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Purpose: The authors propose a computer-aided diagnosis (CAD) system for prostate cancer to aid

in improving the accuracy, reproducibility, and standardization of multiparametric magnetic reso-

nance imaging (MRI).

Methods: The proposed system utilizes two MRI sequences [T2-weighted MRI and high-b-value (b

= 2000 s/mm2) diffusion-weighted imaging (DWI)] and texture features based on local binary

patterns. A three-stage feature selection method is employed to provide the most discriminative

features. The authors included a total of 244 patients. Training the CAD system on 108 patients

(78 MR-positive prostate cancers and 105 benign MR-positive lesions), two validation studies were

retrospectively performed on 136 patients (68 MR-positive prostate cancers, 111 benign MR-positive

lesions, and 117 MR-negative benign lesions).

Results: In distinguishing cancer from MR-positive benign lesions, an area under receiver operating

characteristic curve (AUC) of 0.83 [95% confidence interval (CI): 0.76–0.89] was achieved. For

cancer vs MR-positive or MR-negative benign lesions, the authors obtained an AUC of 0.89 AUC

(95% CI: 0.84–0.93). The performance of the CAD system was not dependent on the specific regions

of the prostate, e.g., a peripheral zone or transition zone. Moreover, the CAD system outperformed

other combinations of MRI sequences: T2W MRI, high-b-value DWI, and the standard apparent

diffusion coefficient (ADC) map of DWI.

Conclusions: The novel CAD system is able to detect the discriminative texture features for cancer

detection and localization and is a promising tool for improving the quality and efficiency of prostate

cancer diagnosis. [http://dx.doi.org/10.1118/1.4918318]
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1. INTRODUCTION

Prostate cancer is the second leading cause of death from

cancer in men and nearly 30 000 deaths are expected in the

United States in 2014.1 Earlier and more accurate detection and

localization of prostate cancer is critical to provide appropriate

treatment. Diagnosis of prostate cancer requires a biopsy. The

current standard of care is to obtain 10–14 cores randomly from

the prostate using ultrasound (US) imaging to guide the needle

into standard anatomic locations. As a result, random biopsies

lead to an overdiagnosis of incidental, nonlethal microscopic

tumors and an underdiagnosis of clinically significant lesions

located outside the typical biopsy template.2,3

Recent studies have shown that magnetic resonance imag-

ing (MRI) can visualize the more aggressive lesions in the pros-

tate and significantly improve the detection rate of clinically

significant prostate cancers, especially when a multiparametric

MRI approach is employed.4,5 This approach incorporates

several MRI sequences such as T2-weighted (T2W) MRI,

diffusion-weighted (DW) MRI, dynamic contrast enhanced

(DCE) MRI, and, less commonly, MR spectroscopy. The

identified lesions can be fused and superimposed on real-

time US imaging to enable targeted biopsy via software-based

registration6 or visual registration. MRI-US guided fusion

biopsy almost doubles the significant cancer detection rate

compared to a standard 12-core transrectal US (TRUS) bi-

opsy on a per-core basis and specifically lowers the detection

of inconsequential, low-grade tumors.7 However, examining

multiparametric imaging is a complex and time consuming

process, requiring specific training and expertise. Readers

must rapidly integrate a large amount of visual information,

mentally register and resolve sometimes contradictory find-

ings. This process can be especially challenging to less experi-

enced readers. Computer-aided diagnosis (CAD) systems can

assist in processing multiparametric MRI by extracting and

drawing attention to meaningful information contained within
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the images, thus, potentially facilitating or improving the deci-

sion-making.

Several CAD systems adopting a multiparametric approach

have been developed. T2W MRI was combined with DCE

MRI,8,9 diffusion-weighted imaging (DWI),10 or MR spec-

troscopy.11,12 Some incorporated T2W MRI, DCE MRI, and

DWI together.13–20 Intensity8,10,13–16,19 and texture9–11,16,18 fea-

tures were commonly used to characterize suspicious lesions.

