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Abstract. National and international networks and observa-

tories of terrestrial-based sensors are emerging rapidly. As

such, there is demand for a standardized approach to data

quality control, as well as interoperability of data among

sensor networks. The National Ecological Observatory Net-

work (NEON) has begun constructing their first terrestrial

observing sites, with 60 locations expected to be distributed

across the US by 2017. This will result in over 14 000 auto-

mated sensors recording more than > 100 Tb of data per year.

These data are then used to create other datasets and sub-

sequent “higher-level” data products. In anticipation of this

challenge, an overall data quality assurance plan has been

developed and the first suite of data quality control mea-

sures defined. This data-driven approach focuses on auto-

mated methods for defining a suite of plausibility test pa-

rameter thresholds. Specifically, these plausibility tests scru-

tinize the data range and variance of each measurement type

by employing a suite of binary checks. The statistical basis

for each of these tests is developed, and the methods for cal-

culating test parameter thresholds are explored here. While

these tests have been used elsewhere, we apply them in a

novel approach by calculating their relevant test parameter

thresholds. Finally, implementing automated quality control

is demonstrated with preliminary data from a NEON proto-

type site.

1 Introduction

Observational ecology has historically focused on plot-

stand–ecosystem–watershed scales that are meant to be rep-

resentative of a larger ecosystem or region. By measur-

ing many ecological variables in great detail within these

scales, conclusions about larger-scale behavior can be drawn

(Schneider, 2001; Schimel et al., 2011). With the advent of

satellite observations, measurements can be made on a global

scale, but the number of ecologically relevant variables is of-

ten limited, and the linkage to ground-based measurements

can be lacking (DeFries et al., 2002). In an effort to en-

velop a larger sphere of inference and to increase our abil-

ity to scale ecology in time and space, many terrestrial-based

research stations have merged to form national and interna-

tional networks (and observatories) in which many measure-

ments can be made at numerous locations; for example, Long

Term Ecological Research (LTER: Franklin et al., 1990);

United States Climate Reference Network (USCRN: Karl et

al., 1995); Department of Energy – Atmospheric Radiation

Measurement network (DOE-ARM: Stokes and Schwartz,

1994); FLUXNET (Baldocchi et al., 2001); Global Lakes

Ecological Observation Network (GLEON: Hanson, 2008);

Critical Zone Observatory (CZO: Brantley et al., 2006); In-

tegrated Carbon Observatory System (ICOS: http://www.

icos-infrastructure.eu); Terrestrial Environmental Observato-

ries (TERENO: Zacharias et al., 2011); and now the Na-

tional Ecological Observatory Network (NEON: Keller et

al., 2008). In order to facilitate these observations, modern

technological advances have allowed for vast arrays of auto-

mated environmental sensors that can record high-frequency

data with minimal manual intervention and at relatively low

cost (Porter et al., 2009). The primary challenge associated

with these sensor networks is the establishment of consis-

tent data standards and compatibility across the entire net-

work. The final goal is to develop a framework for com-

parison among these networks and observatories by using
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accepted, statistically defensible approaches when compar-

ing whole measurement systems or individual instruments

as part of a larger rigorous quality assurance and data qual-

ity control program (Loescher et al., 2005; Ocheltree and

Loescher, 2007).

The NEON is currently constructing a continental-scale

observatory consisting of 20 eco-domains in the US, in-

cluding Alaska, Hawaii, and Puerto Rico (Fig. 1). Each of

NEON’s eco-domains has one representative “core site” that

will monitor the location continuously for 30 yr and two “re-

locatable sites” that will also operate continuously but will

move every 5–10 yr in order to address specific research di-

rectives of interest for that domain (as decided by the re-

search/user community). All the sites will contain a large

suite of automated terrestrial sensors mounted on towers,

placed in streams, and distributed in arrays of soil plots. In

addition, 10 mobile towers (with supporting infrastructure)

will be made available to rapidly deploy to targets of oppor-

tunity that otherwise would not be able to capture key eco-

logical information, e.g., immediately after a fire, flood, or

insect outbreak. NEON’s construction is currently scheduled

to end in 2017, at which time there will be more than 14 000

automated terrestrial sensors integrated into operations.

NEON is novel by design. It is the first ecological ob-

servatory linking site-based organismal ecology with abiotic

drivers and with regional spatial scaling. Taken in concert,

these observations embrace the cause-and-effect paradigm.

It is also novel in that each of these subsystems has been de-

signed with the other subsystems in mind, making it the first

truly integrated ecological observatory. By providing mea-

surements/procedures that are traceable to nationally and in-

ternationally recognized standards, a consistent, integrated,

and interoperable approach can be used to enable a consis-

tent means of data management and data quality. A com-

plete description can be found in the NEON Science Strategy

document (Schimel et al., 2011). NEON’s approach is at the

forefront of many other observatories that are currently in-

corporating interoperability into their design so as to enable

a global “network of networks” (GEO, 2010; NRC, 2011;

Suresh, 2012; IOM, 2013; USGCRP, 2013).

As large volumes of raw sensor data (> 100 TB yr−1) are

anticipated by these extensive, emergent networked obser-

vatories, it is imperative that a comprehensive data quality

assurance and quality control philosophy be adopted. In the

broadest sense, quality assurance (QA) defines the overarch-

ing plan for minimizing error and maximizing quality, while

quality control (QC) refers to the actual procedures that are

implemented as part of the QA plan (ISO/IEC 17025 2005,

Peppler et al., 2008). While there is no universal QA/QC sys-

tem for optimizing data quality, a number of common ap-

proaches have been implemented by large observation-based

networks (Table 1). In an effort to devise an efficient and

effective quality assurance program for NEON’s automated

terrestrial measurements, the optimal components of these

various quality assurance programs have been adopted (Tay-

lor and Loescher, 2011).

A core premise in the formalism of complex quality con-

trol is to scrutinize the validity of data in a multitude of ways

and to consider as many different types of error as possi-

ble (Gandin, 1969). To achieve this, NEON’s QA plan was

based on a traditional “three-stage” approach to data quality

control (Durre, 2008). The first stage focuses exclusively on

automated quality control procedures in which all acquired

data are screened by automated algorithms to identify sus-

pect data that are then flagged for further investigation in the

next stage. This second stage of QC performs data verifica-

tion by means of visual inspection; any flagged data from

the previous stage is either verified as being of poor qual-

ity or is accepted as high-quality data that are evidentiary

of an uncommon event. This approach minimizes the risk of

inadvertently eliminating the observation of a rare and po-

tentially interesting event for the sake of data quality (Es-

senwanger, 1969), and is consistent with the main principle

of complex QC in that no decision about the data is made

until all possible forms of QC tests have been performed

(Gandin 1988). The third stage relies on independent audit-

ing of the accepted dataset through an internally consistent

(NEON) auditing plan as well as through external input from

the user community. The end result is data that are of the

highest quality and are maintained at this level through nec-

essary reprocessing of data and version control. It should also

be noted that a robust QA/QC plan also includes steady-state

sensor calibration to traceable standards, and field validation

activity, which are not the subject of this study.

