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Background: Reliable, automated QT analysis would allow the use of all the ECG data recorded
during continuous Holter monitoring, rather than just intermittent 10-second ECGs.

Methods: BioQT is an automated ECG analysis system based on a Hidden Markov Model, which is
trained to segment ECG signals using a database of thousands of annotated waveforms. Each sample
of the ECG signal is encoded by its wavelet transform coefficients. BioQT also produces a confidence
measure which can be used to identify unreliable segmentations. The automatic generation of tem-
plates based on shape descriptors allows an entire 24 hours of QT data to be rapidly reviewed by a
human expert, after which the template annotations can automatically be applied to all beats in the
recording.

Results: The BioQT software has been used to show that drug-related perturbation of the T wave is
greater in subjects receiving sotalol than in those receiving moxifloxacin. Chronological dissociation
of T-wave morphology changes from the QT prolonging effect of the drug was observed with sotalol.
In a definitive QT study, the percentage increase of standard deviation of QTc for the standard manual
method with respect to that obtained with BioQT analysis was shown to be 44% and 30% for the
placebo and moxifloxacin treatments, respectively.

Conclusions: BioQT provides fully automated analysis, with confidence values for self-checking,
on very large data sets such as Holter recordings. Automatic templating and expert reannotation of
a small number of templates lead to a reduction in the sample size requirements for definitive QT
studies.

Ann Noninvasive Electrocardiol 2009;14(Suppl.1):S9–S21

QT interval; T-wave shape; definitive QT studies; 12-lead Holter; automated
analysis; confidence values

The electrocardiographic QT interval is a clinically
important measurement because, when abnormal,
it is a harbinger of both cardiac and arrhythmic
deaths.1 In addition, most regulatory agencies, in
accordance with the International Conference on
Harmonisation, require an assessment of the ef-
fects of new drugs upon the QT interval for their
approval and appropriate labeling.2 There are three
persuasive reasons for automation of the measure-
ment of QT. First, the measurement can only be
made accurately by an expert, and the required ex-
pertise is relatively rare: that of a certified cardiol-
ogist with special training in and awareness of the
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practice and pitfalls of QT measurement. Second,
the volume of ECGs that must be recorded prop-
erly to assess a drug’s cardiac repolarization effects
is enormous, often exceeding 100,000 12-lead trac-
ings during the premarketing assessment of a new
drug. Accurate automated annotation of the QT
could greatly reduce the expense of measurements
made by expert readers. Currently regulatory agen-
cies do not consider existing commercial QT mea-
surement algorithms to be acceptably accurate.2

Third, a reliable QT measurement automation tech-
nology would allow the use of all the ECG data
recorded during continuous Holter monitoring,
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rather than intermittent 10-second ECGs, and this
would greatly enhance the assessment of cardiac
repolarization.

Current automated methods for QT interval mea-
surements typically rely on identifying the end of
the T wave as the intersection between a tangent
to the waveform and the isoelectric line.3,4 These
methods have proved not to be particularly ro-
bust in the presence of unusual waveform mor-
phologies (e.g., inverted/biphasic T waves or ec-
topic beats) and noisy signals (60 Hz interference,
muscle artifact, baseline wander). More impor-
tantly, automated techniques usually provide no
associated confidence measures which could iden-
tify those beats that the system cannot, and should
not, analyze, either because of noise, artifact or
abnormal waveform morphology. This lack of self-
assessment has contributed to a reluctance by the
pharmaceutical industry and regulatory authorities
to adopt the use of automated algorithms for QT
analysis.

In this article, we introduce BioQT, an auto-
mated QT analysis system based on a model trained
on thousands of examples. BioQT reports both the
QT interval for that beat and a confidence value
associated with that measurement. In addition,
BioQT automatically generates templates of beat
families according to T-wave shape. These tem-
plates may be reannotated by an expert cardiolo-
gist, after which the annotations can be applied to
all the beats in the recording.

METHODS

Hidden Markov Models

BioQT is an automated ECG interval measure-
ment technique based on probabilistic dynamic sig-
nal segmentation. The dynamic model, a Hidden
Markov Model (HMM), is trained to segment ECG
signals using a database of thousands of ECG wave-
forms previously annotated by expert cardiologists.

