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Abstract

Many software systems exhibit probabilistic behaviour, either added explicitly, to improve

performance or to break symmetry, or implicitly, through interaction with unreliable net-

works or faulty hardware. When employed in safety-critical applications, it is important

to rigorously analyse the behaviour of these systems. This can be done with a formal

verification technique called model checking, which establishes properties of systems by

algorithmically considering all execution scenarios. In the presence of probabilistic be-

haviour, we consider quantitative properties such as “the worst-case probability that the

airbag fails to deploy within 10ms”, instead of qualitative properties such as “the airbag

eventually deploys”. Although many model checking techniques exist to verify qualitative

properties of software, quantitative model checking techniques typically focus on manually

derived models of systems and cannot directly verify software.

In this thesis, we present two quantitative model checking techniques for probabilistic

software. The first is a quantitative adaptation of a successful model checking technique

called counter-example guided abstraction refinement which uses stochastic two-player

games as abstractions of probabilistic software. We show how to achieve abstraction and

refinement in a probabilistic setting and investigate theoretical extensions of stochastic

two-player game abstractions. Our second technique instruments probabilistic software

in such a way that existing, non-probabilistic software verification methods can be used

to compute bounds on quantitative properties of the original, uninstrumented software.

Our techniques are the first to target real, compilable software in a probabilistic

setting. We present an experimental evaluation of both approaches on a large range of

case studies and evaluate several extensions and heuristics. We demonstrate that, with

our methods, we can successfully compute quantitative properties of real network clients

comprising approximately 1,000 lines of complex ANSI-C code — the verification of such

software is far beyond the capabilities of existing quantitative model checking techniques.





Acknowledgements

Firstly, I would like to express my gratitude to Marta Kwiatkowska for giving me the

opportunity to pursue a doctorate study under her supervision as well as for her invaluable

support and guidance during my studies. I would also like to thank Gethin Norman and

David Parker — their support has been absolutely instrumental in completing this thesis.

I have also been fortunate position to receive support and guidance from to Michael

Huth, Daniel Kroening and Josée Desharnais and a special thanks goes to them. Finally,

I would like thank the many collegues and visitors who have made the last few years very

enjoyable and the EPSRC for funding my studies.





Table of Contents

1 Introduction 1

2 Related Work 9

2.1 Software Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Automated Abstraction Refinement . . . . . . . . . . . . . . . . . . 9

2.1.2 Other Software Verification Techniques . . . . . . . . . . . . . . . . 13

2.2 Probabilistic Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Probabilistic Verification without Abstraction . . . . . . . . . . . . 15

2.2.2 Abstraction of Probabilistic Systems . . . . . . . . . . . . . . . . . 18

3 Background 23

3.1 Notation & Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Weight Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Lattices, Galois Connections & Fixpoints . . . . . . . . . . . . . . . 28

3.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Definition of Markov Decision Processes . . . . . . . . . . . . . . . 31

3.3.2 Properties of Markov Decision Processes . . . . . . . . . . . . . . . 34

3.3.3 Stuttering Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Game-based Abstractions of Markov Decision Processes . . . . . . . . . . . 39

3.4.1 Stochastic Two-player Games . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Properties of Games . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Game Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Probabilistic Software 51



4.1 Probabilistic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Variables & Data Space . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Definition of Probabilistic Programs . . . . . . . . . . . . . . . . . . 52

4.1.3 MDP Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Weakest Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Abstraction Refinement for Probabilistic Software 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Constructing Game Abstractions . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Predicate Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Enumeration of Transitions with ALL-SAT . . . . . . . . . . . . . . 71

5.4 Refining Predicate Abstractions . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Refinable States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Predicate Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Predicate Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Experimental Results & Extensions . . . . . . . . . . . . . . . . . . . . . . 90

5.5.1 Experiments & Analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.2 Predicate Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.3 Reachable State Restriction . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 An Abstraction Preorder for Games 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 The Roles of Player A & C . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 MDP Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.2 Consistency Requirement . . . . . . . . . . . . . . . . . . . . . . . . 114



6.3 Combined Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Combined Player C Transitions . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Combined Player A Transitions . . . . . . . . . . . . . . . . . . . . 117

6.4 An Abstraction Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Strong Probabilistic Game Simulation . . . . . . . . . . . . . . . . 119

6.4.2 Properties of Strong Probabilistic Game-Simulation . . . . . . . . . 124

6.4.3 Most and Least Abstract Transition Functions . . . . . . . . . . . . 125

6.4.4 Soundness Requirement . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Instrumentation-based Verification of Probabilistic Software 131

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Model-level Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1 When is Prob+(M) > p? . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.2 Search-based Instrumentation . . . . . . . . . . . . . . . . . . . . . 137

7.2.3 Model-level Instrumentation Function . . . . . . . . . . . . . . . . . 142

7.2.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.5 Alternative Instrumentation Schemes . . . . . . . . . . . . . . . . . 147

7.3 Program-level Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.1 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.3 Control-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.5 Program-level Instrumention Function . . . . . . . . . . . . . . . . 161

7.3.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Experimental Results & Extensions . . . . . . . . . . . . . . . . . . . . . . 162

7.4.1 Model Checking Instrumented Programs . . . . . . . . . . . . . . . 163



7.4.2 Adaptations & Optimisations . . . . . . . . . . . . . . . . . . . . . 164

7.4.3 Experiments & Analysis . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.4 Template Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.5 Comparison to Abstraction Refinement . . . . . . . . . . . . . . . . 174

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Conclusions 181

Bibliography 185

A Proofs 207

A.1 Proofs of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.1.1 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.1.2 Proof of Lemma 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.1.3 Proof of Lemma 3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.2 Proofs of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A.2.1 Proof of Lemma 6.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A.2.2 Proof of Lemma 6.14 . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.2.3 Proof of Lemma 6.15 . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.2.4 Proof of Lemma 6.16 . . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.2.5 Proof of Theorem 6.18 . . . . . . . . . . . . . . . . . . . . . . . . . 225

A.3 Proofs of Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.3.1 Proof of Theorem 7.8 (Model-level Soundness) . . . . . . . . . . . . 236

A.3.2 Proof of Theorem 7.18 (Program-level Soundness) . . . . . . . . . . 242

B Tools 253

B.1 QPROVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.2 PROBITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254



C Case Studies 255

C.1 Network Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

C.2 Randomized Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

C.3 pGCL Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

C.4 PRISM Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261





Chapter 1

Introduction

Software plays an increasingly important role in our society. We entrust software to

perform safety-critical tasks in systems such as cars, aircraft and medical equipment, as

well as highly responsible tasks such as managing our finances and stock markets. It

is crucial to ensure that the software in these systems conforms to its requirements, as

failing to do so may have far-reaching financial consequences and may even lead to the

loss of life.

The prevalent practice in industry is to look for violations of these requirements by

conducting a large number of tests. We recognise the importance of testing. However,

because it generally is not feasible to test every scenario, we cannot guarantee conformance

to requirements through testing alone. A long-standing aspiration of computer science is

to better this practice through formal verification techniques — techniques with which

we can make rigorous guarantees about conformance to requirements.

An established methodology in formal verification is model checking [CE81, QS82].

Model checking is a collective name for algorithmic techniques that establish formal prop-

erties of systems by systematically exploring all possible execution scenarios. Tools that

implement such algorithms are called model checkers. By “property” we mean formally

defined characteristics of systems, such as

– “the program does not dereference null-pointers” or

– “the procedure eventually triggers a BRAKE signal”.
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We do not restrict to Boolean-valued characteristics that are either “true” or “false”. In

fact, the properties we consider in this thesis are typically real -valued. We use the termi-

nology that Boolean-valued properties, like the examples above, are qualitative properties

and real-valued properties are quantitative properties. Some examples of quantitative

properties are:

– “the minimum probability of the procedure eventually triggering a BRAKE signal”,

– “the maximum probability of establishing a network connection” and

– “the minimum expected number of control signals sent before a timeout”.

When considering qualitative properties, model checking equates to verifying or refuting

the validity of a property. In contrast, model checking quantitative properties typically

amounts to computing a value. Through computing quantitative properties, we can triv-

ially verify or refute requirements such as:

– “the probability that the procedure fails to trigger a BRAKE signal is at most 10−9”.

Whereas qualitative properties help establish conformance to functional requirements,

quantitative properties help to establish non-functional requirements such as performance,

reliability or robustness requirements.1

Originally, model checking techniques focused on verifying qualitative properties of

hand-written, formalmodels of systems [Pnu77, CE81, QS82]. Evidently, verifying a hand-

written model of a system is only meaningful if the model accurately reflects the behaviour

of the system. Through a number of innovations in, e.g., data structures [McM92], ab-

straction methods [GS97, Kur94, CGJ+00] and decision procedures [BCCY99, HJMM04,

JM05, McM06], it is now possible to model check software directly from its source code,

eliminating any concerns regarding the inaccuracy of models. The success of software

model checking is demonstrated by many success stories in this area [VHG+02, BR01,

BCLR04, HJMS03, CCG+04, CKSY05, CKL04, CPR06].

Moreover, there are now mature methods for computing quantitative properties. The

focus of this thesis is on probabilistic model checking, where properties that relate to the

1A more detailed categorisation of functional and non-functional requirements can be found in most software
engineering textbooks (see, e.g., [LL02, Chapter 4]).
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probabilistic behaviour of systems are considered. Taking into account this behaviour is

essential to verify, say, robustness requirements of systems that are prone to failures or per-

formance requirements for systems that employ randomisation. Probabilistic model check-

ing is a mature field with applications in communication protocols [DKNP06, KNS03],

randomised distributed algorithms [KNS01, KN02], security [Ste06, Shm02] and systems

biology [HKN+08].

The fields of software model checking and probabilistic model checking are currently,

to a great extent, separate. That is, software model checkers focus almost exclusively on

verifying non-probabilistic properties of software and probabilistic model checkers focus

exclusively on verifying manually prepared models of systems. There are obvious ben-

efits to a marriage of the two fields. That is, combining these techniques would allow

us to establish quantitative properties of software which, in turn, may help ensure that,

say, safety-critical systems conform to certain non-functional requirements. Applying

quantitative analyses to software can also help us gain insight into the probabilistic be-

haviour of software and may help detect anomalies or trends that may go undiscovered

with qualitative analyses.

In this thesis, we endeavour to close the gap between software model checking and

probabilistic model checking. As a platform for doing so, we develop model checking

techniques to compute quantitative properties of what we call probabilistic software —

computer programs that are subject to probabilistic behaviour. We remark that, in most

of the programs we consider, probabilistic behaviour is introduced by the interaction

of the program with the environment, as opposed to being explicitly introduced by the

programmer. We make a point of targeting real software — computer programs that can

be compiled and executed using conventional compiler suites with little or no adjustments

— as opposed to programs written in less expressive, formal modelling languages.

To provide probabilistic programs with the ability to specify probabilistic behaviour,

we provide a library of quantitative functions, partially depicted in Figure 1.1. These

functions exist purely for the purposes of verification — we do not expect real programs to

use these functions. We do argue that for many programs it is meaningful to temporarily

insert these quantitative functions into the source code for the purposes of model checking.
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Function prototype Informal semantics

bool coin(int n, int d) Returns tt or ff with probability n/d and 1− n/d, respectively.

int uniform(int ub) Returns an int in the range [0, ub[ uniformly at random.

int ndet(int ub) Returns an arbitrary int in the range [0, ub[.

void cost() Marks a control-flow location as a cost location.

void target() Marks a control-flow location as a target location.

Figure 1.1: Examples of special functions that are at the disposal of probabilistic ANSI-C programs.

To illustrate this, suppose out_p() is a function that writes data to some unreliable

hardware that returns 0 upon a failure. If we have statistical evidence suggesting that

calls to out_p() fail every one out of ten times on average, then it could be meaningful

to replace a call to this function with a call to coin(9,10). Once replaced, we effec-

tively model check the program under the assumption that the hardware fails with this

frequency.

The properties we consider are also specified through the functions in Figure 1.1. In

particular, we use target() and cost() to mark control-flow locations as target and cost

locations. Informally, the quantitative properties we consider are

– “the minimum probability of eventually calling target()”,

– “the maximum probability of eventually calling target()”,

– “the minimum expected number of times cost() is called”, and

– “the maximum expected number of times cost() is called”.

We argue that by putting target() and cost() in meaningful places of programs we

are able to specify a wide range of quantitative properties of programs in a relatively

straightforward way. We remark that, while simple to specify, model checking non-trivial

properties such as these is generally undecidable [Ric53] and, hence, we cannot expect to

develop verification techniques that will work for all probabilistic programs. We therefore

focus on developing techniques that work well on selected classes of programs in practice.

We propose two techniques for verifying these properties. Our first technique is in-

spired by the success of automated abstraction-refinement methods in software model

checking [CGJ+00, BR01, HJMS03, CCG+04, CKSY05]. With these methods, increas-
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ingly precise abstract models of programs are considered in an abstraction-refinement

loop. In Chapter 5, we propose an instantiation of such an abstraction-refinement loop

that considers stochastic game abstractions [KNP06] as abstract models of probabilistic

software. We discuss how to construct such abstractions directly from source code and

how to realise refinement when dealing with software that is subject to probabilistic be-

haviour. The approach in this chapter is fully implemented and we present extensive

experimental results over a large range of case studies. We also discuss various heuristics

and optimisations employed in the implementation.

Our abstraction-refinement technique is subject to certain limitations. As an example,

due to the methods we use to abstract and refine probabilistic programs, we are restricted

in the types of probabilistic behaviour that we can handle. Moreover, constructing game

abstractions is often computationally expensive, affecting the scalability of our approach.

A cause of both limitations is that it is not clear how to approximate the transition

function of game abstractions. Most abstraction-based software model checkers employ

such approximations to improve scalability (see, e.g., [DD01, BMR01, CKSY05, JM05,

KS06]). In Chapter 6 we address this problem by proposing an improved game-based

abstraction framework.

Our second technique — which we call instrumentation-based verification — reduces

a quantitative verification problem to a qualitative one. More specifically, this technique,

presented in Chapter 7, instruments probabilistic programs in such a way that we can

compute quantitative properties of the original probabilistic program by verifying several

qualitative properties of the instrumented program. The main motivation for pursuing this

approach is that, in our experience, adapting existing qualitative verification techniques

for non-probabilistic programs to deal with probabilistic behaviour requires fundamental

changes to the underlying technique. This, in turn, adversely affects the effectiveness and

scalability of the verification technique. For example, with our abstraction-refinement

technique, due to the presence of probabilistic behaviour, we were unable to use state-

of-the-art interpolation-based refinement methods such as [HJMM04, JM05, McM06]. In

contrast, with our instrumentation-based technique, we reason about quantitative prop-

erties by verifying qualitative properties of non-probabilistic programs. This allows us
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to directly use state-of-the-art methods in non-probabilistic software verification — like

interpolation-based refinement — for the purposes of computing quantitative properties

of probabilistic programs. The instrumentation-based technique is also fully implemented

and we again present extensive experimental results to evaluate it.

We will show that we are able to compute quantitative properties of real network

programs of approximately 1,000 lines of complex ANSI-C code with both techniques —

the verification of such programs is far beyond the capabilities of existing quantitative

verification techniques. Firstly, these programs have an extremely large data space that is

far larger than existing finite-state probabilistic verification tools can handle. To illustrate

this, observe that a program comprising just two 32-bit integer variables already has a data

space of 264 (≈ 1.8 ·1019) states. One of the largest case studies that has been verified with

finite-state probabilistic verification tools is the Bluetooth model in [DKNP06], where a

state space of 1010 is reported. Secondly, these programs use complex programming

constructs such as functions, pointers, function pointers, arrays, structs and bit-level

arithmetic, whereas existing verification tools for probabilistic systems target models in

simpler formal modelling languages in which most of these programming constructs cannot

be used.

Other Publications Selected parts of this thesis have been published as co-authored

papers. A model-level abstraction-refinement technique using game abstractions was pre-

sented in [KKNP10] and is joint work with Marta Kwiatkowska, Gethin Norman and

David Parker. The author contributed to the development of the refinement procedure

and the development of case studies.

The abstraction-refinement approach in Chapter 5 was presented in [KKNP09] and

is joint work Marta Kwiatkowska, Gethin Norman and David Parker. The author con-

tributed to abstraction and refinement procedures in this approach and was responsible

for the implementation and experimental evaluation of this approach.2 The abstraction

procedure in this chapter is partially based on a method for constructing game abstrac-

tions for models specified in a guarded command language, presented in [KKNP08]. This

is also joint work with Marta Kwiatkowska, Gethin Norman and David Parker. The au-

2Excluding the model checker for game abstractions.
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thor contributed to the development of this abstraction method and was responsible for

its implementation and experimental evaluation.

The extension of game abstractions in Chapter 6 was presented in [KH09] and is joint

work with Michael Huth. The author contributed to the development of this framework

and is solely responsible for the details presented in Chapter 6.

The instrumentation-based approach in Chapter 7 is joint work with Daniel Kroening,

Marta Kwiatkowska, Gethin Norman and David Parker. The author contributed to the

development of this approach and is solely responsible for the details presented in Chap-

ter 7, as well as the implementation of this approach and the experimental evaluation.
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Chapter 2

Related Work

In this chapter, we review the literature that is relevant to this thesis. Central to our work

is a formal verification technique calledmodel checking, which was independently proposed

by Clarke and Emerson [CE81] and Quielle and Sifakis [QS82]. Model checking methods

establish properties of systems by algorithmically considering all execution scenarios of

the system. There is a large body of work on model checking, focusing on different kinds

of systems. This chapter is structured as follows: in Section 2.1 we first discuss model

checking methods for software systems then, in Section 2.2, we discuss model checking

approaches for probabilistic systems.

2.1 Software Verification

In this section, we discuss automated software verification methods. We start with model

checking methods that employ abstraction refinement in Section 2.1.1. Section 2.1.2

then considers some alternative approaches to software verification. All methods in this

section focus on qualitative properties of non-probabilistic software — we discuss methods

for probabilistic systems in Section 2.2.

2.1.1 Automated Abstraction Refinement

Verifying programs by directly analysing their low-level semantics is not necessarily prac-

tical for many classes of programs. Therefore, a substantial amount of research in software
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verification is concerned with technologies and tools that enable us to establish properties

of programs by using abstraction.

Abstraction In model checking, abstraction is typically realised by constructing ab-

stract models of programs which are themselves subjected to model checking. Various

abstraction frameworks have been suggested in literature. Arguably, the most prominent

framework for abstraction in model checking is existential abstraction [CGL94]. Existen-

tial abstractions are normal transition systems that over-approximate the behaviours of

the program under consideration. Due to the nature of existential abstractions, every

path of a program corresponds to a path in the abstract model. Hence, if a property

holds for all paths of the abstract model, then this property must also hold for every path

of the program. Intuitively, this means we can verify, e.g., safety properties — properties

that can be refuted through a finite path of the program. However, refutation of these

properties cannot be achieved via existential abstractions alone and is typically achieved

via analyses of abstract counter-examples. Existential abstractions are employed in many

prominent software model checkers, including SLAM [BR01], BLAST [HJMS03], MAGIC

[CCG+04] and SATABS [CKSY05].

The inability to directly refute safety properties by model checking abstract models

has led to the consideration of so-called three-valued or multi-valued abstractions frame-

works, through which we can directly verify and refute safety properties. Most notable

such frameworks are the modal and mixed abstractions of [LT88, DGG97]. In these frame-

works, the abstract models have two transition functions — one for over-approximation

and one for under-approximation. The added ability to under-approximate behaviours

of the program allows us to refute properties by model checking abstract models. This

eliminates the need to analyse counter-examples for the purposes of refutation. These

abstraction frameworks have also been applied to software in [GC06].

There are also various other abstraction frameworks that, to the best of our knowl-

edge, have not yet been used in software verification. We mention extensions of modal and

mixed abstractions in, e.g., [LX90, SG06], alternating abstractions in [AHKV98], abstrac-

tion frameworks for turn-based games in [HJM03, dAGJ04, dAR07b] and abstraction

frameworks that employ ranking functions, fairness or tree automata in [KP00, DN04,
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Nam03, DN04, DN05].

Constructing abstractions In software model checking, we typically only consider

abstract models that are abstractions of the program by construction. The main focus in

software model checking is on existential abstractions induced by predicates. Essentially,

these abstractions do not touch the control-flow of programs and abstract the data space

of programs by keeping track of the validity of a finite set of predicates [GS97]. The

process of constructing such abstractions is the subject of much research.

In [GS97, SS99, DDP99, BR01], the construction of abstractions was done via calls

to general-purpose theorem provers. In practice, this is often expensive. More recently,

many other abstraction methods have been suggested. We mention techniques based on

SAT solvers [LBC03, CKSY04], symbolic data structures [LBC03, CCF+07], SMT solvers

[LNO06] and proof-based methods [JM05, LBC05, KS06]. In terms of performance, these

techniques typically perform better than the method in, say, [GS97]. In practice, however,

the time required to compute abstractions of programs is still worst-case exponential in

the number of predicates [KS06]. To mitigate this, almost all abstraction-based model

checkers over-approximate the transition relation of existential abstractions (see, e.g.,

[DD01, BMR01, BPR03, CKSY05, JM05, KS06]). According to [KS06], this is done in

all prominent abstraction-based software model checkers except for MAGIC.

Automated abstraction refinement Independent of the abstraction framework that

is used, there are typically many abstract models one could construct for any given pro-

gram. In practice, we need abstractions that are both small enough to be model checked

efficiently and precise enough to be able to verify or refute the property under consider-

ation. The main challenge in abstraction-based software model checking is to find good

abstractions automatically.

A recognised methodology to automatically find abstractions is what we call the

abstraction-refinement paradigm. With this paradigm we consider increasingly precise

abstract models in an abstraction-refinement loop. We start with an imprecise abstrac-

tion that is cheap to construct. Then, in subsequent iterations of the loop, we consider

increasingly precise abstractions until we have either verified or refuted the property un-
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der consideration. The key step in this abstraction-refinement loop is the refinement step

which, given an abstraction that is too imprecise, selects a more precise abstract model

of the program.

The most prominent abstraction-refinement methodology, employed by model check-

ers such as SLAM [BR01], BLAST [HJMS03], MAGIC [CCG+04] and SATABS [CKSY05],

is that of counter-example guided abstraction refinement (CEGAR) [CGJ+00]. This

abstraction-refinement methodology employs existential abstractions induced by predi-

cates. We construct an abstract model in each iteration of the abstraction-refinement

loop. By model checking the abstraction, we may establish that the abstract model sat-

isfies the safety property under consideration. In this case, we can conclude the program

also satisfies it. Otherwise, we try and refute the safety property by taking an abstract

counter-example and mapping it to a concrete counter-example. If there is no correspond-

ing concrete counter-example, then the abstract counter-example is said to be spurious.

The key idea of CEGAR is that, when verification and refutation fails, we refine the ab-

straction by eliminating a spurious abstract counter-examples. This elimination can be

realised by adding predicates which prevent the spurious abstract counter-examples from

occurring in the refined abstraction. In practice, this is either achieved by taking weakest

preconditions [CGJ+00, BR01] or by using interpolating decision procedures [HJMM04].

In practice, most CEGAR model checkers approximate the transition function of

abstract models. In this case, the principal cause of imprecision in the abstract model

may not be caused by missing predicates, but may be caused by an imprecise abstract

transition function instead. To deal with this kind of imprecision, an additional level of

refinement is needed. This kind of refinement is discussed in, e.g., [DD01, BMR01, JM05].

An alternative to CEGAR is the abstraction-refinement approach suggested in [SG07].

This approach uses modal abstractions instead of existential abstractions. Because this

abstract model both over and under-approximates the possible behaviours, a model check

on abstract models both over and under-approximates the validity of the property under

consideration. This means we can both verify and refute properties by model checking

abstractions. Due to the extended range of properties we can deal with under this ab-

straction framework, however, it is no longer the case that every property can be refuted



Related Work 13

with a simple finite path of the program. Therefore, instead of using counter-examples to

refine abstractions, the refinement step in [SG07] analyses the current abstract model and

finds the states of the abstract model that are responsible for the current imprecision. It

then applies refinements locally to these states. To our knowledge, this method has not

yet been used to verify software.

There are various other abstraction-refinement methods that are relevant to this the-

sis. Most notably, we mention abstraction-refinement methods for solving turn-based

games [HJM03, dAR07b]. Although the semantic models and verification problems in-

volved are strict generalisations of those usually considered in software model checking,

like the method in [SG07], these methods have not been applied in the context of software

verification.

2.1.2 Other Software Verification Techniques

Besides abstraction-refinement methods there are various other automated software ver-

ification methods. In this section, for completeness, we will discuss search-based model

checking, bounded model checking and abstract interpretation, respectively.

Search-based model checking A recognised model checking method is the automata-

based approach introduced in [VW86]. This method checks whether all executions of a

transition system satisfy a certain qualitative property by reducing this verification prob-

lem to checking the emptiness of a language accepted by an automaton. In [CVWY90],

it was shown how this emptiness check can be achieved via a nested depth-first search.

This search-based model checking method has successfully been applied to software (see,

e.g., [HS00, HD01, VHG+02, MPC+02, CW02, AQR+04, God05]). For many programs,

however, the automata generated by this method have an extremely large or infinite state

space and, in practice, an exhaustive search over such automata is not always feasible.

Bounded model checking Another model checking method, called bounded model

checking, was introduced by Armin Biere in [BCCY99], and has been applied to software

model checkers such as CBMC [CKL04, AMP06]. The key idea in this method is to try

and refute safety properties by considering increasingly long paths of the program as po-
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tential counter-examples to these properties. All paths of a certain length are symbolically

represented with a formula in propositional logic or a formula in a first-order theory in

such a way that the formula is satisfiable if and only if there is a counter-example of this

length. A SAT or SMT solver is then used to decide whether the formula is satisfiable.

The bounded model checking method is effective in refuting qualitative safety properties

that have shallow counter-examples, but is not as effective in verifying safety properties.

Lazy abstraction with interpolants Another model checking method is described in

[McM06]. Instead of directly constructing abstract models, this model checking approach

sets out to find inductive invariants of the program through repeated applications of an

interpolating decision procedure — decision procedures that produce proofs. Essentially,

the model checker calls an interpolating decision procedure for many successive control-

flow paths to a “bad” location. If one such path is feasible then a counter-example to

a safety property has been found. When infeasible, the decision procedure generates a

proof which can used to augment the inductive invariants. Whether this model checking

approach is effective depends on whether the decision procedure that is used is able to

guess the loop invariants of programs. We discuss this method in more detail in Chapter 7.

Abstract interpretation Another prominent way in which abstraction is employed

in software verification is through abstract interpretation [CC77, CR79]. Abstract inter-

pretation provides a mathematical framework through which we can execute a program

abstractly. This abstract execution can be used to verify safety properties and has been

successfully applied to software in tools such as ASTRÉE [CCF+05]. The main disad-

vantage of abstract interpretation is that, unlike model checking, there is no provision

to improve the quality of the abstraction through refinements. The emphasis of abstract

interpretation is to directly abstract the actual computations of programs instead of con-

structing abstract models of the program and model checking them. A link between

abstract interpretation and abstraction-based model checking that we will use in our the-

sis is that the computation we perform when model checking an abstract model is often an

abstract interpretation of the computation we perform when model checking the program

directly.
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2.2 Probabilistic Verification

We now discuss verification techniques and tools for probabilistic systems and, in par-

ticular, probabilistic model checking methods. We focus on systems that exhibit both

non-deterministic and probabilistic behaviour. We argue that, in the context of software

verification, the ability to deal with non-determinism is important. For example, non-

determinism can be used to model calls to library functions for which no source code

is available. Markov Decision Process (MDP) are models which naturally capture both

non-deterministic and probabilistic behaviour. Our main discussion is therefore on the

verification of systems with MDP semantics.

We remark that sometimes MDPs are defined to be deterministic in the sense that

each non-deterministic choice is labelled with a distinct action label. The MDPs we use in

this thesis are not deterministic in this sense. We also do not use action labels. Our models

are closer to the probabilistic automata of [Seg95]. However, we only use one action label.

Besides MDPs, various other models are prominent in probabilistic verification. Notably,

many verification methods deal with models that do not exhibit any non-deterministic

behaviour. There are also models for modelling continuous-time or real-time behaviour

in systems. We discuss relevant work on these formalisms where appropriate.

Like in software verification, the use of abstraction has been the topic of much reseach

in probabilistic verification. To structure this section, we first discuss probabilistic verifi-

cation methods that do not use abstraction in Section 2.2.1, and then discuss abstraction

methods for probabilistic systems in Section 2.2.2.

2.2.1 Probabilistic Verification without Abstraction

In this section, we discuss verification techniques and tools for probabilistic systems that

do not employ abstraction. We start with what we call probabilistic model checking and

then discuss probabilistic equivalence checking.

Probabilistic model checking In this thesis, we consider probabilistic reachability

properties and cost properties for MDPs. For probabilistic reachability properties, we
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are interested in computing the minimum and maximum probability of reaching a set of

states in the MDP, whereas for cost properties we are interested in the the expected total

cost we incur when executing the MDP. Model checking algorithms for these properties

were first considered in [CY90, BdA95, CY98] and [Put94, dA99], respectively. The

algorithms in [CY90, BdA95, CY98] consist of both graph-based algorithms and a numeric

computation using linear programming. As an alternative to linear programming, for

reasons of scalability, many tools use an approximation algorithm called value iteration

[Put94]. In [Par02], it is shown that an effective way to implement probabilistic model

checking algorithms for MDPs is value iteration via symbolic data structures.

We are aware of several tools that implement these methods: PRISM [HKNP06],

LiQuor [CB06], ProbDiViNe [BBv+08], RAPTURE [DJJL01, DJJL02, JDL02] and PASS

[WZH07, HWZ08, HHWZ10]. Due to their use of abstraction techniques, we will discuss

RAPTURE and PASS in the next section.

The model checker PRISM employs the symbolic value iteration method described

in [Par02]. Models in PRISM are specified in a simple compositional guarded command

language. Besides MDPs, PRISM can also deal with models that have continuous-time

or real-time behaviours. The model checkers LiQuor and ProbDiViNe implement the ver-

ification methods in [CY90, CY98]. A main feature of ProbDiViNe is that it implements

these methods in a distributed fashion. Like PRISM, the MDPs in ProbDiViNe are speci-

fied in a simple guarded command language. LiQuor, however, considers models specified

in PROBMELA, a probabilistic adaptation of the process meta-language accepted by

the popular non-probabilistic model checker SPIN [Hol03]. The model checker MRMC

[KZH+09] is unable to deal with systems with MDP semantics, but can verify systems

without non-determinism, or non-deterministic systems with continuous-time semantics.

The simplicity of the modelling languages used by PRISM, LiQuor and ProbDiViNe

makes it impractical to directly target software systems with these finite-state model

checkers. In [ZvB10], however, probabilistic adaptation of Java Pathfinder is used to

extract models from Java programs. Essentially, the state space of probabilistic Java

programs is traversed and, every so often, the model checker MRMC [KZH+09] is used

to model check the state space that has been explored so far. We mention that non-
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deterministic behaviour is not supported in this approach. Moreover, although this ap-

proach deals with real, compilable probabilistic software, we argue that, for many pro-

grams, the state space is too large to traverse explicitly. The experimental evaluation in

[ZvB10] is limited and there is little evidence to suggest this method scales beyond small

probabilistic programs.

Probabilistic counter-examples Counter-examples to probabilistic safety properties

are not usually individual paths to “bad” states. Instead, they comprise a set of paths

[HK07]. Due to their complex nature, prominent probabilistic verification tools such as

PRISM or MRMC do not generate counter-examples. However, algorithmic methods

to generate probabilistic counter-examples were introduced in [HK07]. In [WBB09], it

was proposed to enumerate paths of probabilistic counter-examples via non-probabilistic

bounded model checking methods. In [HK07, WBB09], only fully probabilistic models

are considered. However, [HK07] has been adapted to deal with MDPs in [AL09].

Another approach is taken in [FHT08], where bounded model checking methods are

directly applied to probabilistic systems. In this approach, instead of using SAT or SMT,

a probabilistic extension of SMT, called SSMT, is used. With SSMT, one can directly

encorporate a notion of probability when encoding the behaviour of a model in a first-

order formula. In this way, a decision procedure for SSMT can be used to decide whether

there is a probabilistic counter-example of a certain structure, akin to non-probabilistic

bounded model checking methods. It should be noted that, in [FHT08], the models under

consideration are hybrid systems. Hybrid systems mix continuous-time and discrete-time

semantics and strictly subsume MDPs.

Probabilistic equivalence checking An automated approach for checking the equiv-

alence of probabilistic programs is discussed in [LMOW08]. The programs that are con-

sidered are specified in a simple C-like language that is restrictive enough to ensure that

the equivalence check is decidable. This approach is implemented in a tool called APEX.

It is possible to use APEX to compute the probabilistic reachability properties used in

this thesis. On certain models and properties, APEX can significantly outperform finite-

state model checkers such as PRISM. Unfortunately, APEX is not able to deal with
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non-determinism. Moreover, the programs considered by APEX are still some distance

removed from real, compilable software.

2.2.2 Abstraction of Probabilistic Systems

Like in non-probabilistic verification, the key to verifying increasingly complicated prob-

abilistic systems is through the use of abstraction. There are many ways in which we

can employ abstraction. In Section 2.2.2, we first discuss probabilistic analogues of the

abstraction refinement approach discussed in Section 2.1.1. Then, in Section 2.2.2 and

Section 2.2.2, we discuss probabilistic predicate transformers and probabilistic abstract

interpretation, respectively.

Probabilistic abstraction refinement At the heart of most abstraction techniques

used in model checking are simulation preorders, which are also called abstraction or

refinement preorders, depending on context. A notion of simulation specifically devised

for probabilistic systems was first introduced in [JL91]. This simulation preorder builds

on a notion of bisimulation for probabilistic systems that was introduced in [LS91]. Both

[LS91] and [JL91] considered MDPs that are deterministic in the sense that each non-

deterministic choice is labelled with a distinct action label. In [SL94], notions of simulation

and bisimulation were introduced for probabilistic automata, which are, like our MDPs,

not deterministic in this sense. An important insight in [SL94] is that, for probabilistic

systems, it is natural to allow the abstract model to simulate behaviours of the concrete

system via probabilistic combinations of behaviours, using so-called combined transitions.

A simulation preorder called strong probabilistic simulation, which uses combined

transitions, is proposed in [SL94]. If we interpret the strong probabilistic simulation of

[SL94] as an abstraction preorder then it is, in effect, the probabilistic analogue of the

existential abstractions in [CGL94]. It shares the typical characteristics of existential

abstractions in that abstract models over-approximate the possible behaviours of the

systems they abstract. Because of this, we can only obtain a one-sided non-trivial bound

on the quantitative properties of MDPs we consider in this thesis via these abstractions.

For example, for probabilistic reachability properties, these abstract models yield a lower
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bound on the minimum reachability probability and an upper bound on the maximum

reachability probability of the MDP that is being abstracted. The abstraction preorders

in [SL94] are at the heart of various abstraction-refinement tools for MDPs, including

RAPTURE [DJJL01, DJJL02, JDL02] and PASS [WZH07, HWZ08, HHWZ10], which we

will discuss next.

In RAPTURE, instead of actually computing probabilistic reachability propeties, we

decide whether the minimum or maximum probability of reaching a set of states in an

MDP is above or below some user-defined threshold. The MDPs are specified in a simple

CSP-based automata language. Prior to constructing any abstractions, RAPTURE per-

forms a reachability analysis on the MDP. It then constructs successively precise abstract

models in an abstraction-refinement loop. These models are strong probabilistic simula-

tions of the system by construction. The abstract models are constructed via operations

on symbolic data structures. Then, following [CY90, CY98, BdA95], the probabilistic

reachability probabilities of an abstract model are computed via a reduction to linear

programming. If we are interested in the minimum reachability probability and the lower

bound on the minimum probability is above the user-defined threshold or, if we are in-

terested in the maximum probability and the upper bound is below the threshold, then

the abstraction-refinement loop terminates. This may not always be possible. Given

the over-approximating nature of the abstract MDPs, if the actual minimum reachability

probability of the system is below the user-defined threshold (or if the maximum reach-

ability probability is above it) then no such abstract model exists. RAPTURE has an

additional check in place that tests whether the abstraction is a probabilistic bisimulation

of the system. If this is the case then the reachability probabilities of the abstract MDP

coincide with those of the concrete MDP. It is only through this check that we can decide

whether the minimum probability is below the threshold or the maximum probability is

above it. If the abstract model is not precise enough to establish whether the threshold is

met, and the abstract model is not a bisimulation of the system under consideration, then

RAPTURE refines the abstract model. Refinements are realised by splitting states of the

abstract model. Essentially, RAPTURE looks for abstract states that abstract states that

are not bisimilar because they induce different abstract transitions in the abstract model.
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It then splits the abstract state to ensure that, in the next abstraction, these states are

no longer abstracted by the same abstract state. We remark that both the abstraction

and the refinement procedures in RAPTURE are defined on the level of individual states

and transitions, as opposed to on the language-level.

A second tool based on strong probabilistions simulations is PASS [WZH07, HWZ08,

HHWZ10]. The focus of this tool is to decide whether maximum reachability probabilities

of MDPs are above or below a certain probability threshold. The MDPs considered in

PASS are specified as PRISM models, augmented with the ability to define variables with

infinite ranges. Unlike RAPTURE, abstract models in PASS are induced by language-

level predicates, akin to predicate abstractions in software verification [GS97]. Strong

probabilistic simulations of the original MDP are constructed using probabilistic adapta-

tions of the SAT/SMT-based abstraction methods in [LBC03, CKSY04, LNO06]. Like in

RAPTURE, if the abstract model yields an upper bound that is below the threshold then

the abstraction-refinement loop is finished. If this is not the case, then, in keeping with

CEGAR [CGJ+00], PASS analyses counter-examples to try and establish if the maximum

reachability probability exceeds the user-specified threshold. In a probabilistic setting,

counter-examples can be viewed as a set of paths [HK07, AL09]. In cases where the anal-

ysis fails, spurious paths of the counter-example are eliminated using interpolation-based

refinement methods [HJMM04]. In contrast to RAPTURE, the abstraction and refine-

ment procedures in PASS work directly on the language-level representation of MDPs.

For example, instead of splitting individual abstract states, the refinement step in PASS

introduces predicates.

More recent versions of PASS [WZ10] use the game-based abstractions of [KNP06]. In

their ability to both under and over-approximate the possible behaviours of systems, these

game-based abstractions are a probabilistic analogue of three-valued abstraction frame-

works such as [LT88, DGG97]. Game-based abstractions yield both non-trivial lower

and upper bounds for both minimum and maximum reachability probabilities. We will

discuss game-based abstraction in more detail in, e.g., Chapter 3. Because game-based

abstractions are more expensive to construct, in game-based PASS, the abstractions that

are constructed are actually approximations of game abstractions, called parallel abstrac-
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tions. Unlike MDP-based PASS, the version of PASS that uses game-based abstractions

is also able to consider minimum reachability probabilities and, because the abstrac-

tions provide both lower and upper bounds, this version of PASS no longer involves

counter-examples. The refinement procedure in [WZ10] follows the lines of three-valued

abstraction-refinement methods such as [SG07] — it those states of the abstract model

that are responsible for the difference in the lower and upper bounds. In [WZ10], these

refinements do not take into account that imprecisions may be introduced by the ap-

proximating nature of parallel abstractions. It is reported in [WZ10] that, compared to

MDP-based PASS, game-based PASS is applicable to more properties, is generally faster

and generally finds smaller abstractions.

Besides RAPTURE and PASS, a third abstraction-refinement method for MDPs is

suggested in [CV10]. Like PASS, this method is presented as a direct probabilistic adap-

tation of CEGAR. We remark that, to our knowledge, this approach is currently purely

theoretic and does not feature an implementation.

For completeness we also mention abstraction frameworks with abstract models in

which probabilities have been replaced with intervals [Hut05, FLW06, KKLW07]. To

the best of our knowledge, none of these interval-based approaches has been applied to

systems that are non-deterministic. We are also unaware of any applications of interval-

based abstractions in the context of abstraction refinement for MDPs.

Magnifying lens abstraction Another relevant abstraction technique is that of mag-

nifying lens abstraction [dAR07a]. Instead of considering abstract models of systems,

abstraction in this approach is directly applied to the value iteration algorithms used to

compute quantitative properties of MDPs. The state space of the system is partitioned

into regions and, during value iteration, the value of all but one “magnified” region is

represented with a single value. By continuously changing the magnified region one can

compute the quantitative properties under consideration without ever having to represent

the system in its entirety. Automatic methods to refine the partion into regions are also

discussed in [dAR07a]. To our knowlegde, this abstraction technique has not yet been

applied to, say, probabilistic software, where it is impractical to deal with the low-level

MDP semantics directly.



22 Related Work

Probabilistic predicate transformers The mathematical machinery through which

we classically reason about sequential, non-probabilistic programs, e.g. [Flo67, Hoa69,

Dij75], has also been adapted to a probabilistic setting in [MM05, dHdV02]. Essentially,

this work provides a mathematical framework to reason about probabilistic programs

specified in a simple probabilistic guarded command language (pGCL). Recently, there

have been a number of automated techniques based on the work of [MM05]. We men-

tion [KMMM10], which proposes automated quantitative invariant generation of pGCL

programs via quantitative adaptations of invariant generation methods such as [CSS03].

An advantage of [KMMM10] is that it is possible to verify programs in a parameterised

fashion. We can analyse programs in which, say, a failure probability is left unspecified.

We also mention the work in [BW10, NM10] where a quantitative analogue of predicate

abstraction is introduced, called random variable abstraction. However, these approaches

are currently not fully automated. We remark that the case studies considered in this

thread of work are typically relatively small and are some distance removed from being

real, compilable software.

Probabilistic abstract interpretation Another approach to employ abstraction in

probabilistic systems is through probabilistic adaptations of abstract interpretation. One

such adaptation is proposed in [Mon00, Mon01]. Through the probabilistic analysis in this

approach it is possible to obtain upper bounds on, e.g., the maximum reachability prop-

erties considered in this thesis. A downside is that, like normal abstract interpretation,

there is no guarantee as to how precise this upper bound is, nor is there any automated

method to obtain more precise upper bounds. Although the methods in [Mon00, Mon01]

can be applied to software systems, we are unaware of any experiments on substantial

programs. Another probabilistic adaptation of abstract interpretation-based approach is

that of [DPW00, DPW01]. The main benefit of the approach in [DPW00, DPW01] is that

it is possible to measure how precise the analysis is. However, this approach does not

have the necessary machinery to deal with non-determinism. Finally we mention that the

approach of [DPW00, DPW01] has also been extended to programs with continuous-time

semantics in [Smi08].
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Background

In this chapter, we discuss the required background material for this thesis. We start, in

Section 3.1, by establishing some basic notation and terminology. Section 3.2 then intro-

duces some necessary definitions. In Section 3.3, we define the mathematical models we

will use to model probabilistic programs. Finally, in Section 3.4, we discuss an abstraction

method for such models.

3.1 Notation & Terminology

We write N, R, Q and B to denote naturals, reals, rationals and Booleans, respectively.

We write tt and ff to denote “true” and “false” and write [0, 1], [0,∞[, and [0,∞] to

denote the unit interval, the non-negative reals or the non-negative reals extended with

positive infinity, respectively. For a set S, we write PS to denote the powerset of S and,

for notational convenience, we write PS to denote PS \ ∅ — i.e. the set of all non-empty

subsets of S. For sets S1, S2 we write S1 ⊎ S2 for the disjoint union of S1 and S2.

We will use AP to denote a fixed, finite set of atomic propositions. We will use these

propositions in formal models of systems. We will mostly limit our attention to the atomic

proposition F ∈ AP, which we use to mark target states of systems.

