γ

$
← [[cmd]]Dist

b
Q−1 : Lbad(γ)]

≤ Pr[γ
$
← Dist

b
Q−1 : Bad(γ)] + ǫ(Q− 1, q

(Q−1)
E)

The last inequality above is a direct consequence of the fact that [[cmd]]Dist
b
Q−1 |=

LBad
(

ǫ(Q− 1, q
(Q−1)
E)

)

, which follows directly from the hypothesis in the state-

ment of the Theorem. Then, the probability that a configuration in Dist
b
Q−1 is bad

22 Martin Gagné et al.

is precisely the probability that a configuration in [[cmd]]Dist
b
Q−2 is bad, therefore:

Pr[γ
$
← [[cmd]]Dist

b
Q−1 : Bad(γ)]

≤ Pr[γ
$
← [[cmd]]Dist

b
Q−2 : Bad(γ)] + ǫ(Q− 1, q

(Q−1)
E)

We then repeat the reasoning above on Pr[γ
$
← [[cmd]]Dist

b
Q−2 : Bad(γ)] and

combine it with the above to get that:

Pr[γ
$
← [[cmd]]Dist

b
Q−1 : Bad(γ)]

≤ Pr[γ
$
← [[cmd]]Dist

b
Q−3 : Bad(γ)] + ǫ(Q− 2, q

(Q−2)
E) + ǫ(Q− 1, q

(Q−1)
E)

Repeating this all the way down to Dist
b
0, we obtain that:

Pr[γ
$
← [[cmd]]Dist

b
Q−1 : Bad(γ)]

≤ Pr[γ
$
← Dist

b
0 : Bad(γ)] +

Q−1
∑

i=0

ǫ(i, q
(i)
E)

≤

Q−1
∑

i=0

ǫ(i, q
(i)
E)

because in all configurations of Dist
b
0, LE is empty and therefore the probability

that a configuration is bad is zero. ⊓⊔

Claim 2:
∣

∣

∣
Pr[Exp

1(B, η) = 1 ∧ ¬bad]− Pr[Exp
0(B, η) = 1 ∧ ¬bad]

∣

∣

∣
= 0

Proof We know that
∣

∣

∣
Pr[Exp

1(B, η) = 1 ∧ ¬bad]− Pr[Exp
0(B, η) = 1 ∧ ¬bad]

∣

∣

∣
=

∣

∣

∣
Pr[E(Q−1,1)(B, η) = 1 ∧ ¬bad]− Pr[E(Q−1,0)(B, η) = 1 ∧ ¬bad]

∣

∣

∣

since the experiments are the same. Our plan is to show that for each i, 1 ≤ i ≤
Q− 1, and b ∈ {0, 1},

∣

∣

∣
Pr[E(i,b)(B, η) = 1 ∧ ¬bad]− Pr[E(i−1,b)(B, η) = 1 ∧ ¬bad]

∣

∣

∣
= 0

As a result, we obtain that
∣

∣

∣
Pr[E(Q−1,1)(B, η) = 1 ∧ ¬bad]− Pr[E(Q−1,0)(B, η) = 1 ∧ ¬bad]

∣

∣

∣

=
∣

∣

∣
Pr[E(0,1)(B, η) = 1 ∧ ¬bad]− Pr[E(0,0)(B, η) = 1 ∧ ¬bad]

∣

∣

∣
= 0

Since experiment E0,1(B, η) is indistinguishable from experiment E0,0(B, η) as in
both cases, the LoR encryption queries are answered with random bits independent
from the query’s input.

Automated Proofs of Block Cipher Modes of Operation 23

So we only have left to prove that for each i, 1 ≤ i ≤ Q− 1, and b ∈ {0, 1},

∣

∣

∣
Pr[E(i,b)(B, η) = 1 ∧ ¬bad]− Pr[E(i−1,b)(B, η) = 1 ∧ ¬bad]

∣

∣

∣
= 0

We note that the only difference between experiment E(i,b)(B, η) and experiment
E(i−1,b)(B, η) is that in the former, the ith LoR encryption query is answered using
the encryption mode, whereas in the latter, it is answered with random bits.

Let bad[1,i] be the event that the block cipher is computed on a given value
more than once while answering one of the first i LoR queries, and let bad[i+1,Q] be
the event that that the block cipher is queried on a previous value while answering
the LoR queries i+1 to Q. It is clear that bad = bad[1,i] ∨ bad[i+1,Q]. Also, we get
from [[cmd]]X |= Indep that bad[i+1,Q] is independent from bad[1,i], and it is also

clearly independent from E(i,b)(B, η) = 1 and E(i−1,b)(B, η) = 1 since in these
experiments, the queries i + 1 to Q are answered with random bits rather than
using the encryption mode. Therefore,

Pr[E(i,b)(B, η) = 1 ∧ ¬bad] = Pr[E(i,b)(B, η) = 1 ∧ ¬bad[1,i] ∧ ¬bad[i+1,Q]]

= Pr[E(i,b)(B, η) = 1 ∧ ¬bad[1,i]] · Pr[¬bad[i+1,Q]],

and similarly for Pr[E(i−1,b)(B, η) = 1 ∧ ¬bad]. So it suffices to prove that

∣

∣

∣
Pr[E(i,b)(B, η) = 1 ∧ ¬bad[1,i]]− Pr[E(i−1,b)(B, η) = 1 ∧ ¬bad[1,i]]

∣

∣

∣
= 0.

We note that the event ¬bad[1,i] is exactly the same as the event that the config-
uration sampled in [[cmd]]Dist

b
i is not bad. However, since Dist

b
i ∈ CDist0, the

statement of the Theorem tells us that [[cmd]]Dist
b
i |= Indis(cn; ∅). Thus, the dis-

tribution of the value of (Sγ(cn), σγ) in [[cmd]]Dist
b
i given that the configuration

γ is not bad is the same as the distribution of (u, σγ) for a random string u of the
same length as Sγ(cn). That is, the distribution of the answer to the ith query in
E(i,b) is the same as that of a randomly selected value of the same length, exactly
the same as in E(i−1,b). Hence

∣

∣

∣
Pr[E(i,b)(B, η) = 1 ∧ ¬bad[1,i]]− Pr[E(i−1,b)(B, η) = 1 ∧ ¬bad[1,i]]

∣

∣

∣
= 0.

which concludes the proof. ⊓⊔

This completes the proof of the theorem. ⊓⊔

5 Hoare Logic

Hoare logic rules have the form {ϕ}cmd{ϕ′}, and mean that execution of command
cmd in any distribution that satisfies ϕ leads to a distribution that satisfies ϕ′.
Using Hoare logic terminology, this means that the triple {ϕ}cmd{ϕ′} is valid.

We first present the rules grouped together according to their corresponding
commands in Section 5.1, then we prove the soundness of all the rules in Sec-
tion 5.2.

24 Martin Gagné et al.

5.1 Logic Rules

In all the rules, unless stated otherwise, we assume that, in a predicate Indis(t;V),
the set V is a subset of Var ∪ {ℓE}, and in a predicate Lctr(t;w; i;V ;V ′) or
Ectr(t;w; i;V ;V ′), the sets V and V ′ are subsets of Var and the variables t, u
and w are not (syntactically) equal to x, y or z.

5.1.1 General rules

First, we recall a few general rules for consequence, sequential composition and
conjunction. Let φ1, φ2, φ3, φ4 be any four formulas in our logic, and let cmd, cmd1,
cmd2 be any three commands.

(Csq) if φ1 ⇒ φ2, φ3 ⇒ φ4 and {φ2}cmd{φ3}, then {φ1}cmd{φ4}
(Seq) if {φ1}cmd1{φ2} and {φ2}cmd2{φ3}, then {φ1}cmd1; cmd2{φ3}
(Conj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∧ φ3}cmd{φ2 ∧ φ4}

We present these rules without proof because they are well known.

5.1.2 Generic preservation rules:

The generic preservation rules show how predicates are preserved by most com-
mands when the variables contained in the predicates are distinct from the vari-
ables contained in the command. We have generic preservation rules for all com-
mands except for x := E(y), which requires special treatment because the function
E is unknown to the adversary, because that command is the only command that
modifies LE , and because it can have a more complicated effect on some of the
predicates.

Before we introduce the preservation rules, we first need to define the concept
of constructible expression. Generally, we say that an expression e is constructible
from V if e has polynomial size and it can be constructed by combining variables
in V using polynomial-time operations. Since our Hoare logic treats commands
individually, we are only interested in expressions that consist of the right side of
a command.

Definition 7 We say that a variable x is constructible from V if one of the fol-
lowing holds:

– the variable x is assigned a value by a command of the form x
$
← U(l),

– the variable x is assigned a value by a command of the form x := y or x := y+1,
where y ∈ V ,

– the variable x is assigned a value by a command of the form x := y ⊕ z or
x := y‖z, where y, z ∈ V .

This concept is useful in our preservation rules because if, say, the value of a
variable t is randomly distributed and independent from variables V , then it seems
clear the value of t will also be randomly distributed and independent from any
expression that is constructible from V .

Let cmd be either x
$
←− U , x := y, x := y‖z, x := y⊕ z or x := y+ 1. Then the

the preservation rules are as follows:

Automated Proofs of Block Cipher Modes of Operation 25

(G1) {LBad (ǫ)} cmd {LBad (ǫ)}
(G2) {Indep} cmd {Indep}
(G3) {Indis(t;V)} cmd {Indis(t;V)} if x 6∈ V unless x is constructible from

V − t, even if t = y or t = z

(G4) {Lctr(t;w; i;V ;V ′)} cmd {Lctr(t;w; i;V ;V ′)} if y, z 6∈ V ∪ V ′

(G5) {Lctr(t;w; i;V ;V ′)} cmd {Lctr(t;w; i;V ;V ′, x)} if [cmd is not x := y

nor x := y + 1, and y ∈ V ∪ V ′ or z ∈ V ∪ V ′, even if t = y or t = z] or
[cmd is x := y or x := y + 1, and y ∈ V ′]

(G6) {Ectr(t;w; i;V ;V ′)} cmd {Ectr(t;w; i;V ;V ′)} if y, z 6∈ V ∪ V ′

(G7) {Ectr(t;w; i;V ;V ′)} cmd {Ectr(t;w; i;V ;V ′, x)} if [cmd is not x := y+1
or x := y, and y ∈ V ∪ V ′ or z ∈ V ∪ V ′, even if t = y or t = z] or [cmd

is x := y + 1 and y 6∈ V]
(G8) {ctr(t;w; i)} cmd {ctr(t;w; i)} even if {t, w} ∩ {y, z} 6= ∅ or if cmd is

y := E(y)

5.1.3 Random sampling:

We have only one rule for the random sampling, which states that if a variable is
assigned a value sampled at random, then that value can be used as a counter and
it is, quite naturally, indistinguishable from a random value.

