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Abstract. Proton Magnetic Resonance Spectroscopy (1H MRS) has proven its 

diagnostic potential in a variety of conditions. However, MRS is not yet widely 

used in clinical routine because of the lack of experts on its diagnostic interpre-

tation. Although data-based decision support systems exist to aid diagnosis, 

they often take for granted that the data is of good quality, which is not always 

the case in a real application context. Systems based on models built with bad 

quality data are likely to underperform in their decision support tasks. In this 

study, we propose a system to filter out such bad quality data. It is based on 

convex Non-Negative Matrix Factorization models, used as a dimensionality 

reduction procedure, and on the use of several classifiers to discriminate be-

tween good and bad quality data. 

Keywords: Brain tumors, magnetic resonance spectroscopy, convex non-

negative matrix factorization, pattern recognition, quality control, machine 

learning. 

1 Introduction 

 

Proton magnetic resonance spectroscopy (1H MRS, henceforth only referred to as 

MRS) is a magnetic resonance modality that provides metabolic information about an 

investigated tissue volume, thus becoming a tool for metabolomics. MRS is inherently 

non-invasive and can be used either on its own, or in conjunction with other MR mo-
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dalities [1] with the aim to improve diagnostic accuracy. Although MRS can be used 

to investigate a wide range of tissue types [2],  it is mainly used for diseases of the 

central nervous system (CNS), and has proven a powerful tool in assessing a broad 

spectrum of diseases such as metabolic disorders, epilepsy, Alzheimer and Parkinson, 

amongst others.  But, by far, its most common application is on brain tumors diagnos-

tic assistance [2] . 

MRS can be single-voxel (SV), where the signal comes from a volume of interest, 

or multi-voxel, using a grid/matrix of many contiguous SVs (actually, SV-like spec-

tral vectors). MRS has several parameters of importance that should be mentioned. 

First of all, echo time, which can be either short (STE, lower than 40 ms), or long 

(LTE, higher than 40 ms), controlling what metabolites can be better seen in the spec-

trum. STE only allows for positive peaks in the spectrum whereas LTE can also have 

negative peaks. Another important parameter is field strength (measured in Tesla, T) 

which, in laymen terms, determines how far apart the peaks of the metabolites are, 

and how many metabolites can be detected. A typical field strength used in clinical 

routine is 1.5 T. Figure 1 shows an example of an MR spectrum.  

Although MRS is a promising technique, it is not yet widely implemented in clini-

cal routine. It can be argued that the main reason for this is the explicit need for an 

expert (a radiologist) to interpret the spectrum and reach a diagnostic. Previous work 

has been carried out to compensate for the lack of experts in MRS interpretation by 

using (semi-)automated classifiers or decision support systems [3-5]. The main limita-

tion of such systems is that they assume that the spectra are of consistently good qual-

ity. Unfortunately, the definition of ‘good quality’ has yet to be clearly established, 

and by this we mean that the gold standard is human-dependent and, although some 

guidelines have been proposed [3, 6], it may vary from expert to expert. Furthermore, 

multiple types of artifacts can contaminate the signal; an extensive gallery of such 

artefacts is presented in [7]. Figure 2 shows an example of a bad quality spectrum 

(compare to Figure 1, which corresponds to a good quality spectrum).  

In a previous work by van der Graaf et al. [8], a semi-automatic filtering proce-

dure, based on the signal-to-noise ratio (SNR) of the spectrum and the water band-

width (WBW - defined as the line width at half of the maximum intensity of the water 

peak), was proposed. However, this system relies on a board of experts for validating 

the final decision. 