Countable sums & weights For a countable index set I and a family of values {ri}i∈I

in [0,∞] we we often use a countable sum
∑

i∈I ri. We interpret addition over the non-



24 Background

negative reals extended with infinity in the obvious way. Formally, as we are dealing with

non-negative terms only, we define the result of the sum
∑

i∈I ri as:

sup
n→∞

(

n
∑

i=0

ri

)

.

This supremum yields a value in [0,∞] and may be infinite. It is also simple to show

that this value is independent of the ordering of the terms. We call a countable, indexed

family of non-negative reals, {wi}i∈I , a family of weights if and only if wi ∈ [0, 1] for every

i ∈ I and
∑

i∈I wi = 1.

Relations & Functions Let S1, S2 and S3 be sets, let R ⊆ S1 × S2 and R′ ⊆ S2 × S3

be relations and let f : S1 → S2 and f ′ : S2 → S3 be functions. We write R′ ◦R and f ′ ◦f

to denote the compositions of these relations and functions, respectively. We write R−1

for the relational inverse of R. The function f corresponds to the relation:

{〈s1, s2〉 ∈ S1 × S2 | f(s1) = s2} .

We write f−1 to denote the relational inverse of this relation. For a set S ′
1 ⊆ S1, we write

R(S ′
1) to mean the image of S ′

1 in R, i.e.

R(S ′
1) = {s2 ∈ S2 | ∃s

′
1 ∈ S ′

1 : 〈s
′
1, s2〉 ∈ R} .

Analogously we write f(S ′
1) to denote the image of S1 under the relation corresponding

to f . For all s1 ∈ S1, we write R(s1) to mean R({s1}).

We call the relation R ⊆ S1 × S2 left-total if |R(s1)| ≥ 1 for all s1 ∈ S1 and right-

unique if |R(s1)| ≤ 1 for all s1 ∈ S1. We call R right-total and left-unique when R−1 is

left-total and right-unique, respectively. In addition to this, when S1 = S2, we will call R

reflexive, transitive, anti-symmetric, total or a preorder, a partial order, a total order or

an equivalence relation in accordance with standard definitions.

Probability distributions Let S be a set and let λ : S → [0, 1] be a real-valued

function on s. We write Supp(λ) to denote the support of λ, i.e. the subset of S comprising
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those elements that yield a non-zero value in λ. Formally, we have Supp(λ) = {s ∈

S | λ(s) > 0}. We call λ a discrete probability distribution (or “distribution”) if Supp(λ)

is countable and
∑

s∈Supp(λ) λ(s) = 1. For every element s ∈ S, we write [s] to mean the

point distribution on s — i.e. the distribution with [s](s) = 1. We let DS denote the set

of all distributions on S.

A distribution λ ∈ DS can be written as a countable sum
∑

i∈I wi · [si] for some

countable family of weights, {wi}i∈I , and some countable family of elements of S, {si}i∈I .

For notational convenience we sometimes perform arithmetic directly on distributions.

This arithmetic is applied pointwise. That is, for λ1, λ2 ∈ DS we write, say, 1
3
λ1 +

2
3
λ2,

to mean the distribution which yields 1
3
· λ1(s) +

2
3
· λ2(s) for every s ∈ S.

In similar spirit, if S1 and S2 are sets such that S1 ⊂ S2 then we will sometimes

interpret a distribution λ1 ∈ DS1 as a distribution on S2 where the probability of all

elements in S2 \ S1 is 0. Finally, for distributions λ1 ∈ DS1 and λ2 ∈ DS2, we write

Join(λ1, λ2) for the product distribution in D(S1 × S2) such that (Join(λ1, λ2))(s1, s2) =

λ(s1) · λ2(s2) for all 〈s1, s2〉 ∈ S1 × S2.

3.2 Preliminaries

In this section, we will introduce some preliminary definitions. We start by defining

weight functions in Section 3.2.1. Then, in Section 3.2.2 and 3.2.3 we will introduce some

necessary basic concepts from probability theory and lattice theory, respectively.

3.2.1 Weight Functions

When relating the behaviour of two systems, we often use a relation over the respective

state spaces to formally relate the systems. For probabilistic systems it is often useful to

relate probability distributions instead. To this end, we now discuss a way to lift relations

on states to relations over distributions. This definition was introduced in [JL91].

Definition 3.1. Let S1 and S2 be sets and let R ⊆ S1 × S2 be a relation. The relation

L(R) ⊆ DS1×DS2 contains 〈λ1, λ2〉 ∈ DS1×DS2 iff there is function δ : S1×S2 → [0, 1]
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— called a weight function — satisfying all of the following conditions:

λ1(s1) =
∑

s2∈S2

δ(s1, s2) (for all s1 ∈ S1) (3.1)

λ2(s2) =
∑

s1∈S1

δ(s1, s2) (for all s2 ∈ S2) (3.2)

〈s1, s2〉 6∈ R ⇒ δ(s1, s2) = 0 . (for all s1 ∈ S and s2 ∈ S2) (3.3)

We remark that Definition 3.1 is known to be equivalently definable via either network

flows [Bai96] or capacities [Des99, Seg06]. We will not use this equivalence and point the

interested reader to [Bai96, DLT08] and [Zha09, Lemma 4.2.1].

For certain proofs, we will rely on simple properties of L(R) to hold. We introduce

these properties here:

Lemma 3.2. Let S1, S2 and S3 be sets and let R,R′ ⊆ S1 × S2 and R′′ ⊆ S2 × S3 be

relations over these sets. The following statements hold:

(i) If R is left or right-total then so is L(R).

(ii) If R is left or right-unique then so is L(R).

(iii) L(R−1) equals L(R)−1.

(iv) R ⊆ R′ implies L(R) ⊆ L(R′).

(v) L(R′′) ◦ L(R) is contained in L(R′′ ◦R).

(vi) Suppose I is a countable index set and {λ1
i }i∈I and {λ2

i }i∈I are families of distribu-

tions in DS1 and DS2, respectively, with 〈λ
1
i , λ

2
i 〉 ∈ L(R) for each i ∈ I, then for

every family of weights {wi}i∈I , we have that 〈
∑

i∈I wi · λ
1
i ,
∑

i∈I wi · λ
2
i 〉 ∈ L(R),

also.

Proof. See Section A.1.1 on page 207.

3.2.2 Probability Theory

We now introduce some basic concepts from probability and measure theory. We refer

the interested reader to [Bil86] for details. We will discuss sigma algebras, probability
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measures and random variables. We start by defining sigma algebras:

Definition 3.3 (Sigma algebra). Let Ω be a set. A sigma algebra F on Ω is a

non-empty set of subsets of Ω satisfying the following conditions:

(i) Ω ∈ F ,

(ii) F ∈ F implies Ω \ F ∈ F and

(iii) If {Fi}i∈I is a countable family of sets in F , then (∪i∈I Fi) ∈ F , also.

The set Ω is called a sample space. A sigma algebra F on Ω defines which sets of

samples in Ω are measurable. To each measurable set of samples (or each “event”), we

assign a probability. A probability measure assigns a probability to each event, F ∈ F ,

as follows:

Definition 3.4 (Probability measure). Let Ω be a sample space and let F be a

sigma algebra on Ω. A probability measure on 〈Ω,F 〉 is a function, Pr : F → [0, 1],

such that all of the following conditions hold:

(i) Pr(∅) = 0,

(ii) Pr(Ω) = 1 and

(iii) If {Fi}i∈I is a countable family of pairwise disjoint sets in F , then Pr(∪i∈I Fi) =
∑

i∈I Pr(Fi).

A tuple 〈Ω,F ,Pr〉 is called a probability space if Ω is a sample space, F is a sigma

algebra on Ω, and Pr is a probability measure on 〈Ω,F 〉. With a probability space we

can measure the probability of each F ∈ F by taking the probability Pr(F ).

Finally we introduce random variables :

Definition 3.5 (Random variable). Let 〈Ω,F ,Pr〉 be probability space. A random

variable is a function X : Ω → [0,∞[. The expected value of X in 〈Ω,F ,Pr〉, denoted

E(X), is defined by the integral
∫

Ω
XdPr.

For more details on expectations and random variables we refer to [Bil86]. For sim-

plicity we ignore issues concerning measurability and convergence — all random variables
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we consider are trivially measurable and have converging expectations.

3.2.3 Lattices, Galois Connections & Fixpoints

In this section we will introduce some standard definitions, including complete lattices,

Galois connections and fixpoints. For more details we refer to [DP02, NNH05].

Definition 3.6 (Complete lattice). A lattice is a tuple 〈S,≤〉 where S is a non-

empty set and ≤ ⊆ S × S is a partial order on S. We say a lattice is complete if every

subset S ′ ⊆ S has a supremum, supS ′, in S as well as an infimum, inf S ′, in S.

An example of a complete lattice is 〈B,≤〉 with ≤ = {〈ff, ff〉, 〈ff, tt〉, 〈tt, tt〉}.

Other examples of complete lattices include closed intervals over the extended reals, such

as 〈[0, 1],≤〉 and 〈[0,∞],≤〉, using the standard order on R. We introduce two ways to

construct complete lattices (see Appendix A.2 in [NNH05] for details and proofs).

Definition 3.7. If S is a set and 〈X,≤〉 is a complete lattice then we write 〈S → X,≤〉

for the complete lattice comprising all functions from S to X such that f ≤ g for two

functions f, g : S → X if and only if f(s) ≤ g(s) for all s ∈ S.

We will use, say, 〈S → [0, 1],≤〉, to order mappings from states to probabilities. We

also introduce the following lattice construction:

Definition 3.8. Let 〈S,≤〉 be a complete lattice, we will write 〈S × S,≤〉 to denote the

complete lattice for which 〈l, u〉 ≤ 〈l′, u′〉 if and only if l ≤ l′ and u′ ≤ u.

The intuition is that lattice elements, 〈l, u〉 ∈ S × S, are essentially intervals on S.

However, these intervals are not necessarily consistent — the lower bound may be strictly

greater than the upper bound. Given a lattice 〈S × S,≤〉 we write LB,UB : S × S → S

for the projection functions which, for every 〈l, u〉 ∈ S × S, LB(〈l, u〉) and UB(〈l, u〉)

yield the lower bound, l, and the upper bound, u, respectively.

We remark that, if we apply Definition 3.8 to Booleans, i.e. if we consider the lattice

〈B× B,≤〉, then we end up with a lattice over Belnap values [Bel77], i.e.
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– 〈tt, tt〉 equates to definitely tt,

– 〈ff, ff〉 equates to definitely ff,

– 〈ff, tt〉 equates to either tt or ff (“don’t know”) and

– 〈tt, ff〉 equates to both tt and ff (“inconsistent”).

These Belnap values are frequently used for representing the validity of qualitative prop-

erties when they are evaluated on abstract models. In the same spirit we will use, say,

〈[0, 1]× [0, 1],≤〉 and 〈[0,∞]× [0,∞],≤〉 to describe the value of quantitative properties

evaluated on abstract models.

We now show how we can relate two complete lattices:

Definition 3.9 (Galois connection). Let 〈A,⊑〉 and 〈B,�〉 be complete lattices and

let l : A → B and u : B → A be monotone functions. We call 〈A,⊑〉 −−→←−−
l

u
〈B,�〉 a

Galois connection if and only if a ⊑ u(l(a)) and l(u(b)) � b for every a ∈ A and b ∈ B.

In a Galois connection, 〈A,⊑〉 −−→←−−
l

u
〈B,�〉, we call l and u the lower and upper

adjunct, respectively. For some proofs we need some very specific Galois connections. The

following definition is a slight generalisation of the Galois connection found in [WZ10]:

Lemma 3.10. Let S and Ŝ be sets, let 〈L,≤〉 be a complete lattice and let R ⊆ Ŝ × S

be a relation. Moreover, let α+ : (S → L) → (Ŝ → L) and γ+ : (Ŝ → L) → (S → L) be

functions defined, for every v : S → L, v̂ : Ŝ → L, s ∈ S and ŝ ∈ Ŝ, as

α+(v)(ŝ) = sup{v(s) | s ∈ R(ŝ)} and γ+(v̂)(s) = inf{v̂(ŝ) | ŝ ∈ R
−1(s)} .

We have that 〈S → L,≤〉 −−−→←−−−
α+

γ+

〈Ŝ → L,≤〉 is a Galois connection.

Proof. See Section A.1.2 on page 210.

We will later use this lemma where S and Ŝ are state spaces and L is either [0, 1] or

[0,∞]. We will also need the dual of Lemma 3.10:

Corollary 3.11. Let S and Ŝ be sets, let 〈L,≤〉 be a complete lattice and let R ⊆ Ŝ×S

be a relation. Moreover, let α− : (S → L) → (Ŝ → L) and γ− : (Ŝ → L) → (S → L) be
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functions defined, for every v : S → L, v̂ : Ŝ → L, s ∈ S and ŝ ∈ Ŝ, as

α−(v)(ŝ) = inf{v(s) | s ∈ R(ŝ)} and γ−(v̂)(s) = sup{v̂(ŝ) | ŝ ∈ R
−1(s)} .

We have that 〈Ŝ → L,≤〉 −−−−→←−−−−
γ−

α−

〈S → L,≤〉 is a Galois connection.

Proof. Application of Lemma 3.10 on R−1 (with the lattices interchanged).

Let 〈A,⊑〉 be a complete lattice and let f : A → A a function on A. We call a ∈ A

a fixpoint of f if and only if f(a) = a. When f is monotone, using Knaster-Karski’s

fixpoint theorem, there is a least fixpoint of f in 〈A,⊑〉, denoted LFP(f) [Tar55]. Our

main reason for introducing Galois connections is that, under some conditions, Galois

connections preserve least fixpoints:

Lemma 3.12 (Fixpoint preservation). Let 〈A,⊑〉 −−→←−−
l

u
〈B,�〉 be a Galois connec-

tion and let f : A → A and g : B → B be monotone functions such that l ◦ f ◦ u ⊑ g,

then:

LFP(f) ⊑ u(LFP(g)) and l(LFP(f)) � LFP(g)

Proof. See, e.g., [NNH05, Lemma 4.42].

We remark that this fixpoint preservation result is at the core of abstract interpreta-

tion (see, e.g., [CC77]). Akin to [WZ10], we will use this fixpoint preservation to prove

the soundness of an abstraction framework.

3.3 Markov Decision Processes

In this section we introduce Markov Decision Processes (MDPs) — a mathematical model

we will use to describe the semantics of probabilistic programs. We first define MDPs

in Section 3.3.1. Then, in Section 3.3.2, we define some qualitative and quantitative

properties for systems with MDP semantics. Finally, in Section 3.20, we define a notion

of simulation on MDPs.
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3.3.1 Definition of Markov Decision Processes

A mathematical formalism in which we capture the semantics of probabilistic software

clearly needs to be able to model probabilistic behaviours. However, we also argue that

the ability to deal with non-determinism is essential. With non-determinism, we can

model programs statements whose precise semantics cannot be directly determined from

the source code alone, and may depend on, say, the compiler. For example, if a local

variable is left uninitialised, then we cannot be sure of its value and, in our formal model,

we typically assign a value to it non-deterministically. Non-determinism is also a very

useful tool for modelling calls to library functions for which the source code is unavailable.

In this section we introduce Markov Decision Processes, which have a natural ability

to model systems that exhibit both non-deterministic and probabilistic behaviour.

Definition 3.13 (Markov decision process). A Markov decision process (MDP) M

is a tuple, 〈S, I, T, L,R〉, where

– S is a countable set of states,

– I ⊆ S is a non-empty set of initial states,

– T : S → PDS is a transition function,

– L : S × AP→ B is a propositional labelling function, and

– R : S → [0,∞[ is a cost labelling function.

The transition function, T , maps states to sets of distributions over states. We require

that the set T (s) is non-empty and countable for every s ∈ S. We will also assume that,

for every s ∈ S, the distributions λ ∈ T (s) yield a rational probability λ(s′) ∈ [0, 1] ∩ Q

for every s′ ∈ S. We remark that our MDPs do not have action labels. The propositional

labelling function, L, assigns to all states s ∈ S and atomic propositions a ∈ AP a

Boolean value L(s, a) indicating the validity of the proposition a in state s. The cost

labelling function, R, assigns a non-negative, real-valued cost, R(s), to each state s ∈ S.

A transition of M is a tuple 〈s, λ, s′〉 ∈ S × DS × S and comprises a source state,

s, a distribution, λ, and a target state, s′, such that λ is an element of T (s) and s has

a non-zero probability in λ. The choice of a distribution λ from the set T (s) is a non-
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deterministic choice. In contrast, the choice of a successor state, s′, given a distribution,

λ, is probabilistic and occurs with probability λ(s′). We will usually write s
λ
−→ s′ to denote

a transition 〈s, λ, s′〉 and we will sometimes write s → s′ to denote s
[s′]
−→ s′ — i.e. when

λ is the point distribution, [s′].

A path describes an execution of an MDP. Formally, a path of M is a finite sequence

in S × (DS × S)∗ or an infinite sequence in S × (DS × S)ω comprising a finite or infinite

number of transitions. We will write FinPathM and InfPathM to denote the set of all

finite and infinite paths of M , respectively. Given a set of paths and a state s ∈ S or a set

of states S ′ ⊆ S, we add the superscript “s” or “S” to the path set to denote a restriction

to paths that originate from s or S ′, respectively. For example, InfPathIM is the set of all

infinite paths of M , starting from M ’s initial states.

Given a finite path, π ∈ FinPathM , we denote by Last(π) the last state of π and by

|π| the number of transitions in π. For an arbitrary, potentially infinite path:

π = s0
λ0−→ s1

λ1−→ s2
λ2−→ . . . ,

and i ∈ N we write πi to denote the (i+1)-th state of π (i.e. si), and we write Trans(π, i)

to denote the (i+1)-th transition of π (i.e. si
λi−→ si+1). Moreover, we write Pref(π, i) to

denote the prefix of π of length i.

Paths effectively resolve both probabilistic and non-deterministic choice. To reason

about probabilistic properties, however, we need to consider what happens to M when

only non-deterministic choice is resolved. To this end, we introduce strategies.1 For-

mally, a strategy of M is a function σ : FinPathM → DDS which, for every finite path

π ∈ FinPathM , resolves the non-deterministic choice in Last(π) by providing a proba-

bility distribution σ(π) ∈ D(T (Last(π))) over the available distributions in T (Last(π)).

A strategy is pure if it yields a point distribution for all paths. We write StratM and

PureStratM to denote the set of all strategies and all pure strategies of M , respectively.

A path, π, is consistent with a strategy σ when for every i < |π| the transition

Trans(π, i) = si
λi−→ si+1 is such that the probability σ(Pref(π, i))(λi) is positive. For

1Elsewhere, strategies are also often called “policies”, “adversaries” or “schedulers”.
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Figure 3.1: An MDP M with two target states, s3 and s5.

a strategy σ ∈ StratM , we add the subscript “σ” to a set of paths to restrict this set to

those paths that are consistent with σ. For example, FinPathM,σ denotes the set of finite

paths of M that are consistent with σ.

Finally, M is said to be finite if both its state space, S, is finite and |T (s)| is finite for

every s ∈ S. Given two MDPs M and M ′ we write M⊎M ′ for their disjoint union, defined

in the standard way. We call M non-probabilistic if T (s) contains only point distributions

for every s ∈ S. We use non-probabilistic MDPs to model non-probabilistic systems. We

do this to avoid notational overhead. We denote with MDP the class of all MDPs.

Depicting MDPs In figures, we mark initial states of M with a small incoming arrow.

A state is depicted with a big, unfilled circle whereas a distribution is depicted as a small,

filled circle. There is an arrow from a distribution λ ∈ DS to every state s ∈ Supp(λ)

labelled with the probability λ(s) (we omit “1”). There is also a line from a state s ∈ S to

every distribution in T (s). Finally, if for some state s ∈ S and some atomic proposition

a ∈ AP we have L(s, a) then we depict a label “a” next to s. If a is the special atomic

proposition F ∈ AP, then we also highlight the state. We do not depict costs in figures.

We illustrate the definition of MDPs with an example:

Example 3.14. Consider an MDP M = 〈S, I, T, L,R〉 with

– S = {s1, s2, s3, s4, s5},

– I = {s1, s2},



34 Background

– T is such that, for every s ∈ S, we have

T (s) =























{1
2
[s3] +

1
2
[s4],

1
2
[s4] +

1
2
[s5]} if s = s1 ,

{1
2
[s4] +

1
2
[s5], [s5]} if s = s2 , and

{[s]} otherwise .

– L is such that, for every s ∈ S and a ∈ AP, we have

L(s, a) =











tt if s ∈ {s3, s5} and a = F , and

ff otherwise .

– R(s) = 0 for all s ∈ S.

We depict M in Figure 3.1. Recall that {[s4]} denotes a singleton set comprising a point

distribution on s4.

3.3.2 Properties of Markov Decision Processes

In this section, we will define some qualitative and quantitative properties of MDPs. We

formalise these properties as functions from MDPs to values. To do this we fix, say, the

atomic proposition to label target states in the definition of the property. However, our

presentation can easily be extended to include properties parameterised by, say, an atomic

proposition or a temporal logic formula.

Non-probabilistic reachability We first consider qualitative properties Reach−,Reach+ :

MDP→ B which, for a given MDP M , focus on the ability to reach a set of states in M :

Definition 3.15 (Non-probabilistic reachability). Let Reach−,Reach+ : MDP→ B

be the qualitative properties which, for every MDP M = 〈S, I, T, L,R〉, are defined as

Reach−(M) = ∀π ∈ InfPathIM : ∃i ∈ N : L(πi,F) ,

Reach+(M) = ∃π ∈ InfPathIM : ∃i ∈ N : L(πi,F) .
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For Reach−, the proposition F ∈ AP typically marks a set of “good” states such

that, when Reach−(M) is true, we can conclude that, in M , we will always eventually

reach a good state. In contrast, for Reach+, the proposition F often marks a set of “bad”

states such that, if ¬Reach+(M), then we can conclude no bad states are reachable or,

equivalently, that M is safe. If M is not safe, then this is witnessed by a counter-example

— a finite path s0
λ0−→ . . .

λn−1
−−−→ sn such that s0 ∈ I and L(sn,F). The property Reach+

can be verified with most software model checkers. We will call Reach− and Reach+ the

“non-probabilistic liveness property” and “non-probabilistic safety property”, respectively.

In addition to non-probabilistic reachability properties, for MDPs we are typically

interested in characterising the probability of reaching states satisfying F. We therefore

now consider the probabilistic analogues of non-probabilistic reachability properties.

Probabilistic reachability Next, we will introduce quantitative properties on MDPs.

That is, we will define probabilistic reachability properties Prob−, Prob+ : MDP→ [0, 1].

Probabilities can only be defined in an MDP M = 〈S, I, T, L,R〉 once all the non-

determinism in M is resolved by a strategy. Informally, under a strategy σ ∈ StratM ,

the probability of a finite path of

π = s0
λ0−→ . . .

λn−→ sn+1 ∈ FinPathM,σ

is defined as the product

ProbM,σ(π) =

|π|−1
∏

i=0

σ(Pref(π, i))(λi) · λi(si+1) .

That is, for every transition si
λi−→ si+1 we take into account the probability of choosing

to transition from si to λi under the strategy σ and the probability of transitioning from

λi to si+1. For pure strategies σ ∈ PureStratM , the term σ(Pref(π, i))(λi) is always

trivially 1. We sometimes write ProbM(π) instead of ProbM,σ(π) when it is clear we are

considering pure strategies.

For a fixed initial state s ∈ I and strategy σ ∈ StratM we define for every finite path
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π ∈ FinPathsM,σ the cylinder set CylsM,σ(π) ⊆ InfPathsM,σ — the set of all infinite paths

that start with s, are consistent with σ and that have π as a prefix.

For a fixed initial state s ∈ I and strategy σ ∈ StratM we can construct a probabil-

ity space 〈InfPathsM,σ,F
s
M,σ,PrsM,σ〉 on infinite paths of M with standard methods (see,

e.g., [KSK76]). Our probability space is such that the sigma algebra, F s
M,σ, contains

CylsM,σ(π) for every finite path π ∈ FinPathsM,σ and such that the measure, PrsM,σ, is

such that

PrsM,σ(CylsM,σ(π)) = ProbM,σ(π)

for every π ∈ FinPathsM,σ.

Through the probability measure, PrsM,σ, we can quantify the likelihood of certain

behaviours of M . That is, we can take sets of infinite paths Π ⊆ InfPathsM,σ and compute

the measure PrsM,σ(Π). We remark that all sets of paths we consider in this thesis are

known to be measurable [Var85].

We are now finally in a position to define a probabilistic safety and liveness property

by quantifying over all possible initial states and strategies as follows:

Definition 3.16 (Probabilistic reachability). Let Prob−, Prob+ : MDP→ [0, 1] be

the quantitative properties which, for every MDP M = 〈S, I, T, L,R〉, are defined as

Prob−(M) = inf
s∈I,σ∈StratM

PrsM,σ({π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)})

Prob+(M) = sup
s∈I,σ∈StratM

PrsM,σ({π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)}) .

We will call Prob− and Prob+ the “probabilistic liveness property” and “probabilistic

safety property”, respectively. The properties Prob−(M) and Prob+(M) of M and guaran-

tee that the probability of reaching a state satisfying F in M is at least Prob−(M) and at

most Prob+(M), respectively. We now illustrate probabilistic reachability properties via

an example.

Example 3.17. Reconsider Example 3.14 and the MDP M depicted in Figure 3.1. We

have that Prob−(M) = 1
2
and Prob+(M) = 1. To see that Prob+(M) = 1, consider the
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initial state s2 and a strategy σ ∈ StratM which, given the path s2, yields the distribution

[[s2]]. Under this strategy we have that

Prs2M,σ({π ∈ InfPaths2M,σ | ∃i ∈ N : L(πi,F)}) = Prs2M,σ(Cyls2M,σ(s2 → s5)) = 1 .

As Prob+(M) is the supremum of this value over all initial states and strategies of M it

must be the case that Prob+(M) = 1. It is also straightforward to see that there is an

initial state and a strategy of M that reach the target state with probability 1
2
, and that no

lower probability is achievable.

To actually compute probabilistic reachability properties, we can use the model check-

ing algorithms in [CY90, BdA95, CY98]. These algorithms first perform a precomputation

using graph-based algorithms and then obtain the required reachability probabilities for

each state of the MDP using linear programming. For efficiency reasons, instead of lin-

ear programming, probabilistic verification tools frequently compute the probabilities by

using an iterative approximation method called value iteration [Put94]. In practice, an

“explicit” representation of states in the value iteration algorithm does not scale to large

MDPs. Therefore, in tools such as PRISM [HKNP06], symbolic data structures are used

in the value iteration algorithm instead [Par02].

We remark that the computation of probabilistic safety and liveness properties is

at least as hard as the verification of non-probabilistic safety and liveness properties on

non-probabilistic MDPs. Informally, for any MDP M we can establish the validity of

Reach+(M) by computing Prob+(M) and checking whether it is greater than 0. Moreover,

for a non-probabilistic MDP M , we can establish that Reach−(M) holds by checking

whether Prob−(M) = 1.

Cost properties We also introduce quantitative properties, Cost−,Cost+ : MDP →

[0,∞], which characterise the total expected cost incurred in an MDP M . Our defini-

tion follows the notion of expected total cost in [Put94, Section 5.1]. We use the same

probability spaces introduced for the quantitative reachability properties but, instead of

measuring probabilities, we consider the expectation of random variables. For a strategy
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σ ∈ StratM and initial state s ∈ I let us define for every i ∈ N the random variable

X i
M,σ : InfPathsM,σ → [0,∞[ as the function defined as

X i
M,σ(π) = R(πi)

for every π ∈ InfPathsM,σ. Intuitively, the random variable X i
M,σ yields the cost of the

(i+1)-th state in R of each path. These random variables are trivially measurable. We

define the expected cost properties through these random variables:

Definition 3.18 (Expected total cost). Let Cost−, Cost+ : MDP → [0,∞] be the

quantitative properties which, for every MDP M = 〈S, I, T, L,R〉, are defined as

Cost−(M) = inf
s∈I,σ∈StratM

(

∑

i∈N

E
(

X i
M,σ

)

)

and

Cost+(M) = sup
s∈I,σ∈StratM

(

∑

i∈N

E
(

X i
M,σ

)

)

.

Recall from our discussion on countable sums that, formally, the sums in this definition

are suprema over all partial sums in [0,∞]. Total expected cost is always defined over

infinite paths. Hence, this total cost property will normally only be finite under a strategy

σ if, under σ, with probability 1 the MDP ends up remaining in states that yield 0 in R.

We can compute cost properties in a similar fashion to how we compute probabilistic

reachability properties. We refer to [Put94, dA99] for further discussion on cost properties.

In the remainder of this section we will discuss another characteristics of probabilistic

reachability properties.

Reachability probabilities as sums The sets of infinite paths measured in the proba-

bilistic reachability properties of Definition 3.16 are disjoint unions of a countable number

of cylinder sets. In practice this means that the probability can be defined by a countable

sum. Using such a sum is convenient in many proofs:

Lemma 3.19. Let M = 〈S, I, T, L,R〉 be an MDP. Let F-FinPathM ⊆ FinPathM be pre-

cisely the set of finite paths, π ∈ FinPathM , for which L(Last(π),F) holds and ¬L(πi,F)
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for all i < |π|. For a fixed initial state s ∈ I and a fixed strategy σ ∈ StratM we have:

PrsM,σ({π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)}) =
∑

π∈F-FinPathsM,σ

ProbM,σ(π) .

Proof. See Section A.1.3 on page 211.

3.3.3 Stuttering Simulations

In this section, we define a notion of simulation on non-probabilistic MDPs based on

the divergence blind stuttering equivalence in [DNV95]. The only difference between our

definition and [DNV95] is that we do not restrict to equivalence relations.

Definition 3.20 (Stuttering simulation). Let M = 〈S, I, T, L,R〉 be a non-probabilistic

MDP and let R ⊆ S × S be a relation. We call R a stuttering simulation on M if and

only if for all 〈s0, t0〉 ∈ R the following conditions hold:

(i) L(s0, a) = L(t0, a) for all a ∈ AP,

(ii) ∀s0 → s1 : ∃t0 → . . .→ tn ∈ FinPathsM : 〈s1, tn〉 ∈ R and ∀i < n : 〈s0, ti〉 ∈ R.

We remark that, in Definition 3.20, we allow the case where n = 0. We will later show

that certain stuttering simulations on disjoint unions of MDPs, M ⊎M ′, preserve Reach+.

3.4 Game-based Abstractions of Markov Decision Processes

In this section, we introduce an abstraction framework for MDPs. This framework uses

two-player stochastic games to to describe abstractions of MDPs and was originally in-

troduced in [KNP06]. We start, in Section 3.4.1, by defining two-player stochastic games.

Section 3.4.2 then introduces quantitative properties for these games. Finally, in Sec-

tion 3.4.3, we show how to use two-player stochastic games as abstractions of MDPs.
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3.4.1 Stochastic Two-player Games

In this thesis, we often refer to stochastic two-player games as games, meaning the simple

stochastic turn-based games on two players as defined in [Sha53, Con92]. In this thesis,

we name the players A and player C (instead of, say, player 1 and player 2) to emphasise

the roles of the players in a game that is used as an abstraction of an MDP (we will

discuss this in Section 3.4.3). In our games, player A transitions, player C transitions and

probabilistic transitions strictly alternate.

Definition 3.21 (Stochastic two-player game). A stochastic two-player game G is

a tuple, 〈S, I, T, L,R〉, where

– S is a countable set of states,

– I ⊆ S is a non-empty set of initial states,

– T : S → PPDS is a transition function,

– L : S × AP→ B× B and

– R : S → [0,∞[× [0,∞[.

In comparison to MDPs, the transition function, T , has an additional level of choice — T

maps states to non-empty, countable sets of non-empty, countable sets of probability dis-

tributions over S. Moreover, the propositional labelling function, L, and the cost labelling

function, R, take values in B×B and [0,∞[×[0,∞[ instead of B and [0,∞[, respectively.

These should be interpreted as values in the lattices 〈B× B,≤〉 and 〈[0,∞]× [0,∞],≤〉

(see Definition 3.8). This allows the validity of propositions (and the costs incurred in

states) to be approximated.

The tuple G implicitly encodes a turn-based game with two players. The state space

of this game comprises player A states, player C states and probabilistic states. Intuitively,

player A states correspond to the states of G (i.e. S), player C states are sets of distribu-

tions over S (i.e. PDS), and probabilistic states are distributions over S (i.e. DS). That

is, probabilistic states are distributions over player A states and player C states are sets

of probabilistic states.

The transitions in G strictly alternate between player A transitions, player C transi-
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tions and probabilistic transitions. There is a player A transition from a player A state,

s ∈ S, to a player C state Λ ∈ PDS, denoted s→ Λ, if and only if Λ ∈ T (s). Analogously,

there is a player C transition from a player C state, Λ ∈ PDS, to a probabilistic state,

λ ∈ DS, denoted Λ → λ, if and only if λ ∈ Λ. Finally, there is a probabilistic transition

from a probabilistic state, λ ∈ DS, to a player A state, s ∈ S, denoted λ→ s, if and only

if λ(s) > 0.

Analogous to paths in MDPs, a play of G is a strictly alternating sequence of player

A, player C and probabilistic transitions that starts with a player A state. For a finite

play, π, we denote by |π| the number of player A transitions in π. We denote by InfPlaysG

the set of all infinite plays of G. For all player A states, s ∈ S and S ′ ⊆ S, we add the

superscripts “s” and “S ′” to sets of plays to restrict to those plays that start from s and

S ′, respectively. We denote with πi the (i+1)-th player A state of G.

In games, the two types of non-determinism are resolved with different types of strate-

gies. A player A strategy of G is a mapping from finite plays that end in a player A state

to distributions over available player C states. That is, suppose π is a finite play of G that

ends with a player A state s ∈ S, then a player A strategy, σA, will yield a distribution

σA(π) ∈ D(T (s)) on the sets of distributions in T (s). We will call the non-deterministic

choice between player C states “player A non-determinism”. We let StratAG be the set of

all player A strategies.

Similarly, a player C strategy of G is a mapping from finite plays that end in a player

C state to distributions over available probabilistic states in this player C state. That is,

suppose π is a finite play of G that ends with a player C state Λ ∈ PDS, then a player C

strategy, σC, will yield a distribution σC(π) ∈ DΛ on the distributions in Λ. We will call

the non-deterministic choice between probabilistic states “player C non-determinism”.

We let StratCG be the set of all player C strategies.

A play of G is consistent with a player A (player C) strategy if all player A (player

C) transitions have a non-zero probability with this strategy. We add subscripts “σA”

and “σC” to sets of paths to restrict to those paths that are consistent with σA and σC,

respectively.

We call G finitely branching for player A if and only if the set T (s) is finite for every
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ŝ1,2

ŝ3,5
F

ŝ4

ŝ1,2

1
2 [ŝ3,5] +

1
2 [ŝ4]

{ 12 [ŝ3,5] +
1
2 [ŝ4]}

(player A state)

(probabilistic state)

(player C state)

1
2

1
2

Figure 3.2: A two player stochastic game with a single target state, ŝ3,5.

s ∈ S. For two games, G1 and G2, we write G1 ⊎ G2 for the game that is the disjoint

union of G1 and G2, defined in the standard way. We let GAME be the class of all games.

Depicting Games In figures, we mark initial states of G with a small incoming arrow.

A player A state is depicted with a big, unfilled circle, a player C state is depicted with

a small, filled square, and a distribution, corresponds to a small, filled circle. Like for

MDPs, there is an arrow from a distribution λ ∈ DS to every state s ∈ Supp(λ) labelled

with the probability λ(s) (we omit “1”). Moreover, there is a line from every player C

state, Λ ∈ PDS, to every distribution λ ∈ Λ and a line from each player A state, s ∈ S,

to every player C state Λ ∈ T (s). We will only depict games for which L(s, a) is either

〈tt, tt〉 or 〈ff, ff〉 for every s ∈ S and a ∈ AP. In the former case we write “a” next

to the state s. If a is the special atomic proposition F ∈ AP, then we also highlight the

state. We do not depict costs in figures.

Example 3.22. Consider the game Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 with

– ŝ = {ŝ1,2, ŝ3,5, ŝ4},

– Î = {ŝ1,2},

– T̂ is such that, for every ŝ ∈ Ŝ, we have

T̂ (ŝ) =











{{1
2
[ŝ3,5] +

1
2
[ŝ4]}, {

1
2
[ŝ3,5] +

1
2
[ŝ4], [ŝ3,5]}} if ŝ = ŝ1,2 , and

{{[ŝ]}} otherwise .
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– L̂ is such that, for every ŝ ∈ Ŝ and a ∈ AP, we have

L̂(ŝ, a) =











〈tt, tt〉 if ŝ ∈ {ŝ3,5} and a = F , and

〈ff, ff〉 otherwise .

– R̂(ŝ) = 〈0, 0〉 for all ŝ ∈ ŝ.

An example of a play in FinPlay
ŝ1,2

Ĝ
is

ŝ1,2 → {(
1
2
[ŝ3,5] +

1
2
[ŝ4])} → (1

2
[ŝ3,5] +

1
2
[ŝ4])→ ŝ3,5 → {[ŝ3,5]} → [ŝ3,5]→ ŝ3,5 .

We have depicted Ĝ in Figure 3.2.

3.4.2 Properties of Games

For games, we will restrict our attention to the quantitative properties Prob−, Prob+,

Cost− and Cost−. Whereas for MDPs these properties yield a single real value, for games

these properties will yield tuples from [0, 1]× [0, 1] and [0,∞]× [0,∞] (see Definition 3.8).

Probabilistic reachability If all non-determinism in a game, G, is resolved via a

player A strategy σA ∈ StratAG and a player C strategy σC ∈ StratCG then, for every initial

state s of G, we can construct a probability space 〈InfPlayssG,σA,σC
,F s

G,σA,σC
,PrsG,σA,σC

〉 in

the same way we did for MDPs. Unlike for MDPs, we introduce some additional defini-

tions. For every game G = 〈S, I, T, L,R〉 and state s ∈ S let us define the abbreviations

Prob−−(G, s) = inf
σA,σC

PrsM,σA,σC
({π ∈ InfPlayssG,σA,σC

| ∃i ∈ N : LB(L(πi,F))}) ,

Prob+−(G, s) = sup
σA

inf
σC

PrsM,σA,σC
({π ∈ InfPlayssG,σA,σC

| ∃i ∈ N : UB(L(πi,F))}) ,

Prob−+(G, s) = inf
σA

sup
σC

PrsM,σA,σC
({π ∈ InfPlayssG,σA,σC

| ∃i ∈ N : LB(L(πi,F))}) ,

Prob++(G, s) = sup
σA,σC

PrsM,σA,σC
({π ∈ InfPlayssG,σA,σC

| ∃i ∈ N : UB(L(πi,F))}) .
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Here, σA and σC range over player A and player C strategies in StratAG and StratCG, respec-

tively. We can now define probabilistic reachability properties on games:

Definition 3.23 (Probabilistic reachability). Let Prob−, Prob+ : GAME→ [0, 1]×

[0, 1] be quantitative properties which yield, for every G = 〈S, I, T, L,R〉, the tuples

Prob−(G) = 〈inf
s∈I

Prob−−(G, s), inf
s∈I

Prob+−(G, s)〉 , and

Prob+(G) = 〈sup
s∈I

Prob−+(G, s), sup
s∈I

Prob++(G, s)〉 .

Probabilistic reachability properties on games yield a value in [0, 1]× [0, 1] — a tuple

comprising a lower bound and an upper bound — instead of a single probability in [0, 1].

The lower bounds are obtained by taking infima over all player A strategies and the upper

bounds by taking suprema. For a fixed player A strategy we also measure different sets

of plays for the lower and upper bound. That is, for the lower bound we measure a play

only when F is definitely true in some player A state of this play. The proposition F is

definitely true in a state s if the lower bound LB(L(s,F)) is true. For the upper bound,

we only require that a state possibly satisfies F using the upper bound of L.

We illustrate probabilistic reachability properties on games through an example.

Example 3.24. Reconsider Example 3.22 and the game Ĝ depicted in Figure 3.2. We

have that Prob−(Ĝ) = 〈1
2
, 1
2
〉 and Prob+(Ĝ) = 〈1

2
, 1〉. Let us explain Prob+(Ĝ). Suppose

player A and player C cooperate. If player A uses a strategy, σ̂A ∈ StratA
Ĝ
, which, given the

play ŝ1,2, picks the player C state {[ŝ3,5],
1
2
[ŝ3,5] +

1
2
[ŝ4]} with probability one, and player C

uses a strategy, σ̂C ∈ StratC
Ĝ
, which, given the play ŝ1,2 → {[ŝ3,5],

1
2
[ŝ3,5]+

1
2
[ŝ4]} transitions

to [ŝ3,5] with probability one, then

Pr
ŝ1,2

Ĝ,σ̂A,σ̂C

({π̂ ∈ InfPlays
ŝ1,2

Ĝ,σ̂A,σ̂C

| ∃i ∈ N : UB(L̂(π̂i,F))}) =

Pr
ŝ1,2

Ĝ,σ̂A,σ̂C

(Cyl
ŝ1,2

Ĝ,σ̂A,σ̂C

(ŝ1,2 → {[ŝ3,5],
1
2
[ŝ3,5] +

1
2
[ŝ4]} → [ŝ3,5]→ ŝ3,5)) = 1 .

Because the upper bound of Prob+(Ĝ) is a supremum over all initial states and player A

and player C strategies, we have that UB(Prob+(Ĝ)) = 1. To see that LB(Prob+(Ĝ)) = 1
2
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observe that, independent of the strategy player A followed in ŝ1,2, player C can always

transition to the distribution 1
2
[ŝ3,5] +

1
2
[ŝ4]. This means that the target state, ŝ3,5, can

always be reached with probability 1
2
.

Cost properties We will now define cost properties on games. Let G = 〈S, I, T, L,R〉

be a game. Let σA ∈ StratAG be a player A strategy of G, let σC ∈ StratCG be a player C

strategy of G and let s ∈ I be an intial state of G. For every i ∈ N we define the random

variables X−,i
G,σA,σC

, X+,i
G,σA,σC

: InfPlayssG,σA,σC
→ [0,∞[ as the functions which yield

X−,i
G,σA,σC

(π) = LB(R(πi)) and X+,i
G,σA,σC

(π) = UB(R(πi)) ,

for every π ∈ InfPlayssG,σA,σC
. These random variables yield the lowest possible and highest

possible cost value for a play that is consistent with R.

Akin to probabilistic reachability, we introduce some additional definitions for games.

For every game G = 〈S, I, T, L,R〉 and state s ∈ S let us define the abbreviations

Cost−−(G, s) = inf
σA,σC

(

∑

i∈N

E
(

X−,i
G,σA,σC

)

)

,

Cost+−(G, s) = sup
σA

inf
σC

(

∑

i∈N

E
(

X+,i
G,σA,σC

)

)

,

Cost−+(G, s) = inf
σA

sup
σC

(

∑

i∈N

E
(

X−,i
G,σA,σC

)

)

,

Cost++(G, s) = sup
σA,σC

(

∑

i∈N

E
(

X+,i
G,σA,σC

)

)

.

Here, σA and σC range over player A and player C strategies in StratAG and StratCG, respec-

tively. We are now in a position to define the expected total cost on games:

Definition 3.25 (Expected total cost). Let Cost−, Cost+ : GAME → [0, 1]× [0, 1]
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be the qualitative properties which, for every game G = 〈S, I, T, L,R〉, are defined as

Cost−(G) = 〈inf
s∈I

Cost−−(G, s), inf
s∈I

Cost+−(G, s)〉 , and

Cost+(G) = 〈sup
s∈I

Cost−+(G, s), sup
s∈I

Cost++(G, s)〉 .

