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Abstract

Motion-related artifacts are one of the major challenges associated with pediatric neuroimaging.

Recent studies have shown a relationship between visual quality ratings of T1 images and cortical

reconstruction measures. Automated algorithms offer more precision in quantifying movement-

related artifacts compared to visual inspection. Thus, the goal of this study was to test three differ-

ent automated quality assessment algorithms for structural MRI scans. The three algorithms

included a Fourier-, integral-, and a gradient-based approach which were run on raw T1-weighted

imaging data collected from four different scanners. The four cohorts included a total of 6,662

MRI scans from two waves of the Generation R Study, the NIH NHGRI Study, and the GUSTO

Study. Using receiver operating characteristics with visually inspected quality ratings of the T1

images, the area under the curve (AUC) for the gradient algorithm, which performed better than

either the integral or Fourier approaches, was 0.95, 0.88, and 0.82 for the Generation R, NHGRI,

and GUSTO studies, respectively. For scans of poor initial quality, repeating the scan often resulted

in a better quality second image. Finally, we found that even minor differences in automated qual-

ity measurements were associated with FreeSurfer derived measures of cortical thickness and

surface area, even in scans that were rated as good quality. Our findings suggest that the inclusion

of automated quality assessment measures can augment visual inspection and may find use as a

covariate in analyses or to identify thresholds to exclude poor quality data.
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1 | INTRODUCTION

Imaging artifacts remain a common challenge for neuroimaging studies,

especially in children and specific clinical populations. While artifacts in

some sequences have the advantage of becoming a contrast medium in

other sequences (i.e., diffusion or flow), other artifacts, such as motion

artifacts, remain problematic in image analyses. In fact, motion related

artifacts are one of the major challenges associated with imaging pediat-

ric populations (Blumenthal, Zijdenbos, Molloy, & Giedd, 2002, Backhau-

sen et al., 2016) and has received considerable attention due to the

influence of motion on connectivity-based analyses of resting-state fMRI

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012, Satterthwaite et al.,

2012, Van Dijk, Sabuncu, & Buckner, 2012). However, motion-related

issues also impact structural MRI with evidence that movement related

artifacts can influence measures such as volumes of cortical and deeper

structures (Blumenthal et al., 2002, Alexander-Bloch et al., 2016) and

cortical thickness and surface area (Reuter et al., 2015, Backhausen et al.,

2016, Ducharme et al., 2016). Thus, metrics that can accurately quantify

movement and other artifacts are important to not only select images

that should be excluded, but also to potentially statistically correct for

minor movements that can influence the morphologic variables. This is

supported by a recent study finding that movement related artifacts

affect cortical thickness, even after removal of scans that failed a strin-

gent visual quality control procedure (Reuter et al., 2015).

Quality control is especially important as the neuroimaging field

moves to increasingly larger sample sizes, with an exponentially

increasing number of scans that require ratings. Structural scans typi-

cally undergo multiple visual assessment steps, such as an initial inspec-

tion for incidental findings, inspection to determine raw T1-weighted

image quality, and following image processing with tools such as Free-

Surfer to assure optimum segmentation and surface reconstruction (El

Marroun et al., 2014, Backhausen et al., 2016). Multiple levels of visual

inspection is not only time consuming, but errors can occur due to rater

drift and difference in raters, resulting in a decrease of intra- and inter-

rater reliability, respectively. Additional errors can occur in multi-site

studies resulting from differences in raters and rating algorithms across

multiple sites, since sites have an “institutional history” associated with

how Q/A is performed. While visual inspection should always be per-

formed, the development of automated algorithms to quantify image

quality can be complementary to visual inspection. Automated algo-

rithms have the advantage of not being prone to rater drift or perform-

ance differences between raters and also can provide more precise

quality measurements. For example, Gardner et al. (1995) used images

that were manipulated in such a way as to systematically alter cortical

thickness to test the sensitivity of human raters. They found that visual

raters were able to accurately detect changes of cortical thickness of

about 40%, thus automated approaches should be able to detect more

subtle differences compared to visual-inspection.

There are several different approaches in the literature to automati-

cally derive quality assessment metrics from structural MRI scans (Atkin-

son, Hill, Stoyle, Summers, & Keevil, 1997, Mortamet et al., 2009, Pizarro

et al., 2016), and available software to generate quality assessment met-

rics (http://preprocessed-connectomes-project.org/quality-assessment-

protocol/index.html). Mortamet et al. (2009) measured voxel intensities

in the background noise with the hypothesis that artifacts cause a right-

skew in the distribution of voxel intensities. This approach was tested on

a group of 188 elderly subjects from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) (Jack et al., 2008) with good results. Pizarro et al.

(2016) challenged this approach stating that one metric alone is not suffi-

cient to capture the number of artifacts present in structural neuroimag-

ing data. They presented findings from a machine learning approach

where different features were extracted from structural imaging data.

They reported a sensitivity and specificity of their support vector

machine (SVM) approach of 70.1% and 88.2%, respectively. However, it

is unclear to what extent different MR platforms affected the accuracy.