(R1) {true} x
$
←− U {Indis(x;Var∗) ∧ Lctr(x;x; 0; {x}; ∅) ∧ Ectr(x;x; 0; {x}; ∅)}

5.1.4 Assignment:

The rules for assignment are mostly trivial consequences of the fact that after
executing x := y, the variable x ends up containing the same value as the variable
y. We note however that the predicates Lctr(t;w; i;V ;V ′) and Ectr(t;w; i;V ;V ′)
must be updated when y ∈ V to account for the fact that x is now also a counter
variable containing the same value as y.

(A1) {Indis(y;V)} x := y {Indis(x;V)} provided y 6∈ V
(A2) {ctr(y;w; i)} x := y {ctr(x;w; i)} even if y = w

(A3) {Lctr(t;w; i;V ;V ′)} x := y {Lctr(t;w; i;V, x;V ′)} if y ∈ V , even if t = y

or w = y

(A4) {Ectr(t;w; i;V ;V ′)} x := y {Ectr(t;w; i;V, x;V ′)} if y ∈ V , even if t = y

or w = y

5.1.5 XOR operator:

The rule for the exclusive-or is reminiscent of the application of a one-time-pad
encryption of z using y as a key: if z is XOR-ed with a random value independent
from z, then the result is indistinguishable from a random value provided that the
value of y is not given. For this rules, it should be clear that the roles of y and z

can be reversed since the exclusive-or operation is commutative.

(X1) {Indis(y;V, z)} x := y ⊕ z {Indis(x;V, z)} if y 6= z and x, y 6∈ V

26 Martin Gagné et al.

5.1.6 Concatenation:

The rule for concatenation states that the concatenation of two strings that are
indistinguishable from random and independent from each other is also indistin-
guishable from random.

(C1) {Indis(y;V, z) ∧ Indis(z;V, y)} x := y‖z {Indis(x;V)} if y, z 6∈ V and
y 6= z

5.1.7 Block cipher:

We have ten rules for the computation of the block cipher. The first two rules up-
date the probability that a configuration is locally bad according to the probability
that the value of y is in LE .dom. The next two preserve the predicate about the
independence of the values on which the block cipher is computed from previous
values. The fifth states that, after the execution of x := E(y), the distribution of
the value of x is uniform random and independent from all other values, which is
immediate from the (“simulated”) semantics of the command. Rules (B6) to (B11)
are preservations rules.

(B1) {Indis(y; {ℓE}) ∧ LBad (ǫ)} x := E(y) {LBad
(

ǫ+ |LE |
2η

)

}

(B2) {Ectr(y;w; i;V ;V ′) ∧ LBad (ǫ)} x := E(y) {LBad
(

ǫ+ |LE |
2η

)

}

(B3) {Indis(y; {ℓE}) ∧ Indep} x := E(y) {Indep}
(B4) {Ectr(y;w; i;V ;V ′) ∧ Indep} x := E(y) {Indep}
(B5) {true} x := E(y) {Indis(x;Var∗) ∧ Lctr(x;x; 0; {x}; ∅)∧

Ectr(x;x; 0; {x}; ∅)}
(B6) {Indis(t;V)} x := E(y) {Indis(t;V, x)} even if t = y

(B7) {Indis(t;V, y, ℓE)} x := E(y) {Indis(t;V, x, y, ℓE)} (here, t 6= y)
(B8) {Lctr(t;w; i;V ;V ′)} x := E(y) {Lctr(t;w; i;V ;V ′)} provided y 6∈ V ′,

even if t = y

(B9) {Lctr(t;w; i;V ;V ′)∧ Indis(t;Var∗ \W)} x := E(y) {Lctr(t;w; i;V ;V ′)}
where W = (V ∪ V ′) \ {y}, provided t 6= y

(B10) {Ectr(t;w; i;V ′′, V ′′′) ∧ Ectr(y;u; j;V ;V ′)} x := E(y)
{Ectr(t;w; i;V ′′;V ′′′)} provided [w = u and i 6= j] or [w 6= u]

(B11) {Ectr(t;w; i;V ;V ′)∧ Indis(t;Var∗ \W)} x := E(y) {Ectr(t;w; i;V ;V ′)}
where W = (V ∪ V ′) \ {y}, provided t 6= y

5.1.8 Increment:

We have five rules for the increment operation. The first rule states that if the
value being incremented was uniformly distributed, then so is the incremented
value. The following two rules update the counter predicates. The last two rules
are preservation rules that cover cases that were not yet covered by rules (G4) to
(G7).

Automated Proofs of Block Cipher Modes of Operation 27

(I1) {Indis(y;V)} x := y + 1 {Indis(x;V)} if y 6∈ V
(I2) {Lctr(y; z; i;V ;V ′)} x := y + 1 {Lctr(x; z; i+ 1;V, x;V ′)∧

Ectr(x; z; i+ 1;V, x;V ′)}
(I3) {ctr(y; z; i)} x := y + 1 {ctr(x; z; i+ 1)}
(I4) {Lctr(t;w; i;V ;V ′) ∧ ctr(y, w, j)} x := y + 1 {Lctr(t;w; i;V, x;V ′)} if

j < i

(I5) {Ectr(t;w; i;V ;V ′)} x := y + 1 {Ectr(t;w; i;V, x;V ′)} if y ∈ V , even if
t = y

5.1.9 For loop:

We have only one rule for the For loop, which states that if there is a formula ψ(k)
such that whenever ψ(k− 1) holds before the execution of iteration k in the loop,
ψ(k) will hold at the end of the kth iteration, if the loop runs from index i to index
j, and that ψ(i− 1) holds before the execution of the loop, then ψ(j) will hold at
the end.

(F1) {ψ(p− 1)} for k = p to q do: [ck] {ψ(q)} provided {ψ(k− 1)} ck {ψ(k)}
for p ≤ k ≤ q

Finding an invariant ψ(i) such that the rule above can be applied can be difficult.
We discuss heuristics to discover this invariant in Section 7.1.

5.2 Proof of our Rules

Our full set of rules is summarized in Table 3. We now prove the soundness of all
our rules.

5.2.1 Generic preservation rules:

Before we state the preservation rules, we prove two lemmas that will be used in the
proof of many of the rules. First, the following shows that the indistinguishability
from random values is preserved by a command when the variable that is assigned
a value by the command is not present in any of the sets under consideration.

Lemma 6 Let x, t ∈ Var, V ⊆ (Var∗ − x) and X ∈ CDist(Γ) be such that

[γ
$
← X : (Sγ(t), Sγ(V − t), σγ)] =

[γ
$
← X;u

$
← U(len(t)) : (u, Sγ(V − t), σγ)].

In addition, let cmd be either x
$
←− U , x := y, x := y‖z, x := y ⊕ z or x := y + 1,

with x 6= t. Then,

[γ
$
← [[cmd]]X : (Sγ(t), Sγ(V − t), σγ)] =

[γ
$
← [[cmd]]X;u

$
← U(len(t)) : (u, Sγ(V − t), σγ)].

28 Martin Gagné et al.

NOTE: Unless stated otherwise, the variables t, u and v are not (syntactically) equal to
x, y or z.
Generic Preservation

cmd is either x
$
←− U , x := y, x := y‖z, x := y ⊕ z or x := y + 1

(G1) {LBad (ǫ)} cmd {LBad (ǫ)}
(G2) {Indep} cmd {Indep}
(G3) {Indis(t;V)} cmd {Indis(t;V)} if x 6∈ V unless x is constructible from V − t, even

if t = y or t = z
(G4) {Lctr(t;w; i;V ;V ′)} cmd {Lctr(t;w; i;V ;V ′)} if y, z 6∈ V ∪ V ′

(G5) {Lctr(t;w; i;V ;V ′)} cmd {Lctr(t;w; i;V ;V ′, x)} if [cmd is not x := y nor x := y+1,
and y ∈ V ∪V ′ or z ∈ V ∪V ′, even if t = y or t = z] or [cmd is x := y or x := y+1,
and y ∈ V ′]

(G6) {Ectr(t;w; i;V ;V ′)} cmd {Ectr(t;w; i;V ;V ′)} if y, z 6∈ V ∪ V ′

(G7) {Ectr(t;w; i;V ;V ′)} cmd {Ectr(t;w; i;V ;V ′, x)} if [cmd is not x := y or x := y+1,
and y ∈ V ∪V ′ or z ∈ V ∪V ′, even if t = y or t = z] or [cmd is x := y or x := y+1
and y ∈ V ′]

(G8) {ctr(t;w; i)} cmd {ctr(t;w; i)} even if {t, w} ∩ {y, z} 6= ∅ or if cmd is y := E(y)
Random Assignment

(R1) {true} x
$
←− U {Indis(x;Var∗) ∧ Lctr(x;x; 0; {x}; ∅) ∧ Ectr(x;x; 0; {x}; ∅)}

Assignment

(A1) {Indis(y;V)} x := y {Indis(x;V)} provided y 6∈ V
(A2) {ctr(y;w; i)} x := y {ctr(x;w; i)} even if y = w
(A3) {Lctr(t;w; i;V ;V ′)} x := y {Lctr(t;w; i;V, x;V ′)} if y ∈ V even if t = y or w = y
(A4) {Ectr(t;w; i;V ;V ′)} x := y {Ectr(t;w; i;V, x;V ′)} if y ∈ V , even if t = y or w = y
XOR Operation

(X1) {Indis(y;V, z)} x := y ⊕ z {Indis(x;V, z)} if y 6= z and x, y 6∈ V
and similarly with the roles and y and z reversed.
Concatenation