This paper will focus exclusively on the automated QC

methods that occur in the first stage, which are commonly

referred to as plausibility tests (O’Brien and Keefer, 1985;

Foken and Wichura, 1996; Foken et al., 2004; Fiebrich et al.,

2010). Other aspects of automated quality control, such as

redundancy tests, time series analysis, comprehensive uncer-

tainty estimation, etc., will be addressed in a later paper. Be-

cause of NEON’s large network size and 30 yr observational

lifetime, it is prudent to adopt a “data-driven approach” for

the first stage of automated QC. The principal philosophy

behind this approach is to optimize human resources (both in

the field and in the lab) by maximizing computer automation

(Smith et al., 1996). While the implementation of fully auto-

mated approaches has been well documented for individual

observation sites (Meek and Hatfield, 1994), it has proven to

be challenging for large networks (Shafer et al., 2000).

In comparison to the approaches that have been utilized

by other networks (Table 1), the methods presented here

are philosophically similar but they will be implemented in

a much more uniform, comprehensive, and automated way.

In addition, they are driven almost exclusively by a data-

determined approach. As much as possible, this minimizes

subjective, user-based decisions and attempts to automate

quality choices with guidance from existing data. While most

of the techniques used by other networks also implement
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Fig. 1. NEON’s 20 eco-domains and their associated ecological research sites. “Core sites” monitor the ecosystem continuously for 30 yr

while “relocatable sites” are moved every 5–10 yr in order to address specific research questions in a given domain. Some aquatic sites also

include an embedded experiment called STREON (see the NEON Science Strategy document for more details; Schimel et al., 2011).

automated quality control methods, decisions are often based

on arbitrary rules and can be implemented in inconsistent, ad

hoc ways. The robust, automated QA/QC methods proposed

here are further motivated by the need to optimize staff effort

for field maintenance, which has direct budgetary implica-

tions for long-term observations.

In practice, plausibility tests are essentially binary

“pass/fail” checks that are automatically applied to every sin-

gle observation (Graybeal et al., 2004). The pass/fail param-

eters for each test are calculated directly from the data and

stored in look-up tables. Because these parameters will be

unique for each sensor, each measurement type, and each lo-

cation, they will need to be dynamically updated on a reg-

ular basis and, potentially, be maintained at a seasonal or

monthly resolution. The theoretical basis for establishing this

approach, as well as a novel methodology for implementing

it, is the objective of this paper. A simple example applied to

a limited number of sensors will also be shown. Finally, the

limitations of this QC approach will be discussed.

2 Theory

2.1 Plausibility tests

Plausibility tests can broadly be defined as metrics that ex-

amine the range and variability of a given dataset. Here, we

describe these tests and how they are applied to the data. It

should be noted that nature of sensor data often depends upon

the phenomenon measured and not all of these tests will be

applicable to every situation. Where possible, examples are

used to demonstrate the efficacy of a given test. We apply this

approach to observational data collected from a sensor, and

assume (i) its field deployment is designed to best capture the

phenomena of interest and minimize other systematic biases

(Munger et al., 2012), and (ii) more advanced data products

derived from multiple sensor datasets may require additional

QA/QC approaches.

A range test checks that every recorded observation falls

within reasonable minimum and maximum values for a given

location and time of year. For example, if the temperature at

sea level in Hawaii was observed to be −30 ◦C, the range test

would flag this as implausible because this is lower than the

expected minimum value (i.e., out of range).

www.biogeosciences.net/10/4957/2013/ Biogeosciences, 10, 4957–4971, 2013
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Table 1. Example quality assurance plans currently in use at large environmental observatories.

Network Calibration Data Quality Control

and Agency Activities Acquisition Level 1 Level 2 Level 3

ARM-DOE Centralized perfor-

mance verification

with lab testing

Dynamic SOPs, sensor

replacement with trans-

fer standards

Automated quality

control and unit

conversion

Standardized visual

quality inspection

Instrument mentors,

review panels, and

data reprocessing

USCRN –

NOAA

Centralized perfor-

mance verification

with lab testing

Dynamic SOPs and

sensor replacement

Automated quality

control and unit

conversion

Standardized visual

quality inspection

Internal NOAA

departmental review

Oklahoma

Mesonet –

OU/OSU

Centralized perfor-

mance verification

with lab testing

Dynamic SOPs Automated quality

control and unit

conversion

Standardized visual

quality inspection

User community

review

Canadian

Carbon

Program –

CFCAS

PI-driven, ad hoc per-

formance verification

Dynamic SOPs with

transfer standards

Automated quality

control and unit

conversion

Standardized visual

quality inspection

Internal Environment

Canada/user

community review

AmeriFlux-

DOE

PI-driven, ad hoc per-

formance verification

Ad hoc SOPs with

transfer standards and

a roving system

Unit conversion with

non-standardized

quality flags

Ad hoc quality

control performed

at local site

Internal DOE/user

community review

SCAN-

USDA

Centralized perfor-

mance verification with

de facto acceptance

Dynamic SOPs Automated quality

control and unit

conversion

Standardized visual

quality inspection

User community

review

USGS Wa-

ter Quality

Monitoring

Network-

DOI

Centralized perfor-

mance verification

with on-site testing

Standardized SOPs

with minor dynamic

modifications

Daily visual quality

review at site

Standardized visual

quality inspection

Internal USGS

Water Service Center

review

Note: The Atmospheric Radiation Monitoring Network (ARM) is supported by the United States Department of Energy (DOE), (Stokes and Schwartz, 1994)

http://www.arm.gov/; the United States Climate Research Network (USCRN) is supported by the National Oceanic and Atmospheric Administration (NOAA), (Karl et al.,

1995) http://www.ncdc.noaa.gov/crn/; Oklahoma Mesonet is supported by the University of Oklahoma (OU) and Oklahoma State University (OSU) (McPherson et al., 2007)

http://www.mesonet.org/; the Canadian Carbon Program is supported by the Canadian Foundation for Climate and Atmospheric Science (CFCAS) (Margolis et al., 2006)

http://www.fluxnet-canada.ca/; the AmeriFlux Network is supported by the United States Department of Energy (DOE) (Baldocchi et al., 2001)

http://public.ornl.gov/ameriflux/; the Soil Climate Analysis Network (SCAN) is supported by the United States Department of Agriculture (USDA) (Schaefer et al., 2007)

http://www.ars.usda.gov/main/main.htm; and the United States Geological Survey (USGS) water quality monitoring network is supported by the United States Department of

the Interior (DOI) (Wagner et al., 2006) http://water.usgs.gov/owq/.