Figure 1 shows a typical HMM for ECG seg-
mentation. The model architecture is composed of
a “hidden” state sequence (indicated by the clear
nodes), which is stochastically related to the ob-
served ECG signal (indicated by the shaded nodes).
This model is composed of five unique states,
which represent, in this instance, the sections of
ECG from P to Q, from Q to R, from R to S, from
J to T and finally the section from the end of the
T wave to the start of the P wave of the follow-

Figure 1. A Hidden Markov Model with five states for
ECG segmentation.

ing heart beat (“Baseline or B”). This is only one
of a possible set of HMM architectures; others are
discussed in reference 5 and some of the results
presented in the next section were obtained with a
different model known as the Q–R–J–T model.

At the heart of HMMs are two probabilistic func-
tions, one of which quantifies the probability of the
state of interest at a particular time step given the
value of the state at the previous time step, and
another which quantifies the probability of observ-
ing a particular signal value given knowledge of
the state. These two probabilistic functions can be
evaluated on a sample-by-sample basis over the en-
tire course of an ECG waveform and then used to
segment the waveform into its P, Q, R, S, and T
components. In addition, the probabilistic nature
of the HMM makes it possible for a confidence
measure to be computed to quantify the validity of
the segmentation (see below).

Wavelet Representation of ECG Signal

For ECG segmentation, the hidden state corre-
sponds to a particular waveform feature (i.e., one
of PQ, QR, RS, JT, or baseline) which is active at
time t, and the observed signal sample corresponds
to the associated ECG sample representation at that
time. Although it is possible to use the raw ECG
signal samples as the input to the HMM, we have
found that in practice the accuracy of the model
segmentations can be improved considerably by
incorporating “contextual information” from neigh-
boring signal samples into the ECG representation.
For this purpose, we use a sample-wise encoding of
the ECG derived from a wavelet transform of the
signal.5

Wavelets are a class of functions that are well
localized in both the time and frequency domains.
They are able to capture the nonstationary spectral
characteristics of a signal by decomposing it over a
set of atoms which are localized in both time and
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Figure 2. Undecimated wavelet transform (UWT) of ECG waveform—sample
number on horizontal axis (500 samples/s), wavelet scale on vertical axis and
intensity in color.

frequency. These atoms are generated by scaling
and translating a single mother wavelet. The result
of a wavelet transform of a signal is a set of coeffi-
cients which capture the activity of the signal over
a range of different frequencies (or “scales”) and at
a number of different time points.

BioQT makes use of a particular class of wavelet
transform known as the “undecimated wavelet
transform” or (UWT).6 The UWT is particularly
well suited to ECG interval analysis as it provides
a time–frequency description of the ECG signal on
a sample-by-sample basis. In addition, the UWT co-
efficients are translation-invariant (unlike, e.g., the
coefficients of the discrete wavelet transform), an
ideal property for waveform segmentation. Thus
each successive sample of the ECG signal (the ob-
servations in the HMM) is encoded by its UWT
coefficients in BioQT, as shown in Figure 2 for an
eight-coefficient model for one ECG cycle.

The computational overhead associated with
computing the wavelet transform is an insignif-
icant fraction of the overall computational time.
UWT computation can be implemented efficiently
using a filter-bank structure. BioQT processes a 24-
hour Holter recording in 3–4 minutes on a Dell 390
workstation, with the UWT computation taking a
few seconds in total.

The wavelet representation of the ECG offers a
number of advantages over the use of the raw ECG
signal as the input to the HMM. First, each UWT
“observation vector” encodes information about the

ECG waveform morphology evaluated over a lo-
cal window at each time point. This provides the
HMM with a form of context, which enables the
model to perform the ECG waveform segmenta-
tion more accurately. In addition, the UWT coeffi-
cients encode the spectral content of the ECG signal
(on a sample-by-sample basis) over the entire range
of frequencies. Hence any low- or high-frequency
noise (such as baseline wander or 60 Hz interfer-
ence, respectively) is captured in different elements
of the wavelet feature vector. Since this informa-
tion is included in the ECG representation, BioQT
is able to produce confidence measures (see below)
which allow it to differentiate between clean ECG
signals and noisy or corrupted signals (for which
QT measurements should not be made).