Given the importance to obtain automated metrics for the quality

of structural MRIs, the goal of this study was to develop and compare

three different approaches (two novel and one variation of the

approach by Mortamet et al., 2009) to measure the quality of structural

MRI scans using four large cohorts that, while focusing on pediatric

populations, cover the lifespan. Two of the metrics tested were based

on the properties that voxels collected in k-space will contribute to the

entire field-of-view following a Fourier transform from k-space to image

space. Thus, movement of a subject during scanning results in “waves,”

or banding, on the image seen in the spatial domain. The first two algo-

rithms evaluate the noise characteristics outside the head, in the air,

starting several voxels outside the head and extending laterally. The first

approach utilizes a Fourier transform to capture the frequency charac-

teristics of the noise ripples away from the edge of the head (ringing).

The second metric calculates the integral of the voxel intensities charac-

terized as vectors radiating away from the head, an approach similar to

the method used by Mortamet et al. (2009). The third algorithm uses

properties of the line spread function along the edge of the head, since

movement is most prominent at the head/air interface (Barish and Jara,

1999). These three automated approaches were compared to system-

atic visual inspections in each of the four cohorts, of which intra- and

inter-rater reliabilities of the visual inspections are reported.

Finally, we tested whether the automated quality assessment algo-

rithm could predict the visually inspected quality of postprocessing

reconstructions using FreeSurfer. Based on recent studies showing a

relationship between automated derived measures cortical thickness

and quality based on visual inspection, we also tested for the relation-

ship between FreeSurfer-derived measures of cortical thickness and

measures from the automated quality assessment. We hypothesized

that automated algorithms will provide invaluable complementary

information for visual inspection, with higher resolution metrics of qual-

ity that will provide a more accurate and reproducible threshold to

exclude poor quality images from structural analyses.

2 | METHODS

2.1 | Subjects

2.1.1 | Generation R cohort

Images included in this study were acquired from children who were

participants of the first and second neuroimaging waves of the

WHITE ET AL. | 1219

http://preprocessed-connectomes-project.org/quality-assessment-protocol/index.html
http://preprocessed-connectomes-project.org/quality-assessment-protocol/index.html


Generation R Study. The Generation R Study is a large, ethnically

diverse epidemiological study of child development (Jaddoe et al.,

2006, Tiemeier et al., 2012). The first neuroimaging wave of the Gener-

ation R Study began in September 2009 until July 2013 and a total of

1070 six- to nine-year-old children were scanned (White et al., 2013).

The second neuroimaging wave started in April 2013 with 4,087 nine-

to eleven-year-old children scanned (White et al., 2017). Prior to

recruitment during each phase of the study informed consent was

obtained and each neuroimaging wave was approved by the Medical

Ethical Committee (METC). Exclusion criteria included contraindications

for the MRI procedure (i.e., pacemaker, ferrous metal implants), claus-

trophobia, having a significant motor or sensory disorder, moderate to

severe head trauma with loss of consciousness, and neurological disor-

ders (including seizure disorder, neuromotor disorder, or a history of

brain tumors). A total of 3,959 of the children have both parental con-

sent and a complete T1-weighted image.

2.1.2 | NHGRI cohort

Participants lacked any psychiatric diagnoses, as determined by DSM-5

based, clinician-administered interviews: for adults: the Structured Clini-

cal Interview for DSM-IV-TR Axis I Disorder Re-search Version, Patient

Edition and the Conners’ Adult ADHD Diagnostic Interview for DSM-IV,

for children, the parental Diagnostic Interview for Children and

Adolescents-IV (DICA). Contraindications included major neurological

disorders, substance dependence, and contraindications to MRI scan-

ning. Adult participants provided written consent; children (under 18

years) gave written assent and their parents provided written consent

for their child. All study procedures were approved by the Institutional

Review Board of the National Human Genome Research Institute.

2.1.3 | GUSTO cohort

The GUSTO cohort recruited pregnant Singapore citizens or Permanent

Residents of Chinese, Malay or Indian ethnic backgrounds from two

major birthing hospitals in Singapore at the first antenatal visit. The

cohort description is detailed in Soh et al. (2012). Children were

recruited during the 4-year home visit of the GUSTO study and under-

went MRI scans at �4.5 years of age (6 1 month). The GUSTO study

was approved by the National Healthcare Group Domain Specific

Review Board (NHG DSRB) and the Sing Health Centralized Institu-

tional Review Board (CIRB). Written informed consent was obtained

from mothers prior to inclusion into the study.

2.2 | Magnetic resonance imaging

2.2.1 | Generation R study

Prior to the actual MRI, the children were familiarized with the MRI

procedure during a mock scanner session. During the MRI scan, care

was taken so that the children rested comfortably in the scanner and

soft cushions were used to assist with head immobilization. The chil-

dren were able to watch a film of their choice during the acquisition

and the film was projected onto a screen at the front of the scanner

and the children watched though forward-directed mirrors. To moti-

vate children to lie still in the scanner, we showed them an image of a

brain with a lot of movement artifacts and no movement artifacts. The

MR images for the first and second waves were collected on two dif-

ferent GE 3-Tesla scanners. The first wave was collected on a GE 750

Discovery clinical MR system using an 8-channel head coil and a T1-

weighted inversion recovery fast spoiled gradient recalled (IR-FSPGR)

sequence. The following sequence parameters were used: TR510.3

ms, TE54.2 ms, TI5350 ms, NEX51, flip angle5168, readout

bandwidth520.8 kHz, matrix 256 3 256, imaging acceleration factor

of 2, and an isotropic resolution of 0.9 3 0.9 3 0.9 mm3. The total

scan time for the T1 was 5 min 40 s. The total sample of wave 1 was

1,070 six- to nine-year-old children.