Two separate and distinct tests are used to check for a re-

alistic fluctuation of values over a designated period of time:

the “sigma test” and the “delta test”. The sigma test uses the

standard deviation or variance of the data over a given period

of time and compares it to a given threshold value (thresh-

old definition is discussed below). If the standard deviation

is below this sigma threshold then the observations have not

varied realistically and the test is failed. The delta test exam-

ines the difference between pairs of subsequent observations

over a given time period. If the difference is less than the

specified delta threshold, then the observations have not var-

ied realistically and the test is failed. By using both of these

tests in tandem, an instrument may appear to be function-

ing correctly but its output that is “stuck” at a constant or

near-constant value can be identified. For example, a radia-

tion sensor that is completely covered with snow may report

that there is adequate fluctuation between subsequent mea-

surements (i.e., pass the delta test), but the variance over a

24 h period will be lower than expected because it is not able

to view the daily change in solar radiation (i.e., fail the sigma

test). Therefore, these tests would flag the data over this 24 h

period as implausible.

Another test that is used to ensure that changes in a time

series of data are realistic over a given period of time is the

“step test”. It is similar to the sigma and delta tests in that it

checks the plausibility of data based on temporal variation,

but, rather than be concerned with the minimum fluctuations

over a given period of time, the step test scrutinizes the max-

imum fluctuations in the data. The step test compares suc-

cessive data points to determine if their difference exceeds

a maximum threshold. Missing data points are also typically

captured by a “null test”. This test focuses the number of

missing data points over a given period of time. This is dis-

tinct from a “gap test”, which identifies long periods of tem-

poral discontinuity in a time series. For example, a compro-

mised connection between a sensor and a data logger could

Biogeosciences, 10, 4957–4971, 2013 www.biogeosciences.net/10/4957/2013/
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result in realistic data variation (i.e., pass the step test) but

have an increased number of dropped data points (i.e., fail

the null test), so these data would be flagged as implausible.

Identifying both the duration and the frequency of gaps in a

given time series is crucial for later stages of quality control,

such as gap-filling and error analyses, and has significance in

the interpretation of natural variations, such as diurnal cycles,

seasonal cycles, etc.

2.2 Test thresholds

The automated application of these binary plausibility tests

is rather straightforward. It is, however, the estimation of the

parameter “thresholds” of these tests that poses the greatest

and most critical challenge. The statistical assumptions dic-

tate that these threshold parameters are ideally defined by

having a distribution of values that are objectively consid-

ered “reasonable” for every sensor at every site. The range,

step, delta, sigma, null, and gap parameter thresholds can all

be rigorously determined by constructing statistical distribu-

tions based on existing data over a period sufficiently long

to capture the full suite of variability. A representative dis-

tribution of range values, for example, is more effective than

simply using historical minima and maxima as there is no

way to ensure that these data themselves are reasonable, are

of quality, and are relevant in a changing climate.

Because the sensors monitor physical quantities that span

numerous distributions, it is not always possible to assume

one fundamental statistical distribution and calculate the de-

sired threshold quantities. However, as the point of interest

is not with the distribution of the data but rather with a sta-

tistical quantity derived from these data, a sampling distribu-

tion of the statistic can be constructed. Since sampling dis-

tributions are constructed from independent randomly sam-

pled data, the central limit theorem states that the distribution

will approach a Gaussian distribution as the number of sam-

ples approaches infinity (Rice, 2007). Therefore, regardless

of the nature of the underlying data, a properly constructed

sampling distribution of a statistic based on these data will

always follow a Gaussian distribution:

f (x) =
1

√
2πσ

2
e

−(x−µ)2

2σ2 , (1)

where x is any random variable, µ is the population mean

of the random variable, and σ is the population standard

deviation of the random variable. For example, a statistic

for the minimum temperature at a given location will have

a Gaussian distribution constructed from minimum temper-

ature data points (discrete samples) over desired tempo-

ral periods (e.g., hourly, diurnal, monthly, seasonal, annual,

decadal, etc.). From this sampling distribution, inferences

about the population mean minimum temperature and popu-

lation minimum temperature standard deviation can be used

to define the minimum temperature value that will be used as

the threshold parameter for plausibility testing.

Because the Gaussian distribution is unimodal and sym-

metric, the random variable can be normalized by the stan-

dard deviation to yield a curve with the mean value centered

at zero (see Fig. 2). When this analysis is completed, the in-

tegral between µ − 3σ and µ + 3σ represents 99.7 % of all

the data, and the integral over µ− 2σ and µ+ 2σ represents

95 % of all the data. By exploiting these properties, we can

define consistent and objective threshold parameters for all

plausibility tests and, as the data volume increases, these val-

ues can easily be reassessed and updated.

Although these parameters can be constructed for all tests,

the exact details of the test, such as the sampling period and

sample size, will vary depending on the type of observation

and sensor. Because these emergent observatories, such as

NEON, will be measuring new physical quantities, it may

be challenging at times to find enough prior existing data to

adequately construct sampling distributions. In these cases,

best possible estimates of appropriate test parameters will be

constructed for initial plausibility tests and, after a sufficient

amount of NEON data have been collected, new parame-

ters will be estimated and periodically updated. In this sense,

this data-driven approach requires a “spin-up time” for suffi-

cient data to be available for informing threshold parameter

calculations. As observatories continue to make long-term

observations, these threshold parameters will require regu-

lar maintenance as they will be frequently recalculated from

augmented data records.

As is inevitable with almost all statistical inference, there

is an element of arbitrary choice in the decision level at which

the test parameters are defined. Because plausibility tests are

typically the first stage of quality control, it is prudent to esti-

mate these parameter thresholds such that these tests should

err on the side of heightened sensitivity. This is based on the

philosophy that it is better to flag good data and verify that

it is acceptable in the second stage of quality control rather

than neglect to flag poor quality data and have it be published

as plausible.