Texture features included first-order statistics,9,16 co-occur-

rence matrix,10,16 gradient operators,16,18 local binary pattern,18

local phase quantization,9 and wavelet transform.11 In addition,

graph embedding,12,21 random walk,17 locally linear embedd-

ing,15 and principal component analysis11 were used to reduce

data dimension and/or to improve data representation. The ma-

jority of these systems focused only on the peripheral zone of

the prostate10,13,15,16,18 because it is where>70% of the prostate

cancers arise.22,23 Cancer detection in the transition zone or

central gland is more challenging in part because cancers can

be masked by adjacent benign prostatic hyperplasia (BPH).9,23

T2W MRI, DCE MRI, and a map of apparent diffusion

coefficient (ADC) from DWI have been the mainstay of mul-

tiparametric MRI in the previous studies. In addition to these,

high-b-value DWI has recently gained much attention and

shown a capability for tissue and tumor characterization and

detection in the brain,24 breast,25 colon,26 gallbladder,27 liver,28

pancreas,29 and prostate.30–32 In particular, high-b-value DWI

(b=2000 s/mm2) combined with T2W MRI substantially

improved prostate cancer detection.30,32

Herein, we propose a MRI CAD system for detecting pros-

tate cancers utilizing features derived from T2W MRI and

high-b-value DWI (Fig. 1). This system extracts texture infor-

mation using local binary pattern (LBP)33 and its variants. A

three-stage feature selection method selects the most discrim-

inative features for cancer. In the first stage, frequent pattern

mining34 discovers a single or a combination of texture pat-

terns that can represent either cancer or benign lesions. In

the second stage, Wilcoxon rank-sum test finds the texture

patterns that significantly differ regarding class labels (cancer

and benign). In the third stage, the texture patterns that mini-

mize redundancy among the patterns and maximize relevance

among the patterns and class labels are selected by applying

a mutual information-based criterion. The selected patterns

are designated as the most discriminative texture features and

used to build a classification model, support vector machine

(SVM),35 providing a diagnostic cancer prediction map for the

whole prostate.

The purpose of our study is to assess the ability of a texture

feature extraction and selection scheme as well as the perfor-

mance of a classification model in detecting and localizing

prostate cancer based on T2W MRI and high-b-value DWI.

F. 1. Pipeline of the MRI CAD system. Multiparametric MRI is processed using three texture operators. Frequent and discriminative texture features are

selected and used to build a classification model. Finally, the integrated cancer prediction map is produced.
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2. MATERIALS AND METHODS

2.A. Patient population

This study was conducted as part of an ongoing institutional

review board (IRB)-approved clinical trial of MRI-US fusion

prostate biopsy. Eligible patients had a history of elevated

PSA or clinical suspicion of prostate cancer and had at least

one suspicious lesion visualized on multiparametric MRI.

The commercial fusion platform used for this study was the

UroNav system (In vivo, Philips Healthcare, Gainesville, FL).

Patients had standard of care 12-core TRUS guided extended

sextant biopsies, and two targeted MRI-US fusion guided

biopsies (axial and sagittal planes) per MRI-identified lesion.

The study population consisted of 508 consecutive patients

from January 2013 to May 2014. Of these, we excluded 264 pa-

tients. The exclusion criteria were (1) previous record of treat-

ment (focal laser ablation, hormone therapy, and cryotherapy):

17 patients; (2) absence of one or more MRI sequences: 37 pa-

tients; (3) poor image quality, deformation, and patient motion:

75 patients; and (4) no unequivocal MR-identified (cancer or

benign) lesion or no benign sextant biopsy >30 mm away from

the MR-identified lesions: 135 patients. Unequivocal cancer or

benign lesions were to be cancer or benign for both axial and

sagittal biopsies. Benign lesions including atrophy, high-grade

prostatic intraepithelial neoplasia, and inflammation were also

excluded. The distance between benign sextant biopsies and

MR-identified lesions was calculated using MR coordinate

information. The characteristics of the remaining 244 patients

are presented in Table I.

The 244 patients were divided into the calibration (from

January 2013 to September 2013) and validation (from October

2013 to May 2014) datasets. Biopsy-proven MR-identified

point targets were used to provide a ground truth label. The

calibration dataset was composed of 183 MR-positive lesions

consisting of 78 cancers and 105 MR-positive benign lesions

derived from MRIs of 108 patients. It was used to select the

most discriminative features and to train the CAD system. The

validation dataset from 136 patients was composed of 179

MR-positive lesions consisting of 68 cancers and 111 MR-

positive benign lesions as well as 117 MR-negative regions

sampled by routine biopsy and confirmed to be normal. Two

validation studies were performed: (1) cancer vs benign in

MR-positive lesions and (2) cancer vs benign in both MR-

positive and MR-negative regions. The first validation study

was to test if the CAD system was capable of identifying

cancerous lesions from benign lesions that were determined

as “lesions” by experienced radiologists (68 cancer and 111

benign lesions). The second study was to examine if the CAD

system can detect cancer lesions from benign lesions whether

they were positive or not on MRI (68 cancers, 111 MR-positive

benign, and 117 MR-negative benign lesions).