We remark that the symbolic value iteration algorithms we use to compute proba-

bilistic reachability and cost properties of MDPs generalise to algorithms we can use to

compute these properties for games (see also [Con93]).

Finally, having defined properties on games, we consider an alternative method to

characterise properties of games.

Fixpoint characterisations Similarly to, say, [WZ10, BBKO10], we use fixpoints as

an alternative way to define properties on games. We will use these fixpoint characterisa-

tions in proofs. Consider the functions, p−−
G , p+−

G , p−+
G , p++

G : (S → [0, 1])→ (S → [0, 1]),

which are defined, for every v : S → [0, 1] and s ∈ S, as

p−−
G (v)(s) = max

{

LB(L(s,F)), inf
s→Λ→λ

(

∑

s′∈Supp(λ) λ(s
′) · v(s′)

)}

,

p+−
G (v)(s) = max

{

UB(L(s,F)), sup
s→Λ

inf
Λ→λ

(

∑

s′∈Supp(λ) λ(s
′) · v(s′)

)

}

,

p−+
G (v)(s) = max

{

LB(L(s,F)), inf
s→Λ

sup
Λ→λ

(

∑

s′∈Supp(λ) λ(s
′) · v(s′)

)

}

,

p++
G (v)(s) = max

{

UB(L(s,F)), sup
s→Λ→λ

(

∑

s′∈Supp(λ) λ(s
′) · v(s′)

)

}

.

Here, we interpret, say, LB(L(s,F)) as 1 if it is tt and as 0 if it is ff. In [BBKO10] it

is proven that the least fixpoints of these functions relate to the probabilistic reachability

properties that we have defined on games.

Lemma 3.26. Let G = 〈S, I, T, L,R〉 be a game and let s ∈ S be an arbitrary state of
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G. We have:

Prob−−(G, s) = (LFP(p−−
G ))(s) and Prob+−(G, s) = (LFP(p+−

G ))(s) and

Prob−+(G, s) = (LFP(p−+
G ))(s) and Prob++(G, s) = (LFP(p++

G ))(s) .

Proof. See [BBKO10, Proof of Theorem 3.1].

We remark that the result in Lemma 3.26 makes no assumptions on G. In particular,

games need not be finitely branching to satisfy this lemma.

3.4.3 Game Abstractions

In [KNP06] it was suggested to use stochastic two-player games as a formalism to describe

abstractions of MDPs. A game abstraction of an MDP M = 〈S, I, T, L,R〉 is induced by

an abstraction function α : S → Ŝ from states of M to abstract states, Ŝ. An equivalent

definition can be achieved by partitioning M ’s state space. We first describe how α can

be lifted to an abstraction function:

Definition 3.27. Let M = 〈S, I, T, L,R〉 be an MDP, let Ŝ be an abstract state space,

and let α : S → Ŝ be an abstraction function. We lift the abstraction function α to a

function αD : DS → D(α(S)), which maps distributions over S to distributions over α’s

co-domain, α(S), by letting

αD(λ) =
∑

s∈Supp(λ)

λ(s) · [α(s)]

for each λ ∈ DS.

We sometimes write α to denote αD when it is unambiguous to do so. We remark

that an equivalent definition of Definition 3.27 can be achieved via Definition 3.1. That

is, let R ⊆ α(S)× S be the relation induced by α:

R = {〈ŝ, s〉 ∈ α(S)× S | α(s) = ŝ} .
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Because R is both right-total and left-unique, by Lemma 3.2, L(R) is also right-total

and left-unique. This means that for every λ ∈ DS there is precisely one λ̂ ∈ D(α(s))

for which we have 〈λ, λ̂〉 ∈ L(R). It is easy to verify that this λ̂ is αD(λ) as defined in

Definition 3.27 for every λ ∈ DS.

We are now in a position to define game abstraction:

Definition 3.28 (Game abstraction). Let M = 〈S, I, T, L,R〉 be an MDP and α :

S → Ŝ be an abstraction function. We let α(M) be the game 〈Ŝ, Î , T̂ , L̂, R̂〉 with

– Ŝ = α(S),

– Î = α(I),

– T̂ (ŝ) = {{α(λ) | λ ∈ T (s)} | s ∈ α-1(ŝ)} for all ŝ ∈ Ŝ,

– L̂(ŝ, a) = infs∈α-1(ŝ) 〈L(s, a), L(s, a)〉 for all ŝ ∈ Ŝ and a ∈ AP, and

– R̂(ŝ) = infs∈α-1(ŝ) 〈R(s), R(s)〉 for all ŝ ∈ Ŝ.

The state space of α(M) is α(S) — i.e. those elements of ŝ ∈ Ŝ that correspond to

some state in s ∈ S via α. We do this such that we do not have to define the transitions

for states of Ŝ that do not have corresponding concretisations.

The key idea behind α(M)’s transition function, T̂ , is to separate the non-determinism

that arises from abstraction from the non-determinism that occurs in M . We do this by

attributing these different types of non-deterministic choice to player A and player C in

α(M), respectively.

Informally, the role of player A is to resolve non-determinism that is caused by group-

ing concrete states — the name “A” is short for “abstraction”. That is, in a player

A state ŝ ∈ α(S), there is a player C state Λ̂ ∈ T̂ (ŝ) that corresponds to T (s) — i.e.

Λ̂ = {α(λ) | λ ∈ T (s)} — for every concrete state s ∈ S that ŝ abstracts. Effectively,

player A in ŝ picks a state in α−1(ŝ). In reality, of course, many states s ∈ α−1(ŝ) may

induce the same player C state in T̂ (ŝ), meaning a player A choice in α(M) corresponds

to a set of states of M .

The role of player C is to resolve non-determinism in the concrete model — “C” is an

abbreviation for “concrete”.. Let Λ̂ = {α(λ) | λ ∈ T (s)} be a player C state corresponding
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to an MDP state s ∈ S. In Λ̂, player C has the choice of α(λ) ∈ DŜ — i.e. an abstracted

version of the distribution λ — for every non-deterministic choice λ ∈ T (s) in the concrete

model. This means player C resolves the non-determinism in the concrete state s ∈ S.

Again, many distributions λ ∈ T (s) may induce the same abstract distribution in Λ̂, and

hence a player C transition of Ĝ corresponds to a set of distributions in T (s).

In the definition of L̂ and R̂ we take infima in 〈[0, 1]× [0, 1],≤〉 and 〈[0,∞]× [0,∞],≤〉,

respectively (see Definition 3.8). Our definition of games does not allow R̂ to yield bounds

that are infinite, and hence, to ensure that all games obtained with Definition 3.28 are

well-defined, when we apply game abstraction we will implicitly assume that there is a

bound r ∈ R such that R(s) ≤ r for all s ∈ S.

Example 3.29. Consider again the MDP M depicted in Figure 3.1. Consider ab-

straction function α : {s1, s2, s3, s4, s5} → {ŝ1,2, ŝ3,5, ŝ4} with α(s1) = α(s2) = ŝ1,2,

α(s3) = α(s5) = ŝ3,5 and α(s4) = ŝ4. Suppose α(M) = 〈Ŝ, Î , T̂ , L̂, R̂〉. By definition

α(M) we have, say:

T̂ (ŝ1,2) = {{α(λ) | λ ∈ T (s)} | s ∈ {s1, s2}}

= {{1
2
[s3,5] +

1
2
[s4]}, {

1
2
[s3,5] +

1
2
[s4], [s5]}} .

The game α(M) is depicted in Figure 3.2.

The relation between MDPs and their game abstractions enables us to approximate

quantitative properties of MDPs via games:

Theorem 3.30 (Soundness of game abstraction). Let M = 〈S, I, T, L,R〉 be an

MDP and let α : S → S be an abstraction function. Suppose the game abstraction

α(M) = 〈Ŝ, Î , T̂ , L̂, R̂〉 is such that, for every ŝ ∈ Ŝ, we have that L̂(ŝ,F) and R̂(ŝ) are

precise, i.e. L̂(ŝ,F) = 〈b, b〉 and R̂(ŝ) = 〈r, r〉 for some b ∈ B and r ∈ [0,∞[. For all

Prop ∈ {Prob−,Prob+,Cost−,Cost+} we have

Prop(α(M)) ≤ 〈Prop(M),Prop(M)〉 ,
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where ≤ is the order as described in Definition 3.8.

Proof. Follows from [KNP06, Theorem 12]. See also [KKNP10, Theorem 1].

We finalise our discussion on game abstractions with an example.

Example 3.31. Reconsider the game M depicted in Figure 3.1 and its game abstraction

α(M) in Figure 3.2 as discussed in Example 3.29. We have that

Prob−(α(M)) = 〈1
2
, 1
2
〉 ≤ 〈Prob−(M),Prob−(M)〉 and

Prob+(α(M)) = 〈1
2
, 1〉 ≤ 〈Prob+(M),Prob+(M)〉 .

By definition of ≤ this means that Prob−(M) ∈ [1
2
, 1
2
] and Prob+(M) ∈ [1

2
, 1]. That is, by

computing, say, Prob−(α(M)) we can approximate Prob+(M).



Chapter 4

Probabilistic Software

In this section we introduce probabilistic software. Probabilistic software comprises com-

puter programs that are subject to randomness. We first present the formal definition of

probabilistic programs in Section 4.1. Then, in Section 4.2, we discuss various examples.

Finally, in Section 4.3, we consider weakest preconditions for probabilistic programs.

4.1 Probabilistic Programs

We first define the data space of probabilistic programs in Section 4.1.1. We then formally

define probabilistic programs in Section 4.1.2. Finally, in Section 4.1.3, we define the MDP

semantics of these programs.

4.1.1 Variables & Data Space

The data space of a program is induced by a finite set of variables Var. Each variable

var ∈ Var of a program has a type Type(var). The type, Type(var), is formally defined

as the set of values that var can assume. We do not explicitly restrict the types of

variables allowed in programs. In particular, we do not restrict to finite types — we do

require Type(var) to be countable for every variable var ∈ Var.

In practice, most variables types are ANSI-C primitives such as bool, int and float,

which we represent with finite bit-vectors. We also admit proper mathematical types such
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as Q, N and Z and have direct support for structs, enums, pointers and, notably, finite

and infinite arrays. If var ∈ Var is an infinite array then, for any val ∈ Type(var) and

i ∈ N, we denote with val[i] the (i+1)-th element of val . We represent the program’s

heap with an infinite array. Although we can model heaps in this way, we note that our

verification techniques are not tailored to deal with programs that use the heap intensively.

That is, not all probabilistic programs we can specify can be verified with the verification

techniques we present in Chapter 5 and 7. In particular, infinite arrays are not fully

supported.

Given a set of variables, Var, we let UVar denote the data space induced by the variable

set Var — the set of all type-consistent mappings u ∈ UVar from variables var ∈ Var to

values u(var) ∈ Type(var). For an expression, e, over variables in Var and a data state

u ∈ UVar we write u(e) to denote the value of e in the data state u. For a data state

u ∈ UVar, a variable var ∈ Var and a value val ∈ Type(var), we write u[var 7→val] to denote

the data state u′ ∈ UVar for which u′(var) = val and which matches with u on every other

variable in Var — i.e. u(var′) = u(var′) for every other var′ ∈ Var \ {var}.

4.1.2 Definition of Probabilistic Programs

The mathematical model we use to model probabilistic programs is tailored to modelling

sequential, non-recursive probabilistic programs. That is, we require that the program

is governed by a single control-flow graph. In practice, to obtain a single control-flow

graph 〈L ,E 〉, we need to eliminate any function pointers in the program and inline any

function calls. We use existing tools to do this for us [Kro10b].

Definition 4.1 (Probabilistic program). A probabilistic program is a tuple P =

〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉, where

– 〈L ,E 〉 is a finite directed control-flow graph,

– {Ln,Lp,Lb} partitions L into assignment, probabilistic and branching locations,

– ℓi ∈ L is an initial location,

– Lt,Lc ⊆ L are target and cost locations,
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– Var is a finite set of variables and

– Sem : E → (UVar → PDUVar) maps control-flow edges to their semantics.

The control-flow graph 〈L ,E 〉 comprises a set of locations and an edge relation E ⊆

L × L . We require that E is left-total — i.e. that every control-flow location has an

outgoing edge — and model program termination via self-loops. The location ℓi is the

entry location of the program and the sets of locations Lt and Lc help us define properties

of the program and identify locations where the target is reached or a cost is incurred,

respectively.

The data space of P is the set UVar, induced by a finite set of variables Var. The

semantics, Sem, comprises a mapping from data states to potentially empty, countable

sets of distributions on the data space UVar for every control-flow edge in E .

The partition {Ln,Lp,Lb} helps us define some additional requirements on the

control-flow and semantics. Firstly, we assume that every location has a successor in

E . We also assume that control-flow branching only occurs in branching program lo-

cations — locations in L \ Lb have at most one successor in E . For such locations

ℓ ∈ Lp ∪Ln the set E (ℓ) is always a singleton set. Hence, for convenience, we define a

successor function Succ : Lp ∪Ln → L which maps non-branching program locations

to their successor in E — i.e. for all ℓ ∈ Lp ∪ Ln we have that SuccE (ℓ) is such that

E (ℓ) = {SuccE (ℓ)} . Finally, we make some additional assumptions about Sem:

– All assignment locations, ℓ ∈ Ln, are non-probabilistic. More specifically, for every

u ∈ UVar, the set Sem(〈ℓ,SuccE (ℓ)〉)(u) is a non-empty set of point distributions.

– All probabilistic locations, ℓ ∈ Lp, are deterministic. That is, for every u ∈ UVar,

Sem(〈ℓ,SuccE (ℓ)〉)(u) is a set comprising exactly one distribution.

– For all branching locations, ℓ ∈ Lb, for every u ∈ UVar, there is one ℓ′ ∈ E (ℓ) with

Sem(〈ℓ, ℓ′〉)(u) = {[u]} and Sem(〈ℓ, ℓ′′〉)(u) = ∅ for all other ℓ′′ ∈ E (ℓ).

Note that we satisfy another assumption by construction: for 〈ℓ, u〉 ∈ L ×UVar there is

a precisely one successor location ℓ′ ∈ E (ℓ) for which Sem(〈ℓ, ℓ′〉)(u) is non-empty.

Typically, with our definition, many assignments could be modelled with either assign-
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ment locations or probabilistic locations. We use assignment locations wherever possible.

A program is called non-probabilistic if Lp is empty. We denote with PROG the class

of all probabilistic programs.

4.1.3 MDP Semantics

In this section we define the semantics of probabilistic programs through a function J·K :

PROG→ MDP. Due to our definition of probabilistic programs, this function is relatively

straightforward to define:

Definition 4.2 (Semantics of probabilistic programs). Let P be the probabilistic

program 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉. We define P ’s MDP semantics,

JP K, as the MDP 〈S, I, T, L,R〉 where, for all 〈ℓ, u〉 ∈ L ×UVar and a ∈ AP, we have:

– S = L ×UVar,

– I = {ℓi} ×UVar,

– T (〈ℓ, u〉) = {Join([ℓ′], λ) | 〈ℓ, ℓ′〉 ∈ E , λ ∈ Sem(〈ℓ, ℓ′〉)(u)},

– L(〈ℓ, u〉, a) is tt if (ℓ ∈ Lt) and (a = F) and ff otherwise, and

– R(〈ℓ, u〉) is 1 if ℓ ∈ Lc and 0 otherwise.

The state space of the MDP JP K comprises a control component, L , and a data

component, UVar. For a state 〈ℓ, u〉 ∈ L × UVar the distributions available in T (〈ℓ, u〉)

are obtained by taking the union of the sets of distributions available at every outgoing

control-flow edges in ℓ′ ∈ E (ℓ). By construction, for every control-flow location and

data state there is precisely one outgoing control-flow edge that has a non-empty set

of distributions available. Note that we do not use the full power of the propositional

labelling function, L. We only use the proposition F ∈ AP, which is true in locations

ℓ ∈ Lt and ignore other propositions. Similarly, we only admit costs values of 0 and 1,

depending on whether we are in a cost location ℓ ∈ Lc.

Properties Having defined the MDP semantics of probabilistic programs we are now

finally in a position to formally state the verification problem we are targeting in this
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bool c=0;

void main()

{

while (!c)

{

cost ();

c=coin (1,2);

}

target();

}

Figure 4.1: The source code of the probabilis-
tic program described in Example 4.3.

I

B

C

P1

T

c=0

[!c]

cost()

c=coin(1,2)

[c]

Figure 4.2: The annotated control-flow graph of
the probabilistic program described in Example 4.3.

thesis. We are interested in quantitative properties of probabilistic programs, P , as

defined through their MDP semantics JP K. That is, we will set out to develop ver-

ification techniques which take a probabilistic program P ∈ PROG and a property

Prop ∈ {Prob−,Prob+,Cost−,Cost+} and then compute the value Prop(JP K).

4.2 Examples

We will illustrate our definition of probabilistic programs with some examples. To aid

presentation, we will not generally introduce probabilistic programs via their mathemat-

ical definition. Instead, we use a combination of source code (see, e.g., Figure 4.1) and

annotated control-flow graphs (see, e.g., Figure 4.2).

The annotated control-flow graph essentially depicts 〈L ,E 〉. A small incoming arrow

identifies the initial location, ℓi. The control-flow we depict deviates slightly from the one

we define formally. Firstly, some locations have no outgoing control-flow edges. These

are assignment locations ℓ ∈ Ln in which there is a self-loop 〈ℓ, ℓ〉 ∈ E that has trivial

semantics in Sem — i.e. Sem(〈ℓ, ℓ〉)(u) = {[u]} for every u ∈ UVar. Secondly, we some-

times omit a control-flow edge from branching locations. Implicitly, there is a self-loop in

such branching locations that is labelled with an expression that holds if and only if the

expressions on all other branches do not hold.
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Type Syntax Interpretation

Ln var=e1 Returns the singleton set {[u[var 7→u(e1)]]}.

var=* Returns the set {[u[var 7→val]] | val ∈ Type(var)}.

var=ndet(e1) Returns the set

{[u[var 7→n]] | n ∈ N, n < u(e1)}

if u(e1) > 0 and
{

[u[var 7→0]]
}

, otherwise.

Lp var=coin(e1,e2) Returns

{

u(e1)
u(e2)

· [u[var 7→tt]] +
(

u(e2)−u(e1)
u(e2)

)

· [u[var 7→ff]]
}

if u(e2) > 0 and 0 ≤ u(e1) ≤ u(e2) and {[u[var 7→ff]]} otherwise.

var=uniform(e1) Returns
{

∑u(e1)−1
n=0

1
u(e1)

[u[var 7→n]]
}

if u(e1) > 0 and
{

[u[var 7→0]]
}

, otherwise.

Lb [e1] Returns the set {[u]} if u(e1) and ∅ if ¬u(e1).

Figure 4.3: We show some common syntax labels for control-flow edges 〈ℓ, ℓ′〉 ∈ E . We depict the type
of the source location, the syntax and the set Sem(〈ℓ, ℓ′〉)(u) for a given data state u ∈ UVar.

Our treatment of Lc and Lt is not symmetrical. That is, as target locations are often

final locations of the program, we do not depict the function call, “target()”, in figures.

Instead, the locations in the set Lt are highlighted. Locations in Lc can be identified

with an outgoing edge labelled with “cost()”.

The variables of a program are not formally introduced by annotated control-flow

graphs but can be inferred from the corresponding source code listings or explanatory text.

The semantics and remaining location types are also not introduced formally. However,

we do provide an intuitive syntax labelling from which some of this information can be

derived. In Figure 4.3 we show how to interpret some common edge labels. We mention

that the fractions we use to define the semantics of probabilistic locations should be

interpreted as proper fractions and not as C-style integer divisions. We also remark that

this figure only gives exemplary definitions. In practice we are not restricted to this set of

functions and we also allow, say, assignments where the left-hand side is not a variable.

Defining the syntax of ANSI-C programs or the formal semantics of this syntax are non-

trivial tasks that fall outside the scope of this thesis. We will assume that, for the most

part, the syntax we use in control-flow graphs is self-explanatory.
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We now provide various examples of probabilistic programs — both in terms of source

code, annotated control-flow graph as well as the formal mathematical definition.

Example 4.3. Consider the program in Figure 4.1. This program has one, Boolean-

valued variable, c, which is initialised to 0. The program contains a loop. In the body of

this loop the program first calls cost() and then assigns 0 or 1 to c with a probability of

1
2
each. The function target() is called once c becomes 1. The annotated control-flow

graph of this program is depicted in Figure 4.2. Formally, the program described here is

P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 with

L = {I, B, C, P1, T}, and

E = {〈I, B〉, 〈B,C〉, 〈C, P1〉, 〈P1, B〉, 〈B, T 〉, 〈T, T 〉} .

We partition L into assignment locations Ln = {I, C, T}, branching locations Lb = {B}

and probabilistic locations Lp = {P1}. The initial location, ℓi, is I, the cost locations are

Lc = {C} and the target locations are Lt = {T}. The set of variables, Var, consists of

one variable, c, with Type(c) = B. The semantics, Sem, are defined for every control-

flow edge e ∈ E and every data state u ∈ UVar as

Sem(e)(u) =























































{[u[c 7→ff]]} if e=〈I, B〉,

{[u]} if e=〈B,C〉 ∧ ¬u(c), or
e=〈B, T 〉 ∧ u(c), or
e=〈C, P1〉 or e=〈T, T 〉,

∅ if e=〈B,C〉 ∧ u(c), or
e=〈B, T 〉 ∧ ¬u(c),

{1
2
[u[c 7→ff]] +

1
2
[u[c 7→tt]]} if e = 〈P1, B〉 .

Here, {[u]} and {[u[c 7→ff]]}, say, denote singleton sets of point distributions on UVar. The

semantics for P1 can be viewed as a probabilistic combination of the semantics of two

non-probabilistic assignments c=1 and c=0.

Example 4.4. Our next program, depicted in Figure 4.4, is slightly more involved and
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bool n, p1 , p2;

void main()

{

n=foo();

p1=coin (4 ,10);

p2=coin (4 ,10);

if (n==(p1^p2))

target();

}

Figure 4.4: The source code of the probabilis-
tic program described in Example 4.4.

I

P1

P2

B

ET

n=*

p1=coin(4,10)

p2=coin(4,10)

[n!=p1^p2][n==p1^p2]

Figure 4.5: The annotated control-flow graph of
the probabilistic program described in Example 4.4.

comprises three Boolean variables, n, p1 and p2. This program first calls a library func-

tion, foo(), and assigns the result to n. We will model this function call with a non-

deterministic choice, written n=*. Next, the program assigns 1 to p1 with probability 4
10

and 0 to p1 with probability 6
10

and then repeats this probabilistic assignment for p2. Fi-

nally, the program checks if the exclusive or of p1 and p2 matches the value of n, and calls

target() if this is the case. The annotated control-flow graph of this program is depicted

in Figure 4.5. For this example we have

L = {I, P1, P2, B, T, E}, and

E = {〈I, P1〉, 〈P1, P2〉, 〈P2, B〉, 〈B, T 〉, 〈B,E〉, 〈T, T 〉, 〈E,E〉} .

We partition L with assignment locations Ln = {I, T, E}, branching locations Lb = {B}

and probabilistic locations Lp = {P1, P2}. The initial location, ℓi, is I, the cost locations

are Lc = ∅ and the target locations are Lt = {T}. The set Sem(e)(u) is defined for every
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bool num_pkts ()

{ return ndet (3); }

bool send_to ()

{ return coin (1 ,10); }

void main()

{

bool f=0;

int p=num_pkts ();

while (!f&&p!=0)

{

f=send_to ();

p--;

}

if (f) target();

}

Figure 4.6: A probabilistic program P for which we
want to compute the worst-case probability of failure —
i.e. Prob+(JP K).

I

B

P1

N

T

E

f=0

p=ndet(3)

[!f&&p!=0]

f=coin(1,10)

p--

[f]

[!f&&p==0]

Figure 4.7: The control-flow graph of the
program in Figure 4.6 with num_pkts() and
send_to() inlined.

control-flow edge e ∈ E and every data state u ∈ UVar as

{[u[n 7→ff]], [u[n 7→tt]]} if e=〈I, P1〉,

{ 6
10
[u[p1 7→ff]] +

4
10
[u[p1 7→tt]]} if e=〈P1, P2〉,

{ 6
10
[u[p2 7→ff]] +

4
10
[u[p2 7→tt]]} if e=〈P2, B〉,

{[u]} if e=〈B, T 〉∧ (u(n)⇔ (u(p1) 6⇔ u(p2))), or
e=〈B,E〉∧(u(n) 6⇔ (u(p1) 6⇔ u(p2))), or
e=〈T, T 〉 or e=〈E,E〉,

∅ if e=〈B, T 〉∧ (u(n) 6⇔ (u(p1) 6⇔ u(p2))), or
e=〈B,E〉 ∧ (u(n)⇔ (u(p1) 6⇔ u(p2))) .

In contrast to the previous example, the assignment location, I, now has non-deterministic

semantics, yielding a set of two point distributions.

We illustrate MDP-semantics with another example.

Example 4.5. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be the network
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Figure 4.8: The MDP-semantics JP K of the program depicted in Figure 4.6 and 4.7.

program depicted in Figure 4.6 and 4.7.1 We have Var = {f, p} where f is a Boolean

variable indicating failure and p is a 32-bit signed integer p, i.e. an integer in the interval

[−231, 231[, storing the number of packets to send. The program first calls num_pkts()

and assigns the resulting value to p. It will then try to send p packets of data. To do this,

while no failure has occurred and p!=0, the program calls a function send_to(), assigns

send_to()’s return value to f and decrements p. For the purposes of model checking, the

library functions num_pkts() and send_to() have been replaced with stubs.

The annotated control-flow graph of P is depicted in Fig. 4.7 and the MDP JP K is

depicted in Fig. 4.8. A state 〈ℓ, u〉 of JP K is depicted with three labels: “ℓ” (top), “u(p)”

(middle) and “u(f)” (bottom). Due to space constraints, we omit some states with location

I and E. From the MDP we see that Prob−(JP K) and Prob+(JP K), i.e. the minimum and

maximum probabilities of failure, are 0 and 19
100

, respectively.

1This program is adapted from [KKNP09] and is due to David Parker.
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4.3 Weakest Preconditions

Now we have defined probabilistic programs, we are in a position define weakest precon-

ditions [Dij75]. We first informally discuss weakest preconditions in a non-probabilistic

setting. Suppose a program comprises variables, Var, and control-flow edges, E . A predi-

cate on Var is a Boolean-valued function, p : UVar → B. In [Dij75], weakest preconditions

are predicate transformers, i.e. functions that map predicates to predicates. Informally,

for every predicate, p : UVar → B, and every control-flow edge, e ∈ E , the weakest precon-

dition of p under e is another predicate, WP(e, p) : UVar → B, such that for every data

state u ∈ Uvar we have that WP(e, p)(u) is true if and only if there is a transition from e

for u and p is guaranteed to hold after we take e.

Note that, due to the presence of probabilistic choice, Dijkstra’s definition of weakest

precondition is not immediately applicable to probabilistic programs. We remark that

there exist quantitative adaptations that can deal with probabilistic semantics but these

are not defined over Boolean-valued predicates (see, e.g., [MM05]). We will use Dijkstra-

style weakest preconditions and apply them only under certain restricted conditions:

Definition 4.6 (Weakest precondition). Let p : UVar → B be a predicate and let

Sem : UVar → PDUVar be a function that yields, for every data state u ∈ UVar, either

the empty set or a singleton set comprising a point distribution. We define the weakest

precondition of p under Sem to be the predicate WP(Sem, p) : UVar → B such that, for

every data state u ∈ UVar, we have

WP(Sem, p)(u) =











tt if ∃u′ ∈ UVar : Sem(u) = {[u′]} ∧ p(u′) ,

ff otherwise .

We define weakest preconditions for a function Sem : UVar → UVar similarly.

The conditions in Definition 4.6 mean that, in practice, we can take the weakest

precondition of control-flow edges labelled with deterministic assignments (e.g. var=e)

and edges from branching locations (e.g. [e]), but not probabilistic assignments (e.g.

var=coin(1,2)) or non-deterministic assignments (e.g. var=*).
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In practice, taking the weakest precondition is a cheap, syntactical operation. For a

control-flow edge from a branching location, labelled with [e], the weakest precondition

of a predicate p is the conjunction of p and e. For a control-flow edge from an assignment

location, labelled with a deterministic assignment, var=e, the weakest precondition of a

predicate p is the predicate p with every instance of var in p substituted with e.



Chapter 5

Abstraction Refinement for

Probabilistic Software

5.1 Introduction

In this chapter, we will introduce an approach for computing quantitative properties (see

Section 3.3.2) of probabilistic software (see Chapter 4). A central problem in software

verification is that, due to the complex nature of software, we typically cannot analyse

programs directly via their low-level semantics. In our setting this means that, despite

the fact there are efficient algorithms for computing quantitative properties of MDPs

(e.g. [CY90, CY98, BdA95, Put94, dA99]), we cannot normally compute quantitative

properties of a probabilistic program, P , via the MDP, JP K.

The inability to verify programs directly via their low-level semantics is not an is-

sue that is specific to probabilistic programs. A common approach in non-probabilistic

software verification is to reason about properties of programs via finitary abstractions.

Abstractions are formal mathematical models that yield an approximation of the property

under consideration when model checked. This approximation concerns the validity of a

qualitative property or, in our quantitative setting, the value of a quantitative property.

For a given program, there are usually many abstractions of varying precisions that we

can consider. The main challenge in using abstractions is to find an abstraction of the pro-

gram that is both precise enough to give a good approximation and that is small enough
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to model check efficiently. Finding such abstractions manually can be very cumbersome.

A widely recognised methodology to automatically find suitable abstractions is what we

call the “abstraction-refinement paradigm”.

In the abstraction-refinement paradigm, one considers increasingly precise abstract

models in an abstraction-refinement loop. Each abstract model is an abstraction of the

program by construction. We typically start the loop with a very coarse, imprecise ab-

straction. Generally, imprecise abstractions yield coarse approximations of the property

at hand but are cheaper to model check than abstractions that are more precise. The loop

terminates only once an abstract model yields an approximation that is satisfactory. The

key step in the abstraction-refinement loop is the automatic identification of new, more

precise abstractions when the current approximation is not satisfactory — an automated

refinement step. A good refinement procedure ensures that, in the long run, the approx-

imation of the property under consideration improves while keeping the cost of model

checking as low as possible by ensuring that no unnecessary information is added to the

abstractions.

A particularly successful instantiation of the abstraction-refinement paradigm is that

of counter-example guided abstraction refinement (CEGAR) [Kur94, CGJ+00]. It is at

the heart of prominent abstraction-based model checkers for (non-probabilistic) software

such as SLAM [BR01], BLAST [HJMS03] MAGIC [CCG+04] and SATABS [CKSY05].

In CEGAR, the validity of a certain class of qualitative properties, called safety proper-

ties,1 is approximated via existential abstractions [CGL94]. Existential abstractions are

abstractions that over-approximate the possible behaviours of the program. In practice

this means that, in CEGAR, safety properties can be verified but not refuted via ab-

stractions. Fortunately, in a non-probabilistic setting, the falsity of safety properties is

witnessed by a single finite path of the model — a counter-example. Refutation of quali-

tative safety properties is achieved by trying to map counter-examples of abstract models

to counter-examples of the program [CGJ+00]. Counter-examples for which this fails are

called spurious counter-examples. The principal characteristic of CEGAR is that refine-

ment is achieved by eliminating spurious abstract counter-examples. This elimination can

1The property Reach+ defined in Section 3.3.1 is a prime example of a safety property.
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be done via weakest preconditions [CGJ+00] or via interpolation [HJMM04].

A direct quantitative adaptation of CEGAR for a guarded command language is

presented in [HWZ08]. Here, strong probabilistic simulations of [SL94] are used to obtain

one bound on the quantitative property under consideration. The remaining bound can

be obtained by analysing probabilistic counter-examples [HK07, AL09]. These counter-

examples are also used for refinement in [HWZ08]. We do not discard the possibility that

a direct adaptation of CEGAR could be used to verify probabilistic software. However,

in this chapter, we opt to use an abstraction-refinement method for which we do not need

to analyse probabilistic counter-examples.

We therefore look at abstraction-refinement methodologies that use three-valued ab-

stractions such as [SG07, GC06]. The abstractions used in this setting are typically modal

or mixed abstractions [LT88, DGG97]. The main benefit of using these abstractions is

that both verification and refutation of qualitative properties can be achieved directly

via abstractions (i.e. there is no need to consider counter-examples for the purposes of

refutation). Moreover, as opposed to realising refinement via the elimination of spurious

abstract counter-examples, the refinement step for three-valued abstractions comprises

the elimination of indefinite results from the abstraction [SG07]. Our justification for

using three-valued abstraction frameworks is that they avoid the need to analyse counter-

examples and, in a quantitative setting, counter-examples are substantially more complex

than their non-probabilistic counterparts [HK07, AL09].

A quantitative analogue of the three-valued abstraction-refinement approach uses ab-

stractions that provide specifically tailored lower and upper bounds on quantitative prop-

erties under consideration. To this end, the abstractions we will use in this chapter are

the stochastic two-player game abstractions (or “games”) introduced in [KNP06] — we

discussed game abstractions in Section 3.4.1. Our justification of using game abstractions

instead of, say, a probabilistic adaptation of modal or mixed abstractions is two-fold.

Firstly, stochastic two-player games are themselves a well-understood formalism and are

very similar in nature to MDPs. In practice, this means we easily adapt existing machin-

ery for computing properties of MDPs to analyse game abstractions. Secondly, the nature

of game abstractions allows us to compute abstractions in much the same way that exis-
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Initialise ab-

straction func-

tion α

Refine abstraction

function α

Compute game

abstraction α(JP K)
Compute interval

Prop(α(JP K))

Terminate

loop?

Report interval

Prop(α(JP K)) yes

no

Figure 5.1: High-level overview of how to automatically approximate Prop(JP K) of a probabilistic
program P via a quantitative abstraction-refinement loop using the game abstractions of Section 3.4.

tential abstractions are computed. This makes it easier to adapt a CEGAR-based model

checker to compute game abstractions instead.

In this chapter, we describe an instantiation of the abstraction-refinement paradigm

for probabilistic software using game abstractions. The focus of our presentation is on

the procedures, heuristics and optimisations that are needed to make this abstraction-

refinement loop work for real probabilistic software. For the underlying theory, we will

directly employ the theoretical framework of game abstractions described in Section 3.4.

Before we go into the technical details of our abstraction-refinement loop, however,

we give a high-level overview of this chapter.

Overview of chapter The focus in this chapter is on computing, for a given proba-

bilistic program P ∈ PROG, and a given quantitative property Prop ∈ {Prob−, Prob+,

Cost−, Cost+}, the value Prop(JP K) ∈ R. We will compute Prop(JP K) via an abstraction-

refinement loop, which we depict in Figure 5.1. Similarly to qualitative abstraction-

refinement loops, our loop comprises three important phases: the abstraction phase, model

checking phase and refinement phase. We first discuss the abstraction phase.

Akin to most abstraction-based software model checkers, we will focus on predicate

abstractions [GS97]. In our case predicate abstractions are games that abstract the data

space of programs via a finite set of predicates but that leave the control-flow structure of

the programs intact. We will introduce game-based predicate abstractions of probabilistic

programs in Section 5.3.1. For our overview here it is sufficient to know that predicates
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induce an abstraction function α and, following Section 3.4, each such abstraction function

corresponds to a game abstraction α(JP K) of JP K. Even if α(JP K) itself is relatively small,

we face the problem that, for realistic programs, we cannot construct this abstraction

directly from the low-level MDP semantics JP K. A common strategy to obtain existential

abstractions of non-probabilistic programs in CEGAR is to let SAT solvers compute the

abstract transition functions [LBC03, CKSY04]. We will show in Section 5.3.2 how to

adapt these methods to compute game abstractions of probabilistic programs.

Once we have constructed the game abstraction α(JP K), we evaluate the property

Prop on α(JP K) with a straightforward extension of standard verification methods for

MDPs (see, e.g., [Par02, HKNP06]). By Theorem 3.30, we have:

Prop(α(JP K)) ≤ 〈Prop(JP K),Prop(JP K)〉 .

Here, the order ≤ is the one described in Definition 3.8. That is, Prop(α(JP K)) is a tuple

〈l, u〉 such that Prop(JP K) ∈ [l, u].

If the difference between the upper bound, u, and the lower bound, l, is small enough

then we terminate the abstraction-refinement loop. If this is not the case then our ab-

straction is not precise enough and we proceed with a refinement step. As our abstraction

functions are induced by predicates, the refinement step in our framework augments the

existing abstraction function with new predicates. In Section 5.4 we show how we can

analyse the transition function of α(JP K) to automatically obtain new predicates.

Finally, in Section 5.5 we discuss and evaluate an implementation of the abstraction-

refinement loop described in Figure 5.1 for probabilistic ANSI-C software. We experi-

mentally validate our implementation and various heuristics on a range of probabilistic

programs. We also describe and evaluate two extensions of our basic approach.

5.2 Assumptions

Our abstraction and refinement procedures make assumptions on the behaviour of prob-

abilistic programs which we will formalise here. Recall that the semantics of control-flow
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edges from probabilistic locations are mappings from data states to arbitrary (single-

ton sets of) distributions on data states of the program. Analogously, the semantics of

control-flow edges from assignment locations are mappings from data states to arbitrary

sets (of point distributions) on data states of the program. In practice, such a liberal

definition of semantics makes it difficult to automatically construct or refine abstractions.

We therefore make the following assumption on probabilistic programs:

Assumption 5.1. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be a probabilis-

tic program. For every ℓ ∈ Ln ∪Lp there are finite families of functions and reals

Sem1
ℓ , . . . , Sem

k
ℓ : UVar → UVar and a1, . . . , ak ∈ [0, 1]

such that for all u ∈ UVar we have

Sem(〈ℓ,SuccE (ℓ)〉)(u) = {[Sem
l
ℓ(u)] | l ∈ [1, k]} if ℓ ∈ Ln and

Sem(〈ℓ,SuccE (ℓ)〉)(u) = {a
1 · [Sem1

ℓ(u)] + . . .+ ak · [Semk
ℓ (u)]} if ℓ ∈ Lp .

Essentially we require that the sets available from assignment locations and the dis-

tributions available from probabilistic locations can be constructed from a finite number

of components for every data state. An indirect consequence of our assumption is that,

if we abstract JP K using an abstraction function α : L × UVar → Ŝ and |Ŝ| is finite,

then α(JP K)’s transition function is also finite. That is, there are only finitely many sets

of point distributions and singleton sets of distributions on Ŝ that are of the structure

enforced by our assumption.

All (deterministic) assignments var=e1 trivially satisfy our assumption. Of the non-

deterministic and probabilistic functions shown in Figure 4.3, the functions var=ndet(e1),

var=coin(e1,e2) and var=uniform(e1) satisfy our assumption if the expressions e1, e2

are constants. The assignment var=* only satisfies the assumption if Type(var) is finite.

In practice, even if Type(var) is infinite, we can still deal with this assignment as long

as it does not influence the property under consideration.
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5.3 Constructing Game Abstractions

We now discuss various topics related to the abstraction of probabilistic programs. In

Section 5.3.1, we explain how predicates over a program’s data space induce an abstraction

relation. Then, in Section 5.3.2, we discuss how we construct such predicate abstractions

for real programs in practice.

5.3.1 Predicate Abstractions

In this section, we will explain the abstraction function, α, that we consider for proba-

bilistic programs in practice. Recall that, for a program

P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 ,

the state space of JP K is L ×UVar and comprises tuples of program locations ℓ ∈ L

and data states u ∈ UVar. We consider predicate abstractions [GS97] — i.e. games that

preserve P ’s control-flow and that abstract the state space UVar of P via a finite set of

predicates Pred = {p1, . . . , pn} on Var.

Formally, these predicates are Boolean functions pi : UVar → B over the data space

of P . The abstract data space under Pred is L × Bn. That is, the abstract state space

is finite and comprises P ’s control-flow locations and n-tuples of Booleans. The n-tuples

are abstract representations of P ’s data space which do not preserve the value of each

variable but just the validity of each predicate in {p1, . . . , pn}. Under these predicates,

an abstraction function, α, has the type α : (L ×UVar)→ (L × Bn).

Before we define α, we observe that, in practice, CEGAR model checkers do not keep

track of the validity of every predicate in every control-flow location — often we only

actually need to track predicates for a small section of the control-flow and not exploiting

this is likely to affect the efficiency and scalability of the model checker. We therefore

introduce a localisation mapping Map : L × Pred → B which allows us to define a

scope for every predicate. The meaning of Map(ℓ, pi) is that predicate pi is enabled at

control-flow location ℓ ∈ L . This localisation mapping gives rise to localised abstraction
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functions αℓ : UVar → Bn that dictate how the data space UVar should be abstracted at

each control-flow location ℓ ∈ L . For each u ∈ UVar this function αℓ(u) yields the unique

n-tuple 〈b1, . . . , bn〉 ∈ Bn that satisfies:

(i) ∀i ∈ [1, n] : Map(ℓ, pi)⇒ (bi ⇔ pi(u)) and

(ii) ∀i ∈ [1, n] : ¬Map(ℓ, pi)⇒ ¬bi .

The first condition, (i), ensures that, when the predicate pi ∈ Pred is enabled at location

ℓ ∈ L then, for all u ∈ UVar, the value of bi in αℓ(u) must match the value of pi(u).

Condition (ii) concerns predicates that are not relevant and simply ensures that the value

of bi in ℓ is false whenever pi is not enabled in ℓ. Note that αℓ is always injective but

generally not surjective — i.e. not every valuation of predicates is feasible.

We finally define α : (L ×UVar) → (L × Bn) as follows: for every ℓ ∈ L and

u ∈ UVar we take α(ℓ, u) = 〈ℓ, αℓ(u)〉. The abstraction function α induces a game

abstraction α(JP K) of JP K (see Definition 3.28, page 48).

We will conclude our discussion on predicate abstraction with an example:

Example 5.2. Recall the simple network program

P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉

introduced in Example 4.5 (page 59). Let Pred = {p1} and let p1 be the predicate (fail).

Moreover, let the predicate localisation mapping be such that Map(ℓ, p1) holds only for

ℓ ∈ {B,N}. We have, e.g., that αB, αP1 ∈ UVar → B1 are functions such that αB(u) =

u(fail) and αP1(u) = ff for each u ∈ UVar. Now suppose α is the abstraction function

as defined for Pred and Map in this section. The game abstraction α(JP K) is depicted in

Figure 5.2 where a state 〈ℓ, 〈b1〉〉 is depicted with a top label “ℓ” and a bottom label which,

if p1 is enabled according to Map, is “b1” and is “*”, otherwise. Analogously, the game

abstraction in Figure 5.3 is the abstraction constructed for an empty set of predicates. We

have that Prob+(α(JP K)) = 〈0, 1〉 for both abstractions.
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Figure 5.2: Game abstraction of Fig-
ure 4.7 with predicates p1 = (f) such that
Map(ℓ, p1) holds only for ℓ = B.
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Figure 5.3: Game abstraction of Fig-
ure 4.7 with the set of predicates, Pred,
being the empty set.

5.3.2 Enumeration of Transitions with ALL-SAT

Consider again a probabilistic program

P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 .

In the previous section, we have shown how a set of predicates, Pred, and a localisation

mapping, Map, together induce an abstraction function α on JP K’s state space. In turn,

in Section 3.4, it is shown how such abstraction functions induce a game abstraction

α(JP K). However, even if α(JP K) itself is relatively small, we are typically unable to

obtain it directly from JP K, which is usually too large to construct. This is where our

program-level abstraction differs from, say, [KNP06, KKNP10], where we assume that the
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MDP to abstract, e.g. JP K, is readily available.