For the range test, which relies on checking extreme val-

ues, it is necessary to construct sampling distributions of

the minima and maxima observed for a given sample period

(Table 2). For many variables, the diurnal or semi-diurnal

timescales are often chosen as ecologically meaningful (e.g.,

temperature, radiation, humidity). It should also be noted

that the application of the range test to some variables may

not be statistically defined and/or quantitatively trivial (e.g.,

minimum wind speed or maximum wind direction) but can

still have merit for detecting implausibility (i.e., a wind di-

rection greater than 360 degrees is implausible). From the

constructed distributions of extreme values, acceptable range

thresholds are defined by the threshold µ± 2σ . By using the

twice the standard deviation, 97.5 % of all values are consid-

ered acceptable, while the remaining 2.5 % will be flagged

as questionable/outliers. At NEON, this threshold calculation

will be applied to all incoming data streams unless explicitly

stated otherwise.

www.biogeosciences.net/10/4957/2013/ Biogeosciences, 10, 4957–4971, 2013
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Fig. 2. Histogram of simulated data following a Gaussian distribu-

tion with normalized mean 0 (dotted red line) and standard deviation

of 3. The range of values that lie between 3 standard deviations of

the mean (solid red lines) represent 99.7 % of all the data.

The sigma test relies on the variance/standard deviation of

the sample in a predetermined sampling time (Table 2). It, in

essence, scrutinizes the “standard deviation of the standard

deviations”. Consequently, a sampling distribution of all the

sampled standard deviations of the dataset will provide an in-

ference of the minimum/maximum expected variability of a

given parameter. A threshold of µ ± 2σ (where µ represents

the mean standard deviation of the distribution and σ is the

standard deviation of the distribution of standard deviations)

ensures that only the lowest/highest 2.5 % variability data is

flagged. In many cases, care must be taken when scrutinizing

the validity of this value and it will often need to be used in

conjunction with other plausibility tests to assure data qual-

ity. For example, if there is no precipitation over a three day

period (a very realistic case), the sigma test alone would re-

ject these data as having 0 variability. This false failure can

be corrected by having two-stage tests where “0 variability

conditions” are checked for consistency against other obser-

vations and/or plausibility tests.

Similar to the sigma test the delta test scrutinizes the vari-

ability of a dataset, but it focuses more on the observed

small-scale random variability (i.e., noise) rather than the

total sampled variability of a measured phenomenon over

a specified period. The delta test utilizes the difference be-

tween subsequent observations to check changes in the char-

acteristic random variability. The mean and standard devia-

tion of this sampling distribution represent how small-scale

random variability is correlated between subsequent obser-

vations throughout the desired time series. If this quantity

changes less than the µ − 2σ threshold, data are flagged as

being possibly “frozen” at a given value. Again, care must

be taken with this test to ensure that observations that com-

monly read 0.0 are not being inadvertently flagged when the

zero values are real natural phenomena. In some cases, it

may be advantageous to define the delta test threshold by the

sampling precision of the instrument/data acquisition system,

rather than statistical analysis of the time series alone. For

example, if the resolution of the instrument is 0.005, then it

may be more appropriate for the delta test to utilize a thresh-

old of ∼ 0.01 to test if values are frozen and only vary near

the instrument’s resolution.

The same distribution of subsequent observation differ-

ences is used to also define the threshold for the step test (Ta-

ble 2). Rather than scrutinize the smallest acceptable change

between measurements, this step test seeks to ensure that

there are no implausible, large increases in the variance struc-

ture between/among measurements. The threshold is defined

as µ+2σ to ensure that only data exhibiting the largest 2.5 %

of all data discontinuities are flagged. However, for this test

to be applied to paired data points in an automated fashion,

it is simplest to flag both points, thereby resulting in more

flags than the 2.5 % would indicate. A subsequent process-

ing of the flagged data (i.e., in the “data verification” stage of

QC) could then help identify which of these flagged values

is a distinct spike. However, if there is a sort of step-function

change in the mean of the time series, then additional ver-

ification will be required. It is for this reason that caution

must be taken when applying this test and should be accom-

panied by subsequent visual analyses of the time series for its

validation. For example, wind speed and direction can typi-

cally have large step changes that would be flagged by this

approach when indeed the data are valid.

The null test and gap test are used to monitor the loss of

data that could arise from problems associated with the in-

strument, the data acquisition system, or both. The null test

is intended to look for individual, missing data points within

a given sampling period, while the gap test is meant to look

for an extended period of missing data. The exact threshold

for acceptable data loss will vary with the physical quan-

tity being measured, the instrument, and sampling interval.

In some cases, this may simply be defined as an arbitrary

number (e.g., 0 or 1 maximum missing data value per day)

or by a local calibration cycle. For data that are sampled as a

continuous daily time series, the statistical approach that has

been used to define all plausibility thresholds should con-

tinue to be applied. A sampling distribution of the number of

missing data values over a given sampling period should be

constructed. In almost all cases, these two tests cannot be ap-

plied to a raw time series without defining a sampling period

in which a known number of samples is expected. As with

other parameters, a threshold of µ+2σ is chosen for flagging

data with the null test. It should be noted that these param-

eters will only be representative of the sampling period, so

any portion of the time series in which there are known gaps

or null data points (e.g., during a calibration cycle) should

be removed prior to estimating the sampling distribution. For

data acquisition systems that do not report times with miss-

ing data notation, a gap test must be used to explicitly check

for missing data.

These six plausibility tests are summarized in Table 2.

Biogeosciences, 10, 4957–4971, 2013 www.biogeosciences.net/10/4957/2013/
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Table 2. The six plausibility tests employed in the first phase of NEON’s data quality control.

Problem Plausibility Underlying Statistical Calculation

to be Test Quantity Sampling

Identified Distribution

Data Outliers Range Test Extreme Values Max: µ + 2σ ,

Min: µ − 2σ

Change in Variance Sigma Test Standard Deviation µ − 2σ,µ + 2σ

Structure

Data Stuck at a Delta Test Differences of µ − 2σ

Singular Value Subsequent Pairs (or defined by sampling)

Jumps in Data Step Test Differences of µ + 2σ

Values Subsequent Pairs

A Dropped Data Null Test Missing Data µ − σ

Point (or defined by sampling)

Multiple Dropped Gap Test Large Gap of Defined by Sampling

Data Points Missing Data

While a Gaussian probability distribution function (Eq. 1)

can be constructed manually from historical climate data for

many variables, this process is computationally expensive

and inefficient for the amount of data generated by large

observatories. Without loss of generality, an algorithm that

calculates the first two moments of a Gaussian distribution

(the mean and variance, respectively) can be constructed dis-

cretely to be

x (d) =

H(d)
∑

y

x (d,y)

H(d)
∑

y

1

(2)

σ 2 (d) =

H(d)
∑

y
[x (d,y) − x (d)]2

H(d)
∑

y

1

, (3)

where x is a measurement statistic on a given day, d , with a

historical dataset of measurements on this day, H(d), and x

and σ 2 are the derived mean and variance for this measure-

ment statistic. For example, this could be a dataset of daily

maximum temperatures observed at a specific location for

30 yr.