Training the Hidden Markov Model
in BioQT

A HMM is parameterized by the following three
sets of parameters: (a) the initial state distribution;
(b) the state transition matrix Aij; and (c) the set of
observation probability models Bk for each state k
(in our case the probability distribution of the UWT
coefficients for state k). The training procedure for
the HMM is described below.

The data set used to train the BioQT HMM was
assembled from the placebo arm of a thorough
phase 1 QT/QTc study. This data set contains ap-
proximately 20,000 10-second 12-lead ECGs which
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were recorded (at a sampling rate of 500 Hz) from
380 healthy normal volunteers. For each 10-second
ECG, three consecutive beats were annotated by
the expert cardiologists, who identified the follow-
ing points within each beat and marked them on
the digitized waveform with electronic callipers:

• P-wave onset (Ponset)
• QRS onset (Qonset)
• R peak (Rpeak)
• QRS offset (J)
• T-wave offset (Toffset)

The annotations provided by the experts allow
the transitions from one state to the next to be iden-
tified and so each sample within the ECG wave-
form can be given the appropriate state label (i.e.,
the value of k for that sample). The initial state dis-
tribution and the elements of the transition matrix
Aij are computed from the interval durations de-
rived from the expert annotations using maximum
likelihood estimates.5 The observation probability
densities Bk for each state k are obtained by fitting
a Gaussian Mixture Model (GMM) to the wavelet
coefficient data for the time samples that occur dur-
ing the interval corresponding to the given state,
for the set of ECG waveforms in the training set.
The parameters of the GMM are learnt using the
expectation-maximization algorithm.5

Once the parameters of the model have been
learnt, for each lead, BioQT can be used to segment
new ECG waveforms. The most probable state se-
quence S∗ for a given ECG waveform is inferred
through the use of the Viterbi algorithm.7 This state
sequence indicates the samples at which the state
transitions occur, and hence provides a computer-
derived set of Ponset, Qonset, Rpeak, J, and Toffset an-
notations.

Confidence Measure for Automated QT
Interval Measurements

A key advantage of a probabilistic model such
as BioQT over traditional methods of automated
ECG segmentation is the ability of such a model to
produce a confidence measure for each ECG wave-
form analyzed. The confidence measure is gener-
ated by evaluating the natural logarithm of the like-
lihood of the observed waveform and the optimal
hidden state sequence over the course of the seg-
mented waveform. This log likelihood is then trans-
formed to produce a confidence value between 0

and 1.8 The confidence measure in effect quanti-
fies the “closeness” of the waveform under consid-
eration to the 20,000 exemplar waveforms stored
in the training database. There should be more
confidence in the segmentation of ECG waveforms
similar to those used for training the model than
in the segmentation of waveforms which are very
different from those in the training data set. The
confidence measure can therefore be used to iden-
tify segmentations (and hence QT interval mea-
surements) which are unreliable, due to either un-
usual waveform morphologies (e.g., flat T waves
or ectopic beats) or noisy signals (60 Hz or muscle
artifact).

BioQT can be used to analyze both conventional
10-second ECGs or 24-hour 12-lead Holter record-
ings. With the latter, the Q–R–J–T model is often
used for QT interval measurement, rather than the
full five-state HMM. The Q–R–J–T model only out-
puts annotations for the Qonset, Rpeak, J, and Toffset
points. It uses two separate HMMs, which only pro-
cess subsegments of the ECG waveform, the first
to detect the Qonset and J points and the second
to detect the Toffset point. Confidence values for
the Q–R–J–T model are based on the window of
data processed by the HMM that locates the Toffset
point. Any waveform whose confidence falls be-
low a given threshold (usually set at 0.7) is then set
aside (see later).