2.B. MRI protocol

Mutiparametric MRI of the prostate was performed on a

3-T MR scanner (Achieva-TX, Philips Medical Systems, Best,

NL) using the anterior half of a 32-channel SENSE cardiac coil

(In vivo, Philips Healthcare, Gainesville, FL) and an endorec-

tal coil (BPX-30, Medrad, Indianola, PA). No pre-examination

bowel preparation was required. The balloon of each endorec-

tal coil was distended with approximately 45 ml of perfluo-

rocarbon (Fluorinert FC-770, 3M, St. Paul, MN) to reduce

T I. Characteristics of patient cohort.

All datasets Calibration Validation

Patients 244 108 136

Age, mean (SDa) 63.32 (7.63) 63.11 (7.78) 63.49 (7.53)

PSA, mean (SD) 9.71 (10.23) 9.40 (9.45) 9.95 (10.84)

MR-identified lesions 362 183 179

Location

Peripheral zone, nb (%) 243 (67.13) 131 (71.58) 112 (62.57)

Central gland, n (%) 119 (32.87) 52 (28.42) 67 (37.43)

Right, n (%) 151 (41.71) 69 (37.70) 82 (45.81)

Midline, n (%) 29 (8.01) 16 (8.74) 13 (7.26)

Left, n (%) 182 (50.28) 98 (53.55) 84 (46.93)

Apex, n (%) 190 (34.85) 102 (55.74) 88 (49.16)

Mid, n (%) 142 (25.45) 65 (35.52) 77 (43.02)

Base, n (%) 30 (7.88) 16 (8.74) 14 (7.82)

Suspicion level

High, n (%) 62 (17.13) 38 (20.77) 24 (13.41)

Moderate, n (%) 274 (75.69) 132 (72.13) 142 (79.33)

Low, n (%) 26 (7.18) 13 (7.10) 13 (7.26)

Gleason scorec

7, n (%) 73 (50.00) 38 (48.72) 35 (51.47)

8, n (%) 49 (33.56) 29 (37.18) 20 (29.41)

9, n (%) 20 (13.70) 8 (10.26) 12 (17.65)

10, n (%) 4 (2.74) 3 (3.85) 1 (1.47)

aStandard deviation.
bNumber of cases.
cFrom the biopsy samples obtained in axial plane.
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imaging artifacts related to air-induced susceptibility. T2W

MRI, DW MRI, and DCE MRI were acquired. The standard

DWI was acquired with five evenly spaced b-values (0–750

s/mm2) and high-b-value DWI was acquired with b = 2000

s/mm2. Multiparametric MRI was independently evaluated by

two experienced genitourinary radiologists (BT, PLC with 6

and 13 yr of experience, respectively). The location of the

identified suspicious lesions was recorded in a MRI coordinate

system, and imported into the UroNav (In vivo, Philips Health-

care, Gainesville, FL) fusion biopsy system. The criteria for a

positive lesion on multiparametric MRI have been previously

described.36,37 The targets defined by multiparametric analysis

were marked on T2W MRI and displayed on triplanar (axial,

sagittal, and coronal) images as biopsy targets. In addition, the

whole prostate was manually or semiautomatically segmented

by the radiologists.

2.C. Prostate biopsy and review

All patients underwent MRI-US fusion targeted biopsy

using the UroNav system. Briefly, during the biopsy, an elec-

tromagnetic (EM) field generator was placed above the pelvis,

and a 2D end-fire TRUS probe (Philips C9-5ec) with detach-

able EM tracking sensors was positioned in the rectum. This

enables real-time tracking of the US transducer (and thus

biopsy guide and needle path) during the procedure. The

operator scanned the prostate from its base to its apex with the

tracked probe, and a fan-shaped 3D volumetric US image was

reconstructed, segmented, and spatially (rigidly) registered

with the prebiopsy T2W MRI which was annotated with

targets in a semiautomatic fashion. Then, the live US image

(iU22, Philips Healthcare, Andover, MA) was fused with

the MR images in real-time. Image registration was based

on EM tracking (In vivo, Gainesville, FL, Philips Interven-

tions, formerly Traxtal, Inc., Ontario, Canada and Northern

Digital, Inc., Waterloo, CA) and technical details have been

described in the previous reports.6 An experienced prostate

pathologist reviewed the biopsy samples, obtained by MRI-

US fusion guided biopsy and a standard 12-core systematic

biopsy, and reported the tissue characteristics and malig-

nancy.

2.D. Description of CAD system

2.D.1. Postprocessing

T2W MRI and high-b-value DWI are first normalized.