The key difficulty is in computing α(JP K)’s transition function, T̂ . Computing the

state space, Ŝ, and initial states, Î, can be done with standard methods and the functions

L̂ and R̂ are constructed easily due to our restricted use of propositional labelling and

costs in our program semantics.2 Observe that for every 〈ℓ,b〉 ∈ L × Bn we have that

T̂ (〈ℓ,b〉) =
{

{α(Join([ℓ′], λ)) | 〈ℓ, ℓ′〉 ∈ E , λ ∈ Sem(〈ℓ, ℓ′〉)(u)} | u ∈ α−1
ℓ (b)

}

.

That is, any data state u ∈ UVar of P abstracted by b induces a player C state in T̂ (〈ℓ,b〉).

This player C state comprises an abstracted version of every transition from 〈ℓ, u〉.

Instead of directly constructing T̂ from JP K, the approach we follow in this section is

to enumerate transitions in T̂ using SAT solvers. That is, for each control-flow location we

will construct a SAT formula such that a satisfiable instance of this formula corresponds

to a player A transition in T̂ from this location and we will use an ALL-SAT procedure

to enumerate all such transitions — akin to [LBC03, CKSY04].

For 〈ℓ,b〉 ∈ L ×αℓ(UVar), we will show how to construct T̂ (〈ℓ,b〉) depending on the

location type of ℓ. We first discuss the case when ℓ is an assignment locations in detail

and then consider other location types.

Assignment locations Suppose ℓ ∈ Ln and ℓ′ = SuccE (ℓ). By Assumption 5.1 and

using the definitions of α, we are able to rewrite T̂ (〈ℓ,b〉) as follows:

T̂ (〈ℓ,b〉) =
{

{Join([ℓ′], αℓ′([Sem
i
ℓ(u)])) | i ∈ [1, k]} | u ∈ α−1

ℓ (b)
}

=
{

{[〈ℓ′, αℓ′(Sem
i
ℓ(u))〉] | i ∈ [1, k]} | u ∈ α−1

ℓ (b)
}

.

We can use this definition to observe the following: every player C state in T̂ (〈ℓ,b〉) is of

the form {[〈ℓ′,bi〉] | i ∈ [1, k]} for some b1, . . . ,bk ∈ Bn and, more importantly, we have

{[〈ℓ′,bi〉] | i ∈ [1, k]} ∈ T̂ (〈ℓ,b〉) if and only if

(b = αℓ(u)) ∧ (b1 = αℓ′(Sem
1
ℓ(u))) ∧ . . . ∧ (bk = αℓ′(Sem

k
ℓ (u))) (5.1)

2In practice, we do not compute Ŝ directly. We construct the reachable states of Ŝ from T̂ and Î.
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is satisfied for some u ∈ UVar. Next, we encode (5.1) in propositional logic. To do this,

we represent u, Sem1
ℓ(u), . . ., Semk

ℓ (u) and b, b1, . . . ,bk with finite sets of Boolean

variables and we encode applications of αℓ , αℓ′ and Sem1
ℓ , . . . , Sem

k
ℓ as constraints over

these variables. The precise details of how this SAT encoding is done is beyond the scope

of this thesis — we use existing methods for this encoding and refer to [CKSY04, KS08]

for a comprehensive discussion.

To find all player A transitions in ℓ, we then employ an ALL-SAT procedure to find all

values of b,b1, . . . ,bk that satisfy (5.1) for some u ∈ UVar. That is, we use a SAT solver

to find a satisfiable instance of (5.1) and we extract the values of b,b1, . . . ,bk from this

instance and add {[〈ℓ′,bl〉] | l ∈ [1, k]} to T̂ (〈ℓ,b〉). We then augment (5.1) with a clause

that prevents the same values of b,b1, . . . ,bk from being found again and run the SAT

solver on this augmented formula. We repeat this until (5.1) is found to be unsatisfiable.

We illustrate the abstraction of assignment locations by means of an example:

Example 5.3. Consider again the program shown in Figure 4.7 and the control-flow

edge 〈N,B〉 ∈ E labelled with the assignment p=p-1. Now suppose we have predicates

p1 = (p==0), p2 = (p==1), p3 = (p==2) and all are enabled in both N and B. To satisfy

Assumption 5.1, we represent Sem(〈N,B〉) with a single function Sem1
N : UVar → UVar

that yields Sem1
N(u) = u[p 7→u(p)−1] for all u ∈ UVar. For this example, expanding α’s

definition in (5.1) yields the following formula over b = 〈b1, b2, b3〉,b
1 = 〈b11, b

1
2, b

1
3〉:

b1 ⇔ (u(p) = 0) ∧ b2 ⇔ (u(p) = 1) ∧ b3 ⇔ (u(p) = 2)

b11 ⇔ (Sem1
N(u)(p) = 0) ∧ b12 ⇔ (Sem1

N(u)(p) = 1) ∧ b13 ⇔ (Sem1
N(u)(p) = 2) .

From the definition of Sem1
N we can easily see that we have Sem1

N(u)(p) = n if and only

if u(p)− 1 = n.3 We encode this formula in propositional logic and employ a SAT solver

to find the following satisfiable valuations of b and b1 (we also show corresponding values

3At least this is so for n ∈ {0, 1, 2} where the range of p is not an issue.
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of u ∈ UVar):

b = 〈100〉, b1 = 〈000〉, (u(p) = 0)

b = 〈010〉, b1 = 〈100〉, (u(p) = 1)

b = 〈001〉, b1 = 〈010〉, (u(p) = 2)

b = 〈000〉, b1 = 〈001〉, (u(p) = 3)

b = 〈000〉, b1 = 〈000〉, (u(p) = −2, 850) .

From these satisfying assignments we can construct T̂ for transitions from N . We show

an arbitrary value of p that induces each satisfying assignment in brackets. From these

satisfying assignments we get, e.g., T̂ (〈N, 100〉) = {{[〈B, 000〉]}} and T̂ (〈N, 000〉) =

{{[〈B, 001〉]}, {[〈B, 000〉]}}. Informally, the player A non-determinism in 〈N, 000〉 is re-

lated to our inability to decide whether Sem1
N(u)(p) = 2 when u(p) 6∈ {0, 1, 2}. Note that

a similar transition function (taking into account an additional predicate f) between B

and N can be found in the abstraction depicted in Figure 5.8 (page 88).

Probabilistic locations Perhaps surprisingly, due to Assumption 5.1, our abstraction

method for probabilistic locations is essentially the same as those for assignment locations.

That is, we use the same SATmethods and formulas. The only difference is that we extract

different transitions from the satisfiable instances. Suppose ℓ ∈ Lp and ℓ′ = SuccE (ℓ).

We can rewrite T̂ (〈ℓ,b〉) as follows:

T̂ (〈ℓ,b〉) =
{

{Join([ℓ′], αℓ′(a
1 · [Seml

ℓ(u)] + . . .+ ak · [Semk
ℓ (u)]))} | u ∈ α−1

ℓ (b)
}

=
{

{Join([ℓ′], (a1 · [αℓ′(Sem
1
ℓ(u))] + . . . ak · [αℓ′(Sem

k
ℓ (u))]))} | u ∈ α−1

ℓ (b)
}

.

Clearly, player C states in T̂ (〈ℓ,b〉) are of the form {Join([ℓ′], (a1 · [b1] + . . . ak · [bk]))}

for b1, . . . ,bk ∈ Bn. Moreover, we have that a player C state induced by b1, . . . ,bk is

in T̂ (〈ℓ,b〉) if and only if (5.1) holds. We use the procedure described for assignment

locations to find values of b,b1, . . . ,bk that satisfy (5.1) for some u ∈ UVar.
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Branching locations Remaining to consider are branching locations ℓ ∈ Lb. Let us

again expand the definition of T̂ (〈ℓ,b〉):

T̂ (〈ℓ,b〉) =
{

{Join([ℓ′], αℓ′([u])) | 〈ℓ, ℓ
′〉 ∈ E , Sem(〈ℓ, ℓ′〉)(u) = {[u]}} | u ∈ α−1

ℓ (b)
}

=
{

{[〈ℓ′, αℓ′(u)〉]} | u ∈ α−1
ℓ (b), 〈ℓ, ℓ′〉 ∈ E , Sem(〈ℓ, ℓ′〉)(u) = {[u]}

}

.

This equality holds because the conditionals labelling the outgoing edges of a branching

location never overlap (there is no player C non-determinism in branching locations). We

now know that player C states in T̂ (〈ℓ,b〉) are of the form 〈ℓ′,b〉 with ℓ′ ∈ E (ℓ) and

b ∈ Bn. Moreover, we know that {[〈ℓ′,b′〉]} ∈ T̂ (ℓ,b) if and only if:

αℓ(u) = b ∧ αℓ′(u) = b′ ∧ Sem(ℓ, ℓ′)(u) = {[u]} (5.2)

for some u ∈ UVar. Again, all values of b, b′ that satisfy (5.2) for some u ∈ UVar

can be found with an ALL-SAT procedure. We encode b, b′, u and u′ with Boolean

variables and encode αℓ , αℓ′ and the condition Sem(ℓ, ℓ′)(u) = {[u]} as constraints over

these variables. The condition Sem(ℓ, ℓ′)(u) = {[u]} essentially just corresponds to the

conditional expression, [e1], that labels this control-flow edge.

The price we pay for using SAT to construct game abstractions is that our ALL-SAT

procedure may find the same player A transition many times. This is something that

does not occur when SAT is used to compute existential abstractions of non-probabilistic

programs [LBC03, CKSY04]. We will illustrate the issue with an example:

Example 5.4. Consider a program with two Boolean variables x, y and a probabilistic

assignment x=coin(1,2) at a location ℓ ∈ Lp with ℓ′ = SuccE (ℓ). Using Assumption 5.1,

we model Sem(〈ℓ, ℓ′〉) with two functions Sem1
ℓ(u) = u[x 7→0] and Sem2

ℓ(u) = u[x 7→1] and two

real values a1 = a2 = 1
2
. Suppose we have a single predicate p1 = (x = y) which is enabled

at ℓ′. This induces the following SAT formula over variables b = 〈b1〉, b1 = 〈b11〉 and

b2 = 〈b21〉 and u ∈ UVar:

¬b1 ∧ b11 ⇔ (Sem1
ℓ(x) = Sem1

ℓ(y)) ∧ b21 ⇔ (Sem2
ℓ(x) = Sem2

ℓ(y)) .
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We remark that we have ¬b1 because p1 is not enabled at ℓ. Given the definition of Sem1
ℓ

and Sem2
ℓ the SAT formula can be rewritten to

¬b1 ∧ b11 ⇔ (0 = u(y)) ∧ b21 ⇔ (1 = u(y)) .

Satisfiable assignments to this SAT formula are b = 〈0〉, b1 = 〈0〉, b2 = 〈1〉 and b = 〈0〉,

b1 = 〈1〉, b2 = 〈0〉. The assignments correspond to the same player C state. That is, both

assignments induce the player C state {Join([ℓ′], 1
2
· [〈ℓ′, 0〉] + 1

2
· [〈ℓ′, 1〉])} in T̂ (〈ℓ, 0〉).

Through a syntactic analysis that establishes which variables are affected by the as-

signment under consideration, we are sometimes able to detect when there is no player A

non-determinism. In this case, instead of enumerating player A transitions via SAT,

we enumerate over player C non-determinism instead. This helps us deal with non-

deterministic assignments (like var=*) that do not affect the property under consideration.

5.4 Refining Predicate Abstractions

So far, our discussion on game abstractions of probabilistic programs has been restricted to

computing abstractions of programs under fixed sets of predicates and fixed localisation

mappings. In this section, we focus on practical methods to automatically find good

predicates and localisation mappings. That is, we will discuss how we can realise the

refinement step in Figure 5.1.

In this section, to aid our presentation, we focus on approximating Prob+(JP K) for

some probabilistic program P and, where necessary, we will indicate how the refinement

step would change if we were to consider Prob−, Cost− or Cost+, instead.

Suppose we have a probabilistic program P and we have constructed a predicate

abstraction α(JP K) induced by predicates Pred and a localisation mapping Map. We

need to refine the abstraction only if α(JP K) is imprecise. That is, if

UB(Prob+(α(JP K)))− LB(Prob+(α(JP K))) > 0 . (5.3)
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The task of our refinement step is to define a new abstraction function, α#, through

new predicates Pred#, and a new localisation mapping Map# : L × Pred# → B on P ’s

control-flow locations. To ensure we obtain a more precise abstraction than α(JP K), we

require Pred# ⊇ Pred and that, for every predicate pi ∈ Pred and control-flow location

ℓ ∈ L we have that Map(ℓ, pi)⇒Map#(ℓ, pi).

The only cause of imprecision in game abstractions is player A non-determinism.

Intuitively, the basic principle of our refinement step is therefore to eliminate player A

non-determinism.

Our discussion on the refinement step begins in Section 5.4.1 with identifying the

player A states in which we want to eliminate player A non-determinism. We then show

in Section 5.4.2 how to augment Pred# and Map# with predicates that eliminate this

choice. Finally, in Section 5.4.3, we discuss a heuristic for propagating predicates.

5.4.1 Refinable States

For presentational clarity, in this section, we will consider arbitrary4 game abstractions

Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 of MDPs M = 〈S, I, T, L,R〉 as obtained via an abstraction function

α : S → Ŝ ′, i.e. α(M) = Ĝ. We still focus on the property Prob+ and we will point out

where the discussion differs for Prob+, Cost− and Cost+.

We will define which states of Ĝ are refinable. Informally, a state, ŝ ∈ Ŝ, is said to

be refinable if restricting the choices made by player A in ŝ may influence the bounds

Prob−+(Ĝ, ŝ) or Prob++(Ĝ, ŝ). In refinable states, it may pay to eliminate player A

non-determinism. In contrast, in states that are not refinable, both the lower bound,

Prob−+(Ĝ, ŝ), and the upper bound, Prob++(Ĝ, ŝ), are attainable regardless of player A’s

strategy, so there is no indication that eliminating the choice between these player A

transitions in non-refinable states would improve the precision of the abstraction.

To aid the formalisation of refinable states, we define bounds on Prob+ for player C

4As opposed to just abstractions of probabilistic programs.
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states. That is, for every Λ̂ ∈ PDŜ we define Prob−+(Ĝ, Λ̂) and Prob++(Ĝ, Λ̂) as follows:

Prob−+(Ĝ, Λ̂) = sup
Λ̂→λ̂





∑

ŝ′∈Ŝ

(

λ̂(ŝ′) · Prob−+(Ĝ, ŝ′)
)



 ,

Prob++(Ĝ, Λ̂) = sup
Λ̂→λ̂





∑

ŝ′∈Ŝ

(

λ̂(ŝ′) · Prob++(Ĝ, ŝ′)
)



 .

Intuitively, Prob−+(Ĝ, Λ̂) is the best lower bound player A can achieve once he has tran-

sitioned to a player C state Λ̂ and, analogously, Prob++(Ĝ, Λ̂) is the best upper bound

player A can achieve once he has transitioned to Λ̂. The definition of these functions is

directly derived from the fixpoint characterisation of Prob+ in Section 3.26 and is the

only point of our discussion that would differ when one considers Prob−, Cost− or Cost+,

instead. We illustrate the definition of Prob−+(Ĝ, Λ̂) and Prob++(Ĝ, Λ̂) with an example:

Example 5.5. Consider the game Ĝ depicted in Figure 5.3 (page 71). For player A

states {[ℓ, 〈〉]} where ℓ ∈ {B,N, P1, T, E} we have that

Prob−+(Ĝ, 〈T, 〈〉〉) = Prob++(Ĝ, 〈T, 〈〉〉) = 1 and

Prob−+(Ĝ, 〈E, 〈〉〉) = Prob++(Ĝ, 〈E, 〈〉〉) = 0 .

and for ℓ ∈ {P1, N,B} we have Prob−+(Ĝ, 〈ℓ, 〈〉〉) = 0 and Prob++(Ĝ, 〈ℓ, 〈〉〉) = 1.

Moreover, for all player C states {[ℓ, 〈〉]} with ℓ ∈ {B,N, P1, T, E} we have

Prob−+(Ĝ, {[ℓ, 〈〉]}) = Prob−+(Ĝ, 〈ℓ, 〈〉〉) and

Prob++(Ĝ, {[ℓ, 〈〉]}) = Prob++(Ĝ, 〈ℓ, 〈〉〉) .

We can now define which player C states are minimal or maximal in T̂ (ŝ) in the sense

that, if player A is interested in achieving the lowest or highest bound, respectively, then

he must transition to such a player C state.5 For every state ŝ ∈ Ŝ we define minimal

5That is, unless ŝ is a target state. We exclude such states from our discussion — target states are never

refinable when considering probabilistic safety or liveness properties.
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player C states V −
ŝ ⊆ T̂ (ŝ) and maximal player C states V +

ŝ ⊆ T̂ (ŝ) as follows:

V −
ŝ = {Λ̂ ∈ T̂ (ŝ) | Prob−+(Ĝ, Λ̂) = Prob−+(Ĝ, ŝ)} ,

V +
ŝ = {Λ̂ ∈ T̂ (ŝ) | Prob++(Ĝ, Λ̂) = Prob++(Ĝ, ŝ)} .

The intuition is that, if player A wants to achieve the lower bound, he has to play with

a strategy that transitions to player C states in V −
ŝ . Analogously, for the upper bound,

player A has to transition to player C states in V +
ŝ .6 Note that the sets V −

ŝ and V +
ŝ are

guaranteed to be non-empty for predicate abstractions of probabilistic programs because,

by construction, these games are finitely branching for player A. However, the sets V −
ŝ

and V +
ŝ are generally not disjoint. In fact, in practice many states have that V −

ŝ = V +
ŝ .

We clarify the definitions of V −
ŝ and V +

ŝ by means of an example:

Example 5.6. Consider again the game Ĝ depicted in Figure 5.3. We have that

V −
〈P1,〈〉〉 = V +

〈P1,〈〉〉 = {[〈N, 〈〉〉]}. That is, a single player A transition is responsible for

achieving both the lower bound, 0, and the upper bound, 1, in 〈P1, 〈〉〉. The actual

cause of 〈P1, 〈〉〉’s unsatisfactory bounds is the player A choice in 〈B, 〈〉〉: we have that

V −
〈B,〈〉〉 = {{[〈P1, 〈〉〉]}, {[〈E, 〈〉〉]}} and V +

〈P1,〈〉〉 = {{[〈P1, 〈〉〉]}, {[〈T, 〈〉〉]}} — i.e. player A

has the power to choose between the lower and upper bound by transitioning to player C

states {[〈E, 〈〉〉]} or {[〈T, 〈〉〉]}, respectively.

This example shows that the fact that a player A state, ŝ, has unsatisfactory bounds

may not be caused by a choice available to player A in ŝ — it may instead be caused by

player A non-determinism in some player A state reachable from ŝ. This means that the

bounds in ŝ may not improve if we eliminate player A non-determinism in ŝ.

However, suppose player A transitions to a player C state in T̂ (ŝ) \ V −
ŝ . In this case,

by definition of V −
ŝ , the lower bound, Prob−+(Ĝ, ŝ), can no longer be attained. Because

V −
ŝ is necessarily non-empty this means that the choice made by player A in ŝ is directly

relevant to the bounds in ŝ. That is, when T̂ (ŝ)\V −
ŝ is non-empty, player A has the power

to choose between potentially achieving the lower bound (by transitioning to a player C

6However, unlike the lower bound, for the upper bound not every player A strategy that picks only maximal
player C states actually achieves the upper bound.
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state in V −
ŝ ) and definitely not achieving the lower bound (by transitioning to a player C

state in T̂ (ŝ) \V −
ŝ ). If T̂ (ŝ) \V −

ŝ is empty, however, then player A has no such power and

the lower bound can be achieved regardless of player A’s choice in ŝ.

An analogous argument holds for the upper bound: if and only if the set T̂ (ŝ) \V +
ŝ is

non-empty, player A can choose between player C states in T̂ (ŝ) \ V +
ŝ and player C states

in V +
ŝ and hence player A can make the upper bound Prob++(Ĝ, ŝ) unattainable.

Our definition of a refinable state follows naturally from these observations: we call a

state ŝ refinable if and only if either T̂ (ŝ) \ V −
ŝ is non-empty or T̂ (ŝ) \ V +

ŝ is non-empty.

Example 5.7. In Fig. 5.3 the state 〈B, 〈〉〉 is refinable as T̂ (〈B, 〈〉〉)\V −
〈B,〈〉〉 = {{[〈T, 〈〉〉]}}

and T̂ (〈B, 〈〉〉) \ V +
〈B,〈〉〉 = {{[〈E, 〈〉〉]}}. Another refinable state is 〈B, 〈0〉〉 in Fig. 5.2.

Observe that a sufficient condition under which a state ŝ is refinable is that V −
ŝ 6= V +

ŝ .

In [KKNP10] it is shown that a state satisfying this condition always exists in games for

which (5.3) holds.7 Because our propositional and reward labelling differs from [KKNP10],

this result is subject to the fact the L and R are exact for every state — this is the case

for all predicate abstractions of all probabilistic programs by construction.

Refinable state selection In practice, a given game abstraction, α(JP K), may feature

many refinable states and, considering we are only refining one of them, we need to ensure

we make an informed choice as to which of these states we will use in our refinement step.

We conclude this section by discussing two heuristics for selecting a refinable state.

Our first heuristic selects what we call a coarsest refinable state in α(JP K). A coars-

est refinable state of α(JP K) is such that the difference in lower and upper bound, i.e.

Prob++(α(JP K), 〈ℓ,b〉)−Prob−+(α(JP K, 〈ℓ,b〉), is at least as great as the difference in any

other refinable state of α(JP K). The idea of refining a coarsest refinable state is that we

refine α(JP K) where we are most likely to make an impact. The intuition is that, if a

refinable state already has relatively tight bounds, then refining it is less likely to help

our overall approximation.

In contrast, our second heuristic selects what we call a nearest refinable state in

7This result, i.e. [KKNP10, Lemma 6], should be accredited to Gethin Norman and David Parker.
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α(JP K). A nearest refinable state 〈ℓ,b〉 of α(JP K) is such that the shortest play in α(JP K)

from an initial state to 〈ℓ,b〉 is at least as short as the shortest such play for any other

refinable state of α(JP K). The idea of refining the nearest refinable state is that we refine

α(JP K) as close to the initial states as possible in the hope that a refinement of 〈ℓ,b〉 has

a better chance of affecting the bounds at initial states.

5.4.2 Predicate Discovery

Let M, Ĝ and α be as defined in the previous section. In this section, we discuss how

to implement the refinement step by defining a new abstraction function α# through a

predicate set Pred# and localisation map Map#. We first look how we could implement

the refinement step if we could modify α# directly.

Following the discussion on refinable states in the previous section a sensible refine-

ment strategy is to define α# in such a way that every refinable state ŝ ∈ Ŝ of α(M) is

“split” into states ŝmin, ŝmax, ŝboth and ŝnone which concretise to sets of states of the MDP

M corresponding to player A transitions from ŝ to player C states in V −
ŝ \ V

+
ŝ , V −

ŝ \ V
+
ŝ ,

V −
ŝ ∩ V

+
ŝ and T̂ (ŝ) \ (V −

ŝ ∪ V
+
ŝ ), respectively. This is, in fact, the value-based refinement

strategy proposed in [KKNP10].8

Unfortunately, there are two problems in realising an analogous refinement step for

predicate abstractions of probabilistic programs. Firstly, adjustments to Pred# andMap#

are not local to a refinable state — every state with the same control-flow location is

affected. We found that it is not practical to refine every refinable state because too

many predicates are introduced too quickly. This problem is easily solved by refining only

one refinable state, 〈ℓ,b〉, of an abstracted program, α(JP K), in every refinement step.

Our second issue is that the proposed definition of α# is difficult to realise through

adaptations of Pred# and Map#. More specifically, we have not found a good way to find

predicates that correspond with sets of player C states such as V −
〈ℓ,b〉 or V

+
〈ℓ,b〉. However,

we can find predicates that eliminate the choice between any two player A transitions. We

therefore adopt a scheme in which we first select a refinable state, 〈ℓ,b〉, and then pick

8This refinement strategy should be accredited to David Parker and Gethin Norman.
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two transitions, 〈ℓ,b〉 → Λ̂− and 〈ℓ,b〉 → Λ̂+. We ensure that these transitions satisfy

at least one of the following conditions:

Λ̂− ∈ V −
〈ℓ,b〉 and Λ̂+ ∈ (T̂ (〈ℓ,b〉) \ V −

〈ℓ,b〉) or

Λ̂+ ∈ V +
〈ℓ,b〉 and Λ̂− ∈ (T̂ (〈ℓ,b〉) \ V +

〈ℓ,b〉) .

Here, T̂ is α(JP K)’s transition function. We give preference to refinable states and player

A transitions that satisfy both conditions. We will eliminate the choice between the two

transitions from 〈ℓ,b〉. The hope is that eliminating the choice between a particular

player A transition in V −
〈ℓ,b〉 and a particular player A transition in T̂ (〈ℓ,b〉) \ V −

〈ℓ,b〉, say,

actually eliminates the choice between all player A transitions between these sets of player

C states. We note that, by the definition of refinable states, it is always possible to choose

〈ℓ,b〉 → Λ̂− and 〈ℓ,b〉 → Λ̂+ as described.

In the remainder of this section we explain how to discover new predicates given

a refinable state 〈ℓ,b〉 and a player A choice 〈ℓ,b〉 → Λ̂− and 〈ℓ,b〉 → Λ̂+ such that

Λ̂− 6= Λ̂+. To eliminate this choice, we will construct an improved set of predicates Pred#

and a new localisation mapping Map#. For presentational purposes, we define Pred#

and Map# incrementally through a procedure Add. That is, we let Pred# and Map#

be Pred and Map initially and, whenever we see fit to enable a predicate p : UVar in a

location ℓ ∈ L , we will call Add(ℓ, p) to adapt Pred# and Map# accordingly. A call to

Add(ℓ, p) adds predicate p to Pred# and sets Map#(ℓ, p) to true if this is necessary.9

We discuss our predicate discovery mechanism separately for each location type. We

will explain our refinement method by refining the abstraction in Figure 5.3, and hence,

as the only refinable state in this game has a branching location, this is where we start.

9In reality we extract the Boolean atoms from p’s propositional structure and add non-trivial such atoms to
Pred# and Map#.
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Branching locations Suppose ℓ ∈ Lb is a branching location. In Section 5.3.2, we

learnt that Λ̂− and Λ̂+ must be of the form

Λ̂− = {[〈ℓ−,b−〉]} and

Λ̂+ = {[〈ℓ+,b+〉]}

for some target locations ℓ−, ℓ+ ∈ E (ℓ) and some b−,b+ ∈ Bn, respectively. Because of

the way we pick Λ̂− and Λ̂+, we must have that either ℓ− 6= ℓ+ or b− 6= b+. If ℓ− 6= ℓ−,

then the player A non-determinism between Λ̂− and Λ̂+ is caused in part by our inability

to establish in 〈ℓ,b〉 which conditional branch is satisfied. Informally, in this case, the

refinement step is simply to add one of the conditionals labelling the control-flow edge

〈ℓ, ℓ−〉 or 〈ℓ, ℓ+〉. Formally, we take the weakest precondition of one of the branches, e.g.

WP(Sem(〈ℓ, ℓ−〉), tt), and call Add(ℓ,WP(Sem(〈ℓ, ℓ−〉), tt)) to update α# and Map#.

We illustrate this with an example:

Example 5.8. Consider the abstraction α(JP K) depicted in Figure 5.3 (page 71) of the

program depicted in Figure 4.7 (page 59). In Example 5.7, we have established that 〈B, 〈〉〉

is a refinable state of this game with

V −
〈B,〈〉〉 = {{[〈E, 〈〉〉]}, {[〈N, 〈〉〉]}} and

V +
〈B,〈〉〉 = {{[〈T, 〈〉〉]}, {[〈N, 〈〉〉]}} .

We pick Λ̂− to be {[〈T, 〈〉〉]} and Λ̂+ to be {[〈E, 〈〉〉]} and observe that the control-flow

locations in Λ̂− and Λ̂+ differ. The control-flow edge 〈B, T 〉 is labelled with a conditional,

[f], and, as WP(Sem(〈B, T 〉), tt) = f, we call Add(B, f) to update Pred# and Map#.

The refined abstraction α#(JP K) is depicted in Figure 5.4.

The refinement we described was conditional on the fact that ℓ− 6= ℓ+. We employ a

different approach to refinement when ℓ− = ℓ+. If this is the case, since Λ̂− 6= Λ̂+, it must

be that b− 6= b+. This implies that for some predicate, pi ∈ Pred, the values b−i and b+i

differ. In this instance, the player A choice between Λ̂− and Λ̂+ is caused in part by our
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Figure 5.4: Predicate abstraction of Figure 4.7 with a predi-
cate p1 = (f) where Map(ℓ, p1) holds only when ℓ ∈ {B,N}.

inability to establish whether pi holds in 〈ℓ,b〉 — we therefore simply call Add(ℓ, pi).

This kind of refinement is needed in the refinable state of Figure 5.7 (page 87).

Assignment locations Suppose ℓ ∈ Ln is an assignment location with ℓ′ = SuccE (ℓ)

and suppose that Assumption 5.1 is satisfied through functions Sem1
ℓ , . . . , Sem

k
ℓ . In Sec-

tion 5.3.2 we learnt that

Λ̂− = {[ℓ′,b−,j] | j ∈ [1, k]} and

Λ̂+ = {[ℓ′,b+,j] | j ∈ [1, k]}

for some b−,1, . . . ,b−,k,b+,1, . . . ,b+,k ∈ Bn. Now, since Λ̂− 6= Λ̂+, there must be some

predicate pi ∈ Pred and some resolution of non-deterministic choice j ∈ [1, k] such that
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b−,j
i 6= b+,j

i .10 We therefore add the weakest precondition of pi under Sem
j
ℓ to ℓ — i.e. we

call Add(ℓ,WP(Semj
ℓ , pi)). As long as we can define Semj

ℓ syntactically then computing

this weakest precondition is a cheap, syntactical operation. This is the case for all non-

deterministic (and probabilistic) assignments discussed in this thesis.

Example 5.9. Consider the abstraction α(JP K) depicted in Figure 5.4 of the program

P described in Figure 4.7 (page 59). In Example 5.7, we established that 〈N, 〈∗〉〉 is a

refinable state of this game and that V −
〈N,〈∗〉〉 = {{〈B, 〈0〉〉}} and V −

〈N,〈∗〉〉 = {{〈B, 〈1〉〉}}.

Hence, we can only pick Λ̂− to be {[〈B, 〈0〉〉]} and Λ̂+ to be {[〈B, 〈1〉〉]}. Let Sem1
N be the

function satisfying Assumption 5.1 for N . Evidently, the abstract states disagree on the

predicate f. The weakest precondition WP(Sem1
N , f) is f as the variable f is not changed

in N . We call Add(N, f) to update Pred# and Map#. The refined abstraction α#(JP K)

is depicted in Figure 5.2.

Probabilistic locations Similarly to our discussion on abstraction in Section 5.3.2,

the refinement procedure for probabilistic locations ℓ ∈ Lp is analogous to the refinement

procedure for assignment locations. That is, we know Λ̂− and Λ̂+ are

Λ̂− = {Join([ℓ′], (a1 · [b−,1] + . . .+ aj · [b−,j])} and

Λ̂+ = {Join([ℓ′], (a1 · [b+,1] + . . .+ aj · [b+,j])}

where ℓ′ is SuccE (ℓ) and b−,1, . . . ,b−,k,b+,1, . . . ,b+,k ∈ Bn. Like for assignment locations

we refine based on a predicate pi ∈ Pred for which some resolution of probabilistic choice

j ∈ [1, k] is such that b−,j
i 6= b+,j

i via the weakest precondition of pi under Sem
j
ℓ .

5.4.3 Predicate Propagation

The refinement step, as explained in Section 5.4.2, adds a single predicate to a single

control-flow location. In practice, this means that the number of abstraction-refinement

steps that is required, and hence the cost of our overall approach, is exorbitantly high.

10We can find this pi because we do not actually reduce Λ̂− and Λ̂+ to sets — we remember which branch
abstracts to which abstract state.
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procedure TraceAdd(〈ℓ,b〉, p)

begin

let π̂ be a shortest play from

an initial state to 〈ℓ,b〉

call TraceAddRec(〈ℓ,b〉, p, π̂)

end

procedure TraceAddRec(ℓ, p, π̂)

begin

call Add(ℓ, p)

if |π̂| > 0

let π̂′ be a prefix of π̂ of length |π̂| − 1

that ends in a player A state

let 〈ℓ′,b′〉 be the last state of π̂′

let p′ be WP(Sem(〈ℓ′, ℓ〉), p)

call TraceAddRec(ℓ′, p′, π̂′)

endif

end

Figure 5.5: TraceAdd: A procedure for predi-
cate propagation via a play of α(JP K).

procedure PrecAdd(〈ℓ,b〉, p)

begin

let D be ∅

call PrecAddRec(〈ℓ,b〉, p,D)

end

procedure PrecAddRec(ℓ, p,D)

begin

if ℓ 6∈ D

call Add(ℓ, p)

let D′ be D ∪ {ℓ}

for each ℓ′ ∈ E −1(ℓ)

let p′ be WP(Sem(〈ℓ′, ℓ〉), p)

call PrecAddRec(ℓ′, p′, D′)

endfor

endif

end white

Figure 5.6: PrecAdd: A procedure for predi-
cate propagation via the control-flow graph.

However, there is scope to improve our refinement step. Consider again the program

depicted in Figure 4.7 (page 59) and its game-based predicate abstraction in Figure 5.3

(page 71). In Example 5.8 we discussed how our refinement step adds a predicate f to

control-flow location B resulting in the game abstraction depicted in Figure 5.4 (page

84). Although this refined game is a little more precise, effectively we have pushed the

player A non-determinism that used to be in 〈B, 〈〉〉 in Figure 5.3 to 〈N, 〈∗〉〉 in Figure 5.2.

Indeed, Example 5.9 shows how we end up propagating the predicate f to N .

We could have anticipated that the player A choice eliminated in 〈B, 〈〉〉 would be

pushed back to 〈N, 〈∗〉〉; after all, we have no means of knowing whether f holds in

transitions from 〈N, 〈∗〉〉. In this section we will propose two methods, TraceAdd and

PrecAdd, for automatically propagating predicates that are found by the basic refine-

ment step. These procedures serve as a wrapper around Add. That is, when we have

some refinable state 〈ℓ,b〉 ∈ L × UVar and some predicate p : UVar → B for which
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Figure 5.7: A predicate abstraction of the program in Figure 4.7 with pred-
icates p1 = (f), p2 = (p==0), p3 = (p==1) such that Map(ℓ, pi) holds only if
i = 1 and ℓ ∈ {B,N}, i = 2 and ℓ ∈ {B,P1, N} or i = 3 and ℓ ∈ {P1, N}.

we call Add(ℓ, p,) in Section 5.4.2 then, in this section, we call TraceAdd(〈ℓ,b〉, p) or

PrecAdd(〈ℓ,b〉, p) instead. Our first procedure, TraceAdd, is depicted in Figure 5.5.

Intuitively, this procedure attempts to ensure that the player A non-determinism is elim-

inated completely by propagating predicates back to an initial state. It does this by

first selecting an arbitrary shortest play π̂ from an initial state in α(JP K) to 〈ℓ,b〉 and by

traversing this play from the end to the beginning. Our second procedure, PrecAdd, de-

picted in Figure 5.6, simply propagates predicates backwards over the control-flow graph.

It only refines each location once to ensure that the call to PrecAdd terminates.

We note that the weakest preconditions we take in these procedures are normal weak-

est preconditions in Dijkstra’s sense (see Section 4.3). However, unlike in our basic re-

finement steps in Section 5.4.2, in TraceAdd and PrecAdd we take the weakest pre-
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Figure 5.8: A predicate abstraction Ĝ of the program in Figure 4.7 with Prob+(Ĝ) = 〈 19
100 ,

19
100 〉 and

with α being induced by predicates p1 = (f), p2 = (p==0), p3 = (p==1) and p4 = (p==2) such that
Map(ℓ, pi) holds only if i = 1 and ℓ ∈ {B,N} or if i ∈ [2, 4] and ℓ ∈ {B,P1, N}.

condition of arbitrary program statements, potentially including assignments that have

non-deterministic or probabilistic semantics. For such assignments we are not always able

to compute exact weakest precondition. This is because a weakest precondition of, say,

a non-deterministic assignment is existentially quantified and, unfortunately, our method

for computing abstractions requires predicates to be free of quantifiers. Moreover, there

is no known practical procedure that can eliminate these quantifiers when modelling the

semantics of programs in a bit-vector logic [Kro10a]. Therefore, as do non-probabilistic

software model checkers,11 we over-approximate the existentially quantified predicate by

removing the existential quantifier as well as any Boolean subformulas that depend on it.

For example, suppose we are interested in computing the weakest precondition of a

11Of course, many software model checkers use interpolant-based refinement instead, avoiding the need to take
weakest preconditions altogether.
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predicate p = (var==5 ∧ y < 100) under an assignment var=*. Formally, this weakest

precondition is

∃var ∈ Type(var) : (var==5 ∧ y < 100) (5.4)

and, with the quantifier (i.e. ∃var ∈ Type(var)) and the dependent subformula (i.e.

var==5) removed, the quantifier-free over-approximation of (5.4) is y < 100.

An analogous treatment is necessary for assignments with probabilistic semantics.

Formally, instead of an existential quantifier, however, the proper mathematical weakest

precondition of these assignments involves a summation [MM05]. In practice, though, the

over-approximation is done in exactly the same fashion.

We conclude our discussion on refinement with another example.

Example 5.10. Consider again the refinement step performed in Example 5.8 on the

abstraction in Figure 5.3 (page 71) of the program in Figure 4.7 (page 59). We will demon-

strate what happens if we call TraceAdd(〈B, 〈〉〉, f) or PrecAdd(〈B, 〈〉〉, f) instead of

Add(B, f). The only shortest play from 〈I, 〈〉〉 to 〈B, 〈〉〉 is

π̂ = 〈I, 〈〉〉 → {[〈B, 〈〉〉]} → [〈B, 〈〉〉]→ 〈B, 〈〉〉 .

In the first call of TraceAddRec we end up calling Add(B, f). However, taking the

weakest precondition of f over the control-flow edge 〈I, B〉 results in a trivial predicate

due to the assignment f=0. If we were to call PrecAdd(〈B, 〈〉〉, f) instead, then the

same refinement would be made in B but we would also propagate the predicate back

over the program’s loop and call Add(N, f). However, for the control-flow edge 〈P1, N〉

labelled with an assignment f = coin(1, 10), as WP(f=θ, f) is θ, the predicate f does not

get propagated. For this example, PrecAdd has performed both the refinement steps of

Example 5.8 and 5.9, resulting in the abstraction depicted in Figure 5.2.

If we now refine the abstraction in Figure 5.2 via the refinable state 〈B, 〈0〉〉 and

PrecAdd, then we would call

Add(B,¬f ∧ (p==0)), Add(N,¬f ∧ (p==1)) and Add(P1, (p==1))



90 Abstraction Refinement for Probabilistic Software

which, in practice, results in enabling predicate p==0 in B and predicate p==1 in N and

P1. The resulting abstraction is depicted in Figure 5.7. Note that due to this refinement

step the approximation of Prob+(JP K) has improved from an approximation 〈0, 1〉 to the

approximation 〈 1
10
, 1〉. Through one further refinement step with PrecAdd, we get the

abstraction depicted in Figure 5.8 which yields a precise approximation 〈 19
100

, 19
100
〉.

5.5 Experimental Results & Extensions

To validate the approach described in this chapter we have implemented a model checker

for ANSI-C programs. This model checker, called QPROVER, is described in Appendix B.1.

We also discuss extensions of our framework, including extensions that we call “predicate

initialisation” and “reachable state restriction”.

5.5.1 Experiments & Analysis

We have evaluated our implementation against a wide range of case studies and properties

(see Appendix C). Most relevant are the network admin utility (PING), a file transfer

protocol client (TFTP) and a network time protocol client (NTP). These programs are

not manually crafted models — they are actual code from utilities employed in many

Linux distributions. Each program is approximately 1,000 lines of ANSI-C code featuring

functions, arrays, pointers, bit-level arithmetic, etc. We have manually adapted these

programs with assumptions about the failure rate of kernel calls to IO functions and

assumptions on user input (we assume, say, that the user provides a valid hostname).

We also adapted parts of the source code that our tool found problematic, but only on

parts of the code that do not affect the properties we consider.12 We also consider an

implementation of Freivald’s algorithm (FREI) and a sequentialised model of Herman’s

self-stabilisation protocol (HERM) from APEX [LMOW08]. Finally, we consider various

smaller programs from the probabilistic verification literature, including pGCL case stud-

ies martingale (MGALE), amplification (AMP) and faulty factorial (FAC) from [MM05],

12 Most notably we removed calls to memset. When inlined, these calls introduce loops that initialise data
structures. To prove these loops terminate is a significant burden for our method.
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and sequentialised, ANSI-C versions of the bounded retransmission protocol (BRP), IPv4

ZeroConf protocol (ZERO) and the consensus protocol (CONS) from PRISM [HKNP06].

All experiments were run on an Intel Core Duo 2 7200 with 2GB RAM with Fedora

8. We use a timeout setting of 600 seconds for every experiment and we terminate the

abstraction-refinement loop whenever absolute error is less than or equal to 10−4. All

timings are reported in seconds. In Figure 5.9, we present performance results of the

available refinement settings. Available settings are the refinable state selection method

(Coarsest/Nearest) and the predicate propagation method (TraceAdd/PrecAdd).

In Figure 5.12, for each property, we give detailed statistics for the best configuration of

each property.13 We show more details for two specific runs PING D (3) in Figure 5.10

and NTP A (6) in Figure 5.11.

We remark that the model checker we use to verify game abstractions is an adaptation

of the symbolic verification back-end for MDPs in PRISM [Par02, HKNP06]. Due to the

verification algorithms used by this model checker the bounds shown in Figure 5.9 are

numerical approximations of the actual bounds.

Applicability Firstly, we find it very promising that we can successfully compute quan-

titative properties of many probabilistic programs with our approach. In particular, we

know of no verification tool that is capable of analysing probabilistic properties of pro-

grams like PING, TFTP and NTP. All prominent probabilistic verification tools, including

PRISM [HKNP06], MRMC [KZH+09], RAPTURE [JDL02], PASS [HWZ08] and APEX

[LMOW08], target models in simpler modelling languages and therefore cannot handle

the software-specific constructs that appear in these programs. In addition to this, the

state space of these programs is far beyond the capabilities of state-of-the-art probabilistic

model checkers for finite-state systems such as PRISM [HKNP06] or MRMC [KZH+09].