Once a 24-hour Holter tape has been analyzed,
BioQT produces a time-series of QT interval mea-
surements using the Q–R–J–T HMM. Such mea-
surements will inevitably be noisy to an extent, due
mostly to artifacts and noise present in the ECG sig-
nal. We exploit the fact that each QT measurement
is part of a time-series, representing a quantity ex-
pected to change relatively slowly over time, to
smooth out some of the noise in these measure-
ments. We therefore use a simple 10-point mov-
ing average, each QT interval measurement being
taken as the average of a 10-beat window of beats.
In the case where the measurement is missing for
a particular beat (when the confidence value is be-
low the rejection threshold of 0.7), the QT value for
that beat is taken to be the same as for the previous
beat.

Heart Rate Correction

The standard heart rate corrections (Bazett and
Fridericia) can be applied to the QT interval mea-
surements derived by the BioQT software, but
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we have also investigated heart rate corrections
based on the time variation of the QT/RR relation-
ship for that subject. For example, an individual
contemporaneous correction, QTcIc, can be calcu-
lated from the regression of the QT interval against
the RR interval on the day of treatment, for a given
subject, using the following formula:

QTcIc= QT+�(QT/RR) × (1000 − RR)

where �(QT/RR) is the gradient of the observed
QT–RR linear regression over the time period of
interest and the QT and RR intervals are expressed
in milliseconds. We have applied this correction
formula for sliding windows of different durations
(6 and 4 hours) to provide heart rate correction
formulae which are localized in time. In each case,
the sliding window is centered on the beat to be
corrected.

T-Wave Shape Descriptors

It is now accepted that drug-induced changes in
ventricular repolarization can lead not only to pro-
longation of the QT interval but also to changes in
the shape of the T wave.

Shape descriptors are therefore used to charac-
terize the JT segment of the ECG using frequency-
domain analysis, by constructing what is known as
the analytic signal. For shape characterization pur-
poses, it is the ECG waveform itself which is con-
sidered rather than the UWT coefficients. The JT
segment is firstly smoothed using principal com-
ponent analysis (PCA), whereby only the first few
principal components in a singular-value decom-
position of a set of consecutive JT waveforms are
retained and used to reconstruct a set of smoothed
waveforms.

Each smoothed JT segment is then decomposed
into a series of sine and cosine waveforms whose
frequencies are integer multiples of the fundamen-
tal frequency. From the amplitude and phase sig-
nals, the following shape features sn are computed:

• sine of the initial value of the phase signal;
• cosine of the initial value of the phase signal;
• initial gradient of the phase signal;
• final gradient of the phase signal;
• difference between the phase signal at the start

and end; and
• maximum value of the amplitude signal.

These features s1 to s6 are concatenated into a
six dimensional shape vector {s1, . . ., s6} which de-
scribes the shape of the corresponding JT segment.
Several of the features of the shape vector have
been observed to be correlated with heart rate, and
so those morphology differences are tracked by the
shape vector.

The novelty of the shape of a JT segment can be
assessed with respect to the BioQT model of nor-
mal T-wave shapes. This is a set of 500 prototypical
six dimensional shape descriptors, which were ex-
tracted from the original data set of 20,000 ECG
waveforms using a standard clustering algorithm
(k-means clustering). The probability density func-
tion for these 500 shape vectors, representative of
normal shapes, is computed using a Parzen Win-
dows density estimator.9

Once the parameters of this density estimator
(number of cluster centers and their width) have
been set, the estimator can be used to compute
the likelihood P that the shape of any JT segment
is normal. With BioQT, the “morphology novelty
indicator” is the associated log likelihood. The more
novel the shape of a T wave in a JT segment is, the
smaller the value of P and hence the more negative
the log likelihood will be.

Automated Generation of Templates
Using Shape Descriptors

The BioQT software also uses the shape descrip-
tors for the automatic generation of templates, to
try and identify beats with unusual waveforms.
The latter arise either because the waveform is cor-
rupted by noise or artifact, or because the study
drug causes changes in the morphology of the T
wave. It is very important to identify the latter, and
BioQT automatically generates templates which
characterize groups of beats with unexpected T-
wave shapes, that is, “novel beats.” These can then
be reviewed by an expert cardiologist, who will
be able to distinguish between noisy or artifactual
beats and those novel beats with unusual T-wave
morphology. Although there are around 100,000
beats to analyze for each lead in a 24-hour Holter
study, the BioQT software only produces between
10 and 20 templates for the cardiologist to review,
that is, the number of waveforms requiring expert
review is reduced up to 10,000-fold. The cardio-
logist can also choose to reannotate the tem-
plate, if the unusual morphology has caused the
Toffset estimate to be inaccurate, and all the beats
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characterized by that template are then automat-
ically reannotated by the BioQT software, as ex-
plained below.