While this approach is computationally more efficient than

manually constructing these parameters, it does not include

all available information, such as temporally and spatially

adjacent observations. Once an observatory’s (or network’s)

operational phase has begun and there are more data repre-

sentative of the spatial and temporal variation available, al-

gorithms utilizing a combined approach for defining plausi-

bility parameters will be more appropriate (Hasu and Aalto-

nen 2011). As the spatio-temporal correlation length scales

are unique to each measurement statistic, a useful approach

is to incorporate weighting factors for their respective influ-

ence. This results in the following modifications to Eqs. (2)

and (3):

xi (d) =

Ni
∑

j

Dd
∑

d ′

H(d ′)
∑

y

w1 (j, i) · w2

(

d ′,d
)

· xj

(

d ′,y
)

Ni
∑

j

Dd
∑

d ′

H(d ′)
∑

y

w1 (j, i) · w2 (d ′,d)

, (4)

σ 2
i (d)=

Ni
∑

j

Dd
∑

d ′

H(d ′)
∑

y

w1 (j, i) ·w2

(

d ′,d
)

·
[

xj

(

d ′,y
)

−xi (d)
]

2

Ni
∑

j

Dd
∑

d ′

H(d ′)
∑

y

w1 (j, i) · w2 (d ′,d)

, (5)

where Ni is the set of neighboring sites measuring the same

quantity, Dd is the set of adjacent dates upon which the quan-

tity is measured, and w1 and w2 represent the spatial and tem-

poral weighting factors, respectively. These weighting fac-

tors are defined as

w1 (j, i) =















0, j /∈ Ni

1, j = i

1
2
e
−

( |1ij |
z

)2

, j ∈ Ni/ {i}

w2

(

d ′,d
)

=







0, d ′ /∈ Dd

e
−

( |d′−d|
t

)2

, d ′ ∈ Dd,

where |1ij | represents the distance between neighboring

sites in degrees, z represents the maximum allowable dis-

tance between neighboring sites, and t represents the max-

imum time period over which adjacent dates of observation
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are considered. The temporal weighting is based on observa-

tions changing linearly with time, and the spatial weighting

is based on traditional Barnes interpolation analysis (Barnes,

1964). When considering the values of these parameters, it

is necessary to assess the coherent structure of the measure-

ment variable and assign appropriate spatio-temporal scales.

When all of the plausibility test parameters have been de-

fined, the tests can be implemented in sequence for each

observation at each site. In observatory operations, the en-

tire testing procedure is automated in which individual data

streams are checked prior to any other data manipulation (as

part of the second phase of QC). It is important to note that

this approach is only utilized for the definition of plausibility

test parameter thresholds. Other internal tests, such as those

for consistency and redundancy, should also be performed

at a local site where spatio-temporal weighted observations

may not be most appropriate.

3 Results and test examples

3.1 Defining parameter thresholds

3.1.1 Temperature data

The implementation of these automated plausibility tests is

illustrated using temperature data from a NEON prototype

relocatable site in North Sterling, Colorado (40.461903◦ N,

103.029266◦ W; Domain 10 – Central Plains in Fig. 1).

These raw temperature observations were recorded in the

form of voltage across a platinum resistance thermometer

(PRT) (Barber 1950). It should be noted that these data were

intentionally not calibrated and contain numerous known er-

rors, which is useful for the purposes of this example.

A time series of 1 month of data sampled at 1 s intervals

in April–May 2011 were chosen as the “historical dataset”

for defining the threshold parameters for plausibility testing

(Fig. 3). As there are no adjacent observations or histori-

cal temperature records for this site, sampling distribution

parameters described in Eqs. (4) and (5) simply collapse to

Eqs. (2) and (3). The native sampling units of the PRT (mil-

livolts) were used here for the sake of brevity. In practice,

much more data will be used for defining threshold test pa-

rameters.

From this time series, statistical sampling distributions

were constructed by randomly sampling 100 data points,

1000 times. From each sample of 100 data points, a mean,

standard deviation were calculated according to Eqs. (2)

and (3), respectively. The statistical sampling distribution of

these mean values is shown in Fig. 4. Note that with only

1000 samples, the shape of the distribution approaches that

of the Gaussian shown in Fig. 2. By applying the central limit

theorem to this distribution, the inferred population mean is

113.3 mV. In practice, the number of data points available

Fig. 3. Time series of platinum resistance thermometer (PRT) ob-

servations in April–May 2011 from Domain 10: North Sterling,

Colorado. These data were intentionally not calibrated and contain

known errors.

will be constrained by the amount of available historical data

and temporally/spatially coincident data.

Using the same sampling characteristics, a statistical sam-

pling distribution of the upper and lower range limits (±2σ

for each extrema) can be constructed. From this distribution,

the value of the upper threshold range can be inferred to be

µ + 2σ = 119.2 + 2 × (0.74) = 120.7 (see Fig. 5). It should

be explicitly noted that daily extrema were not used in con-

structing these sample distributions as this would not allow

the data be independent and randomly sampled, as required

in the construction of sampling distributions (although, in

practice, a sufficiently large volume of data would remove

this restriction). If a sufficiently large enough dataset of daily

extrema were available (e.g., years of daily maximum tem-

perature values), then this could be used as an alternative ap-

proach for constructing these thresholds. With this threshold

parameter now known, the range test simply consists of au-

tomatically checking all of the data to ensure that any values

above this threshold are flagged according to the above crite-

ria.

In a similar fashion, all parameters for step testing, sigma

testing, delta testing, and null testing were calculated by

constructing sampling distributions (or, as previously men-

tioned, they could be defined by the inherent data sam-

pling/acquisition rate of the sensor).

3.1.2 Precipitation data

To illustrate the efficacy of this technique on data with an un-

derlying non-Gaussian distribution, the same test parameter

threshold definition procedure was carried out on precipita-

tion data.