MR images for the second neuroimaging wave were acquired on a

research-dedicated GE 750w Discovery wide-bore MRI system (Mil-

waukee, MI, USA) using an 8-channel head coil. A high-resolution T1-

weighted sequences were obtained using a three-dimensional (3D) cor-

onal inversion recovery fast spoiled gradient recalled (IR-FSPGR,

BRAVO) sequence (TR 5 8.77 ms, TE 5 3.4 ms, TI 5 600 ms, flip

angle5108, Field of view5220 mm 3 220 mm, number of

slices5230, voxel size51.0 mm3, ARC acceleration52. A small sub-

group of children (n521) had scans acquired at the beginning of the

study using ASSET acceleration rather than ARC.

2.2.2 | NHGRI cohort

Participants were acclimatized to the scanning environment, rested

comfortably in the scanner with the head immobilized. and could watch

a film of their choice. A high-resolution (1.07 3 1.07 3 1.2 mm) T1

weighted volumetric structural image was obtained using a magnetiza-

tion prepared rapid gradient echo sequence (with ASSET preparation;

124 slices, 1.2 mm slice thickness, 224 3 224 acquisition metric, flip

angle568, field of view524 cm2) on a 3 T General Electric Signa scan-

ner (USA) using an eight-channel head coil.

2.2.3 | GUSTO cohort

MRI scanning was performed using a 3 T Siemens Skyra system with a

32-channel head coil at KK Women’s and Children’s hospital. Children

went through a MRI home training program prior to the MRI visit and

on-site MRI training. Structural imaging involved a high-resolution T1-

weighted Magnetization Prepared Rapid Gradient Recalled Echo

(MPRAGE; 192 slices, 1 mm thickness, in-plane resolution 1 mm, sagit-

tal acquisition, field of view 192 3 192 mm, matrix5192 3 192, repe-

tition time52000 ms, echo time52.08 ms, inversion time5877 ms,

flip angle598, scanning time53.5 min).

3 | IMAGE PROCESSING

Structural images from all three cohorts were processed using the

FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/).

Cortical and subcortical segmentation and surface reconstruction of

the T1-weighted images was performed using recon all from the Free-

surfer Wave 1 was performed with FreeSurfer version 5.3 and wave 2

with FreeSurfer version 6.0. The technical details of these procedures

have been described in detail in previous work (Dale, Fischl, & Sereno,

1999; Fischl, Sereno, & Dale, 1999a, Fischl, 2012). Briefly, this process
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included the removal of non-brain tissue (Segonne, Pacheco, & Fischl,

2004), automated Talairach transformation into standard space, inten-

sity normalization (Fischl et al., 2004), tessellation of the gray/white

matter boundary, automated topology correction (Segonne et al.,

2007), and surface deformation (Fischl et al., 1999a). Once the cortical

models were complete, the images underwent surface inflation (Fischl

et al., 1999a), registration to a spherical atlas (Fischl, Sereno, Tootell, &

Dale, 1999b), and the parcellation of the cerebral cortex into units

based on gyral and sulcal structure (Desikan et al., 2006). Cortical thick-

ness was calculated as the distance from the gray/white matter bound-

ary to the gray matter/cerebral spinal fluid boundary at each vertex on

the tessellated surface (Fischl and Dale, 2000). After running the stand-

ard processing steps of FreeSurfer, we calculated the mean cortical

thicknesses of parcelated regions defining the frontal, temporal, parie-

tal, and occipital lobes, bilaterally.

3.1 | Manual quality assessment of the T1 images

3.1.1 | Generation R study

At the time of the MRI acquisition, T1 images were evaluated for inci-

dental findings and rated for image quality using a six-point Likert scale

(Jansen, van der Lugt, & White, 2017). The quality assessment levels

for the scans were: unusable, poor, fair, good, very good, and excellent.

The visual inspection measures used to make this assessment included

the sharpness of the gray matter and white matter interface on the cor-

tex, the presence of ringing in the image, and whole brain coverage. If

the initial T1 scan was rated as unusable or poor by the technician or

PhD student running the scanner, the T1 sequence was repeated. Prior

to repeating the scan, communication took place between the child

and MR technician to make sure that the child was comfortable in the

scanner and to remind the child to remain as still as possible.

3.1.2 | NHGRI cohort

All T1 images were visually inspected at the time of the scan (by PS). If

the scan was felt to have more than minimal motion artefact, a second

attempt was made and if motion persisted, the participant was offered

a repeat scan at a later date in the evening (to increase the chance of

scanning during natural sleep). The best quality image was then further

rated as having no, mild, moderate or severe motion or other artifacts

by two raters, using published guidelines (Blumenthal et al., 2002).

Those judged by two raters to have no or minimal motion artefact pro-

ceeded to segmentation of cerebral cortical structures.