The shape vectors are used in an on-line “tem-
plating algorithm” which assembles templates of
the different T-wave morphologies in the ECG
recording. The shape of the T wave is assumed
to be normal at the start of the drug study and
so the initial template is the average six dimen-
sional shape descriptor from, say, the first 15 min-
utes of the recording period. The six dimensional
shape descriptor for each subsequent JT segment
is tested against this initial template. When the Eu-
clidean distance between the shape descriptor and
the template is greater than a given threshold, a
new template is created: this template is the av-
erage waveform for the family of beats which has
this novel T-wave morphology. The shape of sub-
sequent JT segments is now tested against both the
initial template and the new template; again, when
the Euclidean distance between a six dimensional
shape descriptor and its closest template (in six di-
mensional space) is greater than the threshold, a
new template is created. This process continues
until the entire 24 hours of ECG data have been
analyzed. The value of the threshold chosen con-
trols the number of templates generated and expe-
rience acquired over a number of QT studies has
enabled us to set this threshold so that the number
of templates generated remains below 20.

Refined Analysis

All of the analysis described above is fully auto-
mated: for every beat, the BioQT software pro-
duces a QT interval estimate, together with a con-
fidence value associated with that estimate, and a
scalar parameter indicating the novelty of the T-
wave shape with respect to the normal ECG wave-
forms stored in the training data set. Templates
which characterize the different shapes of the T
wave encountered during the course of the drug
study are also generated automatically.

A completely automated report, based on high-
confidence beats only, can therefore be generated
at this stage but BioQT goes an additional stage
by producing a refined analysis using an additional
software tool for the expert cardiologist. This tool
(described more fully in the Results section) allows
the cardiologist to review the templates generated
by the BioQT software, and either reannotate them
or reject them as noise or artifact. As explained

Figure 3. Three high-quality ECG waveforms and the
corresponding QT interval measurements calculated by
the automated BioQT system, together with the associ-
ated confidence values (on a scale of 0–1), which are all
close to 0.94.

above, the BioQT software only produces between
10 and 20 templates for the cardiologist to review,
and so the number of waveforms requiring expert
review is highly manageable.

If a template has been generated by a family
of novel beats with unusual morphology, the es-
timate of Toffset produced by BioQT may be in-
accurate and the refined analysis tool allows the
cardiologist to reannotate the template. This re-
annotation is then applied automatically to all the
beats in the recording with a similar T-wave shape.
These are the beats for which the JT segment shape

Figure 4. Three noisy ECG waveforms and the corre-
sponding QT interval measurements calculated by the
BioQT system, together with the associated confidence
values (on a scale of 0–1), which vary between 0.63 and
0.77.
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Figure 5. Four consecutive ECG waveforms with an ectopic beat (beat 2) and subsequent
distorted beat (beat 3). Beats 1 and 4 are normal ECG waveforms.

Figure 6. QTc interval shows prolongation after drug dose (sotalol). Green
markers from discrete BioQT measurements on 10-second ECG data show
good agreement with continuous Holter data.
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Figure 7. Templates generated by the BioQT on-line algorithm, at minutes 16, 184, 388, and 568 of
a 24-hour Holter study when the subject was given a 320 mg dose of sotalol. Each template, shown
in red, has the same two panels on its left: the QT interval and morphology novelty indicator, with a
vertical green line indicating the time at which the template is generated. Note the flat T-wave shape at
minute 388.

descriptor is closest in six dimensional Euclidean
space to the template shape descriptor. The beats
belonging to this family of beats will, of course, all
have different durations, depending on the heart
rate at the time. To cope with this variability, the
reannotations of the template beat are reapplied
to every beat in the family using Dynamic Time
Warping (DTW). The use of DTW is common in
automated speech recognition:10 it allows the var-
ious sounds in a word to be stretched and com-
pressed by different amounts when trying to match
an unknown utterance against a number of tem-
plates, each of which corresponds to a different
word. Here DTW is the process of matching each
ECG waveform in the family of beats to the tem-
plate waveform by local nonlinear stretching and
compression of the time axis. As the heart rate
varies, a simple linear rescaling of the time axis
tends to result in the different features (e.g., the
Rpeak and Tpeak) being located at a spread of differ-
ent positions. The DTW software in BioQT maps
the template annotations to each beat in a fam-

ily, all of which have a similar shape but different
durations.