Hourly accumulated precipitation data collected at the

United States Climate Reference Network (USCRN) Station

in Boulder Colorado (40.0354◦ N, 105.5409◦ W) spanning

1 January 2009–31 December 2010 was utilized. As these
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Fig. 4. Statistical sampling distribution of the sample mean PRT

observation constructed from 1000 samples.

Fig. 5. Statistical sampling distribution of the sample mean maxi-

mum PRT observation added to twice the sample standard devia-

tion.

data have already gone through the rigorous QA/QC meth-

ods employed by USCRN (https://www.ncdc.noaa.gov/crn/

qcdatasets.html), it is unlikely that any spurious data will be

present to skew the test parameter threshold definitions.

A time series of 2 yr of data sampled at 1 h intervals was

chosen to demonstrate the naturally skewed distribution that

is expected for midlatitude precipitation (Fig. 6). Due to the

high volume of data, statistical sampling distributions were

constructed by randomly sampling 10 000 data points 10 000

times, with replacement. It should be noted that these num-

bers were chosen rather arbitrarily and, in practice, the size

of the available dataset is often the limiting factor in choos-

ing sample sizes. As with the temperature data, from each

sample of 10 000 data points, a mean and standard deviation

were calculated according to Eqs. (2) and (3), respectively.

The statistical sampling distribution of the sample maxima

is shown in Fig. 7. As is clearly evident, the statistical sam-

pling distribution is closely approximating that of the Gaus-

sian shown in Fig. 2, with an inferred population mean max-

imum close to 1 mm h−1. This value is expected from the

large number of nonrain events that occur at this site, which

Fig. 6. Distribution of hourly accumulated precipitation at the Boul-

der, Colorado, USCRN site over 2009–2010. For visual purposes,

the domain and range of this figure do not encompass all of the

data. The true peak in the distribution actually has a frequency of

over 15 000 for the zero precipitation event (0 mm accumulation),

and there are some isolated events where more than 8 mm of pre-

cipitation accumulates in an hour.

Fig. 7. Statistical sampling distribution of the sample mean max-

imum hourly precipitation observation added to twice the sample

standard deviation.

are assumed to be uniquely represented by the “zero val-

ues” (that is, we are assuming that the sensor has always

been in working order and that a reading of zero only repre-

sents days without precipitation). The resulting range thresh-

old parameters from this sampling distribution are [0, 1.12].

All values outside of this range should be flagged as poten-

tially implausible. However, because the non-precipitation

events (i.e., “zero values”) were included in the construction

of the sampling distribution, the maximum threshold for rain

events is biased toward a lower value than would typically

be appropriate for automated plausibility testing. This exam-

ple demonstrates the necessity of utilizing prior knowledge

of the observational dataset to interpret the meaning of the

thresholds that are derived.

The time series of these precipitation data, along with the

maximum threshold defined by the range test, are shown in

Fig. 8. The total dataset consists of 17 499 hourly obser-

vations with 409 values exceeding the upper range thresh-

old. This is equivalent to approximately 2.3 % of the data

being flagged, which is consistent with the expected 2.5 %
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Fig. 8. Time series of hourly accumulated precipitation observations

in 2009–2010. The dotted redline is the range parameter threshold

beyond which data should be flagged (∼ 2.3 % of the data should be

flagged).

associated with the µ + 2σ threshold defined in the preced-

ing section. In practice, for a quantity such as precipita-

tion, it would be advantageous to relax this definition to a

value closer to µ+ 3σ as variability associated with extreme

events is common. It also should be noted that, in this ex-

ample of high-quality data, these flagged values are entirely

expected to be “revalidated” in the other phases of QA/QC

(e.g., in comparisons with redundant sensors) and kept as

high-quality data.

3.1.3 Other data

In the two previous examples, care was taken to choose the

sampling windows and test parameters of interest to ensure

that derived Gaussian sampling distribution was representa-

tive of meaningful data quality control parameters. In some

sense, the selection of these parameters is arbitrary, but there

are definitely some parameters that are more optimized than

others. When presented with the challenge of defining the

parameters for automated plausibility testing on a number

of different measurements, several factors should be consid-

ered. In particular, the underlying temporal and spatial vari-

ability of the quantity of interest must be considered. A broad

based assumption is that a measurement is taken at a fre-

quency (and spatial distribution) to capture the natural mean

and variance structure of the desired phenomenon.

The primary factor was related to the underlying tempo-

ral and spatial variability of the quantity of interest and how

well measurement samples capture this variability. For exam-

ple, ambient air temperature is a slowly changing quantity

that typically follows a diurnal cycle. With a measurement

sampling rate of 1 Hz, there is confidence that the natural

variability of temperature will be well captured by the data.

With such a large amount of data, statistical sampling distri-

butions can be created that will adequately characterize the

test parameter of interest (e.g., daily maximum temperature).

Furthermore, when this is the case, “data windows” can be

defined in which subsets of data can be further scrutinized

for plausible variability.

For the converse case, where a quantity of interest is a

rapidly changing variable and it is not sampled very fre-

quently, it is unlikely that the dataset will be representative

of the true natural variability. For example, wind speed and

direction is a quantity that changes rapidly, sometimes with

diurnal dependence. If the wind were only measured once

every hour, these observations would not be able to capture

the actual variability of the wind, and any sigma or delta test

parameters would not be applicable for plausibility testing,

i.e., violating the assumption noted above. In such cases, it

is recommended that plausibility test thresholds be set con-

servatively so that data quality is heavily scrutinized a priori

until such time that an adequate dataset can be compiled.

Irregularly occurring variables also pose some challenges.

For example, precipitation measurements may have the ca-

pability to observe with very high frequency, but as precip-

itation does not typically follow a recurring cycle, its high

degree of natural variability makes threshold definition very

difficult. Most plausibility tests related to variability will of-

ten not be applicable, nor will a minimum range value be

useful (i.e., there are many days where no precipitation oc-

curs). However, as illustrated in the example above, maxi-

mum plausible hourly accumulated precipitation can be de-

fined and utilized for automated quality control. This further

demonstrates that the utility of a particular plausibility test is

unique for each measurement.

Of course, if a novel measurement is being conducted for

the first time and there is inadequate knowledge of the under-

lying sampling distribution and its ability to capture natural

phenomena, it will be challenging to determine any of these

parameters. In such a case, it is recommended that plausibil-

ity tests not be used at all until an adequate sample of these

data is obtained for inspection first.

3.2 Application to test data

The same prototype temperature observations from

Sect. 3.1.1 were used to illustrate the efficacy of plausibility

testing by employing these calculated threshold parameters.