Overall performance From Figure 5.12 we see that most time is spent computing

abstractions or model checking. It is not surprising that model checking is relatively

expensive in our setting. We have to employ probabilistic model checking algorithms

13The runs we show are Coarsest/TraceAdd for PING A, B, NTP B,C, FREI and MGALE B, Coars-

est/PrecAdd for MGALE A, AMP A, BRP B and CONS B and Nearest/PrecAdd for the remaining runs.
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TraceAdd PrecAdd
Coarsest Nearest Coarsest Nearest
Itr Pre Avg Time Itr Pre Avg Time Itr Pre Avg Time Itr Pre Avg Time Result

p
in
g a 1 20 32 5.9 26.3 24 31 5.3 34.0 – – – >600 – – – >600 [0.0792, 0.0792]

b 1 1 10 2.3 0.82 1 10 2.3 0.83 1 10 2.3 0.82 1 10 2.3 0.81 [0, 0]
d 1 22 45 9.8 351 24 32 4.9 24.2 12 27 5.7 6.75 13 32 6.2 6.89 [0.9108, 0.9108]

2 28 43 10.9 520 – – – >600 – – – >600 18 38 8.3 22.2 [0.837936, 0.837936]
3 – – – >600 – – – >600 – – – >600 22 49 11.6 460 [0.770901, 0.770901]

c 0 25 30 7.3 81.5 23 22 4.2 23.9 11 15 2.8 3.95 11 15 2.8 3.82 [1.07609, 1.07609]

t
f
t
p a – – – >600 – – – >600 25 37 7.4 67.5 25 37 7.4 67.1 [0.993953, 0.993953]

b – – – >600 – – – >600 26 53 9.2 147 27 53 9.2 87.3 [0.987943, 0.987943]
c – – – >600 – – – >600 23 38 6.9 59.4 22 37 6.9 53.4 [1.77777, 1.77777]

n
t
p a 1 – – – >600 – – – >600 – – – >600 16 27 2.9 71.4 [0.08, 0.08]

2 – – – >600 – – – >600 – – – >600 22 51 4.7 149 [0.1536, 0.1536]
4 – – – >600 – – – >600 – – – >600 24 55 6.6 260 [0.283607, 0.283607]
6 – – – >600 – – – >600 – – – >600 26 59 8.5 421 [0.393645, 0.393645]

b 1 14 34 0.6 10.5 15 34 0.6 12.0 20 48 4.7 77.4 18 31 3.0 13.3 [0.92, 0.92]
2 17 37 0.8 22.3 19 37 0.8 26.2 21 50 5.6 131 20 49 4.7 53.1 [0.9936, 0.9936]
4 18 39 0.9 29.0 19 39 0.9 31.2 22 52 6.6 207 22 53 6.6 106 [0.999959,1]
6 18 39 0.9 30.2 19 39 0.9 30.9 22 52 6.6 205 23 55 7.5 148 [0.999959,1]

c 1 17 34 0.6 21.1 17 34 0.6 21.0 14 24 2.9 14.0 14 24 2.9 14.1 [1, 1]
2 20 37 0.8 36.5 21 37 0.8 39.4 19 47 4.7 61.7 19 47 4.7 61.4 [1.08 , 1.08 ]
4 21 39 0.9 44.5 21 39 0.9 45.2 21 51 6.6 117 21 51 6.6 117 [1.08691, 1.086955]
6 21 39 0.9 45.7 21 39 0.9 44.6 23 55 8.5 215 23 55 8.5 215 [1.08691, 1.086955]

f
r
e
i a 1 3 20 3.0 2.92 3 20 3.0 2.82 3 20 3.0 3.70 3 20 3.0 2.73 [0.5, 0.5]

2 3 20 3.0 5.41 4 21 3.1 7.83 3 20 3.0 5.29 4 21 3.1 7.29 [0.5, 0.5]
3 3 20 3.0 559 – – – >600 – – – >600 – – – >600 [0.25, 0.25]

b 1 3 20 3.0 4.22 3 20 3.0 2.78 3 20 3.0 2.74 3 20 3.0 2.70 [0.25, 0.25]
2 3 20 3.0 5.48 5 23 3.1 9.04 3 20 3.0 5.32 5 23 3.1 8.95 [0.25, 0.25]
3 3 20 3.0 568 – – – >600 – – – >600 – – – >600 [0.25, 0.25]

h
e
r
m

a 3 11 28 8.6 6.38 16 26 7.5 9.18 9 17 6.3 1.64 8 16 5.7 1.38 [1, 1]
5 17 49 16.2 75.2 35 37 13.0 172 14 23 8.8 9.75 12 22 8.2 8.56 [1, 1]
7 – – – >600 – – – >600 20 29 11.7 76.6 18 28 11.2 74.1 [1, 1]

c 3 1 0 0.0 0.12 1 0 0.0 0.04 1 0 0.0 0.04 1 0 0.0 0.04 [0, 0]
5 1 0 0.0 0.12 1 0 0.0 0.04 1 0 0.0 0.06 1 0 0.0 0.05 [0, 0]
7 1 0 0.0 0.04 1 0 0.0 0.08 1 0 0.0 0.14 1 0 0.0 0.04 [0, 0]

m
g
a
l
e a 10 8 19 4.0 30.2 8 19 4.0 29.2 6 17 3.3 1.95 6 17 3.3 2.15 [0.125, 0.125]

100 11 28 5.8 108 11 28 5.8 108 9 26 5.2 10.7 9 26 5.2 12.2 [0.015625, 0.015625]
1,000 – – – >600 – – – >600 12 35 7.1 186 12 35 7.1 187 [0.00195312, 0.00195312]

b 10 3 3 0.4 0.07 3 3 0.4 0.07 5 13 2.5 0.36 5 13 2.5 0.56 [0.999998, 1]
100 3 3 0.4 0.07 3 3 0.4 0.07 8 22 4.4 7.79 8 22 4.4 6.71 [0.999998, 1]

1,000 3 3 0.4 0.07 3 3 0.4 0.07 11 31 6.2 221 11 31 6.2 223 [0.999998, 1]

a
m
p a 20 42 24 13.9 7.31 44 24 13.9 7.07 24 25 14.2 2.02 24 25 14.2 2.16 [0.996829, 0.996829]

40 82 44 26.4 39.7 84 44 26.4 37.7 44 45 26.7 9.18 44 45 26.7 9.50 [0.99999, 0.99999]
60 122 64 38.9 143 124 64 38.9 143 64 65 39.2 26.2 64 65 39.2 27.7 [1, 1]

c 20 22 24 12.7 1.98 24 24 12.6 1.90 24 25 14.2 1.82 24 25 14.2 1.81 [0.00317121, 0.00317121]
40 34 36 19.4 6.99 36 36 19.4 5.69 36 37 21.7 5.30 36 37 21.7 5.17 [0, 7.53393e-05]
60 34 36 19.4 5.56 36 36 19.4 5.73 36 37 21.7 6.32 36 37 21.7 5.25 [0, 7.53393e-05]

fa
c a 20 43 22 4.5 5.40 43 22 4.5 4.90 23 23 4.5 2.98 23 23 4.5 2.82 [1, 1]

40 83 42 8.8 33.4 83 42 8.8 35.1 43 43 8.8 19.4 43 43 8.8 18.4 [1, 1]
60 123 62 13.1 121 123 62 13.1 133 63 63 13.1 76.2 63 63 13.1 73.9 [1, 1]

b 20 43 22 5.1 13.1 43 22 5.1 14.5 23 23 5.1 9.38 23 23 5.1 7.84 [20.202, 20.202]
40 83 42 9.9 107 83 42 9.9 119 43 43 9.9 64.7 43 43 9.9 63.9 [40.404, 40.404]
60 123 62 14.7 463 123 62 14.7 481 63 63 14.8 274 63 63 14.8 257 [60.606, 60.606]

b
r
p a 16 5 9 1.9 0.30 6 8 1.7 0.34 6 10 4.1 0.52 5 8 3.3 0.38 [0, 8e-06]

32 5 9 1.9 0.30 6 8 1.7 0.34 6 10 4.1 0.52 5 8 3.3 0.40 [0, 8e-06]
64 5 9 1.9 0.30 6 8 1.7 0.35 6 10 4.1 0.51 5 8 3.3 0.38 [0, 8e-06]

b 16 – – – >600 – – – >600 9 9 3.7 0.90 12 14 6.4 1.64 [0, 2.64636e-05]
32 – – – >600 – – – >600 9 9 3.7 0.88 12 14 6.4 1.66 [0, 2.64636e-05]
64 – – – >600 – – – >600 9 9 3.7 0.87 12 14 6.4 1.66 [0, 2.64636e-05]

z
e
r
o a 10 – – – >600 – – – >600 15 16 7.2 7.52 15 16 7.2 7.26 [0.908688, 0.908688]

30 – – – >600 – – – >600 35 36 16.5 66.7 35 36 16.5 64.7 [0.92405, 0.92405]
50 – – – >600 – – – >600 55 56 25.9 245 55 56 25.9 238 [0.937004, 0.937004]

b 10 47 15 6.4 19.8 48 15 6.4 29.7 17 16 7.1 6.09 17 16 7.1 5.11 [10.5099, 10.5099]
30 107 35 15.6 339 109 35 15.6 572 37 36 16.6 88.8 37 36 16.6 84.5 [34.5093, 34.5093]
50 – – – >600 – – – >600 57 56 26.2 444 57 56 26.2 443 [62.9048, 62.9048]

c
o
n
s a 2 32 38 13.4 292 36 31 10.2 74.4 26 42 12.6 39.6 26 39 11.7 43.9 [0.999996, 0.999998]

3 32 39 13.5 134 41 33 11.9 149 30 44 14.6 78.3 28 41 13.5 89.8 [0.999991, 0.999999]
4 39 39 15.2 541 47 35 13.4 303 33 47 16.5 165 29 43 15.2 125 [0.999984, 0.999995]

b 2 40 38 12.9 255 39 32 11.6 131 25 31 10.8 44.7 25 33 10.8 50.7 [0.499999, 0.499999]
3 42 38 13.9 348 41 34 13.1 251 27 33 12.6 114 27 35 12.6 128 [0.499999, 0.499999]
4 – – – >600 – – – >600 29 35 14.4 216 29 37 14.4 257 [0.5, 0.5]

Figure 5.9: We give, for each combination of Coarsest/Nearest and TraceAdd/PrecAdd, the
number of abstraction-refinement iterations (Itr), the total number of predicates (Pre), the average
number of predicates per control-flow location (Avg) and the total time required for verification (Time).
A time of “>600” indicates a timeout. We also show the final bounds (Result). Because each configu-
ration may yield different bounds we depict the bounds of the leftmost configuration that terminates.
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Figure 5.10: Statistics of the PING D (3) ex-
periment using Nearest and PrecAdd.
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Figure 5.11: Statistics of the NTP A (6) ex-
periment using Nearest and PrecAdd.

twice per iteration — once for each bound. However, in practice, we do observe that

the model checking time is relatively consistent between different abstraction-refinement

iterations, whereas the abstraction time is quite unpredictable (see Figure 5.10 and 5.11).

This is because we compute abstractions incrementally — if the localisation mapping is

not updated for some parts of the control-flow then we do not recompute the abstraction

here.

Properties for which abstraction is very expensive include PING D, FREI and MGALE.

For PING D we will see (in Section 5.5.3) that a lot of time is wasted computing the transi-

tion function for abstract states that are unreachable. For FREI, abstraction is expensive

because there is a non-deterministic choice for which the number of functions required to

satisfy Assumption 5.1 is exponential in the parameter value. MGALE is expensive to ab-

stract because it contains non-linear arithmetic. Although the same is true for FAC, say,

the problem for MGALE is that the non-linear arithmetic is also present in the predicates,

making the SAT instances more challenging to solve.

Game abstractions An observation we make from Figure 5.12 is that the number of

player A transitions is usually not much higher than the number of player A states in

the final abstraction. This means that the final game abstractions do not contain much

player A non-determinism and, as such, are not far removed from being probabilistically

bisimular to the program. In fact, the amount of player A non-determinism is typically

quite limited throughout the abstraction-refinement loop (see Figure 5.10 and 5.11).
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Itr Pre Avg Sta Tra Abs Chk Ref Time

p
in
g a 1 20 32 5.9 588 657 23% 61% 14% 26.3

b 1 1 10 2.3 902 1039 46% 11% 0% 0.81
d 1 13 32 6.2 359 375 32% 46% 16% 6.89

2 18 38 8.3 524 536 50% 36% 11% 22.2
3 22 49 11.6 974 1003 92% 6% 1% 460

c 0 11 15 2.8 256 262 11% 68% 14% 3.82

t
f
t
p a 25 37 7.4 15984 16328 28% 63% 7% 67.1

b 27 53 9.2 18646 19048 37% 52% 9% 87.3
c 22 37 6.9 5884 6093 15% 76% 7% 53.4

n
t
p a 1 16 27 2.9 2501 2769 7% 89% 2% 71.4

2 22 51 4.7 10551 11877 34% 62% 3% 149
4 24 55 6.6 28875 32552 44% 52% 2% 260
6 26 59 8.5 55343 62415 53% 44% 1% 421

b 1 14 34 0.6 533 563 19% 65% 12% 10.5
2 17 37 0.8 1448 1528 16% 68% 13% 22.3
4 18 39 0.9 2481 2606 20% 67% 11% 29.0
6 18 39 0.9 2481 2606 22% 65% 10% 30.2

c 1 17 34 0.6 537 567 12% 76% 10% 21.1
2 20 37 0.8 1472 1552 10% 79% 9% 36.5
4 21 39 0.9 2537 2662 14% 76% 8% 44.5
6 21 39 0.9 2537 2662 16% 73% 8% 45.7

f
r
e
i a 1 3 20 3.0 1658 1673 64% 17% 3% 2.92

2 3 20 3.0 1724 1748 81% 8% 2% 5.41
3 3 20 3.0 1724 1748 99% 0% 0% 559

b 1 3 20 3.0 1658 1673 51% 30% 7% 4.22
2 3 20 3.0 1724 1748 81% 8% 2% 5.48
3 3 20 3.0 1724 1748 99% 0% 0% 568

h
e
r
m a 3 16 16 5.7 388 402 27% 67% 4% 1.38

5 24 22 8.2 2506 2626 16% 82% 1% 8.56
7 18 28 11.2 11832 12152 13% 86% 0% 74.1

c 3 1 0 0.0 40 48 44% 13% 0% 0.04
5 1 0 0.0 40 48 40% 10% 0% 0.05
7 1 0 0.0 40 48 45% 14% 0% 0.04

m
g
a
l
e a 10 6 17 3.3 55 55 91% 4% 2% 1.95

100 9 26 5.2 85 85 95% 3% 1% 10.7
1,000 12 35 7.1 115 115 98% 0% 0% 186

b 10 5 13 2.5 147 168 64% 16% 12% 0.36
100 8 22 4.4 1155 1344 94% 3% 1% 7.79

1,000 11 31 6.2 9219 10752 99% 0% 0% 221

a
m
p a 20 24 25 14.2 528 548 17% 72% 8% 2.02

40 44 45 26.7 1028 1068 14% 80% 4% 9.18
60 64 65 39.2 1528 1588 11% 85% 3% 26.2

c 20 24 25 14.2 528 548 19% 69% 9% 1.81
40 36 37 21.7 877 914 15% 78% 5% 5.17
60 36 37 21.7 877 914 15% 78% 5% 5.25

fa
c a 20 23 23 4.5 162 162 22% 72% 3% 2.82

40 43 43 8.8 302 302 16% 81% 1% 18.4
60 63 63 13.1 442 442 14% 84% 0% 73.9

b 20 23 23 5.1 182 182 9% 88% 1% 7.84
40 43 43 9.9 342 342 5% 93% 0% 63.9
60 63 63 14.8 502 502 4% 95% 0% 257

b
r
p a 16 5 8 3.3 369 450 32% 38% 12% 0.38

32 5 8 3.3 369 450 31% 37% 11% 0.40
64 5 8 3.3 369 450 32% 38% 11% 0.38

b 16 9 9 3.7 386 456 21% 55% 17% 0.90
32 9 9 3.7 386 456 21% 54% 16% 0.88
64 9 9 3.7 386 456 22% 55% 16% 0.87

z
e
r
o a 10 15 16 7.2 453 453 3% 95% 1% 7.26

30 35 36 16.5 1273 1273 3% 95% 0% 64.7
50 55 56 25.9 2093 2093 3% 96% 0% 238

b 10 17 16 7.1 482 482 6% 89% 3% 5.11
30 37 36 16.6 1382 1382 3% 95% 0% 84.5
50 57 56 26.2 2282 2282 2% 97% 0% 443

c
o
n
s a 2 26 39 11.7 467 474 7% 87% 5% 43.9

3 28 41 13.5 711 721 4% 91% 3% 89.8
4 29 43 15.2 958 970 4% 92% 2% 125

b 2 25 31 10.8 406 408 5% 89% 4% 44.7
3 27 33 12.6 608 610 2% 93% 3% 114
5 29 35 14.4 810 812 2% 95% 2% 216

Figure 5.12: For the best refinement configuration, we show (Itr), (Pre) and (Avg) as before. We
also show the number of states (Sta) and player A transitions (Tra) in the final abstraction and the
percentage of the total time (Time) spent abstracting (Abs), model checking (Chk) and refining (Ref),
respectively.
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Previously, we explained that in the abstraction-refinement loop we consider increas-

ingly precise games. In general, at least when measured in terms of player A states and

transitions in this game, this is indeed the case. An exception to this is PING. In Fig-

ure 5.10 we see that the games considered half-way through the abstraction-refinement

loop have much larger state spaces than the final or initial abstraction. This is because,

in our implementation, we only consider reachable states of games and, as the predicates

make the abstractions more precise, we are able to discard many abstract states as being

unreachable. The steady increase in the size of the state space we see in Figure 5.11 is

more representative of the remainder of the case studies.

Divergence In most cases, the timeouts in Figure 5.9 are due to scalability issues that

occur during abstraction and model checking. For properties PING A, B & C, however,

for some configurations, our refinement method diverges. It is well-known that refinement

methods based on weakest preconditions may diverge [JM06].

In fact, for PING we presented better results in [KKNP09]. These experiments were

performed with a different version of our tool and we were fortunate that, in this version,

we chose refinable states in such a way that divergence did not occur as often. We delib-

erately use the current results in order to show that, for some programs, our refinement

methodology can be relatively fragile — i.e. small unrelated changes to the abstraction-

refinement process can make the difference between a terminating run and divergence.

We have not observed divergence for other case studies.

Loops Except for FREI, all probabilistic programs we have considered contain control-

flow loops and, with the further exception of HERM and MGALE, the parameter value we

give in Fig. 5.9 and 5.12 corresponds directly to the number of loop iterations of the main

program loop.14 We observe that e.g. NTP A, AMP A, ZERO A & B, the verification

time is roughly exponential in the number of loop iterations. This exponential behaviour

occurs whenever each loop iteration has to be included in the abstract model. That

the computational cost of abstraction rises exponentially in this instance is not atypical

of predicate abstraction — computing precise transition relations for non-probabilistic

14For MGALE the number of loop iterations is logarithmic in the parameter.
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abstractions in CEGAR is already known to be exponential in the number of predicates

in practice [KS06]. This problem is accentuated for larger programs such as, say, NTP,

because more predicates are required per loop iteration, increasing the cost of abstraction

and model checking more quickly.

Fortunately, there are many programs and properties for which we do not need to

consider all loop iterations of the concrete model. This is because we are willing to settle

for approximations — i.e. intervals with an absolute error of 10−4 or less — and often such

an approximation can be established by analysing just a few loop iterations. We observe

this behaviour in AMP C, BRP A & B. For these models the probability of satisfying the

property is close to 0. The abstractions we find for these models contain only the last few

loop iterations and, independently of what happens before we get to these last iterations,

the abstraction of the last few iterations enables us to establish that the probability of

reaching the target location is below 10−4.

For NTP B, we observe dual behaviour. The probability of this property is very close

to 1 for large parameters. For this case, the abstraction we find contains the first few

loop iterations and is able to show that at least 1 − 10−4 of the total probability mass

always reaches the target state. This case happens less frequently because of the nature

of our refinements. We always add predicates by going backwards from the source of the

error. In practice this means that usually the predicates describe the last few iterations of

the loop instead of the first few. However, in the case of NTP the predicates are general

enough to also describe the first few iterations. We observe similar behaviour for a cost

property in NTP C.

In MGALE B, where we are interested in the probability with which the program

terminates, a good abstraction only needs to consider one loop iteration. In this program

a “gambler” continuously gambles some money and, with some probabilistic choice, he

either wins or loses the bet. The program terminates as soon as the gambler wins or when

the gambler runs out of money. With TraceAdd we find predicates with which we can

establish that, even if the gambler has enough funds to bet infinitely many times, the

gambler will eventually win (and the program will eventually terminate) with probability

1. That is, even though the program always terminates in the qualitative sense (there are
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no non-terminating paths) we show the program almost surely terminates (the probability

of termination is 1) with a very compact abstraction. With PrecAdd, we do not find

this abstraction and unwind the loop instead.

For AMP C; BRP A, B; NTP B, C and MGALE B, after a certain parameter value,

the verification cost no longer increases and, in principle, we can verify these proper-

ties with arbitrarily large parameters. For example, we can run NTP C on parameter

10, 000 without any added cost. Of course, if we change the termination criterion of our

abstraction-refinement loop then this will affect the number of loop iterations we need to

take into consideration.

Refinable state selection Generally, both Nearest and Coarsest perform simi-

larly. We often see that the choice between Nearest and Coarsest has more impact

when using TraceAdd (see PING C and D, HERM A, B and, D). This is because often

the set of available refinable states share a common control-flow location. Whereas, for

TraceAdd, a minute difference in the data component of a refinable state can mean

we propagate predicates over a completely different play, for PrecAdd, the predicate

propagation is independent of the data component. Hence, if most refinable states share

a common control-flow location then the selection of such a refinable state has more im-

pact on TraceAdd than PrecAdd. When refinable states from various control-flow

locations are available, as in NTP B, FREI and BRP, we see that the choice between

Coarsest and Nearest also has significant impact for PrecAdd.

Predicate propagation For FREI, we see that the choice between TraceAdd and

PrecAdd has little effect on the performance of the abstraction-refinement loop. This is

because FREI has no program loops and, as a result, the two propagation methods behave

equivalently. For TFTP, HERM A, MGALE A, AMP A, FAC A & B, BRP B, ZERO A &

B, CONS A & B we observe that TraceAdd is slower than PrecAdd. The underlying

cause of this is that TraceAdd generally adds fewer predicates in each refinement step

and — as long as the predicates found by PrecAdd are necessary and will be found at

a later stage by TraceAdd — TraceAdd generally needs more abstraction-refinement

iterations to obtain the same abstraction (this is exemplified by Example 5.10).
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SatAbs QProver Total Speed
Itr Pre Avg Abs Chk Ref Itr Pre Avg Abs Chk Ref Time up

p
in
g a 1 3 21 7.8 8% 35% 2% 3 37 7.8 16% 22% 1% 7.27 3.62

2 5 35 10.5 9% 43% 5% 1 43 10.5 21% 10% 0% 14.1 >42.58
3 5 39 11.9 3% 16% 1% 2 48 12.9 54% 17% 1% 45.7 >13.13

b 1 6 23 11.6 5% 34% 3% 1 42 11.6 40% 6% 0% 16.1 0.05
d 1 3 27 8.3 7% 36% 4% 2 38 9.0 21% 14% 2% 8.81 0.78

2 5 38 12.6 3% 18% 3% 3 48 13.3 38% 28% 1% 31.0 0.71
3 5 34 12.6 0% 3% 0% 8 51 15.1 32% 60% 0% 167 2.76

c 0 3 9 3.8 4% 22% 0% 7 24 4.5 11% 46% 5% 7.20 0.53

t
f
t
p a 3 24 5.9 3% 8% 0% 13 40 9.3 24% 45% 5% 56.9 1.18

b 5 39 9.9 3% 10% 4% 12 57 12.5 10% 58% 2% 151 0.58
c 3 16 2.0 1% 6% 0% 17 40 8.1 14% 63% 5% 67.4 0.79

f
r
e
i a 1 1 6 0.0 9% 14% 0% 3 20 3.0 47% 10% 2% 4.08 0.72

2 1 6 0.0 4% 1% 0% 3 20 3.0 76% 8% 1% 5.79 0.93
b 1 1 6 0.0 7% 2% 0% 3 20 3.0 60% 12% 3% 3.22 1.31

2 1 6 0.0 4% 1% 0% 3 20 3.0 76% 7% 2% 5.74 0.95

h
e
r
m a 3 11 19 9.2 4% 40% 19% 2 24 9.2 13% 13% 0% 1.75 0.79

5 24 31 14.0 1% 35% 20% 2 36 14.0 12% 27% 0% 13.4 0.64
7 27 43 18.9 0% 7% 6% 1 48 18.9 16% 68% 0% 84.4 0.88

m
g
a
l
e a 10 16 20 5.3 0% 0% 0% 1 26 5.3 99% 0% 0% 563 0.00

100 – – – – – – – – – – – – >600 <0.02
1,000 – – – – – – – – – – – – >600 <0.31

a
m
p a 20 3 5 2.3 0% 2% 0% 20 25 14.2 9% 82% 4% 3.94 0.51

40 3 5 2.3 0% 0% 0% 40 45 26.7 6% 90% 2% 20.9 0.44
60 3 5 2.3 0% 0% 0% 60 65 39.2 4% 93% 1% 68.6 0.38

c 20 21 23 13.6 5% 27% 55% 2 25 14.2 1% 5% 0% 6.52 0.28
40 41 43 26.1 3% 20% 73% 1 44 26.1 0% 1% 0% 38.2 0.14
60 61 63 38.6 2% 26% 69% 1 64 38.6 0% 0% 0% 140 0.04

fa
c a 20 39 21 4.3 4% 15% 73% 2 23 4.5 0% 2% 0% 17.3 0.16

40 79 41 8.6 2% 9% 85% 2 43 8.8 0% 1% 0% 128 0.14
60 100 51 10.8 1% 8% 75% 12 63 13.1 1% 10% 0% 305 0.24

b 20 39 21 4.9 4% 15% 64% 2 23 5.1 1% 11% 0% 19.2 0.41
40 79 41 9.7 2% 9% 78% 2 43 9.9 0% 7% 0% 141 0.45
60 100 51 12.1 1% 6% 57% 12 63 14.8 1% 33% 0% 415 0.62

z
e
r
o a 10 12 14 6.8 1% 5% 10% 2 16 7.2 0% 80% 0% 22.3 0.33

30 32 34 16.1 0% 3% 29% 2 36 16.6 0% 65% 0% 201 0.32
50 – – – – – – – – – – – – >600 <0.40

b 10 13 13 6.2 2% 12% 21% 3 16 7.1 1% 59% 0% 9.22 0.55
30 33 33 15.7 1% 4% 39% 3 36 16.7 0% 53% 0% 194 0.44
50 – – – – – – – – – – – – >600 <0.74

c
o
n
s a 2 21 30 17.1 2% 42% 15% 1 47 17.1 1% 35% 0% 32.6 1.34

3 29 33 19.8 1% 28% 15% 1 50 19.8 0% 51% 0% 76.5 1.17
4 31 37 23.3 1% 17% 12% 1 54 23.3 0% 68% 0% 149 0.84

b 2 18 29 16.2 2% 36% 16% 1 45 16.2 1% 39% 0% 23.7 1.89
3 20 31 18.0 0% 15% 6% 2 48 18.9 1% 73% 0% 71.0 1.60
5 21 33 19.8 0% 6% 3% 3 51 21.5 1% 87% 0% 195 1.11

Figure 5.13: Results for predicate initialisation. We show the number of abstraction-refinement iter-
ations (Itr), predicates (Pre) and the average number of predicates enabled per control-flow location
(Avg) after both the qualitative (SatAbs) and quantitative (QProver) abstraction-refinement loop.
We also show the time spent abstracting (Abs), model checking (Chk) and refining (Ref) in both tools
as percentages of the total time (Total Time). Finally we show the speed-up factor (Speed up) relative
to the best run in Figure 5.9.

For NTP B, C, we see that PrecAdd is much slower than TraceAdd. This is

because PrecAdd propagates predicates too greedily. In particular, it propagates pred-

icates backwards through some irrelevant part of the program (it adds predicates to

locations that are not reachable from the initial states without going through the target

location).
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5.5.2 Predicate Initialisation

In this section, we describe and experimentally evaluate an extension of our approach

called predicate initialisation. The idea of this approach is to “initialise” the predicate

set when we verify a property of a probabilistic program P by first establishing, with a

non-probabilistic CEGAR implementation, whether Reach+(JP K) holds. That is, whether

there is a path in JP K from the initial location to a target location. Of course, we first

replace any probabilistic choice in P with a non-deterministic choice.

For most properties we check, these counter-examples exist. This means there is

very little we can guarantee about the predicates used by CEGAR. However, the general

idea is that hopefully many of the predicates found by CEGAR are needed to verify our

probabilistic properties. We also hope that these predicates are found more efficiently

with CEGAR than with our quantitative approach. The main idea is therefore to run

CEGAR first, to extract the predicates and localisation mapping from the final CEGAR

abstraction, and to use these predicates to initialise our abstraction-refinement loop.

Experimental results We have implemented the predicate initialisation method with

the CEGAR model checker SATABS [CKSY05]. We ran this implementation on the runs

of Figure 5.9. We do not include HERM C, MGALE B and BRP as these properties can

already be verified instantaneously. We also do not include NTP because SATABS was

not able to verify this program. The results are presented in Figure 5.13.

Through predicate initialisation, we are now able to verify PING A for larger pa-

rameter values that previously failed due to divergence. Moreover, in PING D, predicate

initialisation improves overall performance by a factor of 2.76. In general, however, even

though SATABS is typically quite fast, applying predicate initialisation does not help.

We observe that the ratio of abstraction-refinement loops performed by SATABS and

QPROVER, respectively, is extremely sensitive to the property that is being verified. For

AMP A, a target location can be reached via many paths — including many short ones

— and SATABS quickly finds a short counter-example. In contrast, for AMP B, the only

path to the target is one that goes through all loop iterations of the program. We see

that SATABS is much faster for AMP A than for AMP B, but, importantly, it does not
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actually discover many predicates in doing so — in contrast to AMP B, using predicate

initialisation still leaves a lot of work for QPROVER.

We see a general trend that, as the parameter values increase, a proportionally smaller

amount of time is spent running SATABS. However, we find that the average number

of predicates increases through predicate initialisation which in turn adversely affects

the performance of QPROVER. Unfortunately, the added cost for QPROVER seems to

overshadow the time savings we get from running SATABS, meaning that in general it

does not pay to use predicate initialisation.

5.5.3 Reachable State Restriction

We finally describe an optimisation of the abstraction process called “reachable state

restriction”. This optimisation is especially important because it can be applied to almost

any abstraction-refinement implementation.

Suppose we are abstracting a probabilistic program P via an abstraction function

α : L × UVar → L × Bn defined though predicates, Pred, and a localisation mapping,

Map. Because of the nature of probabilistic model checking methods, before we evaluate

a property on α(JP K), we first perform a reachability analysis on α(JP K)’s state space.

That is, we compute the set of reachable predicate valuations Reachℓ ⊆ Bn for each

control-flow location ℓ ∈ L . Formally, we have that b ∈ Reachℓ if and only if there is a

play in α(JP K) from an initial state to 〈ℓ,b〉.

The key idea is to feed this reachability information back to our abstraction procedure

such that, after the refinement step, when employing SAT to construct the abstraction

under a refined abstraction function α#, we avoid enumerating some of the transitions

that are not reachable in α#(JP K). We realise this by augmenting the SAT formulas in

Section 5.3.2 with a restriction on source states — i.e. when we abstract a location ℓ ∈ L

we add the constraint that αℓ(u) ∈ Reachℓ .
15 We may still enumerate some transitions

that are unreachable in α#(JP K) as the reachability information has come from a previous,

less precise abstraction, α(JP K).

15Note that we use αℓ and not α
#

ℓ .
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Normal Optimised Speed
Abs Chk Ref Time Abs Chk Ref Time up

p
in
g a 1 23% 61% 14% 26.3 14% 63% 21% 18.0 1.46

2 – – – >600 14% 82% 3% 444 >1.35
b 1 46% 11% 0% 0.81 43% 14% 0% 0.85 0.96
d 1 32% 46% 16% 6.89 24% 55% 16% 8.10 0.85

2 50% 36% 11% 22.2 30% 50% 16% 14.2 1.56
3 92% 6% 1% 460 45% 44% 9% 45.8 10.04
4 – – – >600 52% 39% 7% 106 >5.67
6 – – – >600 60% 36% 2% 459 >1.31

c 0 11% 68% 14% 3.82 11% 71% 12% 4.37 0.87

t
f
t
p a 28% 63% 7% 67.1 18% 72% 8% 61.1 1.10

b 37% 52% 9% 87.3 32% 57% 9% 85.5 1.02
c 15% 76% 7% 53.4 16% 75% 7% 54.5 0.98

n
t
p a 1 7% 89% 2% 71.4 6% 89% 2% 73.3 0.97

2 34% 62% 3% 149 26% 69% 3% 136 1.10
4 44% 52% 2% 260 33% 63% 2% 217 1.20
6 53% 44% 1% 421 41% 56% 2% 330 1.28

b 1 19% 65% 12% 10.5 24% 51% 20% 7.37 1.42
2 16% 68% 13% 22.3 20% 57% 19% 15.1 1.48
4 20% 67% 11% 29.0 21% 58% 18% 18.4 1.58
6 22% 65% 10% 30.2 20% 59% 18% 18.6 1.62

c 1 12% 76% 10% 21.1 13% 71% 14% 16.4 1.28
2 10% 79% 9% 36.5 11% 75% 11% 28.7 1.27
4 14% 76% 8% 44.5 12% 74% 12% 33.6 1.33
6 16% 73% 8% 45.7 12% 75% 10% 34.9 1.31

f
r
e
i a 1 64% 17% 3% 2.92 64% 16% 3% 2.84 1.03

2 81% 8% 2% 5.41 80% 9% 2% 5.31 1.02
3 99% 0% 0% 559 99% 0% 0% 559 1.00

b 1 51% 30% 7% 4.22 65% 16% 3% 2.89 1.46
2 81% 8% 2% 5.48 80% 9% 2% 5.24 1.04
3 99% 0% 0% 568 99% 0% 0% 557 1.02

h
e
r
m a 3 27% 67% 4% 1.38 26% 67% 4% 1.36 1.01

5 16% 82% 1% 8.56 18% 80% 1% 8.58 1.00
7 13% 86% 0% 74.1 14% 85% 0% 117 0.63

m
g
a
l
e a 10 91% 4% 2% 1.95 59% 23% 10% 0.46 4.26

100 95% 3% 1% 10.7 73% 15% 6% 1.79 5.97
1,000 98% 0% 0% 186 83% 11% 3% 5.64 32.99

a
m
p a 20 17% 72% 8% 2.02 23% 68% 6% 2.30 0.88

40 14% 80% 4% 9.18 22% 73% 3% 10.9 0.85
60 11% 85% 3% 26.2 21% 75% 2% 29.5 0.89

c 20 19% 69% 9% 1.81 21% 69% 7% 2.10 0.86
40 15% 78% 5% 5.17 19% 75% 4% 7.33 0.71
60 15% 78% 5% 5.25 19% 75% 5% 5.82 0.90

fa
c a 20 22% 72% 3% 2.82 21% 73% 4% 2.71 1.04

40 16% 81% 1% 18.4 16% 81% 1% 19.4 0.95
60 14% 84% 0% 73.9 14% 84% 0% 73.7 1.00

b 20 9% 88% 1% 7.84 8% 89% 1% 7.89 0.99
40 5% 93% 0% 63.9 5% 94% 0% 64.8 0.99
60 4% 95% 0% 257 4% 95% 0% 259 0.99

z
e
r
o a 10 3% 95% 1% 7.26 7% 91% 1% 7.98 0.91

30 3% 95% 0% 64.7 6% 92% 0% 67.4 0.96
50 3% 96% 0% 238 6% 93% 0% 243 0.98

b 10 6% 89% 3% 5.11 10% 85% 2% 5.72 0.89
30 3% 95% 0% 84.5 6% 92% 0% 93.6 0.90
50 2% 97% 0% 443 4% 95% 0% 449 0.99

c
o
n
s a 2 7% 87% 5% 43.9 10% 84% 4% 39.2 1.12

3 4% 91% 3% 89.8 6% 90% 2% 87.5 1.03
4 4% 92% 2% 125 6% 90% 2% 115 1.08

b 2 5% 89% 4% 44.7 9% 85% 5% 31.6 1.41
3 2% 93% 3% 114 5% 91% 3% 76.9 1.48
5 2% 95% 2% 216 3% 94% 2% 165 1.31

Figure 5.14: Results for reachable state restriction. We show the num. of abstraction-refinement
iterations (Itr), number of predicates (Pre), average number of predicates enabled per control-flow
location (Avg) and the total time (Time) for both the best run in Figure 5.9 (Normal) and the same
run with reachable state restriction (Optimised). We also show the speed-up factor (Speed up).
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Experimental results We have evaluated the reachable state restriction optimisation

on each run in Figure 5.9 that is not already instantaneous and present the results in

Figure 5.14. We observe our optimisation has a small overhead caused by the extrac-

tion of the reachability information and processing it to a form we can encode it SAT.

For abstractions where only a small number of abstract states are unreachable, such as

HERM A, AMP and FAC, this means that employing our optimisation introduces a slight

overhead.

For larger programs, such as PING, TFTP and NTP, we observe both modest speed-

ups and a ten-fold speed-up for PING D. What is promising is that we managed to check

PING A and D for much larger parameters with this optimisation enabled. That the

abstractions we consider for PING indeed contain many unreachable states is exemplified

by Figure 5.10. This figure shows that lots of unreachable states are pruned late in the

abstraction-refinement loop. We remark that the spike in abstraction times shown in

Figure 5.10 is almost entirely due to the abstraction of unreachable states.

Another model where our optimisation works well is MGALE. We observe a speed-

up factor of nearly 33 for this model. This large speed-up is possible because, for this

model, the abstraction process is very expensive due to non-linear arithmetic found in

the predicates. We believe our experimental results justify enabling this optimisation by

default — at typically very little cost, we have the potential for great time savings.

5.6 Conclusions

In this chapter, we have presented an approach for computing quantitative properties of

probabilistic software based on automated abstraction refinement. Our approach employs

the game abstractions introduced in [KNP06] as abstractions of probabilistic programs.

We described how to construct predicate abstractions of probabilistic programs via SAT-

based methods, akin to [LBC03, CKSY04]. We also discussed a refinement procedure

for game abstractions induced by predicates, a number of heuristics for this refinement

procedure and two extensions of our technique.

We evaluated our approach on a wide range of case studies. Notably, we demon-
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strated that our approach is capable of computing quantitative properties of real network

clients comprising 1,000 lines of complex ANSI-C code. The state space of these network

programs is far beyond what current finite-state probabilistic model checkers can handle.

Moreover, these programs feature too many software-specific constructs to be verified by

quantitative verification techniques such as [DJJL01, JDL02, HWZ08, WZ10, LMOW08].

We observed that the optimisation called “reachable state restriction” can yield very

significant time savings at very little overhead. We remark that this optimisation is

not specific to our approach and can be employed in any abstraction-refinement loop.

However, the additional advantage we have in our implementation is that reachability

information is readily available at no extra cost.

We conclude this chapter by suggesting directions for future research.

Model checking Firstly, we note that the model checking phase of our abstraction-

refinement loop is often quite slow. There are many ways in which we could try and

improve upon this. Firstly, as we see in Figure 5.12, the game abstractions we verify

are often quite small. We therefore argue that an explicit-state solver for games may

perform better than our symbolic model checker. Another argument for using an explicit-

state method is that, for symbolic data structures to be effective, there needs to be some

regularity in the models that are being verified. In practice, however, there is very little

structure in the abstract transition functions generated by SAT.

Further time savings could be made by taking into account that probabilistic and

non-deterministic choices typically occur very sparsely in game abstractions. To improve

the efficiency of the model checker we think it could be beneficial to shorten long plays of

deterministic transitions prior to model checking, as is done in [DJJL02].

Abstraction The range of non-deterministic and probabilistic choices we can handle

in practice is limited both by Assumption 5.1 and the practical limitations of SAT solvers.

That is, because of Assumption 5.1, we can only handle probabilistic choices for which

transition probabilities are independent of the data state. Moreover, the SAT formulas we

construct in Section 5.3.2 are linear in the size16 of the assignment under consideration,

16I.e. the number of functions, Sem1
ℓ , . . . ,Sem

k
ℓ , required to satisfy Assumption 5.1.
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which adversely affects the performance of our abstraction procedure for larger choices.

An important direction of future research is therefore to develop alternative ab-

straction methods. One possibility is to use symbolic data structures instead of SAT

(see [LBC03]). A symbolic abstraction method for probabilistic systems is discussed in

[DJJL01]. We believe this approach can easily be extended to generate game abstractions.

The benefit of this abstraction method is that, unlike SAT, the symbolic data structures

used in [DJJL01] are better able to model and abstract probability distributions. On the

other hand, symbolic data structures tend to be inefficient at representing the arithmetic

expressions that occur in software [Bry91]. Whether a symbolic abstraction procedure

could benefit our method requires further investigation.

Secondly, a common approach in non-probabilistic software model checking is to ap-

proximate the transition functions of an abstract model incrementally [DD01, BMR01,

CKSY05, JM05, KS06]. Employing this idea in our method may help alleviate the restric-

tions on non-deterministic and probabilistic behaviour and may improve the scalability

of our approach. That being said, it is is not immediately clear what constitutes an

approximation of a game abstraction. This is something we will address in Chapter 6.

Our final remark with regards to abstraction is that programs often contain a lot of

mundane loops at the beginning of the control-flow. These loops often parse program

arguments or initialise data structures. When using an abstraction framework that both

under and over-approximates all possible behaviours, like game abstractions, we need to

show that the loops terminate in order to obtain a non-trivial lower bound. Proving

termination of these loops via predicate abstractions is often a significant strain on the

abstraction-refinement loop. To address this problem we suggest that it may pay to

augment our approach with termination analyses like, e.g., [CPR05, CKRW10].

Refinement To improve the robustness of our approach we think it is important to

address the issue of divergence. We often observe that we are very consistent in our choice

of refinable states. That is, because we employ the same refinement heuristic in every

iteration of the abstraction-refinement loop, we often refine very similar states in successive

refinement steps. This often happens even when other refinable states exist that may lead
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to a non-divergent refinement sequence. This suggests it may be beneficial to employ a

refinement heuristic that selects refinable states randomly. Under such a heuristic, if good

refinable states exist, we will eventually refine such a state with probability 1. Whether

such a heuristic would work well in practice requires further investigation.

Our concluding remark concerns the quality of the predicates that we discover with

our refinement procedure. Refinement procedures based on weakest preconditions are

well-known to be insufficiently powerful to prove the correctness of certain programs

[JM06]. Many state-of-the-art non-probabilistic software model checkers employ more

sophisticated refinement methods based on interpolating decision procedures (see, e.g.,

[HJMM04, JM05, McM06]). Due to the probabilistic nature of our programs, however,

we are not currently able to use these decision procedures for refinement purposes. An

important direction of future research is therefore to develop techniques through which

interpolation-based refinement methods can be employed in a probabilistic setting.
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Chapter 6

An Abstraction Preorder for Games

6.1 Introduction

In the previous chapter we introduced an approach for computing quantitative properties

of probabilistic programs through game abstractions. We demonstrated that this approach

works well on a large number of probabilistic programs. However, to get these results,

we made certain assumptions about the behaviour of probabilistic programs, restricting

the range of non-deterministic and probabilistic behaviours we can deal with in practice.

Moreover, from our experimental results we see that the scalability of our approach is in

part dictated by the cost of computing game abstractions. In this chapter, we set out

to enable further improvements in the applicability and scalability of our approach by

augmenting the theory underlying game abstractions.

Our work in this chapter is motivated by the state-of-the-art in non-probabilistic

software model checking. Many software model checkers improve the applicability and

scalability of their abstraction methods by computing approximate transition functions

for abstract models. More specifically, in practice, tools such as SLAM [BR01], BLAST

[HJMS03], and SATABS [CKSY05] employ a nested abstraction-refinement loop, com-

prising an “outer loop” which considers increasingly precise sets of predicates and an

“inner loop” which considers increasingly precise abstract transition functions for a fixed

set of predicates.1 Usually, for a given set of predicates, these tools first construct a coarse

1For simplicity we omit the localisation mappings used in Chapter 5 here.
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approximation of the abstract transition function that is relatively cheap to construct —

e.g. a Cartesian abstraction [BPR03] — and consider more precise transition functions

only if we cannot justify adding new predicates. This incremental construction of the

abstract transition function is discussed in, e.g., [DD01, BMR01, CKSY05, JM05, KS06].