The on-line templating algorithm in BioQT has
been used to highlight beat families in 24-hour
Holter recordings that require reannotation by a
cardiologist. This strategy allows for an entire 24
hours of QT data to be reviewed by a human ex-
pert and for the template annotations to be applied
to all beats in the recording, all in a few minutes. In
addition, the algorithm provides a mathematically
principled but visually simple means of tracking T-
wave morphology and hence of identifying novel
T-wave shapes.

RESULTS

BioQT has now been applied to a number of
ECG data sets on which it has out-performed con-
ventional QT measurements methods. Figures 3
and 4 show the QT interval segmentations (i.e.,
from Qonset to Toffset) calculated by the auto-
mated BioQT system, together with the respective
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Figure 8. Time plots of QTcIc (upper trace), QT/RR gradient computed over a 4-hour
sliding window (middle trace), and morphology novelty indicator (lower trace) for a
sotalol 24-hour Holter recording (double dose day). In the plot of QTcIc, all the high-
confidence beats are shown in red; the blue trace represents the output of a 10-point
moving-average filter. The lower trace is a plot of the log likelihood of the T-wave
morphology shape descriptor vectors. The point of maximum morphology change
(315 minutes after the start of the recording) is indicated by a black vertical line.

confidence values, for two sets of ECG waveforms:
first, a high-quality set of waveforms (Fig. 3) for
which the confidence values are around 0.94 and
second a set of more noisy waveforms (Fig. 4), for
which the confidence values are lower, but still ac-
ceptable; two out of three waveforms have a confi-
dence value just above 0.7.

BioQT’s performance on a set of ECG waveforms
containing an ectopic beat is shown in Figure 5.
Note also that this ECG signal has an inverted QRS
complex. The ectopic beat affects the two central
ECG waveforms (beats 2 and 3). The QT intervals
for beats 1 and 4, which are normal, are 398 and
404 ms, respectively and both have a confidence
value of 0.86. The QT interval for beat 2, however,
is 644 ms, but it has a confidence value of 0.00,
and that for beat 3 is 472 ms, with a confidence
value of 0.04. The use of confidence values allows
BioQT to detect automatically unreliable interval
measurements.

The BioQT software has also been used to ana-
lyze the sotalol data previously presented by Sarapa

et al.11 In this study, the mean change in QT inter-
val was analyzed for a number of healthy volun-
teers given two different doses of sotalol:

Day 1: Baseline—39 patients
Day 1: Single dose of sotalol (160 mg)—39 patients
Day 2: Double dose of sotalol (320 mg)—22

patients

Standard 12-lead 10-second ECGs were recorded
at 16 distinct time points throughout each day.
Manual QT analysis was performed by cardiolo-
gists (using both a digipad and onscreen callipers)
on limb lead II.

Complete data (all three days) were available
for a subset of 11 patients, whose ECGs had pre-
viously been deidentified. For each ECG, an ag-
gregate QT interval measurement was derived by
taking the mean of the QT intervals over the three
consecutive beats with the highest overall confi-
dence score, in that 10-second record. Beats with
confidence values lower than 0.7 were automat-
ically set aside. The QT interval measurements
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Figure 9. Time plots of QTcIc (upper trace), QT/RR gradient computed over a 4-
hour sliding window (middle trace), and morphology novelty indicator (lower trace)
for a moxifloxacin 24-hour Holter recording. The point of maximum QT prolongation
(205 minutes after the start of the recording) is indicated by a black vertical line.

produced by the BioQT software from the high-
confidence beats were closely correlated with the
manual measurements made by the cardiologists.
These results are reported in full elsewhere.5