(C1) {Indis(y;V, z) ∧ Indis(z;V, y)} x := y‖z {Indis(x;V)} if y, z 6∈ V and y 6= z
Block Cipher

(B1) {Indis(y; {ℓE}) ∧ LBad (ǫ)} x := E(y) {LBad
(

ǫ+
|LE |
2η

)

}

(B2) {Ectr(y;w; i;V ;V ′) ∧ LBad (ǫ)} x := E(y) {LBad
(

ǫ+
|LE |
2η

)

}

(B3) {Indis(y; {ℓE}) ∧ Indep} x := E(y) {Indep}
(B4) {Ectr(y;w; i;V ;V ′) ∧ Indep} x := E(y) {Indep}
(B5) {true} x := E(y) {Indis(x;Var∗) ∧ Lctr(x;x; 0; {x}; ∅) ∧ Ectr(x;x; 0; {x}; ∅)}
(B6) {Indis(t;V)} x := E(y) {Indis(t;V, x)} even if t = y, provided ℓE 6∈ V
(B7) {Indis(t;V, y, ℓE)} x := E(y) {Indis(t;V, x, y, ℓE)} (here, t 6= y)
(B8) {Lctr(t;w; i;V ;V ′)} x := E(y) {Lctr(t;w; i;V ;V ′)} provided y 6∈ V ′, even if t = y
(B9) {Lctr(t;w; i;V ;V ′)∧ Indis(t;Var∗ \W)} x := E(y) {Lctr(t;w; i;V ;V ′)} where W =

(V ∪ V ′) \ {y}, provided t 6= y
(B10) {Ectr(t;w; i;V ′′, V ′′′) ∧ Ectr(y;u; j;V ;V ′)} x := E(y) {Ectr(t;w; i;V ′′;V ′′′)} pro-

vided [w = u and i 6= j] or [w 6= u]
(B11) {Ectr(t;w; i;V ;V ′)∧ Indis(t;Var∗ \W)} x := E(y) {Ectr(t;w; i;V ;V ′)} where W =

(V ∪ V ′) \ {y}, provided t 6= y
Increment

(I1) {Indis(y;V)} x := y + 1 {Indis(x;V)} if y 6∈ V
(I2) {Lctr(y; z; i;V ;V ′)} x := y + 1 {Lctr(x; z; i+ 1;V, x;V ′)∧

Ectr(x; z; i+ 1;V, x;V ′)}
(I3) {ctr(y; z; i)} x := y + 1 {ctr(x; z; i+ 1)}
(I4) {Lctr(t;w; i;V ;V ′) ∧ ctr(y, w, j)} x := y + 1 {Lctr(t;w; i;V, x;V ′)} if j < i
(I5) {Ectr(t;w; i;V ;V ′)} x := y + 1 {Ectr(t;w; i;V, x;V ′)} if y ∈ V , even if t = y
For Loop

(F1) {ψ(p − 1)} for k = p to q do: [ck] {ψ(q)} provided {ψ(k − 1)} ck {ψ(k)} for
p ≤ k ≤ q

Table 3 Hoare logic rules

Automated Proofs of Block Cipher Modes of Operation 29

Proof Since the value of t and the value of the variables in V are unchanged by
the command, we easily find that

[γ
$
← X : (Sγ(t), Sγ(V − t), σγ)] = [γ

$
← [[cmd]]X : (Sγ(t), Sγ(V − t), σγ)]

and

[γ
$
← X;u

$
← U(len(t)) : (u, Sγ(V − t), σγ)] =

[γ
$
← [[cmd]]X;u

$
← U(len(t)) : (u, Sγ(V − t), σγ)].

The result then follows trivially from these two equalities. ⊓⊔

Next, we show that if a value of a variable t is indistinguishable from a random
value when given the values of variable in the set V , then adding to V variables
whose values is constructible from V − t does not help in distinguishing t from a
random value. The following lemma shows the result for single commands, but it
should be clear that this can be generalized to any poly-time computable value
using a simple structural induction.

Lemma 7 For any distribution X ∈ Dist(Γ), if X |= Indis(t;V), cmd is either

x
$
← U(l), x := y, x := y + 1, x := y ⊕ z or x := y‖z and x is constructible from

V − t, then [[cmd]](X) |= Indis(t;V, x).

Proof Let X |= Indis(t;V). We first prove the result when the command is x
$
←

U(l), and then we can prove the result for all other commands together.

When the command is x
$
← U(l) for some l, then, following the semantics, we

have that

[γ
$
← [[x

$
← U(l)]]X : (Sγ(t), Sγ(V, x− t), σγ)]

= [γ
$
← X;u0

$
← U(l) : (Sγ(t), Sγ(V − t) ∪ {u0}, σγ)]

= [γ
$
← X;u0

$
← U(l);u1

$
← U(len(t)) : (u1, Sγ(V − t) ∪ {u0}, σγ)]

= [γ
$
← [[x

$
← U(l)]]X;u1

$
← U(len(t)) : (u1, Sγ(V, x− t), σγ)],

as required.
The proofs for the cases when the command is either x := y, x := y + 1,

x := y ⊕ z or x := y‖z are very similar so we prove the result for x := y ⊕ z and
leave the others to the reader. Since x is constructible from V − t (and therefore
y, z ∈ V − t), we get that the values of the variables in V − t uniquely determine
the value of x. Therefore, following the semantic function for x := y ⊕ z, for any
possible value νx for x, νσ for σ and set of values νV −t for V − t, which contains
a value νy for y and νz for z, we have

Pr[γ
$
← X : (Sγ(t) = νt) ∧ (Sγ(V − t) = νV −t) ∧ (σγ = νσ)]

= Pr[γ
$
← [[x := y ⊕ z]]X :

(Sγ(t) = νt) ∧ (Sγ(V − t) = νV −t) ∧ (Sγ(x) = νy ⊕ νz) ∧ (σγ = νσ)].

30 Martin Gagné et al.

And we can get the following similarly:

Pr[γ
$
← X;u

$
← U(len(t)) : (u = νt) ∧ (Sγ(V − t) = νV −t) ∧ (σγ = νσ)]

= Pr[γ
$
← [[x := y ⊕ z]]X;u

$
← U(len(t)) :

(u = νt) ∧ (Sγ(V − t) = νV −t) ∧ (Sγ(x) = νy ⊕ νz) ∧ (σγ = νσ)].

Combining these two with the fact that X |= Indis(t;V), that is,

[γ
$
← X : (Sγ(t), Sγ(V − t), σγ)] =

[γ
$
← X;u

$
← U(len(t)) : (u, Sγ(V − t), σγ)]

we immediately obtain the following

[γ
$
← [[x := y ⊕ z]]X : (Sγ(t), Sγ(V − t) ∪ {S(x)}, σγ)] =

[γ
$
← [[x := y ⊕ z]]X;u

$
← U(len(t)) : (u, Sγ(V − t) ∪ {S(x)}, σγ)]

which by definition, means [[x := y ⊕ z]]X |= Indis(t;V, x). ⊓⊔

Lemma 8 Let cmd be either x
$
←− U , x := y, x := y‖z, x := y ⊕ z or x := y + 1.

Then the following rules are sound:
(G1) {LBad (ǫ)} cmd {LBad (ǫ)}
(G2) {Indep} cmd {Indep}
(G3) {Indis(t;V)} cmd {Indis(t;V)} if x 6∈ V unless x is constructible from

V − t, even if t = y or t = z

(G4) {Lctr(t;w; i;V ;V ′)} cmd {Lctr(t;w; i;V ;V ′)} if y, z 6∈ V ∪ V ′

(G5) {Lctr(t;w; i;V ;V ′)} cmd {Lctr(t;w; i;V ;V ′, x)} if [cmd is not x := y

nor x := y + 1, and y ∈ V ∪ V ′ or z ∈ V ∪ V ′, even if t = y or t = z]
or [cmd is x := y or x := y + 1, and y ∈ V ′]

(G6) {Ectr(t;w; i;V ;V ′)} cmd {Ectr(t;w; i;V ;V ′)} if y, z 6∈ V ∪ V ′

(G7) {Ectr(t;w; i;V ;V ′)} cmd {Ectr(t;w; i;V ;V ′, x)} if [cmd is not x := y+1
or x := y, and y ∈ V ∪ V ′ or z ∈ V ∪ V ′, even if t = y or t = z] or
[cmd is x := y + 1 and y 6∈ V]

(G8) {ctr(t;w; i)} cmd {ctr(t;w; i)} even if {t, w} ∩ {y, z} 6= ∅ or if cmd is
y := E(y)

Proof empty line

(G1) Since cmd does not alter LE , and that LBad (ǫ) is a property of LE alone,
the execution of cmd does not change the probability that a configuration is
locally bad.

(G2) Since cmd does not alter LE , and that Indep is a property of LE alone, the
execution of cmd does not change whether the predicate holds.

(G3) If x 6∈ V , the result follows directly from Lemma 6. If x ∈ V and x is
constructible from V −t, we note that x being constructible from V −t precludes
the cases, when applicable, that t = y or t = z, and so we obtain the result by
combining the above with Lemma 7.

Automated Proofs of Block Cipher Modes of Operation 31

(G4) Let X |= Lctr(t;w; i;V ;V ′). First, we find from the semantics that since
t 6∈ {x, y, z} and y, z 6∈ V ∪ V ′ = T Q(w), the command will not modify
either the table Tw or the set Qw, so we only have left to verify that t is
indistinguishable from a random value when given the values of all the variables
in Var \ (V ∪V ′) and the first coordinates of all the values in LE whose second
coordinate is not in V , which follows from Lemma 6.

(G5) We note that when cmd is not x := y nor x := y+1, then the variable x gets
added to Qw if and only if one of the variables appearing on the right side of
the command is in T Q(w) = V ∪V ′, whereas when cmd is x := y or x := y+1,
the variable x gets added to Qw if and only if y ∈ Qw. These are precisely the
conditions listed in the rule. Otherwise, the proof proceeds exactly as in (G4)

(G6),(G7) The proof are essentially the same as for (G4) and (G5) respectively,
except that t has to be indistinguishable from a random value when given the
values of all the variables in Var \ (V ∪ V ′) and the first coordinates of all
the values in LE whose second coordinate is not in V − x. This follows from
Lemma 7.