A fully automated system, trained on a subset of the eTUMOR [9, 10] and 

INTERPRET [11, 12] SV spectra (144 SVs, 72 acceptable and 72 unacceptable), was 

proposed by Wright et al. [13]. The system consists of a least squares support vector 

machine [14]  with a radial basis function kernel and fastICA[15], which was used for 

dimensionality reduction. The test set comprised of 98 SVs (58 acceptable and 40 

unacceptable) from the eTUMOR database. The results of this study were encourag-

ing (an accuracy of 88%), but we argue that this might be due to several reasons that 

might not hold up in a real clinical setting. First of all, because the number of cases 

analyzed was relatively low, something that can be seen as a detrimental for the gen-

eralization power of the system. Another and more important aspect to consider is that 

the two classes are fairly balanced for training and testing – again affecting generali-

zation but also performance metrics. 
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in cNMF, F is constrained to lie in the column space of the input data X, so that the 

cNMF formula can be written as: 

 X≈AXG (1) 

where A fully determines F. G is also called the mixing matrix, as it holds the coeffi-

cients to recompose a specific data sample. It is a well-known fact that the results of 

the cNMF algorithm are dependent on the initialization scheme; in our implementa-

tion, we use the k-means++ algorithm [19]. It should be mentioned that there is no 

fully established method for choosing the optimal number of sources/basis vectors. 

Implementation details 

Some of the classifiers used in this study are not parameterless. LR was used in its 

basic variant, as well as with regularization, namely l2 – LRCV. AdaBoost was built 

using fifty decision trees as estimators. In the case of RF, fifty estimators were used; 

bootstrap samples of the training set were used to build the trees and the maximum 

number of features considered when looking for the best split was the square root of 

the total number of features. All nodes were expanded until all leaves were rendered 

pure. LR, LRCV and RF versions that take into account class imbalance by assigning 

a proportional weight to the less represented class were also built – they will be in 

turn be named LRA, LRCVA and RFA. 

Regarding the details of our proposed system, we extracted from three up to eleven 

sources. A maximum of eleven sources was extracted because, as reported in [6], one 

should account usually for up to 9 technical requirements to make the spectrum clini-

cally interpretable. The 2 remaining sources should account for the variability that is 

present in the ‘good’ class. We then used a 10-fold stratified cross-validation loop to 

split the mixing matrix in training and test subsets; trained the classifiers; and com-

puted the accuracy, sensitivity, specificity, F1 score, and balanced error rate. Final 

results are reported as averaged performance metrics. 

3 Results 

We start by presenting the eleven extracted sources in Figure 3. Several aspects 

should be mentioned: first, that, even though the extracted sources are akin to the 

input space, they are not true spectra as such and, therefore, the x and y axes are left 

unlabeled (however the x axis would correspond to the [7.1 -2.7] ppm range and the y 

axis to the [-20,40] a.u. range). Another thing to stress is that some of the negative 

peaks are not completely shown in this figure, for two reasons: first, because in STE, 

negative peaks are not possible and are directly regarded as artefacts; second, a more 

practical reason was not to undermine the amplitude of the positive peaks. An im-

portant aspect to note is that we have found five sources pertaining to good spectra, 

and only six artefactual sources. 
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4 Discussion 

From Figure 3, we see that we have obtained different results to those expected ac-

cording to our hypothesis; 5 sources represent good spectra. They correspond to nor-

mal brain tissue, necrotic tissue, low grade glial tumor, and meningioma, and necrosis 

again (Figure 3: B, F, H, J, K).  

These results are in line with previous work that showed that a clear separation 

could be drawn between these classes when dealing only with good quality spectra 

[11, 18]. The two sources corresponding to necrosis are in line with the results report-

ed in [18, 20].  Regarding the artifactual sources, we observe that four of them (Figure 

3: A, C, D, G) can be regarded as pure artifacts, while the rest can be regarded as a 

combination of two superimposed artefacts (Figure 3: E, I). Because five sources 

corresponding to the good class were found, we re-run the source extraction experi-

ment for 13 sources (the five good sources plus the eight bad sources from our initial 

hypothesis; we subtracted one because we saw that water suppression tends to mix 

with other artefacts). In this iteration we 

 