3.1.3 | GUSTO cohort

The T1 images were rated for image quality at the time of scanning

using a four-point Likert scale. The quality assessment levels for the

scans were: unusable, large motion, minor motion, and no motion. The

visual inspection measures used to make this assessment included the

sharpness of the gray and white matter interface in the cortex, the

presence of ringing in the image, and whole brain coverage. If the initial

T1 scan was rated as unusable or poor by the technician running the

scanner, the T1 sequence was repeated. Prior to repeating the scan,

communication took place between the child and MR technician to

make sure that the child was comfortable in the scanner. The usable

scans were those rated as having either minor or no motion (Table 1).

3.2 | Manual quality assessment of the FreeSurfer

images

3.2.1 | Generation R study

Wave 1—The 1,070 T1-weighted images from the first neuroimaging

wave underwent a thorough and systematic visual inspection to assess

segmentation and surface quality. This was performed using a 7-point

Likert scale with the following levels: not reconstructed, poor, fair, suf-

ficient, good, very good, and excellent). Images rated as unusable or

poor at the scan site, images that could not be processed by Freesurfer,

and images with a poor segmentation quality were considered as failing

the Q/A protocol. Wave 2—Of the 3,959 T1-weighted images from the

second wave 3,937 were reconstructed using FreeSurfer. All FreeSur-

fer reconstructions, including 2-D segmentations and 3-D morphome-

try were visually inspected using a 3-point Likert scale with the

following levels: “Excellent to Very Good,” “Good to Fair,” and “Poor to

Unusable.”

3.2.2 | NHGRI cohort

Cerebral cortical reconstruction and cortical volumetric segmentation

were performed with the FreeSurfer image analysis suite version 5.3.0

(http://surfer.nmr.mgh.harvard.edu/). Analyses were conducted on the

National Institutes of Health High Performance Computer Cluster (Bio-

wulf). These segmentations were inspected by two raters and scored

following the ENIGMA guidelines. The 2-D segmentations were scored

as “1” if no errors were detected; “2” if minor errors were noted; “3” if

moderate errors were there; “4” if there were gross errors. If ratings

differed by more than one point, the segmentations were reinspected

and a consensus rating was reached.

3.2.3 | GUSTO cohort

Following Freesurfer guidelines, visual inspection of brain skullstripping,

white matter, and pial surfaces was conducted. The manual correction,

such as adding control points, based on FreeSurfer guideline was also

performed.

3.3 | Automated T1 quality assessment

A flow diagram of the algorithm used to automatically assess image

quality is shown in Figure 1. The scripting and programming were per-

formed in MATLAB (Version R2016a, Mathworks, Natick, MA); how-

ever, there is currently a beta Python version of the gradient approach

available on Github (https://github.com/tjhwhite/auto_quality_assur-

ace). The images were first converted from dicom to nifti using

Dcm2Nii (http://lcni.uoregon.edu/downloads/mriconvert/mriconvert-

and-mcverter). Next, a brain mask was created using FSL’s brain extrac-

tion tool (BET2) (https://www.fmrib.ox.ac.uk/fsl) to identify the loca-

tion and orientation of the brain in 3D space. The third step was to

apply AFNI’s 3dEdge3 (https://afni.nimh.nih.gov/afni/) to the raw T1

image. AFNI’s 3dEdge3 function is a three-dimensional edge detection
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algorithm that returns an image with a clear outline of the interface

between the outer border of the head and the air. However, we noted

that in children with considerable movement, the edge detection failed

to identify the edge of the head in a small number of regions. In these

cases, the brain mask was used to find the missing borders of the head

that were not detected via 3dEdge3. This step was performed auto-

matically in the situation where the brain masked is reached before the

edge when approaching the head from lateral to medial.

Within the 3D image field of view, the Euclidean distance was

automatically calculated between the anterior, posterior, superior, right

and left lateral borders of the head (defined by 3dEdge3) with each

side of the field of view (FOV), respectively. This was performed to

double-check that the whole head was captured within the image

space (i.e., the child did not move part way out of the scanner’s FOV).

These Euclidean distance parameters were used to select a volume of

the image outside of the head that was used to evaluate image quality.

The region of interest (ROI) used for the analysis in the axial plane

began 10 mm inferior from the top of the head, to 80 mm inferior to

the top of the head. From a coronal section, the ROI plane started

50 mm back from the anterior portion of the brain to the plane that

defined the posterior slice of the head (Figure 1; insert). Defining the

plane as starting 50 mm posterior from the anterior portion of the

head allowed for the removal of flow artifacts from eye movements.

Using the ROI defined above for the automated quality assessment

(Q/A) analyses, linear one-dimensional vectors (one voxel extended lat-

erally from the edge of the head sagitally and of length 100 voxels)

were identified from T1-weighted image. Combining these 1-D vectors,

an array (j 3 k) was constructed from the selected ROI (thus, along mul-

tiple slices of the image), where each j was an index for a different loca-

tion on the edge of the head, and k was the length of the vector away

from the head (set to k5100). Thus, the array was a line of image

intensities with element (j,1) marking the edge of the head at the point

defined by 3dEdge3 (j could also be translated to an (x,y,z) coordinate

system) to element (j,100) being 100 voxels lateral (right and left) from

the edge of the head and extending outside the head. Using this array

for each individual, three different approaches were used to quantify

Q/A in the images from these j lines (100 voxels in length) from the

edge of the head:

3.3.1 | Fourier

During scanning, data were collected in k-space and transformed to the

spatial domain via a Fourier transform. Thus, head movement during

scanning results in wave-like image artifacts in the spatial domain.