(G8) This is trivial since once a variable gets added to Tw[i], it is never removed.

⊓⊔

5.2.2 Random sampling:

Lemma 9 The following rule is sound:

(R1) {true} x
$
←− U {Indis(x;Var∗) ∧ Lctr(x;x; 0; {x}; ∅) ∧ Ectr(x;x; 0; {x}; ∅)}

Proof Let X be any distribution. The fact that [[x
$
←− U]]X |= Indis(x;Var∗) is

immediate, and we can see from the semantics that the execution of the com-
mand will create a new table Tx containing only x, and the indistinguishability
from randomness required for Lctr(x;x; 0; {x}; ∅) and Ectr(x;x; 0; {x}; ∅) are im-

plied by Indis(x;Var∗), therefore, [[x
$
←− U]]X |= Lctr(x;x; 0; {x}; ∅) and [[x

$
←−

U]]X |= Ectr(x;x; 0; {x}; ∅). ⊓⊔

5.2.3 Assignment:

Lemma 10 The following rule is sound:
(A1) {Indis(y;V)} x := y {Indis(x;V)} provided y 6∈ V
(A2) {ctr(y;w; i)} x := y {ctr(x;w; i)} even if y = w

(A3) {Lctr(t;w; i;V ;V ′)} x := y {Lctr(t;w; i;V, x;V ′)} if y ∈ V , even if t = y

or w = y

(A4) {Ectr(t;w; i;V ;V ′)} x := y {Ectr(t;w; i;V, x;V ′)} if y ∈ V , even if
t = y or w = y

Proof The first two rules are trivial consequences of the semantics, particularly
the fact that the value of x is the same as the value of y. The last two are sim-
ple consequences of the fact that if, for any configuration (S, T ,Q, E ,LE , σ) we
have y ∈ Tw[j] for some j, then we have that x ∈ T ′

w[j] for any configuration

(S′, T ′,Q′, E ′,LE
′, σ′)

$
← [[x := y]](S, T ,Q, E ,LE , σ). ⊓⊔

32 Martin Gagné et al.

5.2.4 XOR operator:

Lemma 11 The following rule is sound:
(X1) {Indis(y;V, z)} x := y ⊕ z {Indis(x;V, z)} if y 6= z and x, y 6∈ V

Proof Define V ′ = V ∪ {z}, and let X |= Indis(y;V ′, y) with y 6= z, y 6∈ V ′, so
V ′ − y = V ′ and therefore

[γ
$
← X : (Sγ(y), Sγ(V

′), σγ)] =

[γ
$
← X;u

$
← U(len(y)) : (u, Sγ(V

′), σγ)].

So for any fixed value ν for y, νσ for σ and set of values νV ′ for V ′ that occurs
with non-zero probability in X, we have that

Pr[γ
$
← X : (Sγ(y) = ν) ∧

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

= Pr[γ
$
← X : (Sγ(y) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]·

Pr[γ
$
← X :

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)].

Now, from X |= Indis(y;V ′, y), we easily get that

Pr[γ
$
← X : (Sγ(y) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)] =
1

2len(y)
,

and, since conditioning on S(V ′) = νV ′ fixes the value of the variable z (because
z ∈ V ′), we also get

Pr[γ
$
← X : (Sγ(y)⊕ Sγ(z) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)] =
1

2len(y)
.

Since the semantic function of the command x := y⊕ z does not change the value
of σ or that of any variable in V ′, we find that

Pr[γ
$
← X :

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

= Pr[γ
$
← [[x := y ⊕ z]]X :

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)],

and by definition of the semantic function of the command x := y ⊕ z, we get

Pr[γ
$
← X : (Sγ(y)⊕ S(z) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

= Pr[γ
$
← [[x := y ⊕ z]]X : (Sγ(x) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

Combining all the above, we get

Pr[γ
$
← X : (Sγ(y) = ν) ∧

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

= Pr[γ
$
← X : (Sγ(y) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]·

Pr[γ
$
← X :

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

= Pr[γ
$
← [[x := y ⊕ z]]X : (Sγ(x) = ν) |

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]·

Pr[γ
$
← [[x := y ⊕ z]]X :

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

= Pr[γ
$
← [[x := y ⊕ z]]X : (Sγ(x) = ν) ∧

(

Sγ(V
′) = νV ′

)

∧ (σγ = νσ)]

Automated Proofs of Block Cipher Modes of Operation 33

It therefore follows that

[γ
$
← [[x := y ⊕ z]]X : (Sγ(x), Sγ(V

′), σγ)] =

[γ
$
← [[x := y ⊕ z]]X;u

$
← U(len(x)) : (u, Sγ(V

′), σγ)],

and so [[x := y ⊕ z]]X |= Indis(x;V, x, z) as required. ⊓⊔

5.2.5 Concatenation:

Lemma 12 The following rule is sound:
(C1) {Indis(y;V, z) ∧ Indis(z;V, y)} x := y‖z {Indis(x;V)} if y, z 6∈ V and

y 6= z

Proof Let X be a distribution such that X |= Indis(y;V, z) ∧ Indis(z;V, y) with
y, z 6∈ V . From X |= Indis(y;V, z) and y 6= z, we get that

[γ
$
← X : (Sγ(y)‖Sγ(z), Sγ(V), σγ)] =

[γ
$
← X;u

$
← U(len(y)) : (u‖Sγ(z), Sγ(V), σγ)].

This is obtained simply by rearranging the information in the definition of X |=
Indis(y;V, z). Similarly, from X |= Indis(z;V, y), we get that X |= Indis(z;V) from
Lemma 1, so that

[γ
$
← X;u1

$
← U(len(y)) : (u1‖Sγ(z), Sγ(V), σγ)] =

[γ
$
← X;u1

$
← U(len(y));u2

$
← U(len(z)) : (u1‖u2, Sγ(V), σγ)].

Since the concatenation of two independent, randomly sampled string has the
same distribution as a single randomly sampled string of the same length, and
since x := y‖z does not change the value of the variables in V , we get

[γ
$
← X;u1

$
← U(len(y));u2

$
← U(len(z)) : (u1‖u2, Sγ(V), σγ)] =

[γ
$
← [[x := y‖z]]X;u

$
← U(len(y) + len(z)) : (u, Sγ(V), σγ)].

Combining all these, we obtain that

[γ
$
← [[x := y‖z]]X : (Sγ(x), Sγ(V), σγ)] =

[γ
$
← [[x := y‖z]]X;u

$
← U(len(y) + len(z)) : (u, Sγ(V), σγ)],

which means that [[x := y‖z]]X |= Indis(x;V), as required. ⊓⊔

34 Martin Gagné et al.

5.2.6 Block cipher:

Lemma 13 The following rules are sound:

(B1) {Indis(y; {ℓE}) ∧ LBad (ǫ)} x := E(y) {LBad
(

ǫ+ |LE |
2η

)

}

(B2) {Ectr(y;w; i;V ;V ′) ∧ LBad (ǫ)} x := E(y) {LBad
(

ǫ+ |LE |
2η

)

}

(B3) {Indis(y; {ℓE}) ∧ Indep} x := E(y) {Indep}
(B4) {Ectr(y;w; i;V ;V ′) ∧ Indep} x := E(y) {Indep}
(B5) {true} x := E(y) {Indis(x;Var∗) ∧ Lctr(x;x; 0; {x}; ∅)∧

Ectr(x;x; 0; {x}; ∅)}
(B6) {Indis(t;V)} x := E(y) {Indis(t;V, x)} even if t = y

(B7) {Indis(t;V, y, ℓE)} x := E(y) {Indis(t;V, x, y, ℓE)} (here, t 6= y)
(B8) {Lctr(t;w; i;V ;V ′)} x := E(y) {Lctr(t;w; i;V ;V ′)} provided y 6∈ V ′,

even if t = y

(B9) {Lctr(t;w; i;V ;V ′)∧ Indis(t;Var∗ \W)} x := E(y) {Lctr(t;w; i;V ;V ′)}
where W = (V ∪ V ′) \ {y}, provided t 6= y

(B10) {Ectr(t;w; i;V ′′, V ′′′) ∧ Ectr(y;u; j;V ;V ′)} x := E(y)
{Ectr(t;w; i;V ′′;V ′′′)} provided [w = u and i 6= j] or [w 6= u]

(B11) {Ectr(t;w; i;V ;V ′)∧ Indis(t;Var∗ \W)} x := E(y) {Ectr(t;w; i;V ;V ′)}
where W = (V ∪ V ′) \ {y}, provided t 6= y

Proof empty line

(B1) LetX |= Indis(y; {ℓE})∧LBad (ǫ). Since the command x := E(y) has the effect
of adding the pair (S(y), y) to LE , if a configuration (S, σ, E , T ,Q,LE) ← X

was not locally bad, but becomes locally bad as a result of the execution
of x := E(y), then it must be the case that S(y) ∈ LE .dom. Therefore, the

probability Pr[γ
$
← [[x := E(y)]]X : LBad(γ)] is no more than Pr[γ

$
← X :

LBad(γ)] + Pr[γ
$
← X : S(y) ∈ LE .dom], which, as we saw in Corollary 1, is

precisely ǫ+ |LE |
2η since the block cipher is a function from {0, 1}η to {0, 1}η

(B2) The proof is similar to the proof of (B1), the only difference is that we need
Corollary 2 instead of Corollary 1.

(B3) Let X |= Indis(y; {ℓE})∧Indep. Since X |= Indep, and the command x := E(y)
only adds (S(y), y) to LE , to obtain [[x := E(y)]]X |= Indep, we only need to
prove the following:

[γ
$
← [[x := E(y)]]X : (Sγ(y), {s

′ : (s′,⊥) ∈ LEγ}, σγ))] =

[γ
$
← [[x := E(y)]]X;u

$
← U(len(y)) :

(u, {s′ : (s′,⊥) ∈ LEγ}, σgamma)]

which is clearly implied by X |= Indis(y; {ℓE}), and the fact that the command
x := E(y) does not modify the set {s′ : (s′,⊥) ∈ LEγ}.