 Accuracy AUC Sensitvity Specificity BER F1 score 

LR 0.85 0.84 0.25 0.97 0.21 0.91 

LRA 0.77 0.84 0.72 0.78 0.32 0.85 

LRCV 0.85 0.85 0.27 0.96 0.22 0.91 

LRCVA 0.78 0.85 0.68 0.80 0.30 0.85 

RF 0.85 0.86 0.37 0.95 0.21 0.91 

RFA 0.86 0.86 0.34 0.96 0.20 0.92 

LDA 0.85 0.86 0.35 0.95 0.21 0.91 

ADA 0.85 0.85 0.42 0.94 0.22 0.91 

NB 0.83 0.82 0.45 0.91 0.27 0.90 



Table 1.  Performance metrics for the investigated classifiers. Best performances are shown in 

bold.  

found the same five sources corresponding to good spectra, plus eight artifactual 

sources. The nature of the rest of the artifactual sources was the same as that of the 

ones previously extracted; they mix differently, however. Classification results im-

prove marginally with the addition of the 2 extra sources and are not reported herein. 

 

Regarding the classification results, it is important to take into account that the 

class imbalance was approximately 8 to 2 in favor of the good class, which implies 

that accuracies in Table 1 could have been achieved just by always predicting the 

good class. Because of this, the most important metric to take into account is the sen-

sitivity (how good the model is at telling if a predicted bad spectrum is really a bad 

spectrum), where almost all classifiers perform poorly – indicating that the problem at 

hand cannot be well-described by our dimensionality reduction scheme. However, 

LRA and LRCVA exhibit good sensitivity, which can be justified by the fact that they 

give higher weights for the bad class. This would imply that our feature space is line-

arly separable, but does not obey a normal distribution (otherwise LDA would have 

also had a high sensitivity, which is not the case). 

As we previously mentioned, the original labeling of the analyzed data was per-

formed by two or three expert spectroscopists; some cases were labeled as bad, but 

still one of the experts deemed it to be of acceptable quality. As such, we removed 

those ’borderline’ spectra from the testing phase of our system, in order to see if the 

performance metrics would improve. The results, presented in Table 2, show that 

sensitivity improved for all classifiers, while other metrics did not change significant-

ly. 

One limitation of our system is that the cNMF optimization process is known to 

fall into local minima and, up to date, there is no way to assess whether the algorithm 

converged to the optimal minimum or not. In our case, this would translate into ob-

taining slightly different sources depending on the run of the algorithm (and thus on 

initialization). This issue is meant to be addressed in future work. 

 

5 Conclusion 

We have presented a system that tries to address an important issue in MRS for 

brain tumour analysis as a metabolomics problem: data quality control. Our system 

used cNMF as a dimensionality reduction and artifact-identification scheme and then 

investigated a range of classifiers in the task of discriminating between good and bad 

quality spectra.  

By using LRA, a sensitivity of 0.72 and a specificity of 0.78 was achieved, and by 

taking out the ‘borderline’ cases, sensitivity was increased to a value of 0.76. Our 

results indicate that proper separation between the two classes can be achieved, but 

further investigation is needed. 



 Accuracy AUC Sensitvity Specificity BER F1 score 

LR 0.88 0.86 0.30 0.97 0.20 0.93 

LRA 0.78 0.86 0.76 0.78 0.33 0.86 

LRCV 0.88 0.88 0.32 0.96 0.21 0.93 

LRCVA 0.79 0.87 0.73 0.80 0.32 0.87 

RF 0.88 0.88 0.44 0.95 0.21 0.93 

RFA 0.89 0.88 0.44 0.92 0.21 0.93 

LDA 0.88 0.88 0.40 0.92 0.21 0.93 

ADA 0.88 0.86 0.46 0.94 0.22 0.93 

NB 0.86 0.84 0.50 0.91 0.27 0.91 

Table 2.  Classification metrics after removing the samples that were labeled good by one 

expert spectrosopist and bad by the other two. 
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