A time series of 2 months of data sampled at 1 s intervals is

shown in Fig. 6. This represents approximately 5.2 × 106

data points. These data will be considered the “test” data

upon which all of the plausibility tests should be conducted,

and, via visual inspection, it is obvious that there are some

poor quality data values (such as those that read “0 mV”).

Using the derived test parameters, these data were processed

with all six of the automated plausibility tests. The data that

failed these tests were flagged (Fig. 7).

The automated plausibility tests resulted in the following

analyses (e.g., data quality report with additional annotations

for explanation):
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Fig. 9. Time series of platinum resistance thermometer (PRT) ob-

servations in March–May 2011 from Domain 10: North Sterling,

Colorado. These data were intentionally not calibrated and contain

known errors.

– Range test: the range thresholds were found to be

104.04 to 118.56 mV. There were 150 643 values out-

side of this range, resulting in 3.2 % being flagged.

– Step test: the step threshold was found to be 0.2015 mV.

There were 36 values greater than this step resulting in

7.5 parts per million (ppm) being flagged, relative to the

size of the total dataset.

– Sigma test: the sigma thresholds were found to be 2.57

to 3.56 mV. Because the observations in this dataset

have considerable bias and variation (as intended), the

lower sigma threshold was much larger than the antici-

pated noise in the baseline observations. For this reason,

the lower variance test was not applied and the plau-

sibility of the variation over small timescales was as-

sessed solely by the step tests and delta tests. While this

is not nominally optimal, it does demonstrate appropri-

ate use for datasets with large random variability (i.e.,

noise), such as this. Utilizing the test for only the upper

sigma range and applied over a sliding window of 500

data points, there were 999 instances where the variance

was greater than the acceptable sigma range, resulting in

0.02 % of the data being flagged.

– Delta test: due to the narrow range of variation in the

observations, the delta threshold was found to be neg-

ative and, consequently, set to 0 for this test. This will

happen with observational datasets of this nature and

should typically have a threshold set at the precise reso-

lution of the sensor. For this particular prototype dataset,

this value was not available and the delta test was not ap-

plied. Nominally, the delta threshold would be applied

over a rolling domain sequence of ∼ 100 data points, or

similar.

– Null test: the null threshold was found to be 12.6 miss-

ing data points. This was applied over a moving window

Fig. 10. Time series of platinum resistance thermometer (PRT) ob-

servations in March–May 2011 from Domain 10: North Sterling,

Colorado, but data that have failed QC tests are flagged as suspect.

The different colored symbols represent the different flags that have

been applied by the automated plausibility testing.

sequence of 50 data points resulting in 42 804 instances

where there were more missing values than the thresh-

old, causing 0.9 % to be flagged.

– Gap test: the gap threshold was chosen to be 5 min (this

was an arbitrary choice and not based on any statisti-

cal calculations). There were 116 time gaps greater than

this threshold, resulting in 24 ppm being flagged.

By combining all of the plausibility tests together, this re-

sulted in 194 581 data points being flagged, or 4.1 % of all

the data in question. It should be noted that many poor ob-

servations were flagged by multiple tests, so the total number

of flagged data points was not simply the linear addition of

flagged data points from individual failed tests.

It should also be noted that these tests can be made more

efficient through strategic sequencing. For example, data

points that are flagged by the range test could potentially be

disregarded when utilizing the sigma test. This would ensure

that the sigma test is more representative of the true variance

structure of the dataset in question and it will decrease the

likelihood of data points getting flagged twice. Of course,

there are circumstances where the nature of the observations

does not lend itself to this sort of sequencing, so, as with all

plausibility tests, the underlying structure of the data must

be considered when making these decisions. The implemen-

tation of such efficiencies at NEON is done through the use

of a quality metric scheme that aggregates data quality flags

to inform more sophisticated decision making. The details of

this scheme will be discussed in a subsequent publication.

The same time series of observations, with all flagged

data points removed, is shown in Fig. 8. In practice, of

course, flagged data points would undergo additional phase-

two quality control before ever being permanently removed

from the published data record. General statistics of the data

flags are also maintained for regular scrutiny and auditing in
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Fig. 11. Time series of platinum resistance thermometer (PRT) ob-

servations in March–May 2011 from Domain 10: North Sterling,

Colorado, but all of the flagged data have been removed, leav-

ing only observations that passed all automated plausibility tests

(∼ 4.1 % of the raw data was flagged).

phase-three QC. Consistent with NEON’s data-sharing pol-

icy, records of the flagged data and complete quality control

reports will be made freely available to all interested stake-

holders. It is hoped that this policy of transparency and avail-

ability will become the standard across all observatories and

networks.

4 Discussion

4.1 Comparisons with other data quality control

techniques

By using a data-driven approach to automated quality con-

trol, human interaction is minimized and arbitrary decisions

can be avoided. This objective approach avoids ambiguity

that has traditionally been associated with quality control

among different sensors and provides an extensive frame-

work upon which observatories with long observational life-

times can be sustained (e.g., NEON’s 30 yr planned lifespan).

As part of an overall QA plan, this approach must be used in

conjunction with other quality control and assurance proce-

dures (phases 2–3).

In contrast to other QC approaches (such as those outlined

in Table 1), this data-driven approach avoids the use of nu-

merous assumptions. Many networks employ a subset of the

plausibility tests discussed here in a way that utilizes static

threshold parameters and/or relies heavily on human-based

intervention. Utilizing these automated plausibility tests not

only minimizes human action, it also allows for thresholds

that are updated dynamically as more data are collected. In

this sense, this QC approach “learns” from actual data and

ultimately generates an optimized algorithm without any ex-

plicit modeling of variable behavior. This avoids the need for

assuming an underlying statistical distribution and eliminates

all prognostic modeling. This is advantageous for many vari-

ables that have not been previously observed in a large-scale

context and, therefore, are not well understood. Modeling

the behavior of NEON’s 14 000 simultaneous observations

is also computationally demanding, and potentially requires

a significant level of verification and validation before it can

be implemented in any automated way.

However, this approach is not without its limitations. In

particular, the lifetime of an environmental observatory (e.g.,

NEON) and its focus on climate change could result in a

record of observations where dynamic changes have sig-

nificantly modified threshold parameters. For example, in a

warming climate, temperature values that may seem excep-

tionally high or variable in 2012 may in fact be well within

normal conditions in 2042. As new data are collected and the

threshold parameters are updated, it is inevitable that pub-

lished data will need to be reprocessed into newer versions.

Climatological averages are typically recalculated every 10

years, so it can be expected that these changes will occur at

least this frequently.