We were also able to analyze the 24-hour Holter
recordings for five of the subjects in this study.
Figure 6 shows the results of this analysis for one
subject, the upper trace showing the QT interval,
the next one the (corrected) QTc interval, and the
lowest trace the confidence values from the HMM.
The blue values in the QT and QTc time-series are
derived from high-confidence beats; those colored
in red correspond to low-confidence beats. The top
two traces clearly show prolongation of the QT in-
terval after drug dose, with the maximum prolon-
gation occurring soon after 200 minutes. The green
markers are the BioQT measurements from the
16 10-second ECGs taken throughout the 24-hour
study and these indicate that there is very good
agreement between the continuous Holter data and
the 16 discrete measurements.

Figure 7 shows the shape analysis results for one
of the subjects with a 24-hour Holter recording
in the sotalol study. Four of the templates auto-

matically generated by the BioQT software can be
seen in the figure: first, the initial template (minute
16), which is an ECG waveform with a normal
T-wave shape. Then, at minute 184, another tem-
plate is generated, which reveals a reduction in the
height of the T wave. When the maximum mor-
phology change occurs (minute 388), the T wave is
almost entirely flat, as evidenced by the third tem-
plate. By the time of the fourth template shown in
the figure (minute 568), the T wave is well on its
way to having recovered its original shape.

For each template, the same two panels dis-
played to the left of the template represent the QT
interval (top panel) with the morphology novelty
indicator shown below, both plotted against time
(for the whole 24 hours of the study). The green ver-
tical line indicates for each panel the time at which
the template is generated. The morphology nov-
elty indicator continues to show a lower probabil-
ity of normality (i.e., increasing degree of novelty)
after the time at which the maximum QT prolon-
gation is found. The greatest deviation from shape
normality (the lowest value of the log likelihood
for the morphology indicator) occurs at around
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Figure 10. Display screen for the BioQT expert reannotation tool. The upper graph shows the template
in black, with the family of beats used to generate it in light gray, and expert annotation lines as vertical
blue lines. The currently active annotation is shown highlighted with its indicator in red at the top of the
graph (Toff). The lower trace shows the template warped onto the middle beat of a triplet of beats.

388 minutes into the recording, with the shallow
and wide T wave of the third template.

The combined investigation of QT prolongation
and T-wave morphology changes has also been per-
formed with recordings from subjects who were
given moxifloxacin. This analysis revealed that,
not surprisingly, drug-related perturbation of the
T wave is greater in subjects receiving sotalol than
in those receiving moxifloxacin. The chronological
dissociation of T-wave morphology changes from
the QT prolonging effect of the drug, found with
sotalol, is not replicated with moxifloxacin. This
can be seen from examining Figures 8 and 9 to-
gether. These figures also include a time plot of the
QT/RR gradient computed, for every beat, using
a sliding 4-hour window centered on the beat in
question (i.e., 2 hours of data before the beat and
2 hours afterwards. The value for the first 2 hours
is simply held to be constant, set to the value of
the gradient in the first 4 hours in the recording;
similarly, the value for the last 2 hours is taken to
be the gradient calculated for the last 4 hours).

Interestingly, the peak change in the QT/RR gra-
dient for the sotalol data (Fig. 8) occurs at approxi-
mately the same time as the maximum morphology
change (315 minutes into the recording for this sub-
ject), not at the time of maximum QT prolongation,
which takes place much earlier. With the moxi-
floxacin data, the recording was considerably nois-
ier but a small increase in QTcIc is still discernible
in the upper trace in Figure 9. The maximum in-
crease in QTcIc occurs 205 minutes after the start of
the recording, just after the peak change in QT/RR
gradient computed over the 4-hour sliding window.
The morphology indicator is oscillatory through-
out the moxifloxacin recording, as the recording is
noisy and there are no significant changes in the
shape of the T wave.