(B4) This is proven the same way as rule (B3).
(B5) Since, in our modified semantics, the value assigned to the variable x is sam-

pled uniformly at random, [[x := E(y)]] |= Indis(x;Var∗) is immediate and, as in
the proof of rule (R1), we can see from the semantics that the execution of the
command will create a new table Tx containing only x, and the indistinguisha-
bility from randomness required for Lctr(x;x; 0; {x}; ∅) and Ectr(x;x; 0; {x}; ∅)

Automated Proofs of Block Cipher Modes of Operation 35

are implied by Indis(x;Var∗), therefore, [[x
$
←− U]]X |= Lctr(x;x; 0; {x}; ∅) and

[[x
$
←− U]]X |= Ectr(x;x; 0; {x}; ∅). ⊓⊔

.
(B6) Suppose x 6∈ V . Since x, ℓE 6∈ V , then the values in V are unchanged by

the application of the command, so we get that X |= Indis(t;V) implies [[x :=
E(y)]]X |= Indis(t;V) from Lemma 6. We obtain [[x := E(y)]]X |= Indis(t;V, x)
using an argument similar to Lemma 7 and the fact that the value of x is
sampled uniformly at random.

(B7) The proof of this rule is similar to the proof of rule (B6), we only need

the additional observation that, for γ
$
← [[x := E(y)]]X, Sγ(y) ∪ LEγ .dom =

LEγ .dom since (Sγ(y), y) was added to LEγ as a result of the execution of the
command.

(B8) Let X |= Lctr(t;w; i;V ;V ′), so for every configuration (S, σ, E , T ,Q,LE) that
has non-zero probability in X, Tw[i] = t and Tw[i + 1] = ⊥, V = Set(Tx),
V ′ = Qw, and the following holds:

[γ
$
← X : (Sγ(x),W, σγ)] = [γ

$
← X;u

$
← U(len(x)) : (u,W, σγ)]

where the set W is equal to Sγ(Var \ (V ∪ V ′)) ∪ {s : (s, v) ∈ LEγ ∧ v 6∈ V }.
Since the the command x := E(y) has no effect on either Tw or Qw, we will
clearly have that for every configuration (S, σ, E , T ,Q,LE) that is not bad and
has non-zero probability in [[x := E(y)]]X, t ∈ Tw[i] and Tw[i + 1] = ∅, V =
Set(Tw), V ′ = Qw for the same i and w as in the corresponding configuration
in X.
Also, since y 6∈ V ′, then either y ∈ V , t = y or y ∈ Var \ (V ∪ V ′ ∪ {t}).
We first note that t = y implies that y ∈ Tw[i] and so y ∈ V . If y ∈ V ,
then the variable y is excluded in both Var \ (V ∪ V ′) and the value of y is
excluded from {s : (s, v) ∈ LEγ ∧ v 6∈ V }, and therefore the composition of
W = Sγ(Var \ (V ∪ V ′ ∪ {t})) ∪ {s : (s, v) ∈ LEγ ∧ v 6∈ V } is not altered by
the command. If y ∈ Var \ (V ∪ V ′ ∪ {t}), then the value of the variable y is in
W = Sγ(Var\ (V ∪V ′∪{t}))∪{s : (s, v) ∈ LEγ ∧v 6∈ V } both before and after

the execution of the command. In any of these cases, for γ
$
← [[x := E(y)]]X,

the composition of W = Sγ(Var \ (V ∪ V ′ ∪ {t})) ∪ {s : (s, v) ∈ LEγ ∧ v 6∈ V }
is unchanged compared to what it was for the corresponding configuration in
X, therefore fact that the following holds:

[γ
$
← [[x := E(y)]]X : (Sγ(x),W, σγ)] =

[γ
$
← [[x := E(y)]]X;u

$
← U(len(x)) : (u,W, σγ)]

is an immediate consequence from the fact that it did in X.
Hence, [[x := E(y)]]X |= Lctr(t;w; i;V ;V ′).

(B9) Let X |= {Lctr(t;w; i;V ;V ′) ∧ Indis(t;Var∗ \W) where W = (V ∪ V ′) \ {y},
provided t 6= y. Similarly as in the proof of rule (B8), since the the command
x := E(y) has no effect on either Tw or Qw, we will clearly have that for every
configuration (S, σ, E , T ,Q,LE) that is not bad and has non-zero probability
in [[x := E(y)]]X, t ∈ Tw[i] and Tw[i + 1] = ∅, V = Set(Tw), V ′ = Qw for the
same i and w as in the corresponding configuration in X.

36 Martin Gagné et al.

Now, from the proof of rule (B7), since X |= Indis(t;Var∗ \ W) and y, ℓE ∈
Var∗ \W , we have that [[x := E(y)]]X |= Indis(t;Var∗ \W). It then follows from
the first line of Lemma 1 that

[γ
$
← X : (Sγ(x),W

′
, σγ)] = [γ

$
← X;u

$
← U(len(x)) : (u,W ′

, σγ)]

where the set W ′ is equal to Sγ(Var \ (V ∪ V ′)) ∪ {s : (s, v) ∈ LEγ ∧ v 6∈ V }.
(B10) The proof of this rule is similar to the proof of rule (B8), except that the

value of s such that (s, v) ∈ LE ∧ v ∈ Tw[i] is no longer removed from the set
W , so, in additions to the conditions for the rule (B8), we must ensure that y
is not in Tw[i]. If u = w and i 6= j, then y ∈ V = Tw and since i 6= j, clearly,
y 6∈ Tw[i] since y ∈ Tw[j] and so the proof proceeds just like the case y ∈ V in
the proof rule (B8). If u 6= w, then y ∈ Tu[j] and y 6∈ Tw[i] since Tu and Tw are
mutually exclusive. In addition, y 6∈ V ′ since y ∈ Tu means that y must have
been obtained by repeatedly incrementing the value of u, and so the value of w
was never involved in its computation. Therefore, the proof proceeds just like
the case y ∈ Var \ (V ∪ V ′ ∪ {t}) in the proof of rule (B8).

(B11) The proof is exactly the same as the proof of rule (B9). The condition
Indis(t;Var∗ \W) with y ∈ Var∗ \W ensures, using Lemma 3 that, as in the
previous proof, y 6∈ Tw[i].

⊓⊔

5.2.7 Increment:

Lemma 14 The following rules are sound:
(I1) {Indis(y;V)} x := y + 1 {Indis(x;V)} if y 6∈ V
(I2) {Lctr(y; z; i;V ;V ′)} x := y + 1 {Lctr(x; z; i+ 1;V, x;V ′)∧

Ectr(x; z; i+ 1;V, x;V ′)}
(I3) {ctr(y; z; i)} x := y + 1 {ctr(x; z; i+ 1)}
(I4) {Lctr(t;w; i;V ;V ′) ∧ ctr(y, w, j)} x := y + 1 {Lctr(t;w; i;V, x;V ′)} if

j < i

(I5) {Ectr(t;w; i;V ;V ′)} x := y + 1 {Ectr(t;w; i;V, x;V ′)} if y ∈ V , even if
t = y

Proof empty line

(I1) This rule is a simple consequence of the fact that if a value s is randomly
distributed in {0, 1}l, then so is s + 1. Let X |= Indis(y;V, y) and x, y 6∈ V .
Then,

[γ
$
← [[x := y + 1]]X : (Sγ(x), Sγ(V, x− x), σγ)]

= [γ
$
← X : (Sγ(y) + 1, Sγ(V), σγ)]

= [γ
$
← X;u

$
← U(len(x)) : (u+ 1, Sγ(V), σγ)]

= [γ
$
← [[x := y + 1]]X;u

$
← U(len(x)) : (u, Sγ(V, x− x), σγ)].

Hence [[x := y + 1]]X |= Indis(x;V, x).

Automated Proofs of Block Cipher Modes of Operation 37

(I2) Let X |= Lctr(y; z; i;V ;V ′), so, by definition, for every configuration (S, σ, E ,
T ,Q,LE) that has non-zero probability in X, Tz[i] = y and Tz[i + 1] = ⊥,
Set(Tx) = V , Qy = V ′, and

[γ
$
← X : (Sγ(y),W, σγ)] = [γ

$
← X;u

$
← U(len(y)) : (u,W, σγ)]

where the set W is equal to Sγ(Var\(V ∪V ′∪{y}))∪{s : (s, v) ∈ LEγ∧v 6∈ V }.
Therefore, using the semantics, it should be clear that for every configuration
(S, σ, E , T ,Q,LE) that is not bad and has non-zero probability in [[x := y+1]]X,
Tz[i + 1] = x and Tz[i + 2] = ⊥, Set(Tx) = V, x, Qy = V ′. In addition, we
obtain that

[γ
$
← X : (Sγ(x),W

′
, σγ)] = [γ

$
← X;u

$
← U(len(x)) : (u,W ′

, σγ)]

where the setW ′ is equal to Sγ(Var\(V, x∪V ′∪{x}))∪{s : (s, v) ∈ LEγ∧v 6∈ V }
by applying the same technique as in the proof of rule (I1), because the value
of neither x nor y is in W and W ′ ⊂ W . Hence [[x := y + 1]]X |= Lctr(x; z; i+
1;V, x;V ′).
Noting that since the variable x cannot appear on the right-hand side of any
previous command because the value of x had not been assigned, and in par-
ticular, it cannot appear in any command of the form z := E(x) before the ex-

ecution of the command x := y + 1, for any configuration γ
$
← [[x := y + 1]]X,

there cannot be any pair of the form (s, x) in LEγ for any string s. Thus,
{s : (s, v) ∈ LEγ ∧ v 6∈ V − x} = {s : (s, v) ∈ LEγ ∧ v 6∈ V } and the proof
of [[x := y + 1]]X |= Ectr(x; z; i + 1;V, x;V ′) is done exactly as the proof of
[[x := y + 1]]X |= Lctr(x; z; i+ 1;V, x;V ′) above.

(I3) Follows trivially from the semantics.
(I4) This rule covers the case that was not included in rules (G4) and (G5). It

follows from the semantics that if X |= Lctr(t;w; i;V ;V ′) ∧ ctr(y, w, j)}, and
j < i, then x gets added to Tw[j + 1] and so x is added to Set(Tw). We must
have that j < i because if we had j = i, then the predicate Lctr(t;w; i;V ;V ′)
would have to be ‘transferred’ to x, i.e. rule (I1) needs to be applied. The case
j > i is clearly impossible since X |= Lctr(t;w; i;V ;V ′).