Thus, our first approach was to assess the spatial frequency character-

istics of voxels outside the head. For the Fourier transform algorithm,

each k line of data underwent a Fourier transform starting 5 voxels

outside the head. The 5 voxels provided a buffer from the rapid decline

in voxel intensity that occurred along the air/head interface. Next, after

removing the baseline component, the maximum to mean frequency

was calculated by dividing the highest peak signal of the magnitude

vector of the Fourier transform by the mean frequency across the

spectrum. This ratio of max over mean quantified whether a character-

istic frequency pattern dominates above a white noise pattern.

3.3.2 | Integral

The second approach took the integral of the noise outside of the brain

along each of the k lines of data. This was performed by calculated the

average of voxel intensity, beginning 5 voxels outside the head extend-

ing laterally to include 95 voxels. This was then averaged over the k-

lines of data.

TABLE 1 Demographic and MRI ratings and automated quality assessment metrics for participants in the three neuroimaging cohorts

Generation R Wave I Generation R Wave II NHGRI GUSTO

Number of participants 1,070 3,940 442 252

Age (mean/SD) (years) 7.9/1.0 10.1/0.59 22.4 (14.7) 4.59 (.08)

Age range (years) 6.1–10.7 8.6–11.9 5.3–77.6 4.44–4.95

Sex (male/female) 572/498 1948/1992 252/190 118/134

Total number of scans 1,070 4339a 442 811a

Categorical scan quality Excellent 227
Very good 349

Good 322

Fair 121

Poor 50
Unusable 1

Excellent 365
Good 2605

Fair 750

Poor 248

Unusablea 366

No motion 106
Mild motion 313

Moderate 19

Severe motion 4

Good 239
Minor motion 129

Large motion & unusable 443

Usable/unusable scans (T1) 1019/51 (95.2%) 3,559/381 (89.3%) 419/23 (94.8%) 368/443 (44.8%)

Scans processed with FreeSurfer 1065 3923 442 811

Usable scans (FreeSurfer) 922 3234 345 252

Gradient automated Q/A metric

- Total (mean/SD) 1103 (196) 1548 (152) 1346 (105) 114.4 (19.3)

- Usable scans 1118 (188) 1565 (129) 1356 (92) 123.0 (16.6)

- Unusable scans 796 (71) 1237 (197) 1164 (158) 107.4 (18.6)

aIncludes repeat scans.
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3.3.3 | Gradient

Head movement during scanning in the frequency domain results in

smoothing in the spatial domain, as movement is akin to convolution

with the smoothing kernel dependent on the amount of movement.

Thus, the effect of movement is especially prominent along regions

where there is a sharp change in contrast. Considering that the optimal

high-quality image would show a strong edge effect resembling a step

function, as the intensity of the image moves from the edge of the

head to the air outside the head. No movement could be considered a

delta function, such that the convolution of the step function with the

delta function would return a step function, or a sharp contrast

between the head/air interface. Movement, however, means that the

step function at the edge of the head is convolved with a blurred,

Gaussian-like waveform that has greater blurring dependent on move-

ment. One way to measure is to deconvolve the step function with the

actual image, to determine the waveform associated with smoothing.

However, smoothing has a dual effect along the air/head interface. The

peak MR signal resulting from the skin surrounding the skull will

decrease in intensity and second, there is blurring radiating outward

from the air/head border. Thus, the third approach measures the con-

sequence of smoothing by measuring the gradient from the edge of

the head to five voxels outside the head. This approach provides an

estimate of the point-spread function as a result of blurring from poor

image quality.

FIGURE 1 Processing steps for the automated quality assessment algorithms. The algorithm begins with the T1 nii image and uses a

combination of FSL, AFNI, and in-house Matlab programs. The region of interest used in the three different quality assessment algorithms is

shown in the insert [Color figure can be viewed at wileyonlinelibrary.com]

WHITE ET AL. | 1223

http://wileyonlinelibrary.com


4 | STATISTICAL ANALYSES

All statistical analyses were performed using the R statistics package

(version 3.1.2). To compare the automated Q/A tool with visual inspec-

tion, which is considered the “gold-standard,” we utilized receiver oper-

ating characteristics (ROC) curves using the R package “pROC.” The

ROC curve and the area under the curve (AUC) were calculated within

each cohort. We used the R package “caret” for calculating the positive

and negative predictive value plots. Finally, we utilized Pearson correla-

tion coefficients to compare the automated Q/A metric with

FreeSurfer-derived measures of cortical thickness in the frontal, tempo-

ral, parietal, and occipital lobes.

5 | RESULTS

5.1 | Demographics

See Table 1 for the demographic information for each cohort. The age

range of all three cohorts spanned from 4.4 to 77.6 years of age. Three

of the cohorts consisted only of pediatric populations, including the

GUSTO cohort that included preschool children (mean age 4.59 years),

and the two Generation R waves (mean age of 7.9 and 10.1 years for

Waves 1 and 2, respectively). While the NHGRI primarily involved chil-

dren and adolescents, 32% of the sample included participants older

than 25 years of age.