As mentioned in the Methods section, BioQT
provides not only a fully automated analysis, with
confidence values, of QT prolongation and T-wave
morphology changes for each beat in a 24-hour
drug study, it also includes a software tool which
allow a cardiologist to review and then reannotate
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Figure 11. BioQT analysis of moxifloxacin 24-hour Holter recording. The upper trace shows the
first-pass analysis of QT interval values, with missing beats (due to low confidence) in the two
shaded sections. After the cardiologist has reannotated the templates from these sections, each
beat is automatically reannotated and its QT interval measurement is reinserted into the interval
time-series, as shown in the lower trace.

or reject the templates automatically generated by
the on-line templating algorithm.

An example of the use of this software tool is
shown in Figure 10. The top graph shows the tem-
plate in black, with the family of beats used to gen-
erate it in light gray. All the beats in gray have been
warped onto the template time axis using DTW.
The cardiologist can adjust the position of the an-
notation lines either by dragging the vertical lines
with the mouse or using the cursor arrow keys on
the keyboard to move by one pixel at a time. The
currently active annotation (which moves with the
arrow keys) is shown highlighted with its indicator
in red (here Toff).

The lower trace in Figure 10 shows a triplet
of beats, the middle beat being one of the beats
used to generate the template. The red trace shows
the template warped onto the beat’s time axis
(the reverse mapping from the top graph). When
the cardiologist moves the annotations, the corre-
sponding positions on the lower trace (the green
vertical lines) also move according to the DTW
mapping.

An example of the use of the reannotation tool
is shown in Figure 11. The upper trace in this fig-
ure shows the QT interval measurements for a 24-
hour Holter recording taken from a moxifloxacin

study in which there are two periods in the study
(shown shaded in Fig. 11) during which most of
the beats have an unusual morphology. The confi-
dence values associated with these beats are below
the rejection threshold of 0.7 and so the QT interval
measurements are not displayed. Once the cardio-
logist has reviewed and reannotated the templates
generated during these periods, each beat is auto-
matically reannotated using reverse DTW, produc-
ing the refined analysis of the lower trace, in which
the reannotated beats are reinserted into the QT
interval time-series.

The refined analysis enabled by the BioQT re-
annotation tool has now been applied to placebo
and moxifloxacin 24-hour Holter recordings from
a definitive QT study performed in normal human
volunteers. QT interval values were calculated as 5-
minute averages at each time point and were com-
pared to cardiologists’ manual results obtained by
measurement of three consecutive beats in each of
three ECGs performed at each time point (standard
ECG data). The results are given in Table 1. Stan-
dard deviation (SD) values are shown for each time
point for the placebo and moxifloxacin arms. The
percentage increase of SD of QTc for the standard
manual method with respect to the SD obtained by
the BioQT method is given in Table 1. SD by the
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Table 1. Standard Deviation (SD) Values for QTc Values in the Placebo and Moxifloxacin Arms of a Definitive QT
Study

Placebo Moxifloxacin

Hour Refined HMM Standard ECG % Refined HMM Standard ECG %

0.5 5.62 9.92 77 6.59 9.69 47
1 7.37 8.18 11 8.66 9.56 10
2 7.47 11.13 49 7.39 11.12 50
4 7.06 10.45 48 9.19 9.92 21
12 9.35 12.68 36 9.75 11.92 19

Average% 44 Average% 30

The SD of QTc for the refined Hidden Markov Model (HMM) of BioQT is shown in the left-hand most column for both arms. The
SD of QTc for the standard manual method is shown in the middle column. The percentage increase in SD obtained with the
standard manual method with respect to the SD obtained by the BioQT method is given in the third column.

manual method was higher at every time point.
The average increase was 44% and 30% for the
placebo and moxifloxacin treatments, respectively.
The improvement in SD delivered by the BioQT re-
fined analysis indicates the potential for reducing
sample size requirements in definitive QT studies
analyzed using this method.

CONCLUSION

The BioQT probabilistic model provides fully
automated QT analysis, with confidence values
for self-checking, on very large data sets such as
24-hour 12-lead Holter recordings. The technique
has shown itself to be capable of detecting drug-
induced changes in cardiac repolarization status in
humans, characterized by both QT interval prolon-
gation and T-wave shape changes. In addition, the
refined analysis made possible by automatic tem-
plating and expert reannotation of a small number
of templates potentially leads to a reduction in the
sample size requirements for definitive QT stud-
ies.
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