(I5) This is similar to the previous rule, except that the case t = y is no longer an
issue.

⊓⊔

5.2.8 For loop:

Lemma 15 The following rule is sound:

– (F1) {ψ(p− 1)} for k = p to q do: [ck] {ψ(q)} provided {ψ(k − 1)} ck {ψ(k)}
for p ≤ k ≤ q

Proof This is a trivial induction on the number of iterations of the loop. ⊓⊔

38 Martin Gagné et al.

6 A Method for Proving Semantic Security

Combining Theorem 2 with our Hoare logic, we can now prove the following results,
which demonstrate the soundness of our method.

Theorem 3 Let M(m1| . . . |mn, cn) : cmd be a generic encryption mode. If the
Hoare triple {LBad (0) ∧ Indep} cmd {Indis(cn; ∅) ∧ LBad (ǫ(qE, qE)) ∧ Indep} is
valid, where qE and qE are the number of calls made to the LR encryption oracle
by the algorithm that created the distribution X and the number of computations
of the block cipher made to answer those oracle queries respectively, then, under
the assumption that the block cipher is a random function in Φη, for any LoR-CPA

adversary B, the following holds:

Adv
LoR-CPA

M (B) ≤

Q
∑

i=1

ǫ(i, q
(i)
E)

where Q is an upper bound on the number of encryption queries made by B, and

q
(i)
E is an upper bound on the number of computations of the block cipher required

to answer the first i encryption queries made by B.

Proof Let X be any distribution in CDist0(Γ). Then, by Lemma 5, we have that
X |= LBad (0)∧Indep. Using all the lemmas above about the soundness of our rules,
if the Hoare triple {LBad (0)∧ Indep} cmd {Indis(cn; ∅)∧LBad (ǫ(qE, qE))∧ Indep} is
valid, then we can conclude that [[cmd]]X |= Indis(cn; ∅)∧ LBad (ǫ(qE, qE))∧ Indep.
So all the hypotheses of Theorem 2 are satisfied and the result is obtained by
simply applying it. ⊓⊔

We note that, as a result of this, if we need only to obtain a proof that the advan-
tage of any adversary is negligible instead of getting the exact security analysis,
then we can replace the predicate LBad (ǫ) by a simpler predicate LBad which holds

in a distribution X iff Pr[γ
$
← X : LBad(γ)] is negligible.4 Using this modified

predicate, we obtain the following corollary.

Corollary 3 Let M(m1| . . . |mn, cn) : cmd be a generic encryption mode. If the
Hoare triple {LBad∧ Indep} cmd {Indis(cn; ∅)∧LBad∧ Indep} is valid, then, under
the assumption that the block cipher is a random function in Φη, the encryption
scheme M is LoR-CPA-secure.

All our analysis so far has assumed that the block cipher was a function selected
uniformly at random in Φη. Our final step is to remove this assumption and relate
the security of the scheme to the probability that an adversary can distinguish the
block cipher from a pseudorandom function (PRF).

Theorem 4 Let M(m1| . . . |mn, cn) : cmd be a generic encryption mode. If the
Hoare triple {LBad (0) ∧ Indep} cmd {Indis(cn; ∅) ∧ LBad (ǫ(qE, qE)) ∧ Indep} is
valid, then for any LoR-CPA adversary B against an instantiation ofM with block

4 To use our logic with this predicate, we have to modify rules (G1), (B1) and (B2) in the
obvious way.

Automated Proofs of Block Cipher Modes of Operation 39

cipher F , there exists an algorithm C that can distinguish F from a pseudorandom
function such that the following holds:

Adv
LoR-CPA

M (B) ≤ 2Adv
PRF
C,F +

Q
∑

i=1

ǫ(i, q
(i)
E)

where Q is an upper bound on the number of encryption queries made by B, and

q
(i)
E is an upper bound on the number of computations of the block cipher required

to answer the first i encryption queries made by B.

Proof This proof is done exactly like that of Theorem 11 in [BDJR97], we include
it here for completeness.

Let B be a LoR-CPA adversary against an instantiation ofM with block cipher
F .

We construct adversary C against PRF F as follows5:

1. First, C randomly selects a bit b ∈ {0, 1}.
2. Then, C runs algorithm B. When B makes a query (M0,M1) to its LR oracle,
C answers it by encrypting Mb using the algorithm described by M, using its
oracle for the computation of the block cipher.

3. When B terminates and outputs a bit b′, C outputs 1 if b = b′, and 0 otherwise.

Define the event correct(F) to be the event that B correctly guesses the bit b
when the block cipher F is used, and correct(Φ) the event that B correctly guesses
when a random function from Φη is used in place of the block cipher. Then, by
definition, AdvPRF

C,F = correct(F) − correct(Φ). Therefore, using the notation of
Definition 2, we can obtain that

correct(F) = Pr[B outputs 1 ∧ b = 1] + Pr[B outputs 0 ∧ b = 0]

= Pr[B outputs 1|b = 1]Pr[b = 1] + Pr[B outputs 0|b = 0]Pr[b = 0]

=
1

2
Pr[Exp

LoR-CPA−1
M (B, η) = 1] +

1

2
Pr[Exp

LoR-CPA−0
M (B, η) = 0]

=
1

2

(

Pr[Exp
LoR-CPA−1
M (B, η) = 1] + (1− Pr[Exp

LoR-CPA−1
M (B, η) = 0])

)

=
1

2

(

1 + Adv
LoR-CPA
M (B)

)

.

The same can be done for correct(Φ), and combining this with the upper bound
on AdvLoR-CPA

M (B) when the block cipher is a random function given by Theorem 3
we get the following:

correct(Φ) ≤
1

2

(

1 +

Q
∑

i=1

ǫ(i, q
(i)
E)

)

.

Therefore,

Adv
PRF
C,F = correct(F)− correct(Φ)

≥
1

2

(

1 + Adv
LoR-CPA
M (B)

)

−
1

2

(

1 +

Q
∑

i=1

ǫ(i, q
(i)
E)

)

,

and the result follows. ⊓⊔

5 Recall that a PRF adversary is given access to an oracle and has to determine whether his
oracle computes the block cipher or a random function.

40 Martin Gagné et al.

7 Implementation

Theorem 3 states that to prove the security of a mode of operation, it suffices to
prove that {LBad (0)∧ Indep} cmd {Indis(cn; ∅)∧LBad (ǫ(qE, qE))∧ Indep} is valid,
where cmd is the program of the mode of operation. Two methods can be used to
show this. The first method consists in starting at the beginning of cmd and, at
each simple command, applying every possible rule until we reach the end, and
see if Indis(cn; ∅)∧LBad (ǫ(qE, qE))∧ Indep holds at the end for some values qE and
qE . The second method consists in starting at the end of cmd with the formula
Indis(cn; ∅) ∧ LBad (ǫ(qE, qE)) ∧ Indep, where the values of qE and qE is for now
undetermined, and, at each command, determining which formula needs to hold
before the command in order to have the predicate we need afterwards.

The second method lets us keep only those invariants that we need, but some-
times, several rules may lead to the desired postconditions, and each possibility
may need to be explored separately to obtain a proof, which could require a very
large (in the worst case, exponential) number of branches being explored. In ad-
dition, if using the backwards method, some of our predicates, particularly those
relating to counters such as Lctr(x; y; i;V ;V ′), would require us to make “guesses”
about some of the elements of the predicate (such as the starting variable y, the
index i, etc), and an erroneous choice in the guess could result in the need to back-
track. For these reasons, we decided to go through the program of the mode of
operation from beginning to end. This tends to be more straightforward, but may
require to keep track of many invariants that are not necessary to obtain the final
result. This can however be mitigated by adapting the predicate filter of [GLL13].

7.1 Loop Predicate Discovery

The code of a general encryption mode will generally contain at least one for loop.
It is therefore important to be able to find predicates ψ(i) that will enable us to
apply the rule (F1) from our logic. We present two heuristics that can be used
to discover such an invariant, and we show how to apply them on CBCE and a
modified version of CTRE . The first heuristic runs the code of the loop once and
attempts to find an invariant by simply looking at the predicates that the formulas
before and after the execution of the loop have in common. The second heuristic
runs the code of the loop several times and attempts to determine the patterns
that emerge after each execution and extrapolates them.

When we hit a command “for k = p to q do: [cmdk]”, we express the for-
mula that holds before the command in the form ϕ(p − 1). The basic method
for finding a stable loop invariant consists in processing the program of the loop
cmd to find the formula ψ(k) such that {ϕ(k − 1)} cmdk {ψ(k)} holds. We then
find the maximal formula ϕ′(k) that is implied by both ϕ(k) and ψ(k), immedi-
ately replacing the predicate Indis(ck;V) for any set V , if present, by its weak-
ening Indis(ck, {m1, . . . ,mn}). Replacing Indis(ck;V) by Indis(ck, {m1, . . . ,mn}) is
allowed by Lemmas 1 and 4. This simplifies the predicate and increases the prob-
ability that the heuristic finds an invariant. It is often sufficient for finding proofs
since we only need the empty set in the predicate Indis(cn; ∅) to apply Theorem 3.
We test if {ϕ′(k − 1)} cmdk {ϕ

′(k)} holds, and if so, we have found a stable loop
invariant and we can apply rule (F1).

Automated Proofs of Block Cipher Modes of Operation 41

This first heuristic is generally sufficient to find the loop invariant of all modes
of operations whose description consists of a short sequence of initial steps followed
by a single loop that does all the encrypting. In particular, this should cover all the
modes produced by the automated synthesizer for block cipher modes of operations
of [MKG14].

Example 1 We show how to apply this heuristic in the case of CBCE , whose
description can be found in Figure 2. In this example, we assume that we do
not want to find the exact security bound for CBCE and we use the simplified
predicate LBad described in Corollary 3. To simplify the writing, we also apply
only the rules that are necessary to obtain the proof.