5.2 | Manual quality assessment

To generate ROC curves, a dichotomous measure was created for

those that pass or fail the Q/A ratings (QA-pass and QA-fail). Descrip-

tive measures of the usable and unusable scans from the visual inspec-

tion are shown in Table 1. For the Generation R Study, the QA-fail

scans included those with unusable or poor quality ratings. This

resulted in 922 QA-pass and 143 QA-fail scans for wave 1 and 3,559

QA-pass and 381 QA-fail scans for wave 2. The NHGRI cohort were

rated by two independent trained researchers with a scale between

one (excellent) and 4 (unusable). A mean of the two raters was used

and scores greater than 2 were considered as QA-fail scans. Because

scanning preschool children is extremely challenging, the GUSTO study

performed multiple T1-weighted images on the children, with a total of

811 scans for 252 individuals. Of these scans, 368 of 443 were consid-

ered usable (44.8%).

5.3 | Automated quality assessment performance

The ROC curves for the Fourier, integral, and gradient approaches for

both the first and second waves within Generation R Waves 1 and 2

are shown in Figure 2. For Waves 1 and 2, the gradient approach per-

formed the best with both imaging waves having an area under the

curve (AUC) of 0.95. The integral approach also performed quite well,

having an AUC for the first and second waves of 0.90 and 0.92 respec-

tively. The Fourier approach performed the worst of the three algo-

rithms, with an AUC of 0.77 for Wave 1 and 0.62 for Wave 2. Because

the narrow field of view used in images collected from the GUSTO

study, neither the integral nor the Fourier approach could be applied.

Thus, as the gradient approach provided the best results of the three

approaches, we used this algorithm for both the GUSTO and NHGRI

cohorts. The AUC for the NHGRI cohort using the gradient approach

was 0.88 and 0.82 for the GUSTO cohort (Figure 3). Graphs of the pos-

itive- and negative-predictive values for each of the four cohorts are

shown in Figure 4.

We also assessed whether the gradient automated Q/A metric

could predict visual FreeSurfer quality ratings. Of the 1,070 scans for

the first neuroimaging wave of the Generation R Study, five scans

were excluded as they failed the FreeSurfer pipeline. Of the 1,065

scans that were constructed, 143 were manual Q/A-fail and 922 were

manual Q/A-pass scans. The AUC results for Wave 1 of the Generation

R Study were 0.91. The second wave of the Generation R study had a

total of 3,973 scans that could be reconstructed, of which 3,234 were

rated as useable quality and 689 as unsuable. The AUC results for

Wave 2 of the Generation R Study were 0.77. Visual inspection of the

NHGRI FreeSurfer constructions rendered two different metrics, the

segmentation (internal) and surfaces (external) ratings. The AUC for the

NHGRI was 0.73 and 0.66 for the internal and external ratings, respec-

tively. Finally, the AUC for the automated gradient Q/A metric and the

GUSTO FreeSurfer generated scans was 0.78.

During the second wave of MRI data collection in the Generation

R Study, if the technician found that the scan was of poor quality, then

the T1-weighted image was repeated. Thus, with an initially poor rated

scan, we assessed the utility of obtaining a second scan. Figure 5 dis-

plays a box plot of the gradient algorithm for the first, second, and best

rated scans. A paired t test of the automated Q/A value for the first

and second scan was highly significant (t519.1, df5379, p<2.2e-16),

with the second scan being notably better than the first.

5.4 | Relationship between the automated quality

with age and sex

Linear regression showed a significant relationship between the auto-

mated Q/A measure and age in both the first (p5 .0001) and second

waves (p55.9 3 1029) of the Generation R Study, and in the NHGRI

study (p57.3 3 10212). In all three groups, increased age was associ-

ated with better quality data. There was no significant relationship

between the automated Q/A metric and age in the GUSTO study.

However, both the GUSTO (p5 .02) and the first wave of the Genera-

tion R Study (p56.2 3 1025) showed a significant relationship

between sex and the automated Q/A measure, with girls having less

movement in the scanner.

5.5 | Automated quality assessment and FreeSurfer

derived cortical thickness

For each of the four groups, the relationship between the automated

Q/A metric and regional cortical thickness and surface area measures

was evaluated. This was performed using MATLAB and by calculating

Pearson correlation coefficients between measures of mean cortical

thickness and surface area of the frontal, parietal, temporal, and
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occipital lobes and the automated Q/A measure. This analysis was per-

formed while iteratively removing a scan with the lowest automated

Q/A measure (poorer quality) and then recalculating the correlation

coefficient. The results of these analysis are shown in Figure 6 for cort-

ical thickness and Figure 7 for surface area. As cortical thickness and

surface area are also associated with age, and for comparability

FIGURE 2 Receiver operator characteristics for the three automated quality assessment algorithms: (a) Area under the curve for the

Fourier algorithm for Wave 1. (b) Area under the curve for the Fourier algorithm for Wave 2. (c) Area under the curve for the Integral

algorithm for Wave 1. (d) Area under the curve for the Integral algorithm for Wave 2. (e) Area under the curve for the Gradient algorithm

for Wave 1. (f) Area under the curve for the Gradient algorithm for Wave 2
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between the studies, data from the NHGRI is split into a group younger

than 13 years of age.