We identify potential outliers as the voxels whose intensities

are below 1 percentile or above 99 percentile of the voxel

intensities in the prostate. Excluding these outlier voxels,

we compute the median and standard deviation of the voxel

intensities in the prostate using the whole prostate segmen-

tation (semiautomated and confirmed and manually adjusted

by the radiologists) and divide the intensity of each voxel by

median + 2× standard deviation. Then, the different modal-

ities of MR images (MRI-to-MRI) are rigidly registered using

MR coordinate information.18 The image normalization and

registration are performed per MR slice.

2.D.2. Feature extraction

Three texture operators are incorporated to extract texture

information in the prostate: (1) LBP,33 (2) local directional

derivative pattern (LDDP),38 and (3) variance measure oper-

ator (VAR)33 (Fig. 1). LBP is a popular local texture descriptor

due to its low computational complexity, gray-scale and rota-

tion invariance, and robustness to illumination changes. LBP

compares the gray level of a pixel and its local neighborhood

and generates a (binary) pattern code. The pattern code is often

represented as a decimal number. A local neighborhood is

defined as a set of evenly distributed pixels on a circle. A radius

of the circle determines a spatial resolution of LBP. LDDP is

an extension of LBP, which encodes higher order derivative

information of texture. VAR measures the local variance of

texture. Since VAR is continuous, it is discretized by equal-

depth binning to provide a pattern code. Finally, the pattern

codes are summarized into a histogram. A bin in the histogram

corresponds to a unique pattern code.

2.D.2.a. Local binary pattern and its variants. Given a

(center) pixel c in an image, LBP examines its neighboring

pixels p(p= 0, . . ., P−1) in a radius R and generates a binary

pattern code as follows

LBPP,R =

p−1


p=0

s
�

gp−gc
�

2p, (1)

where s(x) is 1 if x ≥ 0 and 0 if x < 0 and gc and gp represent

the gray level of the center pixel and its neighborhood pixels,

respectively. The coordinates of the neighborhood pixels are

computed as (R cos(2πp/P),−R sin(2πp/P)) and their gray

levels are estimated by interpolation. Since LBP depends

exclusively on the sign of the gray level differences, the

pattern code is invariant to the scaling of the gray scale. More-

over, rotating the image, the gray level of the neighborhood

pixels rotates around the center pixel. The rotation results in

a different binary pattern code but only makes a bitwise shift

in the original pattern code. Hence, rotation-invariant pattern

code is computed as

LBPri
P,R =min

�

ROR(LBPP,R, i) | i = 0,1,. . .,P−1
	

, (2)

where ROR(x, i) is a circular bitwise shift operator on x by i

bits.

Higher order derivative information is computed using

LDDP (Ref. 38) to provide more detailed texture information.

Second order LDDP along p direction is computed as follows:

LDDP2
P,R =

P−1


p=0

s
(

d2
p,R

)

2p (3)

d2
p,R =

(

g
R2
p −g

R1
p

)

−
(

g
R1
p −gc

)

= g
R2
p +gc−2g

R1
p , (4)

where g
R1
p and g

R2
p denote the gray level of a neighborhood

pixel p in a circle of radius R1 and R2, respectively.

Since LBP and LDDP lack contrast information, variance

of the local contrast is also measured as follows:

VARP,R =
1

P

p−1


p=0

�

gp− µ
�2
,
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where

µ=
1

P

p−1


p=0

gp. (5)

2.D.3. Feature selection

When multiple LBPs with various radii and/or LBP vari-

ants (e.g., LDDP and VAR) are incorporated, a multidimen-

sional histogram outperforms a combination of single histo-

grams. However, the multidimensional histogram is not time-

and space-effective due to the exponential growth of feature

space.49 Furthermore, many noisy bins adversely affect the

texture analysis since their density estimates are unreliable.33

Limiting the number of bit transitions (from 0 to 1, or vice

versa), “uniform” patterns are often utilized but lead to a

huge loss of texture information.39 Instead, we find the most

informative histogram bins (or features) that are frequent and

discriminative, i.e., improve discriminative power as well as

reduce noisy bins.

First, we find frequent pattern codes by adopting a data min-

ing approach, so called frequent pattern mining.34 Whether a

pattern code is frequent or not is determined by a user-specified

threshold. Frequent pattern mining discovers any combination

of the pattern codes that are frequent, i.e., it simultaneously

examines not only an individual operator (single-dimensional

histograms) but also any combinations of the operators (multi-

dimensional histograms). Hence, “frequent pattern codes”

include bins from single- and multiple-operator histograms.