We believe that employing a nested abstraction-refinement loop with game abstrac-

tions could improve the scalability and applicability of the abstraction-refinement ap-

proach of Chapter 5. However, unlike for non-probabilistic existential abstractions, it is

not clear how to approximate the game abstractions of [KNP06]. That is, although a

necessary ingredient of a nested abstraction-refinement loop is the ability to consider a

range of abstractions under a fixed abstraction function, for game abstractions we do not

currently have this ability. For a fixed abstraction function (induced by predicates) and

a fixed MDP (induced by a probabilistic program) there is only one game that is defined

to be an abstraction (see Section 3.4). We can currently only consider different game

abstractions by changing the abstraction function.

In this chapter, we will improve upon this situation by formalising a conditional

notion of abstraction for games. That is, we will provide general conditions under which

a game G abstracts an MDP M . These conditions are general enough to ensure that,

for a fixed abstraction function, we can consider many different game abstractions. We

will formalise our abstraction through a notion of simulation over games which we will

call strong probabilistic game simulation. Our simulation-based definition of abstraction is

inspired by, e.g., [LT88, DGG97, JL91, SL94, AHKV98, Mil99, CGL94], where abstraction

is defined through simulation for a variety of abstraction formalisms. In addition to

characterising when a game abstracts an MDP, our simulation also defines when one

game is more abstract than another game. Formally, our simulation induces an abstraction

relation on two-player stochastic games.

Our abstraction relation generalises [KNP06] in various ways. Firstly, we alleviate the

restriction that the player C states that player A can choose correspond directly to the

non-deterministic choice in some state of the concrete model. Instead, player A is given

the ability to over or under-approximate the available choices. This improvement helps

eliminate the correlation between the number of player C states in game abstractions
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and the number of states in the concrete model. Secondly, inspired by [SL94], we define

combined transitions for games. That is, we will allow players of the abstraction to sim-

ulate behaviours via randomised strategies. This helps us over-approximate probabilistic

behaviour with non-determinism. Finally, we also no longer require abstractions to be

induced by abstraction functions, but consider arbitrary abstraction relations, instead.

Although it is our eventual aim to use the improved game-based abstraction frame-

work that we develop in this chapter in the abstraction-refinement loop of Chapter 5,

the contribution of this chapter is currently purely theoretical. However, in addition to

the approach in Chapter 5, the work in this chapter is also directly applicable to other

applications of game abstractions, such as [KKNP08, KNP09, WZ10, KNP10].

The need for a more fine-grained notion of abstraction for games was also recognised

in [WZ10]. However, instead of simulation, the approach in [WZ10] is based on the

theory of abstract interpretation [CC77]. Due to the nature of abstract interpretation,

the approach in [WZ10] is more general than ours. In particular, approximations of game

abstractions need not be game abstractions themselves. However, the conditions under

which an abstraction approximates a game abstraction are not necessarily easy to check.

We will focus on defining approximations through simple conditions on, e.g., the transition

functions of games. We will use the methods in [WZ10] to show that these conditions

are sound. An interesting observation made in [WZ10] is that game abstractions (as

constructed in [KNP06]) are the most precise abstractions that one can construct for a

given MDP and abstraction function.

The remainder of the chapter is organised as follows. We first give a high-level

overview of our abstraction framework. In Section 6.2, we recall the key ideas of game

abstractions as they are defined in [KNP06]. Then, Section 6.3 introduces combined tran-

sitions for games, which are used to define abstraction in a general fashion. Finally, in

Section 6.4, we define our simulation-based abstraction relation for games and show that

this relation is sound with respect to probabilistic reachability properties.
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Overview of chapter In this chapter, unlike in Chapter 5, we will focus on abstraction

on the level of MDPs. That is, we focus on computing the quantitative properties

Prob− : MDP→ [0, 1] and Prob+ : MDP→ [0, 1]

as defined in Section 3.3.2. As abstractions we will use games, Ĝ ∈ GAME, as defined in

Section 3.4.1. We let

Prob− : GAME→ [0, 1]× [0, 1] and Prob+ : GAME→ [0, 1]× [0, 1]

be properties on games as defined in Section 3.4.2. To approximate Prop(M) for some

property, Prop ∈ {Prob−, Prob+}, and MDP, M , our goal is to find a game, Ĝ, such that

Prop(Ĝ) ≤ 〈Prop(M),Prop(M)〉 . (6.1)

This is because if (6.1) holds, by the definition of ≤ on [0, 1] × [0, 1] as specified in

Definition 3.8, then Prop(Ĝ) = [l, u] is an approximation of Prop(M) — i.e. we have

that Prop(M) ∈ [l, u]. In Chapter 5, we obtained such a game by constructing the game

specified by Definition 3.28 for some abstraction function. The constructed game satisfies

(6.1) by construction (see Theorem 3.30).

In this chapter we take a different approach. Our abstraction framework comprises

two components. Our first component is an embedding function

ρ : MDP→ GAME ,

which yields a precise representation of an MDP in the form of a game abstraction. Our

second component is an abstraction relation

⊑ ⊆ GAME×GAME ,

which defines a notion of precision on games. If two games Ĝ, G ∈ GAME are such that

Ĝ ⊑ G, then this means that the game Ĝ abstracts G or, equivalently, that G is more
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precise than Ĝ. Through the embedding function ρ, we can define when a game abstracts

an MDP: Ĝ ∈ GAME abstracts M ∈ MDP if and only if Ĝ ⊑ ρ(M).

To reason about properties of MDPs with our framework, it is necessary to ensure

that the components satisfy certain properties. In particular, we will require that for all

properties Prop ∈ {Prob−,Prob+} the following requirements are met:

Prop(ρ(M)) = 〈Prop(M),Prop(M)〉 (∀M ∈ MDP) (6.2)

Prop(Ĝ) ≤ Prop(G) . (∀Ĝ, G ∈ GAME such that Ĝ ⊑ G) (6.3)

The first requirement, (6.2), is a consistency requirement that ensures the abstract se-

mantics of embedded MDPs mesh with their concrete semantics. The requirement in (6.3)

is a soundness requirement which ensures that, when one game Ĝ is more abstract than

another G game, then a property Prop yields a less precise interval when it is evaluated

on Ĝ than when it is evaluated on G.

To obtain a game that satisfies (6.1) for a given M ∈ MDP we simply need to find a

game G ∈ GAME that abstracts M . That is, when Ĝ ⊑ ρ(M), we get (6.1) directly from

(6.2) and (6.3).

6.2 The Roles of Player A & C

We now recall how game abstraction was defined Section 3.4. Let M = 〈S, I, T, L,R〉

be an MDP as defined in Section 3.3.1 and let Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 be a game as defined

in Section 3.4.1. Suppose Ĝ is the game abstraction α(M) of the MDP M under some

(surjective) abstraction function α : S → Ŝ. By Definition 3.27, the transition function

T̂ of Ĝ is defined for every ŝ ∈ Ŝ as:

T̂ (ŝ) =
{

{α(λ) | λ ∈ T (s)} | s ∈ α-1(ŝ)
}

.

Recall that the key idea of the game abstraction is to separate the non-determinism that

arises from the abstraction from the non-determinism that occurs in the concrete model.

This is done by attributing these different types of non-deterministic choice to player A
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and player C in Ĝ, respectively. That is, the role of player A in a player A state ŝ ∈ Ŝ is

to pick a player C state Λ̂ ∈ T̂ (ŝ). By definition of T̂ this player C state corresponds to a

set of abstracted non-deterministic choices, {α(λ) | λ ∈ T (s)}, for some state s ∈ S of M

that ŝ abstracts. The role of player C is to resolve M ’s non-determinism. Given a player

C state {α(λ) | λ ∈ T (s)} in T̂ (ŝ) corresponding to some state s ∈ S of M , player C picks

a distribution α(λ) ∈ DŜ for some non-deterministic choice λ ∈ T (s) in M .

Intuitively, due to player A’s role, game abstractions have the natural ability to provide

a lower bound and an upper bound on the value of the properties we consider by taking the

infimum or supremum value over all available player A strategies, respectively. When we

compute these extremum values, due to player C’s role, we quantify over player C strategies

as we would over M ’s strategies. For example, to obtain a lower bound on a probabilistic

safety property, we take the infimum over player A strategies and the supremum over

player C strategies (see Definition 3.23). This is quite different to how over and under-

approximation are realised in, say, modal or mixed abstractions [LT88, DGG97], where a

separate transition function is used to realise over and under-approximation.

In the remainder of this chapter, we will generalise the work of [KNP06]. This gener-

alisation no longer directly enforce the correspondence between player C states Λ̂ ∈ T̂ (ŝ)

in Ĝ and concrete states of M that ŝ abstracts. However, our generalisation will preserve

the main spirit of game abstractions: the roles played by player A and C.

6.2.1 MDP Embeddings

With the roles of player A and C clarified, we are in a position to define the embedding

function ρ : MDP → GAME. Evidently, with two types of non-deterministic choice,

two-player games are more expressive than MDPs. Considering the role player C plays in

games, all non-determinism is attributed to player C in embeddings:

Definition 6.1 (Embeddings). Let M = 〈S, I, T, L,R〉 be an MDP. The embedding

ρ(M) of M in GAME is the game 〈S, I, Tρ, Lρ, Rρ〉 where

– Tρ(s) = {T (s)} for all s ∈ S,

– Lρ(s, a) = 〈L(s, a), L(s, a)〉 for all s ∈ S and a ∈ AP and
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void main()

{

uchar n=*;

while (n>0 &&

coin(n ,256))

{ n--; }

if (n==0)

target();

}

Figure 6.1: A probabilistic pro-
gram P for which Prob+(JP K) = 1.

s*

s255 s254 . . .

. . .

s1 s0
F

t255 t254 t1

255
256

254
256

1
256

1
256

2
256

255
256

Figure 6.2: An MDP that is describing the semantics
JP K of the probabilistic program depicted in Figure 6.1.

– Rρ(s, a) = 〈R(s), R(s)〉 for all s ∈ S.

Embedded MDPs are games in which propositional labels are Boolean and player A

has no power. Definition 6.1 allows us to treat MDPs as a special type of game and, more

importantly, it enables us to define abstraction as a relation between games. Note that

embedded MDPs are always finitely branching for player A.

We will illustrate Definition 6.1 with an example:

Example 6.2. Consider the program P depicted in Figure 6.1. The data space U{n} of

P is induced by a single variable n which is an integer ranging from 0 to 255. The program

first assigns n non-deterministically. Then, the program enters a loop. In each iteration

of this loop, it decrements n with probability n

256
and exits the loop with probability 256−n

256
.

The loop terminates as soon as n is 0. We are interested in the probability that n is 0 at

the end of this program. We sketch the MDP JP K in Figure 6.2 (we have omitted some

initial states). From Figure 6.2 we see that:

Prob−(M) = 255
256
· 254
256
· . . . · 1

256
and Prob+(M) = 1 .

The game embedding ρ(M) of M is shown in Figure 6.3.
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s*

s255 s254 . . .

. . .

s1 s0
F

t255 t254 t1

255
256

254
256

1
256

1
256

2
256

255
256

Figure 6.3: The game embedding ρ(M) of the MDP M depicted in Figure 6.2.

6.2.2 Consistency Requirement

With the embedding function ρ : MDP → GAME in place we have everything we need

to formalise the consistency requirement (6.3) stated in the introduction:

Lemma 6.3. For all M ∈ MDP and Prop ∈ {Prob−, Prob+} we have:

Prop(ρ(M)) = 〈Prop(M),Prop(M)〉.

Proof. Follows directly from the definition of properties (Section 3.3.2 and 3.4.2) and the

definition of embeddings (Definition 6.1).

The only difference between the evaluation of the upper and lower bound for properties

of games is the quantification over player A strategies. However, in embedded games there

is precisely one player A strategy and the bounds are trivially equivalent.

6.3 Combined Transitions

In our games, players are permitted to make probabilistic choices — that is, they can

play with randomised strategies. In [SL94], it was recognised that if we provision for

abstractions to “simulate” behaviours of embeddings via randomised choices, then we can

obtain more general notions of abstraction.

Example 6.4. Consider the game Ĝ and the embedding ρ(M) depicted in Figure 6.4.
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s1

s2
a

s3
b

1
2

1
2

ŝ1

ŝ2

a
ŝ3

b

Figure 6.4: A game Ĝ (left) that abstracts the embedding
ρ(M) (right) only with combined player A transitions.

Player C is powerless in both games. Consider the player A transition s1 → {
1
2
[s2]+

1
2
[s3]}

in ρ(M). Neither player A transition ŝ1 → {[ŝ2]} or ŝ1 → {[ŝ3]} leads to a player C state

that matches {1
2
[s2] +

1
2
[s3]} but, if player A of Ĝ chooses both transitions with equal

probability, the behaviour of Ĝ effectively matches that of ρ(M).

In [SL94], the ability to reason about probabilistic choices is formalised through fic-

titious transitions called combined transitions. These transitions are essentially weighted

combinations of normal transitions. However, as [SL94] concerns an abstraction relation

over MDPs, it only considers combined transitions for one level of choice. In this section,

we extend this to combined transitions for a two-player game.

6.3.1 Combined Player C Transitions

We first explain combined player C transitions, which are similar to the combined tran-

sitions in [SL94], via a geometric interpretation of player A and player C states. As

explained in, say, [MM05, Chapter 6], probability distributions in DS can be interpreted

geometrically as points on the unit plane in |S|-dimensional Euclidean space.2 With the

same analogy, we can interpret sets of probability distributions, i.e. elements of PDS, as

sets of points. This geometric interpretation helps us give an intuition as to the choices

available to player A and player C in states of the game. We illustrate this with an

example:

Example 6.5. Consider the game G = 〈S, I, T, L,R〉 depicted in Figure 6.5 with T (s1) =

2Unlike [MM05], our probability distributions always sum to 1.



116 An Abstraction Preorder for Games

s1

s2

s3

1
2

1
2

2
3

1
3

Figure 6.5: A game with
highlighted player A choice
{[s1], [s3]} ∈ T (s1)}.

s1

s2

s3

Figure 6.6: Geomet-
ric interpretation of tran-
sitions in T (s1).

s1 s2

s3 combined
player A trans.

combined
player C trans.

Figure 6.7: Geometric interpretation of
a combined player A transition and a com-

bined player C transitions.

{{[s1], [s3]}, {[s2],
1
2
[s2]+

1
2
[s3],

1
3
[s1]+

2
3
[s2]}}. The geometric interpretation of T (s1) is de-

picted in Figure 6.6. The distributions [s1], [s2], [s3],
1
2
[s2] +

1
2
[s3] and

1
3
[s1] +

2
3
[s2] are

points on the unit plane. The line between [s1] and [s3] represents the set {[s1], [s3]} and

the triangular shape is the set {[s2],
1
2
[s2] +

1
2
[s3],

1
3
[s1] +

2
3
[s2]}.

In Example 6.5, in the player C state {[s2],
1
2
[s2] +

1
2
[s3],

1
3
[s1] +

2
3
[s2]}, player C can

make a probabilistic choice over probabilistic states. Suppose player C employs a random

strategy that picks [s2] with probability 1
5
, 1
2
[s2]+

1
2
[s3] with probability 1

5
and 1

3
[s1]+

2
3
[s2]

with probability 3
5
. The behavioural effect of such a player C strategy is identical to

choosing a probabilistic state 1
5
[s1]+

7
10
[s2]+

1
10
[s3] with probability 1. It is this observation

that allows us to use fictitious (combined) transitions to probabilistic states to reason

about probabilistic combinations of transitions to probabilistic states.

Definition 6.6 (Combined player C transition). Let Λ ∈ PDS be a player C state

in some game G. We say there is a combined player C transition from Λ to λ, denoted

Λ
Cmb
−−→ λ, if and only if, for some countable index set I and some family {λi}i∈I of

distributions, such that Λ → λi for each i ∈ I, and some family {wi}i∈I of weights, we

have λ =
∑

i∈I wi · λi.

Recall that weights always sum to 1. By definition, every normal player C transition

Λ̂→ λ is also a combined player C transition Λ̂
Cmb
−−→ λ.

Example 6.7. Consider again the game G in Figure 6.5 and the player C state with

{[s2],
1
2
[s2]+

1
2
[s3],

1
3
[s1]+

2
3
[s2]} in T (s1). Consider an index set I = {0, 1, 2} and the family
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of weights w0 = w1 = 1
5
and w2 = 3

5
and probabilistic states λ0 = [s2], λ1 = 1

2
[s2] +

1
2
[s3]

and λ2 =
1
3
[s1] +

2
3
[s2]. We have that

w0 · λ0 + w1 · λ1 + w2 · λ2 = 1
5
[s1] +

7
10
[s2] +

1
10
[s3]

and hence

{[s2],
1
2
[s2] +

1
2
[s3],

1
3
[s1] +

2
3
[s2]}

Cmb
−−→ 1

5
[s1] +

7
10
[s2] +

1
10
[s3]

is a valid combined player C transition. This transition is also depicted in Figure 6.7.

Given the definition of combined player C transitions we can think of player C states

as a set of points defining the hull of a convex shape from which player C can draw any

probabilistic state.

6.3.2 Combined Player A Transitions

The main elegance of combined player C transitions is that they are of the same type as

ordinary player C transitions. This is possible because we can represent a distribution over

probabilistic states (i.e. an element of DDS) with a probabilistic state (i.e. an element

of DS) itself. We will show that an analogous treatment of combined transitions for

player A is also possible. Recall player A chooses between player C states (i.e. sets of

distributions). A weighted combination of player A transitions is therefore an element of

DPDS but, crucially, we will represent this weighted combination with a fictitious player

C state (i.e. an element of PDS) itself. This allows us to represent a family of weighted

player C transitions with a single combined player C transition from a fictitious player C

state.

Consider again the MDP depicted in Figure 6.5 and the player C states

Λ0 = {[s1], [s3]} and Λ1 = {[s2],
1
3
[s1] +

2
3
[s2],

1
2
[s2] +

1
2
[s3]}

available in s1 as depicted in Figure 6.6. Suppose player A chooses Λ0 with weight 3
4
and
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Λ1 with weight 1
4
. Then, regardless of what player C does in Λ0 or Λ1, the effective result

is a distribution in the convex shape depicted in Figure 6.7 (filled with horizontal lines).

As is the case for player C, we could get the same result by letting player A transition to

a (fictitious) player C state corresponding to this shape.

Definition 6.8 (Combined player A transition). Let s ∈ S be a player A state in

some game G and let Λ ∈ PDS be a set of distributions. We say there is a combined

player A transition from s to Λ, denoted s
Cmb
−−→ Λ, if and only if, for some finite index set

I and for some finite family {Λi}i∈I of sets of distributions such that s→ Λi is a player

A transition for each i ∈ I, and some family {wi}i∈I of weights, we have

Λ =
{
∑

i∈I wi · λi | {λi}i∈I is a family of distributions s.t. ∀i ∈ I : λi ∈ Λi

}

. (6.4)

Note that a family of distributions {λi}i∈I introduces a distribution in Λ. The reason

we restrict to finite combinations of player A transitions is that there may be uncountably

many families when I is countable. This issue does not arise for combined player C

transitions.

Analogous to player C transitions, every normal player A transition is a combined

player A transition. To ease notation, for the remainder of this chapter, given families

{Λi}i∈I and {wi}i∈I we will write
∑

i∈I wi · Λi to mean the set of distributions in (6.4).

Mathematically, combined player A transitions are weighted Minkowski additions — op-

erations used to combine convex shapes (see, e.g., [Sch93, Chapter 3]).

Example 6.9. Consider again the MDP depicted in Figure 6.5. The combined player

A transition induced by the index set I = {0, 1}, weights w0 = 3
4
, w1 = 1

4
and player C

states

Λ0 = {[s1], [s3]} and Λ1 = {[s2],
1
3
[s1] +

2
3
[s2],

1
2
[s2] +

1
2
[s3]}

is the transition

s1
Cmb
−−→ {3

4
[s1] +

1
4
[s2],

5
6
[s1] +

1
6
[s2],

3
4
[s1] +

1
8
[s2] +

1
8
[s3],

3
4
[s3] +

1
4
[s2],

3
4
[s3] +

2
12
[s2] +

1
12
[s1],

7
8
[s3] +

1
8
[s2]} .
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The resulting player C state contains the distribution 3
4
λ0 +

1
4
λ1 for every λ0 ∈ Λ0 and

λ1 ∈ Λ1. This player C state is depicted Figure 6.6 as the shape filled with horizontal

lines.

6.4 An Abstraction Relation

In this section, we will define an abstraction relation ⊑ ⊆ GAME × GAME over games

via a notion of simulation on games. This formulation of abstraction is notably inspired

by, e.g., [LT88, DGG97, SL94], where abstraction is defined using simulations on a variety

of formalisms. We will introduce our notion of simulation in Section 6.4.1 and prove some

properties of this simulation in Section 6.4.2. Finally, in Section 6.4.3, we will see how

our abstraction relation compares to the notion of abstraction in [KNP06].

6.4.1 Strong Probabilistic Game Simulation

Having defined combined transitions in the previous section we are now in a position to

define the abstraction relation ⊑ ⊆ GAME×GAME through a new notion of simulation

over games that we will call strong probabilistic game simulation. We use the adjective

“strong” to say we make no special provision for simulations via unobservable steps and

we call our simulation “probabilistic” to say we use combined transitions.

Definition 6.10 (Strong probabilistic game simulation). Let G = 〈S, I, T, L,R〉

be a game and let R ⊆ S × S be a relation on S. We call R a strong probabilistic game

simulation on G iff for all 〈ŝ, s〉 ∈ R all of the following conditions hold:

(i) L(ŝ, a) ≤ L(s, a) for all a ∈ AP,

(ii) R(ŝ) ≤ R(s),

(iii) ∀s→ Λ : ∃ŝ
Cmb
−−→ Λ̂ : ∀Λ→ λ : ∃Λ̂

Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) and

(iv) ∀s→ Λ : ∃ŝ
Cmb
−−→ Λ̂ : ∀Λ̂→ λ̂ : ∃Λ

Cmb
−−→ λ : 〈λ̂, λ〉 ∈ L(R) .

Moreover, we let ⊑ ⊆ GAME×GAME be the relation on games such that Ĝ ⊑ G if and

only if there exists a strong probabilistic game simulation R on the disjoint product Ĝ⊎G
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such that I ⊆ R(Î) and Î ⊆ R−1(I).

Let G = 〈S, I, T, L,R〉 be a game. A strong probabilistic game simulation R ⊆ S×S

on G defines a notion of abstraction on the states of G. That is, R is a relation on S where

〈ŝ, s〉 ∈ R means that ŝ abstracts (or “simulates”) s. Conditions (i) and (ii) are relatively

standard and ensure that the propositional and reward labelling in the “abstract” state ŝ

are less precise than in the “concrete” state s in accordance with the order on [0, 1]× [0, 1]

and [0,∞]× [0,∞] discussed in Definition 3.8.

Condition (iii) places conditions on the transitions available in ŝ. Ignoring the first

two quantifiers over player A transitions, the condition is much like the strong probabilistic

simulation of [SL94]. That is, for two player C states Λ̂,Λ ∈ PDS to satisfy the innermost

quantifier pair of condition (iii), it must be that every player C transition Λ → λ can

be matched with a combined player C transition Λ̂
Cmb
−−→ λ̂ such that the two resulting

probabilistic states λ̂ and λ are in L(R) (see Definition 3.1, page 25). Essentially this

means that everything that player C can do in Λ can be matched by player C in Λ̂. This

condition only works in one direction: player C in Λ̂ may be able to make transitions that

player C in Λ cannot simulate. Hence, we say Λ̂ over-approximates Λ. An intuition for

over-approximation of player C states is that, when R is the identity relation, the convex

hull defined by Λ̂ includes the convex hull defined by Λ.

If we include the first two quantifiers of (iii) in our discussion then we see that every

player A transition s → Λ from the concrete state s must be matched by a combined

player A transition ŝ
Cmb
−−→ Λ̂ such that Λ̂ over-approximates Λ. Note that for both player

A and player C transitions we allow the abstract state to match the behaviour of the

concrete state with combined transitions.

Condition (iv) is very similar to condition (iii) except that the direction of simulation

is reversed for player C. That is, for two player C states Λ̂,Λ ∈ PDS to satisfy the

innermost quantifier pair of condition (iv) everything player C can do in Λ̂ must be

matched by player C in Λ. We say in this case that Λ̂ under-approximates Λ. The

intuition for under-approximation is that with the identity relation the hull defined by Λ̂

is included in the hull of Λ. The alternation in (iv) is akin to the preservation condition
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ŝ*

ŝ>0

. . .

. . .

ŝ0

F

t̂>0

1
256

255
256

1
256

254
256

255
256

2
256

Figure 6.8: A game abstractionG1 of the MDP
in Fig. 6.2 with 255 player C states in T̂ (ŝ>0).

ŝ*

ŝ>0 ŝ0

F

t̂>0

Figure 6.9: A game abstractionG2 of the MDP
in Fig. 6.2 with 3 player C states in T̂ (ŝ>0).

of (non-probabilistic) alternating simulations in [AHKV98].

Strong probabilistic game simulations are relations on states of a single game. In the

final part of Definition 6.10 we define the abstraction relation ⊑ ⊆ GAME × GAME by

considering strong probabilistic game simulations over pairs of games. We require that

all initial states of the concrete game are abstracted by some initial state of the abstract

game and that all initial states of the abstract game abstract some initial states of the

concrete game, respectively.

We illustrate the definition of strong probabilistic game simulation with an example:

Example 6.11. Reconsider the MDP M depicted in Figure 6.2 (page 113) and its em-

bedding ρ(M) depicted in Figure 6.3 (page 114). Now consider the games Ĝ1 and Ĝ2

depicted in Figure 6.8 and 6.9, respectively. Assume the cost labelling is 〈0, 0〉 for every

state of every game we consider here. The relation

R =
{

〈ŝ*, s*〉, 〈ŝ0, s0〉, 〈ŝ>0, s1〉, . . . , 〈ŝ>0, s255〉, 〈t̂>0, t1〉, . . . , 〈t̂>0, t255〉
}

is a strong probabilistic game simulation on both Ĝ1 ⊎ ρ(M) and Ĝ2 ⊎ ρ(M) and shows

that Ĝ1 ⊑ ρ(M) and Ĝ2 ⊑ ρ(M).

As this example shows, our conditional notion of abstraction allows us to consider

different game abstractions of different precision for a fixed abstraction relation R and

a fixed MDP M . Moreover, our abstraction preorder can also be used to order this
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abstraction in terms of precision. That is, it is not hard to see that Ĝ2 is more abstract

than Ĝ1, i.e. Ĝ2 ⊑ Ĝ1, via the relation that relates states of Ĝ2 and Ĝ1 with the same

label.

The price we pay for Ĝ2’s precision is the number of player C states in ŝ>0. Whereas

Ĝ2 has 255 such player C states, the less precise abstraction, Ĝ1, only has 3.

To see how our abstraction relation is related to the notion of abstraction defined in

Section 3.4 we introduce the following lemma:

Lemma 6.12. Let M = 〈S, I, T, L,R〉 be an MDP for which there is a bound r ∈ R s.t.

R(s) ≤ r for all s ∈ S. Moreover, let Ŝ ′ be an abstract state space and let α : S → Ŝ ′

be an abstraction function. The game α(M) as defined by Definition 3.28 is such that

α(M) ⊑ ρ(M).

Proof. See Section A.2.1 on page 212.

The proof of Lemma 6.12 reveals that the relation R = {〈ŝ, s〉 ∈ α(S)×S | α(s) = ŝ}

is a strong probabilistic game simulation on α(M) ⊎ ρ(M). In our proof we match every

player A transition of ρ(M) with a single player A transition in α(M). That is, we

do not use different player A transitions of α(M) to satisfy conditions (iii) and (iv) of

Definition 6.10. This means that, in α(M), we use the same player C state to realise both

over and under-approximation. We also do not use combined transitions.

We now give an intuitive account of how, in our abstraction framework, the ability to

under and over-approximation with different player A transitions and the ability to use

combined transitions helps us identify other games Ĝ that, like α(M), are abstractions of

ρ(M) under R. Supposing α(M) = 〈Ŝ, Î , T̂ , L̂, R̂〉 we show how we can approximate the

transition function α(M) with a game Ĝ = 〈Ŝ, Î , T̂ ′, L̂, R̂〉 — a game that agrees with

α(M) on all components but the transition function — such that Ĝ ⊑ α(M).3 We will

use the geometric interpretation of player A transitions to introduce T̂ and T̂ ′ informally

(see Section 6.3).

Suppose that T̂ (ŝ1) = {{λ̂0}, . . . , {λ̂6}} in some state, ŝ1 ∈ Ŝ (see Figure 6.10). This

3We will see later that ⊑ is transitive, meaning that Ĝ ⊑ ρ(M), also.
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ŝ1 ŝ2

ŝ3

λ̂6 λ̂5
λ̂4
λ̂3

λ̂2

λ̂1

λ̂0

Figure 6.10: Geometric interpretation
of a number of player C states.

ŝ1 ŝ2

ŝ3

λ̂new

λ̂6

λ̂0

Figure 6.11: Representing many player
C states via combined player A transitions.

ŝ1 ŝ2

ŝ3

λ̂6 λ̂5
λ̂4
λ̂3

λ̂2

λ̂1

λ̂0

Figure 6.12: Geometric inter-
pretation of a single complex
player C state.

ŝ1 ŝ2

ŝ3

λ̂6

λ̂3

λ̂0

Figure 6.13: Under-
approximation of the player C

state in Figure 6.10.

ŝ1 ŝ2

ŝ3

λ̂new
2

λ̂new
3

λ̂new
1

λ̂new
0

Figure 6.14: Over-
approximation of the player C

state in Figure 6.10.

kind of transition function is typical when ŝ1 abstracts many states of M corresponding

to probabilistic choices. Due to the ability to match concrete player A transitions with

combined player A transitions in abstract models we could consider a less precise transition

function with T̂ ′(ŝ1) = {{λ̂0}, {λ̂6}, {λ̂
new}} (see Figure 6.11). That is, we can match any

player C state available in T̂ by taking a weighted combination of the player C states

available in T̂ ′. Note that the open circles in Figure 6.11 (and Fig. 6.13 and 6.14) are

included for reference only, and are not actual distributions in T̂ ′.

Now suppose that T̂ (ŝ1) = {{λ̂0, . . . , λ̂6}} (see Figure 6.12). That is T̂ (ŝ1) contains a

single player C state which comprises many distributions. This scenario occurs when ŝ1

abstracts a single state of M in which there is a lot of non-determinism. Again we can

approximate this player C non-determinism with a more abstract transition relation over

the same state space. That is, we can consider transition function where T̂ ′(ŝ1) yields the

set of two player C states, {{λ̂0, λ̂3, λ̂6}, {λ̂
new
0 , λ̂new

1 , λ̂new
2 , λ̂new

3 }}. We depict {λ̂0, λ̂3, λ̂6}

and {λ̂new
0 , λ̂new

1 , λ̂new
2 , λ̂new

3 } in Figure 6.13 and 6.14, respectively. In this case we satisfy
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b

1
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1
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⊑
⊒ŝ1

ŝ2
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ŝ3
b

Figure 6.15: Two games that
are equivalent due to combined
player A transitions.

s1

s2
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s3
b

1
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ŝ2
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ŝ3
b

Figure 6.16: Two games that
are equivalent due to combined
player C transitions.

s1

s2
a

s3
b

s4
c

⊑
⊒ŝ1

ŝ2
a

ŝ3
b

ŝ4
b

Figure 6.17: Two equivalent games
due to the ability to under and over
approximate non-determinism.

conditions (iii) and (iv) of Definition 6.10 for the player A transition ŝ1 → {λ̂0, . . . , λ̂6} of

α(M) with distinct player A transitions in Ĝ.

In practice the two cases can coincide — there can be many states of M that ŝ1 ab-

stracts and each such concrete state may have some complex non-deterministic behaviour.

6.4.2 Properties of Strong Probabilistic Game-Simulation

In this section we prove some properties of our abstraction relation. We start with some

observations that are standard for simulations:

Lemma 6.13. Every game G has a largest strong probabilistic game simulation.

Proof. This follows easily by considering a relation R ∈ S×S such that 〈ŝ, s〉 ∈ R if and

only if 〈ŝ, s〉 is in some strong probabilistic game simulation on G. That R is a strong

probabilistic game simulation follows from Lemma 3.2, item (iv).

We will now investigate the nature of the relation ⊑ itself. We will show that ⊑ is a

preorder but not a partial order. It is useful for ⊑ to be an order: reflexivity guarantees

that a game can abstract itself and transitivity helps us build abstractions incrementally.

Lemma 6.14. The abstraction relation ⊑ is a preorder.

Proof. See Section A.2.2 on page 213.

It turns out that ⊑ is not also a partial order. Examples of ⊑-equivalent games are

shown in Figure 6.15, 6.16 and 6.17. For example, the two games in Figure 6.15 are ⊑-
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equivalent due to combined player A transitions: the additional player A transition in the

right-hand game can be simulated with a combined player A transition in the left-hand

game. The two games in Figure 6.16 show an analogous equivalence due to combined

player C transitions.

6.4.3 Most and Least Abstract Transition Functions

Recall that the motivation of the work in this chapter is that, in [KNP06], for a fixed MDP

M and a fixed abstraction function α, only a single game abstraction can be constructed

that abstracts this MDP with this function. In this section, we show that our abstraction

preorder is more liberal and, more specifically, that the transition function as defined in

[KNP06] is the most precise transition function one can define for a given α. Our main

interest is in the various ways in which we can define transition function for games. We

remark that, orthogonal to this, there are many propositional labellings or cost labellings

we can define. We first consider themost abstract way in which we can define the transition

function of a game abstraction:

Lemma 6.15. Let M = 〈S, I, T, L,R〉 be an MDP for which there is a bound r ∈ R s.t.

R(s) ≤ r for all s ∈ S. Moreover, let Ŝ ′ be an abstract state space, let α : S → Ŝ ′ be an

abstraction function for which α(S) is finite and let R ⊆ α(S)×S be the relation defined

as {〈ŝ, s〉 ∈ α(S)× S | α(s) = ŝ}. A game Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 exists for which Ĝ ⊑ ρ(M)

with R and

– T̂ (ŝ) = {{[ŝ′]} | ŝ′ ∈ Ŝ} ∪ {{[ŝ′] | ŝ′ ∈ Ŝ}} for every ŝ ∈ Ŝ .

Moreover, for any such Ĝ we have that any other game Ĝ′ = 〈Ŝ, Î , T̂ ′, L̂, R̂〉 such that

Ĝ′ ⊑ ρ(M) with R and such that Ĝ′ agrees with Ĝ on Î , L̂ and R̂, is abstracted by Ĝ.

Proof. See Section A.2.3 on page 222.

The number of player C transitions in the game defined in Lemma 6.15 does not

depend on the number of concrete states, S, but on the number of abstract states, α(S). It

simply defines the most abstract transition function over the state space Ŝ. This is akin to

the total relation for existential abstractions [CGL94]. Because this transition function is
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easy to obtain it may be useful as an initial abstraction in a nested abstraction-refinement

loop.

Dual to the most abstract transition function is the least abstract transition function:

Lemma 6.16. Let M = 〈S, I, T, L,R〉 be an MDP for which there is a bound r ∈ R s.t.

R(s) ≤ r for all s ∈ S. Moreover, let Ŝ ′ be an abstract state space, let α : S → Ŝ ′ be an

abstraction function and let R ⊆ α(S)× S be the relation defined as {〈ŝ, s〉 ∈ α(S)× S |

α(s) = ŝ}. A game Ĝ = 〈α(S), Î , T̂ , L̂, R̂〉 exists for which Ĝ ⊑ ρ(M) with R and

– T̂ (ŝ) = {{α(λ) | λ ∈ T (s)} | s ∈ α−1(ŝ)} for all ŝ ∈ α(S) .

Moreover, for any such Ĝ we have that any other game Ĝ′ = 〈α(S), Î , T̂ ′, L̂, R̂〉 such that

Ĝ′ ⊑ ρ(M) with R and such that Ĝ′ agrees with Ĝ on Î , L̂ and R̂, abstracts Ĝ.

Proof. See Section A.2.4 on page 224.

We restrict to a state space α(S) because it is not obvious how to define the transition

function on states that do not have any concretisations in a way that is maximal in ⊑.

The least abstract transition function defined in Lemma 6.16 is the transition function

used in the framework of [KNP06]. That is, the game abstractions as they are defined in

[KNP06] are maximal in ⊑ for a fixed MDP and abstraction function. Observe that, in

the worst-case, the number of player C transitions in these games directly corresponds to

the number of concrete states in M .

Example 6.17. Reconsider the MDP M depicted in Figure 6.2 (page 113) and its game

abstraction Ĝ1 depicted in Figure 6.8 (page 121). The game Ĝ1 is the least abstract

game we can define under the relation defined in Example 6.11. The game abstraction Ĝ2

depicted in Figure 6.9 (page 121) has neither the least nor the most abstract transition

function over the relation defined in Example 6.11.

6.4.4 Soundness Requirement

In this section, we will present the main result of this chapter. We will show that the

abstraction relation ⊑ satisfies the soundness requirement informally presented in (6.3).
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More specifically, we will show that, for games that are finitely branching for player A, the

abstraction preorder ⊑ as defined in Def. 6.10 preserves the properties Prob− and Prob+.

Theorem 6.18. Let Ĝ and G be games such that Ĝ ⊑ G and Ĝ and G are finitely

branching for player A. We have that

Prob−(Ĝ) ≤ Prob−(G) and Prob+(Ĝ) ≤ Prob+(G) .

Proof. See Section A.2.5 on page 225.

The soundness requirement (see Theorem 6.18) in combination with the consistency

requirement (see Lemma 6.3) enables us to approximate Prob−(M), Prob+(M) for MDPs

M via games. This restriction to finite branching for player A is not that significant:

embedded MDPs are finitely branching for player A by construction and, in the underlying

model checker, we can only handle finitary games, anyway. We can extend Theorem 6.18

to include cost properties if the fixpoint characterisations in Lemma 3.26 can be extended

to include Cost− and Cost+.

We illustrate Theorem 6.18 via our running example:

Example 6.19. Reconsider the MDP M depicted in Figure 6.2 (page 113) and its game

abstractions Ĝ1 and Ĝ2 depicted in Fig. 6.8 and 6.9 (page 121), respectively. We previously

established that Ĝ1 ⊑ ρ(M) and Ĝ2 ⊑ ρ(M); hence, by Theorem 6.18, we have

Prob+(Ĝ1) ≤ Prob+(ρ(M)) and Prob+(Ĝ2) ≤ Prob+(ρ(M)) .

From the figures it is easy to see that Prob+(Ĝ1) = Prob+(Ĝ2) = 〈1, 1〉. Therefore, by

definition of ≤ and the consistency requirement in Lemma 6.3 we have that Prob+(M) = 1.

Example 6.19 demonstrates that we do not always need to construct the most precise

transition function to get good approximations. In our running example we could use

either Ĝ1 or Ĝ2 to deduce that Prob+(M) = 1.
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6.5 Conclusions

In this chapter we generalised the game-based abstraction framework of [KNP06]. Our

main motivation for doing this was that, in Chapter 5, we were not able to approximate

the transition function of game abstractions. That is, we identified the need for an

abstraction framework for game abstractions that is fine-grained enough to allow us to

consider multiple game abstractions under a fixed abstraction function.

To achieve this, we developed a conditional notion of abstraction through a simula-

tion on games, called strong probabilistic game simulation. With this simulation we no

longer require that there is a direct correspondence between player A transitions in game

abstractions and concrete states — we allow a separate player A transition to be used for

under and over-approximation. We also give game abstractions the ability to simulate

concrete behaviours through probabilistic choices. To this end, we generalised an existing

notion of combined transitions to two-player stochastic games.

We showed that our notion of abstraction generalises that of [KNP06] and that the

games constructed by [KNP06] are maximal in our abstraction preorder. In addition to

this, we also demonstrated that through strong probabilistic game simulations we are

now able to consider many different game abstractions of a program, even under a fixed

abstraction function. Finally, we showed that, under mild conditions, our abstraction

preorder is sound for probabilistic safety and liveness properties.

We conclude this chapter with suggestions for further work.

Extensions An obvious extension of our results is to extend the soundness result to

cost properties. The main step in proving cost properties are preserved by our abstraction

preorder is (akin to Lemma 3.26, page 46). We also think it would be interesting to see

what other kinds of properties are preserved by our abstraction preorder.

We also think it would be interesting to consider variants of our abstraction preorder.

In particular we believe it would be interesting to define a weak variant of our strong

probabilistic game simulation. In the absence of an action labelling, however, such an

extension would not be immediately relevant to probabilistic software. We could also
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consider separating under-approximating player A transitions from over-approximating

player A transitions (akin to [LT88, DGG97]). That is, we could evaluate condition (iv)

of Definition 6.10 on the under-approximating transition function and condition (iii) on the

over-approximating transition function. We believe that the two levels of non-determinism

are only necessary to achieve under-approximation — for the over-approximation a single

level of non-determinism may suffice. We may be able to obtain more compact abstrac-

tions by exploiting this.

Refinement Another direction of future research is to employ the results of this chap-

ter in the abstraction-refinement method in Chapter 5. The main difficulty in doing

so is that the refinement method described in Section 5.4 is not currently able to deal

with approximate transition functions. That is, the player A non-determinism in refin-

able states is no longer necessarily caused by imprecise predicates, but may be caused by

an approximate transition function. In the non-probabilistic setting, in CEGAR, there

are various approaches for detecting and improving approximate abstract transition func-

tions [DD01, BCDR04, JM05]. However, it requires further investigation to adapt these

methods to a probabilistic setting.

Optimality In [WZ10], it was recognised that, with respect to probabilistic safety and

liveness properties, for a given abstraction function and a given MDP, the most precise

way in which we can evaluate probabilistic safety and liveness properties on the abstract

state space is through the game abstractions of [KNP06]. This optimality result is not re-

stricted to game abstractions and includes any kind of abstract model that can be defined

on the abstract state space. The optimality in [WZ10] is formulated through abstract

interpretation. A similar optimality result is described in [SG06] for non-probabilistic

models. Here, an extension of modal abstraction is shown to be the optimal. In [SG06],

however, this optimality is defined in terms of the modal µ-calculus properties that can

be verified by the abstraction. An interesting direction of research would be to explore

the link between the two abstraction formalisms and the two definitions of optimality.

More specifically, we think it would be interesting to investigate whether (a probabilistic

adaptation of) the modal abstractions in [SG06] is also optimal in the sense of [WZ10].
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Complexity Our final remark concerns the computational complexity of ⊑. In an

abstraction-refinement implementation, by construction, the game abstractions that are

considered are abstractions of the program under consideration. In this setting, we never

actually need to check the conditions of Definition 6.10. However, for other applications

it may be necessary to actually compute strong probabilistic game simulations. For these

cases it is potentially of interest to investigate the computational complexity of ⊑. That

is, the complexity of deciding, given games Ĝ, G ∈ GAME, whether Ĝ ⊑ G holds.



Chapter 7

Instrumentation-based Verification of

Probabilistic Software

7.1 Introduction

In this chapter, we will propose an alternative method to verify probabilistic software.

The key idea of this method, named “instrumentation-based verification”, is to reduce

the problem of computing quantitative properties of probabilistic programs to the problem

of verifying a number of qualitative properties of non-probabilistic programs. We argue

that — unlike probabilistic adaptations of non-probabilistic verification techniques —

through instrumentation-based verification we can directly leverage state-of-the-art tools

and techniques in non-probabilistic software verification.