We easily find that, after processing the first two commands, z0
$
←− U(η);

c0 := z0;, and applying rules (G1), (G2) and (R1), then (G1), (G2), (G3) and
(A1), we obtain the formula LBad∧ Indep∧ Indis(z0;Var− c0)∧ Indis(c0;Var− z0).
Parameterizing this in terms of k and weakening the indistinguishability predicate,
we obtain the following:

ϕ(k) = LBad ∧ Indep ∧ Indis(zk;Var
∗ − ck) ∧ Indis(ck; {m1, . . . ,mn})

We recall that the three instructions of the loop in CBCE are the following:

yk := zk−1 ⊕mk; zk := E(yk); ck := ck−1‖zk;

After processing the program of the loop on ϕ(k − 1), we obtain the following:

ψ(k) =LBad ∧ Indep∧

Indis(zk−1;Var \ {yk, ck−1, ck}) ∧ Indis(ck−1; {m1, . . . ,mn}})∧

Indis(yk;Var \ {zk, ck−1, ck}}) ∧ Indis(zk;Var
∗ − ck)∧

Indis(ck; {m1, . . . ,mn})

This is obtained after applying rules (G1), (G2), (G3) and (X1) for the first com-
mand, (B1), (B3), (B5) and (B6) for the second and (G1), (G2), (G3) and (C1) for
the third. We find that the maximal formula implied by both ϕ(k) and ψ(k), after
weakening the indistinguishability predicate pertaining to ck, is the following:

ϕ
′(k) = LBad ∧ Indep ∧ Indis(zk;Var

∗ − ck) ∧ Indis(ck; {m1, . . . ,mn})

Testing this formula through the program of the loop again, we find that it is a
loop invariant, therefore we can apply rule (F1) and obtain that, at the end of the
program of CBCE , the following formula holds:

LBad ∧ Indep ∧ Indis(zn;Var
∗ − cn) ∧ Indis(cn; {m1, . . . ,mn}).

Therefore, we can apply Corollary 3 and find that CBCE is LoR-CPA-secure. ⊓⊔

Unfortunately, this heuristic usually fails when the proof requires to accumulate
predicates at each iteration of the loop. For example, Figure 3 shows an alternative
description of CTRE for which our first heuristic would not return a loop invariant
strong enough to find a proof. In addition, the heuristic does not enable us to
collect enough information to extrapolate the security parameter contained in
the predicate LBad (ǫ) that is necessary for an exact security analysis. For these

42 Martin Gagné et al.

reasons, we present a second heuristic based on widening in abstract interpretation.
We start with formula ϕ(k− 1), and process the program of the loop once to find
formula ψ1(k) such that {ϕ(k− 1)} cmdk {ψ1(k)} (we do this by applying at each
step every rule whose precondition is met). Then, we repeat this starting with
formula ψ1(k− 1) to find formula ψ2(k) such that {ψ1(k− 1)} cmdl {ψ2(k)}. The
idea is then to inspect formulas ϕ(k), ψ1(k) and ψ2(k) for patterns that can be
extrapolated. For example, we can try to identify a predicate γ(k) such that:

1. γ(k) appears in ϕ(k),
2. γ(k − 1) ∧ γ(k) appears in ψ1(k),
3. γ(k − 2) ∧ γ(k − 1) ∧ γ(k) appears in ψ2(k).

We then use a new starting formula ϕ′(k) which is just like ϕ(k), except that
the occurrence of γ(k) in ϕ(k) is replaced by

∧j=k
j=p−1 γ(j) in ϕ′(k). Note that,

by construction, ϕ(p − 1) is equal to ϕ′(p − 1), so we know that ϕ′(p − 1) is
satisfied at the beginning of the loop. We can similarly try to find patterns that
appear only after the first iteration of the loop, that is, γ(k) appears in ψ1(k) and
γ(k − 1) ∧ γ(k) appears in ψ2(k), in which case occurrences of γ(k) in ϕ(k) are
replaced by

∧j=l
j=p γ(j) in ϕ′(l).

CTR′(m1‖m2‖ . . . ‖mn, cn) :

ctr0
$
←− U ; c0 := ctr0;

for i = 1 to n do:

[ctri := ctri−1 + 1; yi := E(ctri)];
for i = 1 to n do:

[zi := yi ⊕mi; ci := ci−1‖zi];

Fig. 3 Alternative description of CTRE

The predicate LBad (ǫ) can be treated similarly, except that it is the security
parameter inside the predicate that may change from one iteration to the next
instead of new invariants appearing at each iteration. We examine how the pa-
rameter in the predicate evolves in ϕ(k), ψ1(k) and ψ2(k) – it will either remain
the same, or new terms are added at each iteration – and, if necessary, we extrap-
olate this evolution in the form of a sum. The example below shows how this is
done. One may decide to first find a stable loop invariant ϕ′(k) using either of our
heuristics while disregarding the security parameter in LBad (that is, using the
predicate LBad without its parameter, as suggested before Corollary 3), and then
to repeat the process a second time, that is, process the program of the loop twice
to obtain ϕ′(k), ψ′

1(k) and ψ′
2(k), this time looking only at how the parameter in

LBad evolves to obtain a stable invariant ϕ′′(k) with the security parameter.
Our choice to process the program of the loop two times (to obtain ψ1(k) and

ψ2(k)) for the second heuristic is rather arbitrary and was made because it seems
to work well in practice. It is however possible to construct artificial examples for
which the pattern would not emerge after only two iterations6, and for those cases,
it would be necessary to repeat the process more times.

6 For example, a variant of CBC in which the line yk := zk−1 ⊕mk is replaced by yk :=
zk−3 ⊕ zk−2 ⊕ zk−1 ⊕mk would require four iterations before the definitive pattern emerges.

Automated Proofs of Block Cipher Modes of Operation 43

Example 2 We found in the previous example that the following formula was a
stable invariant for the loop in CBCE :

ϕ
′(k) = LBad ∧ Indep ∧ Indis(zk;Var

∗ − ck) ∧ Indis(ck; ∅)

Adding the parameter to LBad for the first two commands before executing the
loop, we find that the predicate LBad (0) holds before executing the loop. Let q be
the number of elements in LE . Then we find that, after processing the program of
the loop once to obtain ψ′

1(k) we get the following:

ψ
′
1(k) = LBad

(q

2η

)

∧ Indep ∧ Indis(zk;Var
∗ − ck) ∧ Indis(ck; ∅)

We note that there are now q + 1 elements in LE . We repeat this a second time
and obtain the following:

ψ
′
2(k) = LBad

(

q + (q + 1)

2η

)

∧ Indep ∧ Indis(zk;Var
∗ − ck) ∧ Indis(ck; ∅)

Extrapolating this, we get the following stable invariant with security parameter:

ϕ
′′(k) = LBad

(

∑k−1
i=0 q + i

2η

)

∧ Indep ∧ Indis(zk;Var
∗ − ck) ∧ Indis(ck; ∅)

So that, at the end of the program, the following formula holds:

LBad

(

∑n−1
i=0 q + i

2η

)

∧ Indep ∧ Indis(zn;Var
∗ − cn) ∧ Indis(cn; ∅)

Using this in Theorem 4, we find that for any LoR-CPA adversary B against an
instantiation of CBCE with block cipher F , there exists an algorithm C that can
distinguish F from a pseudorandom function such that the following holds:

Adv
LoR-CPA
CBCE

(B) ≤ 2Adv
prf
C,F +

Q
∑

i=1

∑q
(i)
E

−1
j=0 (

∑i−1
k=1 q

(k)
E) + j

2η

where
∑i−1

k=1 q
(k)
E is the number of computation of the block cipher necessary to

answer the first i−1 encryption queries, that is, the size of LE after answering the
first i− 1 encryption queries. Let Ωi =

∑i−1
k=1 q

(k)
E denote this sum. Note that the

numerator of the term in this sum with i = i0 is simply a sum of all the integers
from Ωi0 to Ωi0 + q

(i0)
E − 1. Similarly, the numerator of the term in this sum with

i = i0 + 1 is the sum of all the integers from Ωi0+1 to Ωi0+1 + q
(i0+1)
E − 1. Since

Ωi0+1 = Ωi0 + q
(i0)
E , we obtain that the sum of those two terms is the sum of all

integers from Ωi0 to Ωi0 + q
(i0)
E + q

(i0+1)
E − 1. Generalizing this, if we let QE be

the total number of computations of the block cipher necessary to answer all of
the adversary’s encryption queries, the expression in the previous equation can be
simplified to

Adv
LoR-CPA
CBCE

(B) ≤ 2Adv
prf
C,F +

QE−1
∑

i=0

i

2η

≤ 2Adv
prf
C,F +

QE(QE − 1)

2η

44 Martin Gagné et al.

which is exactly the same security bound that one would obtain by analysing
CBCE manually ([BDJR97]). ⊓⊔

Example 3 We show how the second heuristic is used to find a stable predicate for
the second loop in CTR′

E (see Figure 3). Again, to simplify the writing, we also
apply only the rules that are necessary to obtain the proof and remove unnecessary
predicates.