Second, the occurrences of the frequent pattern codes between

cancers and benign tissue are compared using Wilcoxon rank-

sum test. Only the significant pattern codes (p-value <0.05)

are selected. Third, the significant pattern codes are ordered

via mRMR (minimum redundancy maximum relevance)40

criterion. Following the mRMR order, forward feature selec-

tion sequentially adds one new pattern code at a time, and

measures the discriminative power of the pattern codes so far,

at that point in time. The set of pattern codes with the highest

classification performance is chosen as the most discriminative

pattern set. Performing K-fold cross validation, the classifi-

cation performance is measured by the ratio of the number

of correctly predicted cancers and benign cases and the total

number of cases. K-fold cross validation divides the training

dataset into K disjoint partitions, learns classification models

on the K−1 partitions, and tests the models on the remaining

partition. This is repeated K times with different choices of

the testing partition. We set K= 5. The frequency of the most

discriminative pattern codes forms the texture features for the

CAD system.

2.D.3.a. Frequent pattern mining. Suppose a dataset D

= {d1,d2,. . .,dn} has NA categorical attributes, and class labelY

= {y1,y2,. . .,yn} had NC classes where yi is the label associ-

ated with data di. Each attribute could have a number of values,

and each pair of an attribute A and a value v (A, v) is mapped

to a distinct item in Q = {a1, a2,. . .,am}. Then, each data di is

represented as a set of items in Q. In the dataset, frequent pat-

terns are the item sets which occur no less than a user-specified

threshold. In other words, a k-item set α, consisted of k items

from Q, is frequent if α occurred no less than θ |D| times

in the dataset, where θ is a user-specified minimum support

(MinSup) threshold, |D| is the total number of data, and the

support of a pattern is the number of data containing the pattern

(MinSup= 1%). “FP-growth,”41 which generates the complete

set of frequent patterns without candidate generation, is used

to mine frequent patterns.

2.D.3.b. mRMR. mRMR (Ref. 40) is a feature selection

method that attempts not only to maximize the relevance be-

tween the features and class labels but also to minimize the

redundancy among the features. Both the relevance and redun-

dancy are characterized in terms of mutual information as

follows:

maximal relevance : maxD(S,c), D =
1

|S|



xi∈S
I (xi;Y ), (6)

minimal redundancy : minR(S), R=
1

|S|2



xi,x j ∈S
I
�

xi;x j

�

,

(7)

where I (x; y) represent the mutual information of two vari-

ables x and y , S is a feature set, and Y is a class label.

To achieve the goal of optimizing the above two conditions

simultaneously, the simple mRMR criterion, max(D−R), is

invoked. mRMR starts from a feature with the highest maximal

relevance and selects a new feature among the rest of features

that is the most correlated with the class labels while being

the least redundant with the selected features so far. Thus, it

generates an order of the features according to the mRMR

criterion.

2.D.4. Classification

For each MRI, the three texture operators (LBP, LDDP,

and VAR) are applied using two neighboring topologies (P,R)

= {(16,2), (24,3)}, i.e., six different pattern codes are gener-

ated for each pixel. Collecting pattern codes in a rectan-

gular window (7 × 7 mm) centered at the MRI-identified

target point, the discriminative texture features are selected

and computed using a three-stage feature selection method

(frequent pattern mining, Wilcoxon rank-sum test, and mRMR

criterion). SVM (Ref. 35) [LIBSVM (Ref. 42) implemen-

tation in ] is used to distinguish cancer (+1) from

benign (−1) lesions. As a kernel function, a radial basis

function K
�

xi,x j

�

= exp
�

−γ ∥ xi− x j∥
2
�

, γ = 1 is adopted. The

classification results are summarized into a receiver operat-

ing characteristic (ROC) curve. The area under ROC curve

(AUC) and a 95% confidence interval (CI) are computed

with the trapezoidal rule. Sensitivity (the rate of correctly

identified cancer lesions given true cancer lesions) and speci-

ficity (the rate of correctly identified benign lesions given true

benign lesions) are also computed using zero as the cutoff

value.