We focus exclusively on (probabilistic and non-probabilistic) safety properties in this

chapter. There is a large body of research on verifying and refuting non-probabilistic

safety properties. This includes, notably, classical, manual techniques such as Hoare

logic [Flo67, Hoa69, Dij75] and automated techniques such as abstract interpretation

[CC77], bounded model checking [BCCY99] and counter-example guided abstraction re-

finement (CEGAR) [Kur94, CGJ+00]. These techniques are known to work well for

many practical classes of programs and have been implemented in mature tools such as

ASTRÉE [CCF+05], SLAM [BR01, BCLR04], CBMC [CKL04], BLAST [HJMS03], SA-

TABS [CKSY05] and MAGIC [CCG+04]. Many verification techniques for probabilistic
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systems either adapt or generalise these non-probabilistic verification techniques. For ex-

ample, in Chapter 5, inspired by CEGAR, we developed a probabilistic adaptation of non-

probabilistic abstraction-refinement techniques. Similar adaptations have been suggested

in [HWZ08, DJJL01, DJJL02]. Moreover, probabilistic adaptations of Hoare logic and ab-

stract interpretation have also been considered in [MM05, dHdV02] and [Mon00, DPW01],

respectively.

In practice, in terms of automation and scalability, these probabilistic adaptations

of non-probabilistic verification techniques do not yet enjoy the same level of success

as their non-probabilistic counterparts. We argue this is because the introduction of

probabilistic behaviour requires fundamental changes to the very foundations of these

verification techniques. In Chapter 5, for example, we had to adapt standard abstraction

methods (e.g. [LBC03, CKL04]) to deal with the probabilistic nature of transitions and

were only able to do so by making assumptions on how probabilistic behaviour occurs in

programs. More importantly, as discussed in Chapter 6, we were not able to use recognised

methods to incrementally approximate the transition functions of abstract models (see,

e.g., [DD01, BMR01, CKSY05, JM05, KS06]). Moreover, because counter-examples to

probabilistic safety properties are fundamentally different in nature from counter-examples

to non-probabilistic safety properties (see, e.g., [HK07, AL09]), we were not able to directly

employ state-of-the-art refinement methods such as [CGJ+00, HJMM04].

In this chapter, we develop a new verification technique for probabilistic software

that directly uses non-probabilistic software verification tools and techniques. That is, we

propose to compute probabilistic safety properties of probabilistic programs by verifying

a number of non-probabilistic safety properties of non-probabilistic programs. Essentially,

we will compute (or approximate) probabilistic safety properties by performing a binary

search over the unit interval, [0, 1]. To do this we need some way to decide whether some

bound p ∈ [0, 1] is a lower bound or an upper bound for the property under consideration.

To accomplish this, we transform (or “instrument”) the probabilistic program into a non-

probabilistic program in such a way that this instrumented program is safe if and only

if p is an upper bound on the probabilistic safety property of the original probabilistic

program. This way, we can use non-probabilistic verification tools such as, say, SLAM
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[BR01] or BLAST [HJMS03], to obtain bounds on probabilistic safety properties of prob-

abilistic programs. We remark our approach is not limited to the use of model checkers

— we can also apply abstract interpreters or, say, Hoare logic, to establish bounds on

probabilistic safety properties.

There are many other verification problems that have been solved via a reduction

to the verification of non-probabilistic safety properties that can be checked by existing

tools. Notably, a reduction method is described in [SB04] which allows one to verify

(non-probabilistic) liveness properties through safety properties. Analogously, the model

checker in [CPR06] verifies safety properties to establish the correctness of a termina-

tion argument. In [QW04, LTMP09] a reduction is described which allows one to verify

properties of concurrent programs via the verification of safety properties of sequential

programs. Finally, in similar spirit, in [MTLT10], it is shown that certain properties of

programs that use the heap can be verified by verifying properties of programs that do

not use the heap.

The goals of this chapter are primarily practical in nature — we want to be able to

verify real probabilistic software. However, we will also develop a theoretical framework

necessary for our approach. In Section 7.2, we formalise the instrumentation process on

the level of MDPs. This is applicable to any system with MDP semantics and is not

limited to probabilistic software. In Section 7.3 we will discuss in detail how to realise

instrumentation on the level of programs. Finally, in Section 7.4, we discuss how we verify

non-probabilistic safety properties of instrumented programs in practice. In this section

we introduce a tool, called PROBITY, which implements our approach, and present an

extensive experimental analysis.

Before we go into the technical details, we discuss the general idea of our approach in

a little more detail, using the notation introduced in Chapters 3 and 4.

Overview of chapter In this chapter we will focus on computing probabilistic safety

properties Prob+ (see Definition 3.16, page 36). That, is, our aim is to compute or

approximate Prob+(M) for a given MDP M or, more specifically, Prob+(JP K) for a given

probabilistic program P (see Definition 4.1, page 52).
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I = [0, 1]
Construct instrumentation

for some p ∈ I

Is the

instrumen-

tation

safe?

I = I ∩ ]p, 1]

I = I ∩ [0,p]

Terminate

loop?
Report I to user

yes

no

don’t knowyes

no

Figure 7.1: The overview of an instrumentation loop which approximates a probabilistic property
Prob+(JP K) via (non-probabilistic) safety checks on instrumented programs.

We depict a high-level overview of our approach in Figure 7.1. We use an interval, I,

which is intially [0, 1], to represent our approximation of Prob+(JP K). In each iteration of

the loop in Figure 7.1, we pick a threshold, p ∈ I ∩Q and decide whether p is an upper

bound on Prob+(JP K) (i.e. Prob+(JP K) ≤ p) or a (strict) lower bound (i.e. Prob+(JP K) > p).

In practice, we pick p to be in the middle of I. For a given bound p ∈ [0, 1[ ∩Q we will

resolve this decision problem by verifying or refuting the validity of a non-probabilistic

safety property Reach+ : MDP → B for another MDP (as defined by Definition 3.15,

page 34). More specifically, we will define a function

〈P,p〉 7→ P p : PROG×Q→ PROG , (7.1)

which takes a probabilistic program, P , and a bound, p, and produces a non-probabilistic

program P p — called an instrumentation — such that

Reach+(JP pK) if and only if Prob+(JP K) > p . (7.2)

The equivalence in (7.2) enables us to decide whether Prob+(JP K) exceeds p by construct-

ing the instrumented program P p and, say, model checking Reach+(JP pK). That is, if P p

is safe for some p, i.e. if ¬Reach+(JP pK), then, according to (7.2), p is an upper bound on

Prob+(JP K) and hence we let I assume the interval I ∩ [0,p]. Similarly, if Reach+(JP pK),

then p is a strict lower bound on Prob+(JP K) and we let I be I ∩ ]p, 1].
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We terminate the instrumentation loop in Figure 7.1 once the difference between the

upper and lower bound of I is within some error threshold. In Section 7.4, we will show

that, in practice, we often obtain an interval for which the lower bound and upper bound

coincide. We remark that, at least in principle, we can plug in many software verification

tools to verify instrumentations.

7.2 Model-level Instrumentation

Although the general focus of this chapter is on verifying probabilistic programs, in this

section we formulate the instrumentation process at the level of MDPs. By formulating

the instrumentation process on this level our approach is applicable to any system with

MDP semantics. Formally, in this section, we introduce an instrumentation function

〈M,p〉 7→Mp : MDP×Q→ MDP .

This function takes an arbitrary MDP, M , and an arbitrary bound, p, and produces a

non-probabilistic MDP, Mp. Akin to the discussion in the introduction, in this section,

the main soundness criterion this function must satisfy is that Reach+(Mp) must hold

if and only if Prob+(M) exceeds p. Before we define the instrumentation function we

first discuss the nature of the decision problem we are facing in Section 7.2.1 and give an

informal description of the instrumentation process in Section 7.2.2 and 7.2.3. We prove

the soundness of our instrumentation in Section 7.2.4. Finally, we close this section by

discussing alternative methods to instrument MDPs.

7.2.1 When is Prob
+(M) > p?

Through the instrumentation process, we want to decide whether, for a given MDP M

and bound p ∈ [0, 1[ ∩ Q, is it the case that Prob+(M) is strictly greater than p. The

definition of Prob+ : MDP → [0, 1] (see Definition 3.16, page 36) takes Prob+(M) to be

the supremum of a set which contains a probability measure of certain sets of infinite

paths of M for every strategy and initial state of M . From this definition it is not easy to
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see how it is possible to solve the decision problem via non-probabilistic safety properties.

Therefore, in this section, we will simplify this definition.

If Prob+(M) > p is true then, by the definition of suprema, there is some initial state

s ∈ I and some strategy σ ∈ StratM such that the probability of reaching a state satisfying

F from s under σ exceeds p. More formally, we have Prob+(M) > p if and only if

PrsM,σ({π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)}) > p (7.3)

for some s ∈ I and σ ∈ StratM . We can simplify our decision problem further by observing

that taking suprema over pure strategies instead of all strategies does not affect the value

of our property (see Proposition 5.7.1 in [Seg95]). This means that Prob+(M) > p if and

only if (7.3) holds for some initial state s ∈ I and some pure strategy σ ∈ PureStratM .

Now, using Lemma 3.19 (page 38), we can rewrite the measure in (7.3) as a sum over

a possibly infinite set of finite paths, F-FinPathsM,σ. Recall F-FinPathsM,σ is the set of

finite paths of M that start with s, are consistent with σ, and for which the last state

satisfies F and no other state does. We can rewrite (7.3) to

∑

π∈F-FinPathsM,σ

ProbM,σ(π) > p . (7.4)

That is, the decision problem holds if and only if there is an initial state and a pure strategy

under which a countable sum of the probabilities of a certain set of finite paths exceeds p.

Our final simplification exploits the fact that the countable sum in (7.4) converges to a

value in [0, 1] and is only over non-negative terms. That is, we can rephrase our decision

problem as follows: Prob+(M) > p if and only if for some initial state s ∈ I and some

pure strategy σ ∈ PureStratM there is a finite subset, Π ⊆ F-FinPathsM,σ, such that

∑

π∈Π

ProbM,σ(π) > p .

We close this section with an example:

Example 7.1. Consider the MDP M depicted in Figure 7.2. The states s7, s10, s12 and
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Figure 7.2: An MDP M with Prob+(M) = 13
25 — the highlighted states represent

the target and the highlighted paths are some paths of M to this target.

s13 satisfy F and, hence, Prob+(M) = 13
25
. Let us take a pure strategy σ ∈ StratM with

σ(s0) = [[s1]] (recall [[s1]] is the point distribution on the point distribution on s1). We

have

F-FinPaths0M,σ =
{

s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−−→ s3

4
10

[s7]+
6
10

[s8]
−−−−−−−−→ s7 ,

s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−−→ s4

4
10

[s9]+
6
10

[s10]
−−−−−−−−→ s10

}

.

These paths are highlighted in Figure 7.2. If we take Π = F-FinPaths0M,σ then we see that

∑

π∈Π

ProbM,σ(π) = 1 · 1 · 1 · 4
10
· 1 · 4

10
+ 1 · 1 · 1 · 6

10
· 1 · 6

10
= 13

25
.

That is, there is an initial state, s0, a pure strategy, σ, and a finite subset of F-FinPaths0M,σ

whose combined probability mass is 13
25
. This means that Prob+(M) > p for every p ∈

[0, 13
25
[ . With a dual argument we can deduce that Prob+(M) ≤ p for every p ∈ [13

25
, 1[ .

7.2.2 Search-based Instrumentation

We established in Section 7.2.1 that the inequality Prob+(M) > p holds iff there exists

a certain finite set of finite paths of M . In contrast, Reach+(Mp) holds iff there exists

a certain finite path of Mp. This means that, intuitively, in order to solve the decision
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Figure 7.3: The instrumentation M
1

2 of M in Figure 7.2. The instrumentation is non-probabilistic —
i.e. all distributions are point distributions. As Reach+(M

1

2 ) we have that Prob+(M) > 1
2 .

problem Prob+(M) > p by model checking Reach+(Mp), we need individual finite paths

of the instrumentation, Mp, to correspond to finite sets of finite paths of M .

There are many ways in which we could realise this correspondence. We focus on

an approach where instrumentations essentially perform a search over M ’s state space,

looking for paths in F-FinPathM . We clarify this idea with an example:

Example 7.2. Consider again the MDP M depicted in Figure 7.2. We informally

depict an instrumentation of M , namely M
1
2 , in Figure 7.3. What comprises the state

space of M
1
2 will be discussed later — we focus on M

1
2 ’s behaviour. We do note there is

a direct correspondence between the states si, ui of M
1
2 and the states si of M . The path

s0 → s1 → s3 → s7 → u4 → u10 (7.5)

of M
1
2 (as highlighted in Figure 7.3) corresponds to a set of paths of M . Essentially the

first three transitions of (7.5) directly correspond to the exploration of the path

s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−−→ s3

4
10

[s7]+
6
10

[s8]
−−−−−−−−→ s7 (7.6)

of M . Then, the last two transitions of (7.5), s7 → u4 → u10, essentially “undo” the last
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two transition in (7.6) and then explore the last two transitions of the path of M

s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−−→ s4

4
10

[s9]+
6
10

[s10]
−−−−−−−−→ s10 .

That is, the path of M
1
2 in (7.5) actually corresponds with F-FinPaths0M,σ — the set of

paths of M discussed in Example 7.1 (and highlighted in Figure 7.2).

Our informal example has glossed over many details. A particularly important detail

is that we must never explore a path of the original MDP M more than once. This is

because, in Mp, we will sum the probability of all paths of M that we encounter, and

we do not want to count the same probability mass twice. To realise this requirement we

introduce a new concept — an ordering on the transitions of MDPs:

Definition 7.3 (Transition ordering). Let M = 〈S, I, T, L,R〉 be an MDP and let

� ⊆ (S × DS × S) × (S × DS × S) be a partial order on M ’s transitions. We call � a

transition ordering if and only if the following condition holds:

– for all transitions s1
λ1−→ s′1 and s2

λ2−→ s′2 of M we have that s1
λ1−→ s′1 and s2

λ2−→ s′2

are comparable in � if and only if s1 = s2 and λ1 = λ2.
1

For � to be a transition ordering of M it must be total whenever restricted to a

fixed source state and a fixed distribution. Our instrumentation process requires that

each MDP M is equipped with some transition ordering �M — we can choose such an

ordering arbitrarily. A transition ordering places an order on resolutions of probabilistic

choice in M , but does not order resolutions of non-deterministic choice.

We illustrate the concept of transition orders with an example:

Example 7.4. A transition order �M for the MDP M depicted in Figure 7.2 is the

1Transitions t1 and t2 are comparable in � iff either t1 � t2 or t2 � t1 holds.
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reflexive closure of the relation

{

〈s1
4
10

[s3]+
6
10

[s4]
−−−−−−−→ s3, s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s4〉, 〈s2

4
10

[s5]+
6
10

[s6]
−−−−−−−→ s5, s2

4
10

[s5]+
6
10

[s6]
−−−−−−−→ s6〉,

〈s3
4
10

[s7]+
6
10

[s8]
−−−−−−−→ s7, s3

4
10

[s7]+
6
10

[s8]
−−−−−−−→ s8〉, 〈s4

4
10

[s9]+
6
10

[s10]
−−−−−−−−→ s9, s4

4
10

[s9]+
6
10

[s10]
−−−−−−−−→ s10〉,

〈s5
4
10

[s11]+
6
10

[s12]
−−−−−−−−−→ s11, s5

4
10

[s11]+
6
10

[s12]
−−−−−−−−−→ s12〉, 〈s6

4
10

[s13]+
6
10

[s14]
−−−−−−−−−→ s13, s6

4
10

[s13]+
6
10

[s14]
−−−−−−−−−→ s14〉

}

.

Informally, a transition ordering induces a lexographical order over paths in which a

pair of paths can be compared if and only if they start from the same initial state s ∈ I

and are both consistent with some pure strategy σ ∈ PureStratM — our instrumentations

adhere to this lexographical order. We will formalise this order in our soundness proof.

We note that the path sets of M considered by paths of instrumentations, Mp, should

be precisely those path sets that we described in Section 7.2.1 — all paths in these sets

must originate from the same initial state and must be consistent with a single pure

strategy of M . The restriction to a single strategy is perhaps counter-intuitive: a path

of Mp explores various ways in which probabilistic choices of M can be resolved, but can

only consider one resolution of non-determinism. This is because other resolutions of non-

deterministic choice in M — i.e. other pure strategies of M — are considered by other

paths of Mp. In other words, a non-deterministic choice in M remains a non-deterministic

choice in Mp.

The general idea of our instrumentations is that each finite path of Mp corresponds

to a finite set Π ⊆ F-FinPathsM,σ for some s ∈ I and σ ∈ PureStratM . To decide

that Prob+(M) > p, in accordance with Section 7.2.1, we need to establish whether

the combined probability mass of paths in one such Π is greater than p. Because this

probability mass depends on the path of Mp explored so far, it needs to be stored in the

states of Mp. This probability mass is depicted in, say, Figure 7.3 with rational numbers

next to the states. The accumulated probability mass is the only thing that distinguishes,

say, state s4 and u4 in Figure 7.3.

To start describing the search-like behaviour of instrumentations in some more detail,

we categorise transitions of instrumentations into explorative and backtracking transitions.
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Informally, the idea is that explorative transitions of Mp mimic the behaviour of M .

Exploration continues as long as we have not encountered a state satisfying F. During

the exploration phase, the only behavioural difference between M and Mp is that the

probabilistic choices of M are resolved non-deterministically in Mp. This means we are

not proposing that every pure strategy of M should correspond to a single path of Mp.

Such an instrumentation scheme would not work when some resolutions of probabilistic

choice never reach a state satisfying F. A path of Mp that is exploring states of M from

which no state satisfying F is reachable will never backtrack and explore other paths of

M . For example, in Figure 7.2, once we reach s8, there is no way in which we can reach

a state satisfying F — we need instrumentations to be able to avoid exploring paths that

lead to s8. The ability to choose non-deterministically between the different resolutions

of probabilistic choice of M during exploration (see, e.g., states s1, s3 in Figure 7.2) gives

instrumentations the ability to “skip” certain probabilistic behaviours of the original MDP.

In practice this also means there are many paths of Mp that correspond to the same pure

strategy of M .

If, during exploration, we encounter a state satisfying F, then we switch to a backtrack-

ing mode. Backtracking comprises a single step: we add the probability of the current

path of M to the accumulated probability mass, we jump back to a probabilistic choice

of M we visited earlier in our search — choose a different resolution of it — and proceed

with exploration again. We will require that this backtracking move always chooses res-

olutions of probabilistic choice that are (strictly) greater than the current resolution of

probabilistic choice in the transition ordering. Note that there may be many probabilistic

choices we can backtrack to and each of these may have many resolutions we may choose

to explore — each of these induces a backtracking transition (see, e.g., s7 in Figure 7.3).

We now revisit our example.

Example 7.5. Consider again the MDP M depicted in Figure 7.2 and its instrumen-

tation M
1
2 in Figure 7.3 induced by the transition order � defined in Example 7.4. Back-

tracking transitions of M
1
2 are s7 → u8, s7 → u4 and s12 → u6 and the remaining

transition are explorative. We consider the backtracking transition s7 → u4 in a little
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more detail. Suppose the path of M we followed to s7 is

s0 → s1
4
10

[s3]+
6
10

[s4]
−−−−−−−→ s3

4
10

[s7]+
6
10

[s8]
−−−−−−−→ s7 .

In the second and third transition of this path we make a probabilistic choice. Because

s1
4
10

[s3]+
6
10

[s4]
−−−−−−−→ s3 ≺ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s4

we backtrack to s1 and explore the transition s1
4
10

[s3]+
6
10

[s4]
−−−−−−−→ s4 of M . In doing so we add

ProbM(s0 → s1
4
10

[s3]+
6
10

[s4]
−−−−−−−→ s3

4
10

[s7]+
6
10

[s8]
−−−−−−−→ s7) =

4
10
· 4
10

= 4
25

to the accumulated probability mass and end up in u4. Note that the non-deterministic

choice we made in s0 does not induce a backtracking transition in M
1
2 .

7.2.3 Model-level Instrumentation Function

The previous section informally described the semantics of model-level instrumentations.

In this section we consider how these semantics can be realised. That is, we will define

formally how instrumentations are constructed:

Definition 7.6 (Model-level instrumentation). Let M = 〈S, I, T, L,R〉 be an MDP

and let p ∈ [0, 1[ ∩Q. We let Mp = 〈Sp, Ip, T p, Lp, Rp〉 be the MDP with

– Sp = FinPathIM ×Q,

– Ip = {〈si, 0〉 | si ∈ I},

– T p is the smallest function such that for all 〈π,mass〉 ∈ Sp we have:

(i) [〈π
λ
−→ s,mass〉] ∈ T p(〈π,mass〉) if ¬L(Last(π),F) and π

λ
−→ s is a path of M

(ii) [〈π′,mass+ ProbM(π)〉] ∈ T p(〈π,mass〉) if L(Last(π),F) and π′ is a finite

path of M satisfying all of the following conditions:

(a) |π| ≥ |π′|

(b) Trans(π, i) = Trans(π′, i) for all i < |π′| − 1
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(c) Trans(π, |π′| − 1) ≺M Trans(π′, |π′| − 1)

(iii) [〈π,mass〉] ∈ T p(〈π,mass〉) if (i) and (ii) leave T p(〈π,mass〉) empty.

– Lp is such that, for all 〈π,mass〉 ∈ Sp and a ∈ AP, we have that Lp(〈π,mass〉, a) =

tt if and only if a = F, L(Last(π),F) and mass+ ProbM(π) > p, and

– Rp is defined arbitrarily.

We first explain why the state space ofMp is FinPathIM×Q. Recall from the definition

of MDPs that the transition function, T p, only takes the current state as input — it

cannot look at the past behaviour of Mp. However, to realise backtracking transitions

(e.g. s7 → u4 in Figure 7.3), we do need to know this past behaviour. More specifically,

we need to know the probabilistic choices of M we have explored prior to reaching a target

state of M . To enable this we embed paths of M into the state space of Mp. The idea

is that instrumentations store the entire path of M in the current state — much like a

search stack — such that backtracking can be realised in T p by looking at states of Mp.

A similar problem arises for the definition of Lp — we need to know the total prob-

ability mass of the paths of M we have visited so far, but we cannot consider the past

behaviour of Mp. The embedding of M ’s paths is not helpful here as they represent the

past behaviour of M instead of the paths of M visited in Mp. As informally stated before,

to keep track of probability mass we equip states of Mp with a rational value. Informally,

this rational value is the combined probability of all paths M we backtracked from.

Following this definition of Sp, the definitions of Ip and Lp follow naturally. The

labelling function, Lp, identifies a state, 〈π,mass〉, as a target state of Mp only if the last

state of π is a target state in M and the mass accumulated in mass together with the

probability mass of the current path, ProbM(π), exceeds p. It therefore remains to ex-

plain the definition of T p. Firstly, we observe all transitions of Mp are non-probabilistic.

Condition (i) of T p corresponds with the exploration phase of the search, whereas condi-

tion (ii) is responsible for backtracking. Essentially, during backtracking, we take a path

π′ of M which, by conditions (ii.a) – (ii.c) is strictly greater than π in lexographical order

over paths of M induced by �M , and add ProbM(π) to mass. Moreover, the definition

of our transition ordering and condition (ii.c) ensure that π′ is realisable with the same
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pure strategy that realised π. Finally, condition (iii) prevents deadlocks from occurring

in Mp by adding self-loops when we have reached a target state of M and there are no

more paths to backtrack to.

Observe that the bound, p, only has an effect on the definition of Lp. We are only

interested in the labelling for F ∈ AP and this proposition holds in a state 〈π,mass〉 only

if the accumulated probability mass of the search so far (i.e. mass) plus the probability

of the current path in M (i.e. ProbM(π)) exceeds p.

We illustrate the definition of instrumentation by returning to our running example:

Example 7.7. Consider again the MDP M depicted in Figure 7.2 and the informal

description of its instrumentation M
1
2 in Figure 7.3. The path of M

1
2 discussed in Exam-

ple 7.1 and 7.2 (and highlighted in Figure 7.3) is actually the path:

〈s0, 0〉 −→ 〈s0
[s1]
−−→ s1, 0〉 (condition i, explore)

−→ 〈s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s3, 0〉 (condition i, explore)

−→ 〈s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s3

4
10

[s7]+
6
10

[s8]
−−−−−−−→ s7, 0〉 (condition i, explore)

−→ 〈s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s4,

4
25
〉 (condition ii, backtrack)

−→ 〈s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s4

4
10

[s9]+
6
10

[s10]
−−−−−−−−→ s10,

4
25
〉 (condition i, explore)

To see Reach+(M
1
2 ) holds, observe that the final state of this path is a target state in M

1
2

because s10 is a target state in M and

ProbM(s0
[s1]
−−→ s1

4
10

[s3]+
6
10

[s4]
−−−−−−−→ s4

4
10

[s9]+
6
10

[s10]
−−−−−−−−→ s10) +

4
25

= 6
10
· 6
10

+ 4
25

= 9
25

+ 4
25

> 1
2
.

We close our section by discussing the structure of instrumented MDPs. Firstly, we

remark that instrumented MDPs often have a countably infinite state space even if the

original model is a finite-state MDP. As an example consider the finite-state MDP M

depicted in Figure 7.4. An infinite-state instrumentation M
3
5 of M is shown in Figure 7.5.

The transition order we used is described in the caption of this figure. Note that, as before,

for a state 〈π,mass〉, we depict Last(π) inside a state and mass as a label attached to
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s0

s1
F

1
2

1
2

Figure 7.4: An MDP M with a
loop and with Prob+(M) = 1.
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· · ·

· · ·

. . .

Figure 7.5: Instrumentation of Figure 7.4
when s0

...
−→ s0 ≺ s0

...
−→ s1 and bound p = 3

5
— the least probable paths are counted first.
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1
2
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1
2

s0
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0
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1
4
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4
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3
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3
4 F

...
...

...
...

...
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...

Figure 7.6: Instrumentation of Figure 7.4 for the or-
der s0

...
−→ s1 ≺ s0

...
−→ s0 and bound p = 3

5 — the most

probable paths to the target are counted first.

the state. We have highlighted backtracking transitions.

We mention that the structure of instrumentations may be significantly affected by

the chosen transition ordering. For example, if we consider an alternative transition order-

ing to Figure 7.5 we end up with the infinite-state instrumentation depicted in Figure 7.6.

Clearly, these instrumentations are very different in terms of structure. An interesting

observation is that there is no path in the instrumentation M
3
5 that is depicted in Fig-

ure 7.5 that explores all of M ’s paths to the target state, s1, whereas there is such a path

in the instrumentation that is depicted in Figure 7.6.

Finally, we observe that an instrumentationMp ofM , from a behavioural perspective,

only differs from M in states where a probabilistic choice occurs or in states satisfying F.

That is, in the absence of probabilistic behaviour, the non-determinism between possible

exploration steps in a state 〈π,mass〉 of Mp is identical to the non-determinism in the

state Last(π) of M . This property will be exploited when we lift the instrumentation
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function to the level of probabilistic programs in Section 7.3. A special case occurs when

we instrument non-probabilistic MDPs M . It is easy to see that instrumentations of such

MDPs differ only from the original MDP in their behaviour in target states. Target states

in instrumentations of non-probabilistic MDPs always have a self-loop — this is because

backtracking transitions cannot occur in instrumentations in the absence of probabilistic

choice in M .

7.2.4 Soundness

Equation (7.2) on page 134 informally stated the main soundness requirement of the

model-level instrumentation process. We now formalise this requirement:

Theorem 7.8 (Model-level soundness). Let M be an MDP and let Mp be an

instrumentation of M for some bound, p ∈ [0, 1[ ∩Q. We have that

Reach+(Mp) if and only if Prob+(M) > p .

Proof. See Section A.3.1 on page 236.

Theorem 7.8 yields the anticipated result: it allows us to soundly reason about

quantitative properties of MDPs by verifying non-probabilistic safety properties of non-

probabilistic models. We will illustrate this via our running example:

Example 7.9. Consider again the MDP M depicted in Figure 7.2. Suppose we employ

the instrumentation loop depicted in Figure 7.1 to compute Prob+(M). Recall that we use

an interval, I, to describe possible values of Prob+(M). Initially, I = [0, 1]. We first pick

1
2
∈ I, and construct M

1
2 . We showed in Example 7.7 that Reach+(M

1
2 ) holds and, due to

Theorem 7.8, this means that Prob+(M) ∈ ]1
2
, 1]. We therefore let I = ]1

2
, 1].

Following the definition of Lp in Definition 7.2.2, it is easy to see that Reach+(Mp)

holds for every p < 13
25

and fails to hold for every p ≥ 13
25
. That is, if we pick a new bound

3
4
∈ I, as 3

4
≥ 13

25
, we will find Reach+(M

3
4 ) is safe and let I = ]1

2
, 3
4
]. Subsequent iterations

of the instrumentation loop with p = 5
8
, 9

16
, 17

32
, 33

64
and 67

128
will result in increasingly tight

intervals I = ]1
2
, 5
8
], ]1

2
, 9
16
], ]1

2
, 17
32
], ]33

64
, 17
32
] and ]33

64
, 67
128

], respectively.
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We remark that in practice it may be possible to improve the bounds established

during an iteration of the instrumentation loop by analysing, say, the counter-examples

or proofs returned by the safety checker. Doing this may also lead to precise bounds

instead of an interval.

7.2.5 Alternative Instrumentation Schemes

As discussed in Section 7.2.1, to verify a probabilistic property via the verification of non-

probabilistic properties on instrumentations, we need paths of the instrumentations Mp

to correspond to sets of paths of the original MDP M . We already mentioned there are

many ways in which we could do this and in this section we briefly discuss alternatives to

our search-based instrumentation scheme. We categorise these alternatives into sequential

and parallel instrumentation schemes.

Sequential instrumentation In a sequential instrumentation the paths of M are ex-

plored one-by-one. The analogy used in this thesis is that paths of Mp perform a search

over different resolutions of probabilistic choice in M . The main distinction between dif-

ferent sequential instrumentation methods is the search strategy with which they traverse

the state space of M . The instrumentation scheme defined in Section 7.2.2 has many

similarities to a depth-first search. This search has the advantage that, due to the way

backtracking is defined, no special treatment is necessary to deal with non-deterministic

choice. A disadvantage is that backtracking itself is quite complicated.

The main alternative search strategy we considered avoids this complication by ex-

ploring a new path of M from scratch every time a target state is encountered. However,

with such a strategy, it is no longer automatically guaranteed that we are exploring paths

of M that belong to the same pure strategy of M between different runs of M — we

need to make a special provision for dealing with non-deterministic choice. It is also more

involved to enforce that paths are explored in the desired order in this setting.

Parallel instrumentation We could also consider exploring multiple paths of M si-

multaneously in Mp. For example, we could let Mp be a concurrent program and, for

every possible resolution of probabilistic choice, the instrumentation would spawn a new
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thread. The benefit of a parallel approach over the sequential approach is that no back-

tracking is required and, hence, we need not be concerned with paths that do not reach the

target. The main issue of the parallel approach is that model checking instrumentations

with potentially an unbounded number of threads is challenging in practice.

An analogous semantics could potentially be achieved with instrumentations that are

not concurrent, by equipping Mp with symbolic data structures and by transforming the

operations in M into symbolic operations in Mp. This may be particularly useful if the

all paths of M correpsonding to a single path of Mp are very similar in structure. For

example, we could guarantee that all paths match in terms of the control-flow by some

formal notion akin to data independence [Wol78].

7.3 Program-level Instrumentation

In Section 7.2, we presented an instrumentation method for MDPs which, in principle, can

be applied to any type of system with MDP semantics. However, due to the complexity

of software, for many probabilistic programs, P , it is not tractable to directly generate

instrumentions JP Kp of the MDP, JP K, using Section 7.2. In practice, it is more appro-

priate to directly define instrumentation as a transformation of programs. To this end,

in this section, we lift the model-level instrumentation function defined in the previous

section to programs — as was originally proposed in the introduction of this chapter.

Our aim is to define an instrumentation function

〈P,p〉 7→ P p : PROG×Q→ PROG ,

in such a way that the MDP-semantics of a program-level instrumentation of a proba-

bilistic program P , i.e. JP pK, behaves like the model-level instrumentation of the MDP-

semantics of P , i.e. JP Kp. Moreover, we require our instrumented programs to be such

that they can be verified with existing verification tools for non-probabilistic software.

This is not as easy as it may first appear. The model-level definition of instrumenta-

tion in Definition 7.6 augments the states of the instrumented model, JP Kp, with paths of
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the original model, JP K. Although our definition of programs does not restrict the types

of variables we can use in P p, adding a variable to P p that directly represents paths

of JP K results in an instrumented program that no safety checker can verify in practice.

Furthermore, backtracking transitions (see Definition 7.6) have relatively complicated se-

mantics, and it is therefore difficult to express these semantics with a single control-flow

step in ANSI-C. We therefore sacrifice the simplicity of Definition 7.6 and restrict our

instrumented programs to data structures and semantics that safety checkers can deal

with in practice. That is, to represent paths of JP K, we will use data structures such as

arrays and we will realise backtracking behaviour via multiple control-flow edges.

This section is structured as follows. In Section 7.3.1, we introduce an assumption on

probabilistic programs. Then, in Section 7.3.2 up to 7.3.5 we will define our program-level

instrumentation function. Finally, Section 7.3.6 is dedicated to showing our program-level

instrumentation is sound.

7.3.1 Assumption

Our formal definition of programs, i.e. Definition 4.1, is quite liberal. There is no restric-

tion on the variable types we allow or the semantics we may give to control-flow edges.

In this section, we introduce an assumption on the probabilistic behaviour in programs.

We first make an assumption to simplify the definition of a transition ordering:

Assumption 7.10. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be a proba-

bilistic program. For all probabilistic locations ℓ ∈ Lp there is precisely one variable,

LValueℓ ∈ Var, that changes value in transitions from ℓ. Moreover, we also assume that

for every probabilistic location, ℓ ∈ Lp, we have a total order

Orderℓ ⊆ Type(LValueℓ)×Type(LValueℓ) ,

on values of LValueℓ and a function

Multℓ : UVar ×Type(LValueℓ)→ Q ,
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which yields for every u ∈ UVar and val ∈ Type(LValueℓ) the probability with the

program assigns val to LValueℓ in state 〈ℓ, u〉.

We remark that in practice we also require Orderℓ and Multℓ to be expressible in

terms of ANSI-C expressions such that we can implement the instrumentation function

as a source code transformation.

The first condition of the assumption ensures that each probabilistic choice only affects

the value of one variable in the program. In practice, all probabilistic assignments either

satisfy this assumption or can be rewritten in such a way that this requirement holds.

Essentially, the only complication occurs for assignments such as *ptr=coin(1,2), where

the left-hand side of the assignment is not a primitive variable. We split such an assign-

ment into two assignments tmp=coin(1,2) and *ptr=tmp and add an auxiliary variable,

tmp, to ensure we satisfy the assumption.

The main benefit of our assumption is that we can define a simple transition ordering

on probabilistic programs by only comparing the value of LValueℓ in the target state of

transitions from probabilistic locations.

Definition 7.11. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be a probabilis-

tic program. We define the relation:

�JP K ⊆ ((L ×UVar)× (D(L ×UVar))× (L ×UVar))
2 ,

as the reflexive closure of the relation which includes a tuple of JP K-transitions,

〈〈ℓ1, u1〉
λ1−→ 〈ℓ′1, u

′
1〉, 〈ℓ2, u2〉

λ2−→ 〈ℓ′2, u
′
2〉〉 ,

if and only if the source state match (i.e. 〈ℓ1, u1〉 = 〈ℓ2, u2〉), the distributions match

(i.e. λ1 = λ2), the source location is a probabilistic location (i.e. ℓ1 ∈ Lp) and if u1 6= u2

and 〈u1(LValueℓ1), u2(LValueℓ1)〉 ∈ Orderℓ1.

For �JP K to be a transition ordering on JP K we need to ensure that two transitions

are comparable assuming they have a matching source state and distributions. This is
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trivial for locations that are not probabilistic, as the distribution would necessarily be a

point distribution. This implies that the target state of the two transitions must also be

the same and the transitions are comparable in �JP K due to �JP K ’s reflexive closure.

For probabilistic locations, ℓ, the requirement holds if Assumption 7.10 holds. That

is, if the source state and distributions match, then by our assumption the target state

can only differ in their value for LValueℓ and, as Orderℓ is a total order, it must be

that the two transitions are comparable by the definition of �JP K .

We further illustrate the assumption by means of an example:

Example 7.12. Consider a program P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉

with a single probabilistic location P1 ∈ Lp induced by an assignment x=coin(1,3) where

Type(x) is Boolean. We clearly have that LValueP1 = x, as x is the only variable that

is changed by the assignment. For OrderP1 we take the total order on Type(x) induced

by the standard ANSI-C operator, <=. Finally, for every u ∈ UVar and val ∈ Type(x),

MultP1(u, val) yields
1
3
if val = true and 2

3
if val = false.

Having clarified the assumption we make on probabilistic programs, we can now start

the definition of our program-level instrumentation function. This definition is defined

over various sections. We first define the variables of instrumentations in Section 7.3.2.

Then, in Section 7.3.3, we define the control-flow of instrumentations. To complete the

definition we present the semantics of instrumentations in Section 7.3.4. Finally, we

combine these definitions in Section 7.3.5.

7.3.2 Variables

We start by defining the set of variables, Varp, of any program-level instrumentation of

a probabilistic program, P . As discussed, JP pK should behave like JP Kp and, to do this,

the variables we include in Varp indirectly encode the state space of JP Kp:

Definition 7.13. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be a probabilis-

tic program and let p ∈ Q be a bound. Let Varp be the set of variables consisting of:

– the variables in Var,
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– rational variables mass and prob,

– a natural variable index,

– an infinite array loc of locations,2

– for every var ∈ Var ∪ {prob}, an infinite array copy var with subtype Type(var),

– for every ℓ ∈ Lp an infinite array resℓ with subtype Type(LValueℓ), and

– a Boolean variable skip and, for all ℓ ∈ Lp, a variable tmpℓ of type Type(LValueℓ).

Let us explain the definition of Varp. Recall that states of JP Kp, 〈π,mass〉, comprise

a path component (π ∈ FinPath
{ℓi}×UVar

JP K ) and a rational component (mass ∈ Q). The

rational component is easily represented in JP pK’s state space with the rational variable

mass. Representing the path component with variables that verification tools can deal

with in practice is not that simple. We consider Definition 7.6 in more detail and identify

what information contained in JP K’s paths we actually need to mimic the behaviour

of JP Kp in the program-level instrumentation. We first note that, for a program-level

instrumentation, it helps to store only the information contained in paths that we actually

need — not so much because this would mean there is less information to store, but rather

because it means we do not have to update our path component during every exploration

step.

Observe that any explorative transition in JP Kp is of the form

〈π,mass〉 → 〈π → 〈ℓ, u〉,mass〉 ,

and, to know which explorative transitions are available in a state 〈π,mass〉 we only need

to know the last state of π. This last state is, in turn, a state of JP K. The variables, Var,

of P itself are included in Varp to allow us realise exploration.

When we need to start backtracking in a state 〈π,mass〉 of JP K, we may choose to

backtrack to any probabilistic choice in π. To enable this in P p, we store some information

about every probabilistic location that occurs in π. As we cannot put a bound on how

many probabilistic locations may appear in π, we use various infinite arrays to store

2In practice we use ANSI-C’s enum type to represent the locations in Lp \ Lt.
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information about each such location and we use an integer variable index to index these

arrays. Precisely what information we need depends on the information we need to realise

backtracking.

Recall that backtracking transitions are of the form

〈π,mass〉 → 〈π′,mass+ ProbM(π)〉

where π′ is a path of JP K. By the definition of backtracking transitions and by the

definition of �JP K it must be that the penultimate state of π′ is a JP K-state, 〈ℓ, u〉, where

ℓ is a probabilistic location. That is, other location types never satisfy our ordering

constraint and hence we only ever backtrack to probabilistic locations.

When we backtrack, we need to “undo” a number of transitions. Effectively, we need

to restore the state of P to what it was prior to making the probabilistic choice we are

backtracking to. To restore the program location of JP K we add to Varp the array loc.

Similarly, to restore the data state of JP K in JP pK we add, for each var ∈ Var, an array

copy var to store the value of P ’s variables. To be able to enforce the transition ordering

in P p, for every ℓ ∈ Lp, we also add an array resℓ that stores the value of LValueℓ

directly after a probabilistic choice.

Finally, observe that during backtracking transition we also need to add the probabil-

ity ProbM(π) to mass. We store the probability of the current path in another rational

variable prob ∈ Varp as it would be expensive to compute ProbM(π) on-the-fly in P p for

every backtracking transition. The remaining variables in Definition 7.13 are temporary

variables, which helps simplify our definition of semantics later.

7.3.3 Control-flow

There are considerable benefits to defining our instrumentation on the level of programs.

For example, the vast majority of locations in JP K are likely to be non-probabilistic. As

remarked at the end of Section 7.2.2, the behaviour of JP Kp is identical to that of JP K in

the absence of probabilistic choice and this is something we can exploit.

That is, because we only store path information when we visit probabilistic program



154 Instrumentation-based Verification of Probabilistic Software

ℓi

A

B

T

p=coin(4,10)

res=uniform(6)

Figure 7.7: The control-flow of a proba-
bilistic program, P .
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Figure 7.8: A schematic control-flow graph of an instru-

mentation, P p, of the program depicted in Figure 7.7.

locations, we only need to update the variables in Varp \ Var when are making a proba-

bilistic choice or when we are backtracking. This means that, in practice, we can embed

most of P ’s code in P p unmodified. In particular, if Lp = ∅, our instrumentations are,

besides cosmetic changes, identical to P .

We illustrate our point with a control-flow graph of a program P in Figure 7.7 and an

informal description of the control-flow graph of its instrumentation, P p, in Figure 7.8.

The control-flow edges in Figure 7.8 that are not highlighted have not been affected.

The instrumentation P p only differs from P in the probabilistic locations “A” and “B”

and Lt, the rest of P ’s control-flow and semantics are left intact. We do remark that

a significant amount of control-flow is added to realise backtracking — a backtacking

transition is no longer realised in a single step. We also note backtracking code adds a

control-flow loop that is not in the original program.

We now formalise the control-flow of program-level instrumentations. That is, we will

define the structure of instrumented programs (we will define formal semantics in the next

section). To improve our presentation we define some of this control-flow pictorially.

Definition 7.14. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be a probabilis-
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tic program and let p ∈ Q be a bound. Let 〈L p,E p〉 be the control-flow graph and let

{L p
n ,L p

p ,L p
b } a partition of L p into assignment, probabilistic and branching locations,

defined as follows:

– We include all locations ℓ ∈ L in L p. Moreover, all locations that are not proba-

bilistic locations or target locations of P retain their location type and their outgoing

edges in E p.

– We include an instrumented initialisation step. That is, we add an assignment

location “init”∈ L
p
n and a control-flow edge

init ℓi

Informally, an instrumentation of P will use “init” as its initial location and, from

this location, it will initalise the instrumentation variables mass, prob and index

prior to moving to P ’s initial location, ℓi.

– For every target location ℓ ∈ Lt we include instrumented targets. That is, we add

to L p assignment locations “miss”, “hit” ∈ L
p
n and a branching location “backtr”

∈ L
p
b and we turn every target location ℓ ∈ Lt into a branching location in P p.

Finally, we add the control-flow

ℓ

hit

miss

backtr

.

Informally, the idea is that, once we get to ℓ, the instrumentation should only reach

a target location if the probability mass it has accumulated exceeds p. To this end,

will we go to “hit” only if the value of mass and prob combined exceeds p and

otherwise we will go to “miss”. In both “hit” and “miss”, we will add prob to mass

before proceeding with backtracking in “backtr”.