After processing the first two commands of CTR′
E , and using rules (G1), (G2),

(R1), (A1), (A3), we obtain the following formula:

LBad (0) ∧ Indep ∧ Indis(c0;Var
∗ − ctr0)∧

Lctr(ctr0; ctr0; 0; {ctr0, c0}; ∅)

Parameterizing this in terms of k, we obtain the following:

ϕ(k) =LBad (0) ∧ Indep ∧ Indis(ck;Var
∗ − ctrk)∧

Lctr(ctrk; ctrk; k; {ctrk, ck}; ∅)

The first heuristic would fail at finding a loop invariant, so we use the second
heuristic. Let q be the number of elements in LE . We recall that the program
contained in the first loop is:

ctri := ctri−1 + 1; yi := E(ctri)

We process the program of the loop on ϕ(k− 1) and obtain the following formula:

ψ1(k) =LBad
(q

2η

)

∧ Indep ∧ Indis(ck−1;Var \ {ctrk−1, ctrk})∧

Indis(yk;Var
∗)∧

Lctr(ctrk; ctrk−1; k; {ctrk, ctrk−1, ck−1}; ∅)

To obtain this, we apply rules (G1), (G2), (G3) and (I2) after the first command,
and (B2), (B4), (B5), (B6), (B8) after the second. We note that there are now
q + 1 elements in LE . We repeat this a second time and obtain the following:

ψ2(k) =LBad

(

q + (q + 1)

2η

)

∧ Indep ∧ Indis(ck−2;Var \ {ctrk, ctrk−1, ctrk−2})∧

Indis(yk−1;Var
∗) ∧ Indis(yk;Var

∗)∧

Lctr(ctrk; ctrk−2; k; {ctrk, ctrk−1, ctrk−2, ck−2}; ∅)

The same rules are applied, except that we additionally need to use (B7) for the
second command. Extrapolating this pattern, we obtain the following:

ϕ
′(k) =LBad

(

∑k−1
i=0 q + i

2η

)

∧ Indep ∧ Indis(c0;Var \ {ctrk, . . . , ctr0})∧

(

k
∧

i=1

Indis(yi;Var
∗)

)

∧

Lctr(ctrk; ctr0; k; {ctrk, . . . , ctr0, c0}; ∅)

Automated Proofs of Block Cipher Modes of Operation 45

Testing this formula through the program of the loop again, we find that it is a
loop invariant, therefore we can apply rule (F1) and obtain that, after processing
the loop, the following formula holds:

LBad

(

∑n−1
i=0 q + i

2η

)

∧ Indep ∧ Indis(c0;Var
∗ \ {ctrn, . . . , ctr0})∧

(

n
∧

i=1

Indis(yi;Var
∗)

)

∧

Lctr(ctrn; ctr0;n; {ctrn, . . . , ctr0, c0}; ∅)

Repeating this process with the second loop (after dropping the counter predicate
since it is no longer needed), we find that the stable formula for the second loop
is the following:

ϕ
′′(k) =LBad

(

∑n−1
i=0 q + i

2η

)

∧ Indep ∧

(

k
∧

i=1

Indis(yi;Var
∗ \ {zi, ck, . . . , c1})

)

∧

(

n
∧

i=k+1

Indis(yi;Var
∗)

)

∧

(

k
∧

i=1

Indis(zi;Var
∗ \ {yi, ck, . . . , c1})

)

∧

(

k
∧

i1

Indis(ci;Var
∗ \ {yk, zk, . . . , y1, z1, ck−1, . . . , c0})

)

So that, at the end of the program, the following formula holds:

LBad

(

∑n−1
i=0 q + i

2η

)

∧ Indep ∧

(

n
∧

i=1

Indis(yi;Var
∗ \ {zi, cn, . . . , c1})

)

∧

(

n
∧

i=1

Indis(zi;Var
∗ \ {yi, cn, . . . , c1})

)

∧

(

n
∧

i1

Indis(ci;Var
∗ \ {yn, zn, . . . , y1, z1, cn−1, . . . , c0})

)

Using this in Theorem 4, and simplifying as in the previous example (because the
factor inside LBad is the same as in the previous example), we find that for any
LoR-CPA adversary B against an instantiation of CTR′

E with block cipher F , there
exists an algorithm C that can distinguish F from a pseudorandom function such
that the following holds:

Adv
LoR-CPA
CTR′

E
(B) ≤ 2Adv

prf
C,F +

Q(Q− 1)

2η

46 Martin Gagné et al.

which differs from the security bound one could find manually only by a factor
of two (the manual proof is tighter). We note that we would have obtained the
exact same bound for the mode of operation CTRE of Figure 2, but the proof
would have been much easier because our first heuristic would have worked on
that program. ⊓⊔

7.2 Prototype

We programmed an OCaml prototype of our method for proving the security of
modes of operation [GLLSN]. The program requires about 2000 lines of code,
and can successfully produce proofs of security for all the examples discussed in
this paper, in addition to other standard modes of operations such as CFB and
OFB, and more exotic ones like PCBC, in less than one second on a personal
workstation.

8 Conclusion

We proposed an automatic method for proving the semantic security of symmetric
encryption modes. We introduced a small programming language in order to de-
scribe these modes. We construct a Hoare logic to make assertions about variables
and propagate the assertions with the execution of the commands in the language.
If the program which represents an encryption mode satisfies some invariants at
the end of our automatic analysis then we conclude that the encryption mode is
IND-CPA secure and we can provide an exact analysis for this security.

As future work, we are also considering an extension of our work to prove CCA
security of encryption modes using approaches such as the one proposed in [Des00]
or the method proposed in [CDE+08].

Another more complex and challenging direction is to propose an extended
version of our Hoare Logic in order to be able to analyze “modern” encryption
modes which use more complex mathematical operation or primitives, such as
tweakable block ciphers [LRW02]. The main challenge here is that many modern
modes make ad-hoc uses of mathematical operations (such as arithmetic operations
in extension fields), and each mode tends to integrate the “tweak” in a slightly
different way. As a result, it is very difficult to find the appropriate abstraction
level and the appropriate equational theories to model such primitives.

References

[BCG+13] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine
Lakhnech, Benedikt Schmidt, and Santiago Zanella-Béguelin. Fully automated
analysis of padding-based encryption in the computational model. In Proceed-
ings of the 20th ACM Conference on Computer and Communications Security,
(CCS’13), November 2013.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. Foundations of Computer Science, Annual
IEEE Symposium on, 0:394, 1997.

Automated Proofs of Block Cipher Modes of Operation 47

[BDK+10] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, Yassine Lakhnech, and Vin-
cent Laporte. On the equality of probabilistic terms. In Edmund M. Clarke and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May
1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer Sci-
ence, pages 46–63. Springer, 2010.

[BDKL10] Gilles Barthe, Marion Daubignard, Bruce Kapron, and Yassine Lakhnech. Com-
putational indistinguishability logic. In Proceedings of the 17th ACM conference
on Computer and communications security, CCS ’10, pages 375–386. ACM, 2010.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In Phillip Rogaway,
editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 71–90.
Springer, 2011.

[BGLB11] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond provable security verifiable ind-cca security of oaep. In CT-
RSA, Lecture Notes in Computer Science, pages 180–196. Springer, 2011.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

[BP06] Bruno Blanchet and David Pointcheval. Automated security proofs with sequences
of games. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 537–554. Springer, 2006.

[BRW04] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation.
In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes in
Computer Science, pages 389–407. Springer, 2004.

[CDE+08] Judicael Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yas-
sine Lahknech. Towards automated proofs for asymmetric encryption schemes in
the random oracle model. In Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, (CCS’08), Alexandria, USA, October 2008.

[CEL07] Judicaël Courant, Cristian Ene, and Yassine Lakhnech. Computationally sound
typing for non-interference: The case of deterministic encryption. In Vikraman
Arvind and Sanjiva Prasad, editors, FSTTCS 2007: Foundations of Software Tech-
nology and Theoretical Computer Science, 27th International Conference, New
Delhi, India, December 12-14, 2007, Proceedings, volume 4855 of Lecture Notes in
Computer Science, pages 364–375. Springer, 2007.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October
1991.

[CN08] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.
In Fast Software Encryption: 15th International Workshop, FSE 2008, Lau-
sanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages 289–
302, Berlin, Heidelberg, 2008. Springer-Verlag.

[CS06] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a
tweakable strong pseudo-random permutation. In Matthew J. B. Robshaw, editor,
FSE, volume 4047 of Lecture Notes in Computer Science, pages 293–309. Springer,
2006.

[CS08] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-counter-hash approach. IEEE Transactions on Information
Theory, 54(4):1683–1699, 2008.

[Des00] Anand Desai. New paradigms for constructing symmetric encryption schemes
secure against chosen-ciphertext attack. In CRYPTO ’00: Proceedings of the 20th
Annual International Cryptology Conference on Advances in Cryptology, pages
394–412, London, UK, 2000. Springer-Verlag.

[EMST76] William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message verification and transmission error detection by block chaining. US Patent
4074066, 1976.

[GLL13] Martin Gagné, Pascal Lafourcade, and Yassine Lakhnech. Automated security
proofs for almost-universal hash for mac verification. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS, volume 8134 of Lecture Notes in
Computer Science, pages 291–308. Springer, 2013.

48 Martin Gagné et al.

[GLLSN] Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-
Naini. Prototype implementation of hoare logic. Available at http://sancy.univ-
bpclermont.fr/∼lafourcade/Tools/.

[GLLSN09] Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-Naini.
Automated proofs for encryption modes. In 13th Annual Asian Computing Science
Conference Focusing on Information Security and Privacy: Theory and Practice
(ASIAN’09), volume 5913 of LNCS, pages 39–53, 2009.

[GLLSN11] Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-Naini.
Automated verification of block cipher modes of operation, an improved method.
In Joaquín García-Alfaro and Pascal Lafourcade, editors, FPS, volume 6888 of
Lecture Notes in Computer Science, pages 23–31. Springer, 2011.

[Hal04] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in
Cryptology - INDOCRYPT 2004, 5th International Conference on Cryptology in
India, Chennai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture
Notes in Computer Science, pages 315–327. Springer, 2004.

[Hal07] Shai Halevi. Invertible universal hashing and the tet encryption mode. In Alfred
Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science,
pages 412–429. Springer, 2007.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 482–
499. Springer, 2003.

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292–304. Springer, 2004.

[Jut01] Charanjit S. Jutla. Encryption modes with almost free message integrity. In
EUROCRYPT ’01: Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques, pages 529–544, London, UK, 2001.
Springer-Verlag.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In
CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 31–46, London, UK, 2002. Springer-Verlag.

[MF07] David A. McGrew and Scott R. Fluhrer. The security of the extended codebook
(xcb) mode of operation. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes in Computer
Science, pages 311–327. Springer, 2007.

[MKG14] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Automated analysis
and synthesis of block-cipher modes of operation. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages
140–152. IEEE, 2014.

[MV04] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer
Science, pages 343–355. Springer, 2004.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. On the security of tweakable modes
of operation: TBC and TAE. In Jianying Zhou, Javier Lopez, Robert H. Deng,
and Feng Bao, editors, ISC, volume 3650 of Lecture Notes in Computer Science,
pages 274–287. Springer, 2005.

[ÉJJV01] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the security of randomized
CBC-MAC beyond the birthday paradox limit - a new construction. In Fast Soft-
ware Encryption 02, Lecture Notes in Computer Science, pages 237–251. Springer-
Verlag, 2001.