2.E. Statistical analysis

Data analysis was performed using  software version

2.15.2 (GNU General Public License). Statistical significance

Medical Physics, Vol. 42, No. 5, May 2015
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of frequent patterns in discriminating cancer lesions from

benign lesions is determined by Wilcoxon rank-sum test. Boot-

strap resampling with 2000 repetitions is adopted to assess

95% CI of AUCs and statistical significance of the differences

between AUCs of the two ROC curves.43

3. RESULTS

3.A. T2W MRI and high-b-value DWI distinguished
cancer from benign lesions

We trained our CAD system using the discriminative fea-

tures from T2W MRI and high-b-value DWI [calibration

performance: 0.97 AUC (95% CI: 0.94–0.99)]. Then, the

two validation studies were performed. In the first valida-

tion study (cancer vs MR-positive benign), our CAD system

achieved an AUC of 0.83 (95% CI: 0.76–0.89) [Fig. 2(b)].

An AUC of 0.89 (95% CI: 0.84–0.93) was obtained in the

second validation study [cancer vs benign (MR-positive or

MR-negative)] [Fig. 3(b)]. Moreover, the cancer prediction of

our CAD system was not dependent on the specific regions

of the prostate [peripheral zone: 0.83 AUC (0.73–0.91 95%

CI) and transition zone: 0.83 AUC (0.72–0.93 95% CI)].

The CAD system predicted the presence of cancer for the

whole prostate. The predicted cancer areas corresponded to

the MR suspicious lesions that were proved to be cancer by

MRI-US fusion targeted biopsy and pathology review [Fig.

4(a)]. The MR-positive benign areas were predicted as benign

[Fig. 4(b)].

We also assessed mispredicted cases (false negatives and

false positives) by our CAD system. False negatives, missed

cancer lesions, mainly included smaller- or subcapsular le-

sions [rows 1, 3, 4, and 6 in Fig. 5(a)]. Due to the window-

based feature computation scheme, insufficient information

may have provided and complicated the prediction, leading to

a lower likelihood of cancer. In some cases, although the tar-

geted voxel was missed, its neighboring voxels were correctly

identified as cancer [rows 2 and 5 in Fig. 5(a)]. Moreover,

false positives, benign lesions that were predicted as cancer,

were often observed where cancerlike imaging signatures are

shown: dark on T2W MRI and bright on high-b-value DWI

[Fig. 5(b)]. BPH [row 3 in Fig. 5(a) and rows 1, 5, and 6 in Fig.

5(b)] and dark anterior areas [row 5 in Fig. 5(b)] were other

causes of false positives.

3.B. T2W MRI and high-b-value DWI outperformed
other combinations of MRI modalities

We repeated the two validation experiments using each of

the two MRI modalities (T2W MRI and high-b-value DWI)

and the ADC map of the standard DWI. For the discrimination

of cancer and MR-positive benign lesions, T2W MRI, high-b-

value DWI, and the ADC map alone showed an AUC of 0.78

(95% CI: 0.70–0.85), 0.65 (95% CI: 0.56–0.73), and 0.67 (95%

CI: 0.59–0.75), respectively [Fig. 2(a)]. For cancer vs benign,

T2W MRI achieved an AUC of 0.84 (95% CI: 0.78–0.90), high-

b-value DWI achieved an AUC of 0.71 (95% CI: 0.64–0.78),

and the ADC map achieved an AUC of 0.69 (95% CI: 0.60–

0.76) [Fig. 3(a)]. There were significant differences between

our CAD system and these single-modal predictions.49

Additionally, bi- and trimodal combinations were tested.

The combination of T2W MRI and the ADC map showed

the AUCs of 0.78 (95% CI: 0.71–0.85) and 0.85 (95% CI:

0.78–0.90) for cancer vs MR-positive benign and for can-

cer vs benign, respectively. The combination of high-b-value

DWI and the ADC map produced an AUC of 0.69 (95% CI:

0.60–0.77) for cancer vs MR-positive benign and an AUC of

0.75 (95% CI: 0.68–0.81) for cancer vs benign. The differences

between these two bimodal combinations and our CAD sys-

tem were also statistically significant.49 Interestingly, the tri-

modal combination, combiningT2W MRI, high-b-value DWI,

and the ADC map, did not improve upon our CAD system

utilizing T2W MRI and high-b-value DWI. There was no

statistically significant difference between them.49

F. 2. ROC curves for cancer versus MR-positive benign. (a) Single-modal and (b) bi- and trimodal combinations.
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F. 3. ROC curves for cancer versus benign. (a) Single-modal and (b) bi- and trimodal combinations.

3.C. Discriminative features

Using the three-stage feature selection scheme, 124 discrim-

inative features were obtained. The features were from 48

different combinations of the three texture operators and two

neighboring topologies.49 The length of the pattern codes

forming the discriminative features ranged from 1 to 6. Hence,

the feature selection method, in fact, explored a variety of

combinations and selected the features that best describe the

texture information of cancer and benign lesions.