Finally, we also assessed whether there was a relationship between

the automated Q/A metric and FreeSurfer metrics even with the highest

rated quality images. To do this, we used the ordered categorical ratings

and selected only those scans that were rated the best quality within each

of the four cohorts. This resulted in low to moderate correlations, depend-

ing on the cohort, with both cortical thickness and surface area (Table 2).

The relationship was highest for cortical thickness measures in wave I of

the Generation R Cohort, and surface area in the GUSTO cohort.

6 | DISCUSSION

Using two large neuroimaging waves of a large population-based study

of child development, we developed and tested three different

algorithms to automatically measure the quality of raw T1-weighted

images. Of these three approaches, we found that the optimal

approach was measuring the gradient between the edge of the head

and the noise outside the head. However, the algorithm that calculated

the integral of the noise outside the head was nearly equivalent. The

Fourier algorithm, which evaluated spectral patterns of noise radiating

away from the head was the least predictive. We tested the gradient

approach using two separate cohorts and found relatively high predic-

tive values with the manual ratings. Furthermore, we found that not

only can automated Q/A algorithms provide accurate ratings of raw T1

images, but these measures can also provide some prediction of the

quality of postprocessed images. In addition, we found that when scan-

ning school age children, if the initial scan is of poor quality, repeating

the scan is worthwhile as there is a good chance that the second scan

will be of better quality than the first. Finally, we found that even after

excluding large numbers of children due to movement, and even within

the best rated scans, a small to moderate correlation remained between

raw image quality and FreeSurfer derived measures of cortical thick-

ness and surface area, although with some mixed results in the four dif-

ferent cohorts.

Noise characteristics that can influence scan quality largely fall into

two different categories: machine-related and subject-related noise.

The rapid advancement in MR technologies has dramatically reduced

machine-related noise, although the regular use of phantoms is impor-

tant to monitor scanner stability and geometric distortions over time

(Bourel, Gibon, Coste, Daanen, & Rousseau, 1999, Friedman and

Glover, 2006, Maikusa et al., 2013). In addition, major upgrades to MR

hardware or software, while not considered noise, can influence image

quality, and is especially important to consider in longitudinal studies.

While major sources of subject-related noise include ghosting, aliasing,

chemical shifts, and flow artifacts (Hahn et al., 1988, Mirowitz, 1999,

Mortamet et al., 2009), the major challenges associated with pediatric

neuroimaging involve motion related artifacts (Raschle et al., 2009,

Dean et al., 2014).

Motion that occurs with data acquisition in the frequency domain

can have two major effects in the spatial domain. First, movement that

is periodic in nature (i.e., respiratory or cardiac related) occurs over the

entire imaging sequence, and thus is observed as ghosting artifacts

present in the spatial domain along the phase encoding direction (Sal-

oner, 1999). Second, aperiodic movement of the participants, such as

“wiggly” children, typically occurs between the pulse excitation and the

echo, resulting in spin incoherence of the phase at the time of the echo

(Barish and Jara, 1999). This incoherence, following a Fourier trans-

form, results in increased noise and blurring in the spatial domain.

Given these patterns of subject-related noise, our use of three specific

algorithms (Fourier, integral, and edge gradient) were applied and

tested so as to capture the primary aspects of each of these specific

movement-related artifacts.

While visual inspection of images remains crucial, especially for the

identification of incidental findings (Jansen et al., 2017), automated

measures can provide important quantitative information. In fact, com-

paring an automated versus visual ratings with images that were

manipulated, Gardner et al. (1995) found that visual raters were unable

FIGURE 3 Receiver operator characteristics for the NHGRI and

GUSTO cohorts
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to detect slice thickness increases of 40%, whereas the automated

approach was able to quantify even minor changes. Furthermore, for

large population-based studies where multiple scans need to be rated,

visual inspection of data can be prone to rater-differences (inter-rater

reliability) and rater-drift (intra-rater reliability), which is not a problem

with automated approaches. There have been several algorithms devel-

oped to automatically assess the quality of structural images (Mortamet

et al., 2009, Pizarro et al., 2016). Mortamet et al. (2009) measured

voxel intensities outside of the head with the hypothesis that artifacts

enlarge the noise intensity and causes a right-skew (greater intensity)

in the distribution. The authors applied the algorithm to a group of 188

elderly subjects from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (Jack et al., 2008) and found ROC characteristics similar to our

gradient and integral approaches (AUC50.94). Pizarro et al. (2016)

argued that multiple metrics, rather than one global metric, would

provide better measures of Q/A and presented findings from an auto-

mated structural QA algorithm that extracted multiple features from

the brain and surrounding noise and entered these features into a sup-

port vector machine (SVM) to classify data quality. They reported an

�80% accuracy with their SVM approach, where the lower accuracy

could reflect the multisite nature of their study or alternatively,

increased noise due to using multiple brain features. To date, there

have been no studies evaluating automated Q/A in children and assess-

ing these metrics directly with outcome measures such as cortical

thickness.