The converse limitation is also true. As with most statis-

tical approaches, there is inevitably an element of arbitrary

choice when it comes to setting threshold limits. In the exam-

ples shown here, a two-standard deviation offset was chosen

for illustrative purposes. It should be noted that this resulted

in a significant number of “false-positive” plausibility test re-

sults in which seemingly good data were flagged (see Fig. 7).

This problem is typically managed in a number of ways: (A)

by choosing very liberal thresholds, (B) by implementing a

second phase of quality assurance in which flagged values

are further scrutinized, or (C) both. These options have their

advantages and disadvantages. In choosing option (A), “good

data” will very likely pass the tests and only the most egre-

gious of implausible data points will be flagged. However,

this approach does run the risk of allowing more “bad data”

to be accepted as false negatives. In choosing option (B),

more conservative thresholds can be chosen to ensure that as

many of the implausible data points as possible are flagged.

The downside to this approach is that all of the flagged val-

ues need to be revisited in a second phase of data verification

to sort the “good from the bad”, which consumes further re-

sources. In the implementation of NEON’s QC approaches,

option (B) has been chosen.

A fundamental limitation that should also be mentioned

is that of utilizing the central limit theorem as the founda-

tion of defining all plausibility testing thresholds. The cen-

tral limit theorem works well for distributions that are nearly

Gaussian. For statistics that have an underlying bimodal or

more complex distribution, the theorem will force the data to

conform to a Gaussian shape. For most of the measurement

thresholds considered by automated sensors, this will indeed

be the case, but for some measurements that do not yet have

an extensive historical archive or if a measurement is still

novel, it remains to be seen if this approach is valid. In some

sense, a lot of samples need to be made before evaluating a

QC approach.
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4.2 Toward better approaches

While automated data quality control through plausibility

testing establishes the core of an efficient and sophisticated

observatory quality assurance plan, it still requires long-term

maintenance. To this end, it must be designed with sufficient

flexibility to adapt to unforeseen quality control challenges

that will undoubtedly arise in the future. To assist with en-

hancing QC flexibility, we recommend complete records of

data flags and quality control reports be maintained through-

out the lifetime of the observatory. This permits the recalcu-

lation of running statistics of how threshold parameters for

particular measurements (and locations) behave over time,

and will inform how to manage this challenge.

This record of data quality will be augmented by a thor-

ough auditing plan that will not only scrutinize generated

data but also the quality control of this data. Independent,

random auditing is another method through which data QC

can be tested for efficacy. This will consist of audits on real

sensor measurements as well on test datasets that have ex-

pected outcomes. Failure to meet audit goals will result in

immediate scrutiny of the QC tests and be followed by sig-

nificant testing and potentially reimplementation of the QC

threshold parameters (and associated data reprocessing). All

of these details will be included as part of the data quality

record and should be part of the data providence and com-

municated to the data-user community. While extensive data

quality auditing requires additional resources, it is necessary

to establish the “quality of quality control.”

One way to maintain flexibility within the quality control

system is to ensure that all raw data are always archived. As

data quality control evolves, having the raw data available

ensures that reprocessing to enhance data quality can always

be achieved. As part of NEON’s QA plan, the intention of QC

is to identify (and remedy) problems, not simply eliminate

data outliers. As such, no data should ever be deleted and

the raw data should be permanently maintained by the host

Observatory and freely available to interested data users.

4.3 Future applications

Automated, data-driven QC could easily be implemented

at numerous other automated sensing networks. The most

obvious candidate for this is meteorological observato-

ries/networks. Often the historical construction of the infras-

tructure utilized by most met services limits the capacity for

such data-intensive QC. However, after an initial investment

of resources to implement this system, the maintenance re-

quired for this automated QC is minimal, and the resulting

data quality enhancement would more than offset these costs.

The question of how these automated QC tests would be ap-

plied to historical data raises another set of issues that would

need to be addressed on a case-by-case basis.

In addition to met services, there are many existing net-

works (such as those in Table 1) that could benefit from more

automated QC techniques. Regardless of the measurement,

instrumentation, and the cyberinfrastructure, these plausibil-

ity tests can almost always be implemented and used to en-

hance data quality. It is always necessary that this be imple-

mented as part of an overarching QA plan and, depending on

the observations of interest, may require very thorough data

auditing. For instances where a series of data is processed

using complex time series analysis (e.g., Fourier transforms,

wavelet analysis, etc.), care must be taken to ensure that auto-

mated corrections applied in one space do not yield spurious

results in another space. For instance, the removal of out-

liers from one time series could cause “jump discontinuities”

that contribute to large oscillations or “ringing” in the Fourier

transform of this time series. In these cases, data quality au-

diting can be used to identify where risks of such results are

probable, and the automated QC can be adjusted accordingly.

For the vast majority of observations, these standard plausi-

bility tests will be sufficient for enhancing data quality.

One of the biggest challenges for moving toward global

datasets of observations is that of network interoperability.

Without standardized approaches to network observations,

no two sets of data can adequately be combined in any

way. The future of network interoperability can only be en-

hanced when a well-planned, uniform approach to data QC

is adopted. While it is obvious that different observing net-

works will have differing demands for QC approaches and

implementation, “phase 1” plausibility tests will almost uni-

formly be required in one capacity or another. Using these

automated QC approaches can only assist with enhancing

data quality and, consequently, data usage.

5 Conclusions

With the rapid growth of national and international sensor

networks, the demand for data quality control in ecology will

grow to an unprecedented level. Network interoperability can

be best achieved by having unified approaches to QA/QC

methods and, it is hoped, that the methods presented here will

act as a primer for all other networks. By adopting methods

that can be implemented rapidly, such as these, a consistent

framework for data management can be established. It is only

through the use of these standardized approaches that global-

scale ecological questions can ever be addressed.
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Pütz, T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-

Bahl, K., Bens, O., Borg, E., Brauer, A., Dietrich, P., Hajnsek,

I., Helle, G., Kiese, R., Kunstmann, H., Klotz, S., Munch, J. C.,

Papen, H., Priesack, E., Schmid, H. P., Steinbrecher, R., Rosen-

baum, U., Teutsch, G., and Vereecken, H.: A Network of Terres-

trial Environmental Observatories in Germany, Vadose Zone J.,

10, 955–973, 2011.

www.biogeosciences.net/10/4957/2013/ Biogeosciences, 10, 4957–4971, 2013

www.neoninc.org/science/sciencestrategy
http://dx.doi.org/10.1038/490337a