4. DISCUSSION

The results of our study demonstrated that the MRI CAD

system combining T2W MRI and high-b-value DWI could

identify cancer for the whole prostate and the three-stage

F. 4. Cancer prediction for the whole prostate from 12 different patients. First, second, and third columns show a cancer prediction map, T2W MRI, and

high-b-value DWI, respectively. MR-positive lesions (red circles) were proven to be (a) cancer and (b) benign. GS denotes Gleason score.
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F. 5. False prediction from 12 different patients. (a) False negatives, missed cancer lesions and (b) false positives, benign lesions that were predicted as cancer

are shown. First, second, and third columns show a cancer prediction map, T2W MRI, and high-b-value DWI, respectively. Red circles are MR-positive lesions.

GS denotes Gleason score.

feature selection scheme could find the most discrimina-

tive texture features for distinguishing cancer and benign

lesions. The discriminative features were selected from a

variety of combinations of texture patterns, which are infea-

sible with the conventional approach of constructing multiple

single- or multidimensional histograms; for instance, a 6D

histogram would require >20×106 bins with the same setting.

This CAD system could distinguish cancer from MR-positive

benign lesions that were preselected by expert radiologists,

suggesting that the CAD system could reduce the number of

negative biopsies.

We compared our CAD system to the previous CAD sys-

tems (Table II). In terms of cancer detection performance, our

CAD system was comparable to the previous systems. The

majority of them reported the cancer detection performance

from 0.82 to 0.89 AUC. Two of them achieved over 0.95 AUC.

The direction comparison may be misleading since the perfor-

mance is subject to several factors including patient population

and characteristics, dataset size, ground truth and region of

interest generation, validation scheme, etc. Especially, most

CAD systems have been evaluated on smaller datasets ranging

from 15 to 54 patients. It is highly likely that the patient charac-

teristics significantly differ from each other. Moreover, a leave-

one-out cross-validation (LOOCV) scheme has been mainly

adopted for validation. Since the uniqueness of the CAD

systems is not guaranteed in a LOOCV scheme,44 the perfor-

mance of such CAD systems in the clinic is still questionable.

However, our CAD system was independently trained and

tested on a large-scale dataset including 244 patients. The

training and validation datasets contained a diverse popula-

tion of at risk patients with differing frequencies of cancer

and benign lesions (Table I). We also note that the patient

population in this study is overlapped with Ref. 45 where 186

patients were employed and 80% sensitivity was achieved at

70% specificity in distinguishing high risk lesions from low

risk and benign lesions. At 70% specificity, our CAD system

showed 72% and 88% sensitivity for cancer vs MR-positive

benign and cancer vs benign, respectively. In addition, we

have developed another CAD system46 utilizing T2W MRI,

the ADC map of DWI, and DCE MRI on the overlapping

patient population. A random forest classifier was built us-

ing first/second order statistics, texture, and shape features.

Instead of point targets, contours of targeted lesions were

identified by expert radiologists and used to train (40 patients)

and test (21 patients) the classifier. An AUC of 0.928 (CI:

0.927–0.928) was achieved. Adding DCE MRI, the CAD

system improved the performance of cancer detection but

evaluated on a limited size of patient cohort.

It was remarkable that the addition of the ADC map to

our CAD system did not improve the prediction performance,
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T II. Details of the previous CAD systems.

CAD system Performance Data size Validation Region Imaging modality

Chan et al. (Ref. 10) AUC= 0.839±0.064 15 LOO CV PZ T2W, ADC

Vos et al. (Ref. 8) AUC = 0.89 (CI: 0.81–0.95) 29 LOO CV PZ T2W, DCE

Liu and Yetik (Ref. 14) AUC = 0.89 20 LOO CV WP T2W, DCE, ADC

Tiwari et al. (Ref. 11) AUC= 0.89±0.02 36 3-fold CV WP T2W, MR spectroscopy

Shah et al. (Ref. 15) F-measure = 0.89 24 LOO CV PZ T2W, DCE, ADC

Niaf et al. (Ref. 16) AUC = 0.89 (CI: 0.81–0.84),

cancer vs benign

30 LOO CV PZ T2W, DCE, ADC

AUC = 0.82 (CI: 0.73–0.9), cancer

vs MR-positive benign

Moradi et al. (Ref. 47) AUC = 0.96 29 LOO CV WP DTIa, DCE

Tiwari et al. (Ref. 12) AUC= 0.89±0.09 29 LOO CV WP T2W, MR spectroscopy

3-fold CV

Peng et al. (Ref. 19) AUC= 0.95±0.02 48 LOO CV WP T2W, DCE, ADC

Liu et al. (Ref. 18) AUC = 0.82 (CI: 0.71–0.93) 54 36 training WP T2W, DCE, ADC

18 testing

Niaf et al. (Ref. 20) AUC = 0.89 49 LOO CV WP T2W, DCE, ADC

Litjens et al. (Ref. 48) AUC = 0.889 347 LOO CV WP T2W, PDWb, DCE, ADC

aDiffusion tensor imaging.
bProton density-weighted imaging.