Recent functional MRI studies have demonstrated that even small

amounts of subject motion in children can affect the quantification of

connectivity metrics (Power et al., 2012). To reduce head motion and

also to get children acclimatized to the scanner and the environment,

many research studies train subjects with a mock scanning session. In

FIGURE 4 Positive predictive value and negative predictive value plots for the two Generation R waves and the NHGRI and GUSTO

cohorts [Color figure can be viewed at wileyonlinelibrary.com]
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spite of these efforts, motion in children cannot be completely allevi-

ated and continues to pose a problem in the quality of the scans. Our

study provides important information to this ongoing discussion of the

role of quality and MR derived metrics by showing that the correlation

between structural imaging Q/A and cortical thickness is present in

samples not only when the poorest quality images are included, but

when many scans that passed Q/A were included. This finding supports

using automated algorithms to assess for relationships with reconstruc-

tion metrics, and when such relationship exist, metrics from an

automated Q/A algorithm should be used as a covariate to adjust for

small differences in movement.

The strengths of the study include the large sample in four differ-

ent groups of children and four different scanners, with the samples

drawn from the general population. We tested and compared three dif-

ferent algorithms for quality assessment of structural images within the

Generation R Study and tested the best performing metric in two inde-

pendent samples. Finally, it is a strength that we also compared these

findings to postprocessing streams, to assess for downstream effects.

There are also several weaknesses of the study. First, we did not mea-

sure heart rate, respiratory rate, eye tracking, and external fiduciary

markers to more precisely quantify the different forms of artifacts.

Such an approach would be beneficial to assess which types of

subject-dependent noise have the greatest influence. In addition, the

cutoff that we used for useable versus not usable scans was different

at each of the three sites. However, these differences provide a greater

“real-world” application for our findings. Since the algorithm was first

optimized and tested within the Generation R Study, it is possible that

it was more “tuned” for the gradient sequences used for the Rotterdam

site. Thus, it may be possible to tweak the algorithm to show improve-

ment within each site. Finally, although we performed the automated

Q/A algorithm on four different scanners, three of them were GE scan-

ners (one was a wide-bore scanner) and it is possible other different

vendors and models may have internal software, such as edge sharpen-

ing algorithms, that would make the gradient approach less accurate.

Thus, it is important to test the algorithm in a wide variety of MR

FIGURE 6 The association between the automated quality assessment algorithms and FreeSurfer derived cortical thickness from the four

major lobes [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Boxplot demonstrating the improvement in obtaining a

repeat scan when the fist T1 image is poor
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systems and determine whether normalization of the different distribu-

tions of the automated Q/A metric would allow for harmonization

between scanners. Since the distributions of the automated Q/A met-

rics were normally distributed for each scanner, determining scanner-

specific thresholds may be easily accomplished by selecting a cutoff

associated with a specific z-value for each distribution.

In conclusion, we designed and tested three different automated

approaches to measure the quality of structural MR images. We found

that a simple gradient approach, which tapped into the principle of the

line-spread function and measured the gradient between the edge of

the head and noise outside the head performed slightly better in both

waves of pediatric neuroimaging data in the Generation R Study. This

TABLE 2 Pearson correlation coefficients between the automated quality assessment metric and FreeSurfer-based cortical thickness and sur-

face area measures using only the best rated quality scans within each cohort

Generation R Wave I (n5 227) Generation R Wave II (n5 365) NHGRI (n5 106) GUSTO (n5122)

Cortical thickness

Left frontal 0.30 0.14 0.15 20.02

Right frontal 0.32 0.27 0.12 20.04

Left temporal 0.30 0.16 0.19 0.13

Right temporal 0.32 20.01 0.17 0.08

Left parietal 0.04 0.11 0.09 0.07

Right parietal 0.06 0.08 0.16 0.06

Left occipital 20.07 0.15 0.05 20.06

Right occipital 0.03 0.04 0.08 0.03

Surface area

Left frontal 0.12 0.13 20.13 0.18

Right frontal 0.12 0.13 20.14 0.23

Left temporal 0.06 0.13 20.15 0.27

Right temporal 0.01 0.10 20.17 0.25

Left parietal 0.01 0.10 20.25 0.26

Right parietal 20.02 0.10 20.20 0.15

Left occipital 0.09 0.01 20.01 0.21

Right occipital 0.10 0.07 0.01 0.19

FIGURE 7 The association between the automated quality assessment algorithms and FreeSurfer derived surface area from the four major

lobes [Color figure can be viewed at wileyonlinelibrary.com]
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algorithm was then tested in two separate cohorts (NHGRI and GUSTO)

and demonstrated that the predictive value for automated Q/A rating

was, while less than in the Generation R Study, quite good. In addition,

we demonstrated that in school age children, there is utility in repeating

the structural scan if the first scan has poor quality, as the chances are

high that the second scan is better than the first. During the scanning ses-

sion, if we saw that the scan quality was poor, we explained to the chil-

dren that the scan was blurry because of movement and would need to

be repeated. We then kindly encouraged the children to remain as still as

possible. This may have had a positive effect, as the second scan was on

average considerably better. We also found that the quality of the raw

T1 image has good predictive power for the quality of the FreeSurfer sur-

face reconstruction. Finally, we found results similar to those in fMRI

studies, that even small movements can have an influence on FreeSurfer-

derived cortical reconstruction measures. Thus, our findings suggest that

automated measures of head movement can serve as a helpful adjunct to

visual inspection. Further research should be directed to asesss whether

such automated Q/A metrics should be used as covariates in structural

MRI analyses, similar to regressing motion from fMRI data, or to provide

additional information in selecting thresholds to exclude participants

based on poor image quality.
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