and had reduced sensitivity, with only slightly improved spec-

ificity.49 Similarly, adding the ADC map to other single-modal

systems obtained relatively small improvements compared to

the improvements achieved by the addition of T2W MRI or

high-b-value DWI to others. The ADC map and high-b-value

DWI may carry similar underlying biological and physiolog-

ical information, but the ADC calculation may introduce errors

due to misregistration of different b-value images or intensity

threshold applied to the images. For the purpose of cancer

detection, there might be a larger synergy between T2W MRI

and high-b-value DWI than between the ADC map and others.

We used biopsy-proven point targets to provide a ground

truth label and to compute texture features. The point targets

were required to be unequivocally cancer or benign in axial

and sagittal planes, confirming the reliability of the ground

truth. This may have biased our CAD system toward a larger

volume of tumor. Finer and more reliable ground truth may be

available through whole mount prostate tissue specimens. The

cancer and benign lesions identified on the whole mount tissue

image can be mapped onto the corresponding MRI slice and

used to train and test the CAD system, but it still suffers from

the complex registration error between the whole mount image

and MRI, despite matching techniques such as patient-specific

molds.14

There are several limitations to this study. First, we only

used MR coordinates to register different MRI sequences,

and MRIs with a substantial patient motion or deformation

were excluded in this study to minimize their effect on the

classification model. The exclusion was mainly due to patient

motion, not deformation. Since discriminative features were

computed from a rectangular window of 7× 7 mm around a

targeted voxel, a slight patient movement, even a few milli-

meters, during imaging acquisition could have a significant

impact on feature computation. However, local deformations

or displacements of the prostate may occur in the clinics.

Image registration algorithms may be able to correct for such

motion or deformation, enabling better registration of MRI

sequences and improved performance of the CAD system.

That is, the exclusion may not limit the applicability of our

CAD system to the clinics. Nevertheless, the effect of im-

age registration algorithms on the CAD system should be

further investigated, if applied, since the correction of such

motion or deformation is not trivial. Second, cancer predic-

tion for the whole prostate was only evaluated based on bi-

opsy. This may have preselected for large and image-able

lesions. A validation study using whole mount tissue speci-

mens could further ensure the reliability of our CAD system.

Third, we computed texture features from the rectangular ROI

window around a MRI-identified point target. Even though

this approach minimizes users’ input, it may not maximally

utilize the local characteristics of tissue due to the possible

inclusion of benign tissue for a cancerous target point, or vice

versa. Fourth, we only incorporated three texture operators

of one particular type in our CAD system. Combined with

other intensity- or texture-based features, the CAD system may

be able to provide a more accurate and reliable prediction.

Fifth, DCE MRI and MR spectroscopy were not considered in

this CAD system. Defining methodology to incorporate these

imaging modalities might further improve the CAD system.

However, they require an extra time and cost for the patient and

the system. DCE MRI includes a gadolinium-based contrast

injection, which is not without cost or risk. The acquisition

and processing of MR spectroscopy need special expertise,

specific equipment, and substantial time. Last, the additive

value of our CAD system to the current clinical practice is

not yet clear. Further study will be conducted to prospectively

use the CAD system to facilitate biopsy in specific clinical

settings to study whether the cancer prediction of the CAD
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system helps to improve performance in identifying clinically

significant prostate cancers and improves the diagnostic yield

or workflow and throughput of prostate biopsy.

5. CONCLUSIONS

We have presented an automated CAD system utilizing

T2W MRI and high-b-value DWI for localizing prostate can-

cer lesions. The performance of the CAD system is suffi-

ciently promising to warrant retrospective and prospective test-

ing in larger cohorts. The ability to assist readers of prostate

MRI with cancer prediction maps may offer the potential for

improving the diagnostic yield of prostate biopsy and for aiding

surgical- or therapeutic-planning of prostate cancer as well as

assisting nonspecialists in interpreting prostate MRI, making

this method available to a wider population, while potentially

reducing the learning curve for interpretation training.
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