– For every probabilistic location ℓ ∈ Lp \ Lt that is not a target location in P we

include exploration code. We do this by making ℓ an assignment location and we add

an additional assignment location “explℓ” ∈ L
p
n and a branching location “validℓ”
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∈ L
p
b . We also add the control-flow

ℓ explℓ validℓ SuccE (ℓ) .

Informally, in ℓ, we increment index by 1 and store the path information we need

for backtracking in the appropriate arrays. We also resolve the probabilistic choice

in ℓ non-deterministically. Then, in “explℓ”, we update the probability in prob.

Finally, in “validℓ”, we check whether we have made a valid probabilistic choice by

checking prob is non-zero.

– Finally, for every probabilistic location ℓ ∈ Lp \Lt that is not a target location in P

we include backtracking code. That is, we add assignment location “skip” ∈ L
p
n ,

assignment locations “backtrℓ”, “takeℓ”, ∈ L
p
n , and branching locations “chooseℓ”,

“orderℓ” ∈ L
p
b and the following control-flow:

backtr backtrℓ chooseℓ

skip

takeℓ orderℓ explℓ

.

Backtracking is realised by iterating over the probabilistic choices made so far in

a loop and by choosing non-deterministically whether to backtrack to a particular

probabilistic choice. This loop start with “backtr”, where we look at loc to see which

location is responsible for the most recent probabilistic choice under consideration

and jump to the appropriate “backtrℓ”. In “backtrℓ” we restore the variables in

Var to the value they had before we took the probabilistic transition, and then, in

“chooseℓ”, we jump non-deterministically to either “takeℓ” or “skip”.

In “takeℓ”, we pick a new resolution of the probabilistic transition under consider-

ation, after which “orderℓ” jumps to the exploration code under the provision that

the chosen resolution of probabilistic choice in P respects the transition ordering.

Alternatively, “skip” skips the current probabilistic choices and modifies instrumen-

tation variables such that we can backtrack to other choices.
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We clarify Definition 7.14 with an example.

Example 7.15. Consider the program P depicted in Figure 4.5 (page 58). The control-

flow of the program-level instrumentation P
2
3 of P is depicted in Figure 7.9. Recall that

for presentational convenience we often omit self-loops on branching locations. We also

depict an instrumentation of the program in Figure 4.2 (page 55) in Figure 7.3.

7.3.4 Semantics

To complete the definition of our program-level instrumentations we need to define their

semantics — we formalise the informal discussion on semantics in the previous section:

Definition 7.16. Let P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 be a probabilis-

tic program and let p ∈ Q be a bound. Let Varp be a set of variables as defined in

Definition 7.13 and let 〈L p,E p〉 and {Ln,Lp,Lb} be a control-flow graph and a parti-

tion of L p as defined in Definition 7.14. We let

Semp : E
p → (UVar

p → PD(UVar
p))

be the function such that, for every u ∈ UVar
p, we have:

– For all ℓ, ℓ′ ∈ L where ℓ is not a probabilistic location or a target location in P we

let Semp(〈ℓ, ℓ′〉) be Sem(〈ℓ, ℓ′〉).3

– For the instrumented initialisation step we let

– Semp(〈init, ℓi〉)(u) = {[u
′]} where u′ is u with

– u′(mass) = 0, u′(prob) = 1 and u′(index) = 0 .

– For the instrumented targets ℓ ∈ Lt we let

– Semp(〈ℓ, hit〉)(u) is {[u]} if u(mass) + u(prob) > p and ∅ otherwise,

– Semp(〈ℓ,miss〉)(u) is {[u]} if u(mass) + u(prob) ≤ p and ∅ otherwise, and

– Semp(〈miss, backtr〉)(u) = Semp(〈hit, backtr〉)(u) = {[u′]} where u′ is u with

3We lift the semantics over UVar to semantics over UVarp in the obvious way.
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instrumentation
of probabilistic
location P1

instrumentation
of probabilistic
location P2

instrumentation
of target

backtracking code
mass=0
prob=1

index=0

n=*

index++

loc[index]=P1

copy n[index]=n

copy p1[index]=p1

copy p2[index]=p2

copy prob[index]=prob

res p1[index]=*

prob*=(res p1[index]? 4
10:

6
10)

p1=res p1[index]

[prob>0][tmp p1<res p1[index]]

tmp p1=res p1[index]

res p1[index]=*

[!skip]

[skip]

prob=copy prob[index]

p2=copy p2[index]

p1=copy p1[index]

n=copy n[index]

skip=*

index++

loc[index]=P2

copy n[index]=n

copy p1[index]=p1

copy p2[index]=p2

copy prob[index]=prob

res p2[index]=*

prob*=(res p2[index]? 4
10:

6
10)

p2=res p2[index]

[prob>0]
[tmp p2<res p2[index]]

tmp p2=res p2[index]

res p2[index]=*

[!skip]

[skip]

prob=copy prob[index]

p2=copy p2[index]

p1=copy p1[index]

n=copy n[index]

skip=*

[n!=p1^p2]

[n==p1^p2]

[mass+prob> 2
3]

[mass+prob<= 2
3]

mass+=prob mass+=prob

index--

[index>0&&loc[index]==P2]

[index>0&&loc[index]==P1]

Figure 7.9: Instrumentation of the program depicted in Figure 4.5 (page 58).
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2

c=res p1[index]

[prob>0]

[tmp p1<res p1[index]]

tmp p1=res p1[index]

res p1[index]=*

[!skip]

[skip]

prob=copy prob[index]

c=copy c[index]

skip=*

[mass+prob>p]

[mass+prob<=p]

mass+=prob

index--

[index>0&&loc[index]==P1]

Figure 7.10: Instrumentation of the program depicted in Figure 4.2 (page 55).
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– u′(mass) = u(mass) + u(prob) .

– For every probabilistic location ℓ ∈ Lp \Lt we let

– Semp(〈ℓ, explℓ〉)(u) = {[u
val] | val ∈ Type(LValueℓ)} where uval is u with

– uval(index) = u(index) + 1,

– uval(resℓ)[u(index) + 1] = val ,

– uval(loc)[u(index) + 1] = ℓ,

– ∀var ∈ Var ∪ {prob} : uval(copy var)[u(index) + 1] = u(var),

– Semp(〈explℓ , validℓ〉)(u) = {[u
′]} where u′ is u with

– u′(LValueℓ) = u(resℓ)[u(index)],

– u′(prob) = u(prob) · Multℓ(u
′′, u(resℓ)[u(index)]), where u′′ is u re-

stricted to variables in Var,

– Semp(〈validℓ ,SuccE (ℓ)〉)(u) is {[u]} if u(prob) > 0 and ∅ otherwise, and

– Semp(〈validℓ , validℓ〉)(u) is {[u]} if u(prob) ≤ 0 and ∅ otherwise.

– For every probabilistic location ℓ ∈ Lp \Lt we let

– Semp(〈backtr, backtrℓ〉)(u) is {[u]} if u(index) > 0 ∧ u(loc)[u(index)] = ℓ

and ∅ otherwise.

– Semp(〈backtr, backtr〉)(u) is {[u]} if either u(index) ≤ 0 or there is no ℓ ∈

Lp \Lt with u(loc)[u(index)] = ℓ, and ∅ otherwise.

– Semp(〈backtrℓ , chooseℓ〉)(u) is {[u
val] | val ∈ B} with

– uval(skip) = val ,

– ∀var ∈ Var ∪ {prob} : uval(var) = u(copy var)[u(index)],

– Semp(〈chooseℓ , takeℓ〉)(u) is {[u]} if ¬u(skip) and ∅ otherwise.

– Semp(〈chooseℓ , skip〉)(u) is {[u]} if u(skip) and ∅ otherwise.

– Semp(〈takeℓ , orderℓ〉)(u) = {[u
val] | val ∈ Type(LValueℓ)} with

– uval(tmpℓ) = u(resℓ)[u(index)],

– uval(resℓ)[u(index)] = val ,
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– Semp(〈orderℓ , explℓ〉)(u) is {[u]} if

– u(tmpℓ) 6= u(resℓ)[u(index)] and

– 〈u(tmpℓ), u(resℓ)[u(index)]〉 ∈ Orderℓ,

and ∅ otherwise,

– Semp(〈orderℓ , orderℓ〉)(u) is {[u]} if

– u(tmpℓ) = u(resℓ)[u(index)] or

– 〈u(tmpℓ), u(resℓ)[u(index)]〉 6∈ Orderℓ,

and ∅ otherwise,

– Finally, Semp(〈skip, backtr〉)(u) is {[u′]} where u′ is u with

– u′(index) = u(index)− 1.

To further illustrate our semantics we refer back to Example 7.15. The control-flow

of the instrumentation in this example is annotated with syntax labels which give an

intuitive account of the semantics of this instrumentation.

7.3.5 Program-level Instrumention Function

For clarity we combine the definition of the variables, control-flow and semantics in the

previous sections into a single definition:

Definition 7.17 (Program-level Instrumentation). Let P be a probabilistic pro-

gram 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var, Sem〉 and let p ∈ [0, 1[ ∩Q be a bound. We

let P p = 〈〈L p,E p〉, {L p
n ,L p

p ,L p
b }, ℓ

p
i
,L p

t ,L p
c ,Varp, Semp〉 be the probabilistic pro-

gram defined as:

– 〈L p,E p〉 is as defined in Definition 7.14,

– {L p
n ,L p

p ,L p
b } is as defined in Definition 7.14

– ℓp
i
= init, L

p
t = {hit}, L

p
c = {Lc},

– Varp is as defined in Definition 7.13 and

– Semp is as defined in Definition 7.16.
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Like the model-level instrumentations, a program-level instrumentation P p of a pro-

gram P is entirely non-probabilistic (i.e. L
p
p is empty). For model-level instrumentations

we observed that small finite models can become infinite-state once instrumented. We

remark this added complexity is not reflected in the control-flow of program-level instru-

mentations: the size of the control-flow graph of P p grows linearly in the number of

probabilistic locations in P . The main complexity of P p is its data space UVar
p which

contains both rationals and an unbounded number of copies of P ’s data space UVar in the

form of infinite arrays.

7.3.6 Soundness

We have not yet shown that the program-level instrumentations we have defined in the

previous section actually adheres to the soundness criterion first described in Equation 7.2.

We further formalise this requirement in the following theorem:

Theorem 7.18 (Program-level soundness). Let P be any probabilistic program and

let p ∈ [0, 1[ ∩Q be an arbitrary bound. Let P p be the program-level instrumentation of

P for bound p. We have

Reach+(JP pK) if and only if Prob+(JP K) > p .

Proof. See Section A.3.2 on page 242.

The proof of Theorem 7.18 relies on the soundness for model-level instrumentations

(see Theorem 7.8). That is, we show that Reach+(JP pK) if and only if Reach+(JP Kp). To

do this we use the stuttering equivalence defined in Section 3.20.

7.4 Experimental Results & Extensions

To validate our approach, we have implemented the instrumentation loop described in

this chapter in a tool called PROBITY (see Appendix B.2). We first discuss the model

checker we use to verify non-probabilistic safety properties of instrumented programs
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in Section 7.4.1. Then, in Section 7.4.2, we describe some important adaptations and

optimisations we made to the model checking algorithm as well as our instrumentation

process. Following this, we will present our main experimental results in Section 7.4.3. In

Section 7.4.4, we present a prototype extension called “template invariants”. Finally, in

Section 7.4.5, we will compare our experimental results with the results in Chapter 5.

7.4.1 Model Checking Instrumented Programs

To model check instrumentations we use an implementation of the interpolation-based

model checking algorithm in [McM06]. In this section we give a high-level description of

this model checking algorithm — we refer the reader to [McM06] for technical details.

The aim of the model checker is either to prove the program is safe (i.e. Reach+

does not hold) by finding sufficiently strong inductive invariants [Flo67, Hoa69], or to

demonstrate it is not safe (i.e. Reach+ holds) by finding a counter-example. The model

checker obtains invariants by repeatedly calling an interpolating decision procedure. In

this context, this decision procedures takes control-flow paths from the initial state, ℓp
i
,

to a target state, ℓpt ∈ L
p
t , and decides whether such paths are feasible. If a path

is feasible, then the decision procedure returns a counter-example. If infeasible, then

the decision procedure generates interpolants that prove the infeasibility of the path —

these interpolants are used to strengthen the inductive invariants. The model checking

algorithm has further mechanisms to deal with loops (called Cover and ForceCover

in [McM06]). For a discussion on these mechanisms we refer to [McM06]. However, we

do remark that these mechanisms are mostly only effective when the invariants found by

the interpolating decision procedure are in fact loop invariants. The main data structure

used by the model checker is a tree unwinding of the control-flow graph of the program.

The model checker stops once it finds a feasible path to a target state or once it obtains

invariants that are strong enough to prove no target state is reachable.

The interpolating decision procedure used by our model checker is the one described in

[KW09]. This decision procedure can deal with equalities, inequalities and uninterpreted

functions. Unfortunately, it cannot deal with any kind of arithmetic unless this arithmetic

can be resolved by propagating constants.
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7.4.2 Adaptations & Optimisations

For our approach to work on real probabilistic programs in practice we have made some

adaptations to the basic model checking and instrumentation process. These are in addi-

tion to basic adaptations such as adding support for rationals in the model checker.

Incremental backtracking In practice, we use an incremental version of the back-

tracking mechanism described in Section 7.3. That is, for a probabilistic location, ℓ, we

only copy and restore (an over-approximation of) those variables that may change value

before another probabilistic location is encountered. We perform a standard analysis to

over-approximate this set of variables for each probabilistic location. Our instrumenta-

tions already restore the data state incrementally — i.e. “backtrℓ” precedes “chooseℓ”.

Feasibility of paths In practice the interpolating decision procedure we employ is

not always able to establish that a path is infeasible. To avoid returning false negatives,

we use a SAT solver to ensure a path is indeed feasible when the interpolating decision

procedure is not able to find a proof. Directly using rational or integer variables in SAT

is not possible. Hence, to reason about the feasibility of paths in our instrumentations

via SAT, we have adapted the instrumentation process in such a way that the arithmetic

over rationals and integers can be eliminated via constant propagation. This means that,

instead of resolving a probabilistic choice of the original program with a one-step non-

deterministic choice in the instrumented program, we iterate over all possible resolutions

in a loop and non-deterministically choose for each iteration whether to use it. Moreover,

we are currently unable to deal with probabilistic choices where the probabilities depend

on the data state because of this reason.

Counter-examples and proofs When the model checker establishes an instrumenta-

tion, P p, is not safe it provides a counter-example 〈ℓp
i
, u〉 → . . . 〈ℓpt , u

′〉. This is a finite

path in JP pK from its initial location, ℓp
i
, to a target location, ℓpt ∈ L

p
t . By construction

of P p, the value of u′(mass) + u′(prob) is a lower bound on Prob+(P ). Moreover, by

definition of P p, this lower bound is strictly greater than p. We therefore use this lower

bound instead of p. We remark that, unlike p, this improved lower bound is never a strict
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lower bound.

If P p is safe then the model checker produces a proof in the form of inductive in-

variants for every control-flow location ℓ ∈ L p. Now observe that, in program-level

instrumentations, the only thing that is affected by the bound, p, is the semantics at

locations ℓ ∈ Lt. For every location ℓ ∈ Lt, the condition labelling the edge 〈ℓ, hit〉 is

[mass+prob>p]. Moreover, these edges are the only way of reaching P p’s target loca-

tions. The idea is that we look at the invariants at locations Lt to find an upper bound

on the value of the sum mass + prob. If we can show that this sum is always bounded

from above by some constant C, then evidently “hit” cannot be reached in P C either.

Moreover, if C is smaller than p, then we have found a tighter upper bound.

We find C in practice by checking for the presence of common invariants such as

(mass == C1) and (prob < C2) at every location ℓ ∈ Lt. We remark that we may not

always be able to obtain a good value for C. To improve the effectiveness of this optimi-

sation we have adapted the interpolating decision procedure to always return invariants

that yield the tightest upper bound on mass and prob.

Greedy exploration Recall that, in a model-level instrumentation Mp, a path of Mp

essentially performs a search over the paths of M (see Section 7.2.2). Distinct searches

may result in states of Mp that are distinguishable only by the accumulated probability

mass. This is illustrated by states s4 and u4 in Figure 7.3, page 138 — the search that

led to s4 explored fewer paths of the original MDP and accumulated less probability

mass than u4. The same phenomenon occurs in program-level instrumentations. Due

to the changes to the instrumentation described above (see “Feasibility of paths”), each

way we can search over the probabilistic choices of P actually corresponds to a distinct

control-flow path in the instrumentation P p. The heuristic we propose adapts the order in

which the model checker considers control-flow paths of P p and ensures that paths of P p

that skip the fewest behaviours of P are explored first. The main reason for this is that

the invariants we use to show the infeasibility of a control-flow path of P p may also be

sufficient to prove the infeasibility of control-flow paths of P p that correspond to searches

that skip more behaviours of P . The model checking algorithm we use has sophisticated

methods to enable invariant reuse (see Cover and ForceCover in [McM06]) but, to
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Figure 7.11: An overview of the probabilistic programs and properties we considered in Chapter 5 and
their applicability with the instrumentation-based approach.

exploit this, the control-flow paths of P p need to be considered in the order specified by

our heuristic.

7.4.3 Experiments & Analysis

We have evaluated our implementation against the probabilistic programs and properties

discussed in Chapter 5 (see Appendix C and Section 5.5 for descriptions of these case

studies). All experiments were run on an Intel Core Duo 2 7200 with 2GB RAM on

Fedora 8. We use a timeout setting of 600 seconds for every experiment. We always

pick the bound, p ∈ I, precisely in the middle of the interval, I, and we terminate the

instrumentation loop whenever the absolute error is smaller than or equal to 10−4. All

timings are reported in seconds.

We note that our model checker is run with ForceCover enabled (see [McM06]).

Moreover, in addition to checking the feasibility of paths to the target location we also

check the feasibility of paths ending in a control-flow edge from a branching location. We

mention that, due to technical reasons, the source code of the programs checked in this

chapter have certain minor alterations compared to Chapter 5. For example, because the

interpolating decision procedure we use cannot currently deal with disjunctions we split

conditionals in the program where the expression is a disjunction or conjunction. We

remark that there are very few of these alterations and they do not affect the property at

hand. Moreover, these alterations could easily be automated.

Our main results are presented in Figure 7.11 and 7.12. In Figure 7.11, we show which

of the properties and probabilistic programs discussed in Chapter 5 we have managed to

compute — we discuss the content of this table in more details below. Of the adaptations



Instrumentation-based Verification of Probabilistic Software 167

Normal Greedy
lb/ub lb/ub lb/ub lb/ub
iters time Unw Int Time iters time Unw Int Time Result

p
in
g a 1 1/1 24%/57% 191 39% 6.48 1/1 35%/55% 195 47% 9.05 [99/1250, 99/1250]

2 1/1 8%/89% 510 44% 52.5 1/1 43%/55% 445 40% 73.9 [99/15625, 99/15625]
3 –/– –/– – – >600 1/1 43%/55% 830 31% 373 [198/390625, 198/390625]

b 1 0/1 0%/72% 179 36% 4.19 0/1 0%/91% 181 42% 5.21 [0, 0]
2 1/1 48%/50% 744 39% 360 1/1 28%/70% 479 49% 87.7 [2277/15625, 2277/15625]

d 1 1/1 40%/52% 189 39% 8.45 1/1 10%/63% 193 43% 10.2 [2277/2500, 2277/2500]
2 1/1 42%/56% 407 36% 59.6 1/1 5%/91% 463 47% 46.5 [52371/62500, 52371/62500]
3 1/1 47%/52% 714 30% 253 –/– –/– – – >600 [1204533/1562500, 1204533/1562500]

n
t
p

a 1 1/1 34%/51% 188 68% 11.3 1/1 50%/40% 214 72% 16.5 [2/25, 2/25]
2 2/1 55%/39% 403 81% 60.6 1/1 38%/56% 395 78% 40.8 [96/625, 96/625]
3 2/1 57%/40% 732 87% 212 2/1 49%/46% 573 80% 104 [3458/15625, 3458/15625]
4 –/– –/– – – >600 2/1 48%/47% 751 82% 175 [110784/390625, 110784/390625]

b 1 1/1 22%/49% 118 49% 5.01 1/1 17%/52% 112 49% 5.23 [23/25, 23/25]
2 2/1 41%/50% 263 71% 29.6 2/1 26%/59% 195 65% 18.6 [621/625, 621/625]
3 3/1 49%/47% 564 83% 190 3/1 34%/56% 275 71% 43.5 [15617/15625, 15617/15625]
4 4/0 99%/0% 1,094 88% 533 4/0 92%/0% 257 72% 36.2 [390609/390625, 1]
6 –/– –/– – – >600 4/0 90%/0% 257 68% 38.8 [390609/390625, 1]

m
g
a
l
e

a 10 1/1 9%/86% 247 63% 3.05 1/1 18%/73% 169 59% 1.89 [1/8, 1/8]
100 1/1 7%/90% 511 70% 13.2 1/1 7%/90% 325 69% 6.28 [1/64, 1/64]

1,000 1/1 6%/92% 775 72% 36.9 1/1 6%/91% 481 68% 15.5 [1/512, 1/512]
10,000 1/1 7%/91% 1,127 71% 92.3 1/1 5%/92% 689 69% 37.8 [1/8192, 1/8192]
100,000 0/1 0%/99% 1,391 70% 145 0/1 0%/98% 845 67% 61.5 [0, 1/65536]

1,000,000 0/1 0%/99% 1,655 70% 185 0/1 0%/98% 1,001 67% 81.1 [0, 1/524288]
b+ 10 2/0 99%/0% 576 75% 13.1 1/0 93%/0% 169 68% 1.30 [1, 1]

100 4/0 99%/0% 2,940 79% 463 1/0 97%/0% 343 76% 4.91 [1, 1]
1,000 –/– –/– – – >600 1/0 99%/0% 517 79% 15.2 [1, 1]
10,000 –/– –/– – – >600 1/0 99%/0% 749 80% 39.9 [1, 1]
100,000 –/– –/– – – >600 1/0 99%/0% 923 81% 51.1 [1, 1]

1,000,000 –/– –/– – – >600 1/0 99%/0% 1,097 80% 87.4 [1, 1]

a
m
p

a+ 2 3/0 99%/0% 702 75% 24.7 3/0 94%/0% 176 63% 1.54 [1, 1]
3 –/– –/– – – >600 4/0 99%/0% 420 68% 19.1 [1, 1]
4 –/– –/– – – >600 6/0 99%/0% 920 61% 259 [1, 1]

b+ 2 4/0 99%/0% 645 74% 29.6 3/0 94%/0% 172 62% 1.51 [1, 1]
3 3/0 99%/0% 2,517 74% 258 4/0 99%/0% 412 67% 20.2 [1, 1]
4 –/– –/– – – >600 6/0 99%/0% 904 60% 279 [1, 1]

c 2 1/1 9%/73% 176 46% 0.91 1/1 3%/92% 265 45% 2.77 [9/16, 9/16]
3 1/1 6%/91% 367 56% 4.25 1/1 0%/98% 751 42% 25.7 [27/64, 27/64]
4 1/1 1%/96% 738 59% 21.5 1/1 0%/99% 1,635 33% 195 [81/256, 81/256]

Figure 7.12: Main experimental results. We run each experiment both with the greedy exploration
option enabled (Greedy) and disabled (Normal). We display for each run the number of times we
obtain a lower bound (lb iters) and an upper bound (ub iters) as well as the the percentage of the
total time spent on obtaining lower bounds (lb time) and upper bounds (lb time), respectively. We
show the maximum number of nodes in the control-flow tree constructed by the model checker over all
model checks (Unw) and the percentage of the total time spent interpolating (Int). We show the total
time (Time) and indicate a timeout with a label “>600”. Finally, we also show the final approximation
of the property (Result) — this results coincide for Greedy and Normal for each experiment.

and optimisations described in the previous section, the only optimisation we consider to

be optional is that of greedy exploration. In Figure 7.12 we give detailed statistics for

runs with this optimisation enabled and disabled, respectively. The statistics we show in

each figure are explained in the captions of the figures.

Applicability It is promising that we are able to deal with two of the three main case

studies (i.e. the network clients). We remark that the precision of the approximation

given by our instrumentation loop is generally very good. In contrast to Chapter 5, our

bounds are not numerical approximations. Moreover, for the most part, the lower bound
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and upper bound of the interval coincide.

We briefly discuss Figure 7.11. Our first result is a negative one — with the approach

described in this chapter we can only model check 7 of 31 of the properties we model

checked with the method in Chapter 5 — these properties are marked with “X”. Five of

these properties concern our main case studies, i.e. the network clients PING and NTP, as

opposed to the much smaller pGCL or PRISM case studies. In fact, Figure 7.11 suggests

the success of our approach is currently more determined by the nature of the probabilistic

behaviours in programs than the complexity of the program in terms of, say, the amount

of bit-level operations, arrays, pointers or functions that the program uses.

The remaining 24 of 30 properties cannot be verified with our current implementation.

This is in a large part because 16 of these properties are not probabilistic safety properties

and hence cannot be verified with the instrumentation-based method presented in this

chapter. That is, properties marked with “live” are probabilistic liveness properties and

properties marked with “cost” are cost properties. A further 8 properties are proba-

bilistic safety properties but cannot be verified with the current implementation. More

specifically, properties marked with “loop” need to reason about infinite loops with prob-

abilistic choices. Because the interpolating decision procedure we use does not produce

quantified invariants, we cannot currently prove instrumentations of such programs are

safe. Properties marked with “div” fail because of the amount of control-flow paths the

model checker needs to consider. For example, programs such as TFTP and BRP are

fault-tolerant. That is, in TFTP, we make five attempts to send a data packet before we

give up. In practice, this means that there are many different resolutions of probabilistic

choice in this program that either lead to success or failure. This translates to a large

number of control-flow paths in instrumentations.

We now will discuss some specific points regarding the results in Figure 7.12.

Control-flow loops Recall that the parameters of, say, NTP and PING, essentially

correspond to the number of iterations of the main control-flow loop that we need to take

into account during model checking. For most programs we obtain precise results for all

parameters, except for NTP B and MGALE A, where our termination criterion stops us
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from obtaining more precise results. Akin to Chapter 5, we can analyse larger parameter

values at no added cost as long as we are not expecting a more precise approximation. In

contrast to Chapter 5, though, we are able to do this only when unfolding the first few

loop iterations of the program enables us to establish sufficiently precise bounds on the

property (as opposed to the last few loop iterations).

Transition ordering The transition ordering has a direct impact on the performance

of our method. If there are many paths to the target location in the original program,

then the transition order usually dictates whether we first explore the least probable path

or the most probable paths of the original program in the instrumentations.

In NTP B, say, the most probable paths are considered first. Exploring the most

probable path in this program is necessary and sufficient to exceed the initial bound

(p = 1
2
). Our model checker would never yield a counter-example that also explores less

probable paths of the original program because, due to the transition ordering, any such

counter-example is prefixed by the shorter counter-example that only explores the most

probable path. In practice this means we need multiple iterations of the instrumentation

loop to obtain a good lower bound.

In contrast, in MGALE B+, say, the transition ordering is such that the least probable

paths are considered first. In practice, this means there is a counter-example that first

explores all the unlikely paths to the target (without constituting a counter-example)

before exploring the most probable path. With the greedy exploration option we find this

counter-example and obtain a good lower bound with the first instrumentation. Without

greedy exploration we may find counter-examples where we have skipped some of the

paths and obtain a poorer lower bound.

Counter-examples and proofs Recall the instrumentation loop depicted in Fig-

ure 7.1. Without analysing counter-examples or proofs we halve the interval, I, in each

iteration of this loop. Hence we normally expect to perform 14 iterations of the instru-

mentation loop to ensure the difference between the upper and lower bound of I is below

10−4. In Figure 7.12 we show that, through the analysis of counter-examples and proofs,

the required number of iterations is usually much smaller than this.
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For the lower bound we see that the number of iterations is dependent on the program

and property under consideration. Informally, if there is only a single path to the target

location in the original program, then the first counter-example in an instrumentation

will always consist of this path, and hence yield the greatest possible lower bound (see

PING A, D; MGALE A; AMP C). In contrast, if there are many paths to the target

location then there may exist counter-examples that do not give optimal lower bounds,

and multiple instrumentations may be necessary to establish a good lower bound (see

NTP A, B; MGALE B+; AMP A+, B+). We never need more than one iteration to

establish an upper bound. This is because of our adaptation of the interpolating decision

procedure described in Section 7.4.2 — in general the invariants returned by interpolating

decision procedures may not yield the tightest possible upper bound.

Finally, we mention that another advantage of analysing counter-examples and proofs

is that we tend to obtain more meaningful approximations of the property at hand. That

is, the lower and upper bound need not be multiples of 2−i (where i ∈ N is the number

of iterations of the instrumentation loop) and the lower bound is never strict. Moreover,

in practice, the lower bound and upper bound often coincide.

Greedy exploration An indirect consequence of the greedy exploration heuristic is

that we consider paths in the order dictated by the transition ordering. As a side-effect of

this, if in the original program there is a single path to the target location which happens

to be, say, the last path in this ordering, then enabling greedy exploration does not help

(see PING A). Conversely, if there is a single path that is the first path in this ordering,

then the heuristic can have a very positive effect (see MGALE A).

However, as described in Section 7.4.2, we considered the greedy exploration heuristic

mostly because it enables the model checker to reuse invariants when multiple paths of

the original program reach the target location. An indication of this reuse is the number

of nodes in the control-flow trees constructed by the model checker (i.e. “Unw”). In, e.g.,

NTP B; PING B and NTP A, B we see a significant reduction in the number of nodes

considered. We remark that the greedy exploration heuristic may reduce the number of

nodes considered by the model checker exponentially (see, e.g, NTP B).
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init true

I true

B ¬c

T false

hit false

mass=0
prob=1

index=0

c=false

[c]

[mass+prob>1]

Figure 7.13: An infeasible path labelled
with simple invariants of the instrumenta-
tion depicted in Figure 7.10.

init true

I mass==0 ∧ index>=0 ∧ prob==2−index

B mass==0 ∧ index>=0 ∧ prob==2−index

T mass==0 ∧ index>=0 ∧ prob==2−index

hit false

mass=0
prob=1

index=0

c=false

[c]

[mass+prob>1]

Figure 7.14: The same path of Figure 7.10 labelled with
invariants that show a whole range of paths is infeasible.

Only for AMP C and PING D the number of nodes increase when we apply our

heuristic — for these properties there is only a single path to the target location in the

original program, and hence we cannot expect any reuse of invariants.

7.4.4 Template Invariants

Recall that, in Chapter 5, the size of the game abstraction of the program increases

as we consider more iterations of the main program loop (unless considering just a few

loop iterations of the program yields a satisfactory approximation). In Figure 7.12, we

observe a similar trend in the size of the control-flow trees considered by the model

checker. However, in contrast to Chapter 5, the scalability issues in this chapter can be

improved within the existing framework. That is, the root cause of our problem is that

the interpolating decision procedure we use is not normally able to find loop invariants

for the loops that occur in instrumented program. As a consequence, the model checker

unwinds the loop. This also explains why our current implementation is usually unable

to deal with infinite loops in programs.

We illustrate our point with an example:

Example 7.19. In Figure 7.13 and 7.14 we depict an infeasible control-flow path of

the instrumentation in Figure 7.10. With our current interpolating decision procedure we
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typically obtain invariants like those depicted in Figure 7.13. These invariants show that

the exit condition of the loop, [c], cannot possibly hold without executing the loop body

at once. The invariants in Figure 7.13 are not loop invariants — after one loop iteration

c may hold at location B. In practice this means that with these invariants the model

checker will unwind the loop. If, instead, we had the invariants depicted in Figure 7.14,

then we would not have to do this.

Part of the problem is that the interpolating decision procedure we use is not able

to deal with any kind of arithmetic — it cannot generate the predicates in Figure 7.14

because it cannot reason about exponentiation. Moreover, it cannot deal with any form

of quantification, although, due to the infinite arrays in instrumented programs, we often

require program invariants that quantify over array elements.

We have built a prototype extension of our basic instrumentation framework in which,

in addition to using interpolation, we also produce invariants by matching control-flow

paths against a number of templates. These templates detect whether a certain argument

of infeasibility holds in the control-flow path under consideration. This argument is typi-

cally parametised in, say, the particular variables involved and the location of control-flow

edges in the path that are relevant to the argument. If such a match succeeds then this

template generates custom invariants to show the path is infeasible. Typically these invari-

ants contain arithmetic or quantifiers. For example, the control-flow path in Example 7.19

matches with a template which generates the invariants in Figure 7.14.

In addition to this, we have also augmented the interpolating decision procedure

[KW09] with axioms that can deal with the arithmetic and quantifiers we use in template

invariants. For example, we have a rule that helps the interpolator deduce that 2−(index)

equals 1
2
· 2−(index−1)). These axioms are necessary for the model checker to reuse the loop

invariants (i.e. to apply ForceCover successfully, see [McM06]).

To evaluate our prototype extension we consider property D on a simplified version of

PING, called PING-. Compared to PING, the program PING- has a simplified control-

flow and some pointer dereferencing has been eliminated. Moreover, a probabilistic choice

in the beginning of the program has been turned into a non-deterministic choice and the
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Greedy Greedy + Templates
lb/ub lb/ub lb/ub lb/ub
iters time Unw Int Time iters time Unw Int Time Result

p
in
g
– d 1 1/1 38%/43% 118 65% 7.58 1/1 2%/95% 206 92% 54.3 [1/2, 1/2]

2 1/1 53%/44% 263 71% 28.6 1/1 1%/97% 290 93% 127 [1/4, 1/4]
3 1/1 48%/50% 526 66% 94.1 1/1 1%/98% 467 95% 456 [1/8, 1/8]
4 1/1 49%/49% 1,030 61% 483 1/1 1%/98% 452 95% 513 [1/16, 1/16]
6 –/– –/– – – >600 1/1 2%/96% 452 95% 528 [1/64, 1/64]
10 –/– –/– – – >600 1/1 7%/92% 452 95% 552 [2−10, 2−10]
12 –/– –/– – – >600 1/1 10%/89% 489 95% 565 [2−12, 2−12]
14 –/– –/– – – >600 0/1 0%/99% 452 95% 522 [0, 2−14]
100 –/– –/– – – >600 0/1 0%/99% 452 95% 514 [0, 2−100]

1,000 –/– –/– – – >600 0/1 0%/99% 452 96% 537 [0, 2−1000]
10,000 –/– –/– – – >600 0/1 0%/99% 452 95% 525 [0, 2−10000]
100,000 –/– –/– – – >600 0/1 0%/99% 452 89% 572 [0, 2−100000]

Figure 7.15: Experimental results for template invariants. We show the results of a normal run with
the greedy heuristic turned on (Greedy) and a run where we employ template invariants (Greedy +
Templates). For each run we show the same columns as in Figure 7.12. Due to space limitations we
sometimes write, say, 2−10 instead of 1/1024 in the result column.

remaining probabilistic choices now fail with probability 1
2
instead of with probability 92

100
.

We note that these simplifications are required because of the prototypical nature of our

extension and they do not affect the nature of the case study.

Results & analysis In Figure 7.15, we present the experimental results for our pro-

totype extension. The main result is that the verification time does not depend on the

number of loop iterations when using templates. That is, for larger parameter values, the

time spend model checking PING- D for 100,000 loop iterations is approximately the same

as for 100 loop iterations. This is not because we obtain a sufficiently good approximation

with just a few loop iterations — it is because, with the right invariants, the size of the

proof is independent of the number of loop iterations. The result is increasingly precise

for large parameter values.

Unfortunately, we do pay a price for obtaining lower bounds for larger parameter

values. To establish a lower bound we need to find a counter-example and, for this

program, the length of counter-examples in the instrumentation depends on the number

of loop iterations we consider. This is reflected in Figure 7.15 where, for parameters 4 up

to 12, the increase in model checking time is due to the time required to obtain the lower

bound. As the parameter value increases, the model checking cost actually drops slightly

because the upper bound itself is sufficiently small to satisfy the termination criterion.

The subsequent increase, for very large parameter values, is due to the cost of computing
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rational arithmetic we perform when computing the upper bound.

7.4.5 Comparison to Abstraction Refinement

To conclude the experimental evaluation, we compare the approach in this chapter with

the abstraction-refinement method in Chapter 5. Recall that, in terms of applicability,

the abstraction-refinement approach is able to verify many more properties and programs

than the instrumentation-based approach described in this chapter (see Figure 7.11).

To compare the methods in terms of performance we take the best runs of each method

on those properties and programs that both methods can handle. For the abstraction-

refinement method, we consider all predicate propagation methods and all refinable state

selection method for each property and parameter. In addition to this, for each property,

we select a configuration that performs best and run the predicate initialisation and

reachable state restriction extensions with these configurations.4 For the instrumentation

method, we consider both runs with and without the greedy exploration heuristic. For

PING- D we also consider runs with the template invariant extension.

We show the comparison of the two methods in Figure 7.16.

Precision We observe that one of the main differences between the methods are the

resulting approximations of the properties at hand. That is, due to the model checker

we use in the abstraction-refinement approach, the results returned by this approach are

imprecise,5 whereas the results from the instrumentation-based approach are not. This is

particularly useful in PING- D, where the probabilities are so small that using a precise

method for computing this probability is essential.

Performance With regards to the total verification time, we see that the different

methods work well on different properties. For the main case studies, the abstraction-

refinement method works better on PING A, D and NTP B, and, in terms of scalabil-

ity and performance, the instrumentation-based approach outperforms the abstraction-

4This is Coarsest/TraceAdd for PING A, B, NTP B, MGALE B+, Coarsest/PrecAdd for MGALE A,
Nearest/TraceAdd for AMP B+ and Nearest/PrecAdd for PING D, NTP A, AMP A+, C and PING- D.

5We remark that, for MGALE B+ and AMP B+, this can be improved by using precomputation algorithms.
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p
in
g a 1 7.27 [0.0792, 0.0792] X – X – X – 6.48 [99/1250, 99/1250] X – –

2 14.1 [0.006336, 0.006336] X – X – X – 52.5 [99/15625, 99/15625] X – –
3 45.7 [0.00050688, 0.00050688] X – X – X – 373 [198/390625, 198/390625] – X –

b 1 0.81 [0, 0] – X – X – – 4.19 [0, 0] X – –
2 – – – – – – – – 87.7 [2277/15625, 2277/15625] – X –
3 – – – – – – – – – – – – –

d 1 6.75 [0.9108, 0.9108] – X X – – – 8.45 [2277/2500, 2277/2500] X – –
2 14.2 [0.837936, 0.837936] – X – X – X 46.5 [52371/62500, 52371/62500] – X –
3 45.8 [0.770901, 0.770901] – X – X – X 253 [204533/1562500, 204533/1562500] X – –

n
t
p a 1 71.4 [0.08, 0.08] – X – X – – 11.3 [2/25, 2/25] X – –

2 136 [0.1536, 0.1536] – X – X – X 40.8 [96/625, 96/625] – X –
4 217 [0.283607, 0.283607] – X – X – X 175 [110784/390625, 110784/390625] – X –
6 330 [0.393645, 0.393645] – X – X – X – – – – –

b 1 7.37 [0.92, 0.92] X – X – – X 5.01 [23/25, 23/25] X – –
2 15.1 [0.9936, 0.9936] X – X – – X 18.6 [621/625, 621/625] – X –
4 18.4 [0.999959,1] X – X – – X 36.2 [390609/390625, 1] – X –
6 18.6 [0.999959,1] X – X – – X 38.8 [390609/390625, 1] – X –

m
g
a
l
e a 100 1.79 [0.015625, 0.015625] – X X – – X 6.28 [1/64, 1/64] – X –

1,000 5.64 [0.00195312, 0.00195312] – X X – – X 15.5 [1/512, 1/512] – X –
10,000 26.0 [0.00012207, 0.00012207] – X X – – X 37.8 [1/8192, 1/8192] – X –
100,000 50.0 [0,6.10352e-05] – X X – – X 61.5 [0, 1/65536] – X –

1,000,000 202 [0,6.10352e-05] – X X – – X 81.1 [0, 1/524288] – X –
b+ 100 0.07 [0.999998,1] X – – X – – 4.91 [1, 1] – X –

1,000 0.07 [0.999998,1] X – X – – – 15.2 [1, 1] – X –
10,000 0.07 [0.999998,1] X – X – – – 39.9 [1, 1] – X –
100,000 0.07 [0.999998,1] X – X – – – 51.1 [1, 1] – X –

1,000,000 0.07 [0.999998,1] X – X – – – 87.4 [1, 1] – X –

a
m
p a+ 4 0.20 [1, 1] – X X – – – 259 [1, 1] – X –

40 7.55 [1, 1] – X – X – – – – – – –
b+ 4 0.14 [0.999997,1] X – – X – – 279 [1, 1] – X –

40 0.13 [0.999997,1] X – X – – – – – – – –
c 4 0.18 [0.316406, 0.316406] X – X – – – 195 [81/256, 81/256] X – –

40 5.17 [0,7.53393e-05] – X – X – – – – – – –

p
in
g
- d 10 24.2 [0.000976562, 0.000976562] – X – X – – 552 [2−10, 2−10] – X X

20 110 [0, 2.00272e-05] – X – X – – 515 [0, 2−20] – X X

40 – – – – – – – – 512 [0, 2−40] – X X

100,000 – – – – – – – – 572 [0, 2−100000] – X X

Figure 7.16: A comparison between QPROVER and PROBITY. We show the total verification time
in seconds (Time) and the final approximation given by the tool (Result). We also show which run was
responsible for the fastest time.

refinement approach for NTP A and PING- D. We also find it promising we were able to

obtain a result for PING B (2) with our instrumentation-based approach, as we did not

obtain this result for the abstraction-refinement method.

Observe that the abstraction-refinement approach works well on MGALE B+. This

property computes the maximum probability of termination. This is 1 for this property

because all paths of the program eventually terminate. Essentially, with the abstraction-

refinement approach, we find a relatively small abstraction that shows that the program

almost surely terminates — independently of the parameter. For our instrumentation-
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based approach we cannot use this kind of reasoning and we must find counter-examples

to establish lower bounds. Moreover, the counter-examples in the instrumented programs

grow larger as the parameter increases because there are more paths to the terminating

state in the original model.

In contrast, for MGALE A, the instrumentation-based approach outperforms the

abstraction-refinement approach. For this property, both methods essentially unfold the

loop iterations of the program. For the abstraction-refinement approach, as the parameter

value increases, this gets quite expensive because of the cost of computing the abstraction.

This is due to non-linear arithmetic in the program and the predicates it discovers. In the

instrumentation-based approach the non-linear arithmetic is dealt with by propagating

constants. This makes the instrumentation-based approach much more scalable in this

instance.

We mention that part of the reason that NTP and MGALE work well with the

instrumentation-based approach is that many resolutions of probabilistic choice lead di-

rectly to a target location or an end location. In practice, this keeps the number of

control-flow paths we need to consider when model checking instrumented programs rel-

atively small. This is not the case for AMP or PING, where we always make a certain

number of probabilistic choices and only after these choices are made we decide whether

the target location is reached. This latter behaviour is less suited to the current instru-

mentation scheme because the number of control-flow paths in instrumented programs

grows very fast as we consider larger programs with more probabilistic choices.

7.5 Conclusions

In this chapter, we introduced a verification method for probabilistic software called in-

strumentation-based verification. We first discussed a theoretical framework through

which we can compute probabilistic safety properties of probabilistic programs by verify-

ing a number of non-probabilistic safety properties of instrumented, non-probabilistic pro-

grams. We developed this framework on the level of MDPs, making the theory applicable

to any type of system with MDP semantics. We then demonstrated how this MDP-level
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instrumentation process could be lifted to the level of programs. We demonstrated how

to generate instrumented programs that verification tools can verify in practice.

The main attraction of our approach is that we can verify quantitative properties

of probabilistic software by directly employing standard verification techniques for non-

probabilistic software. That is, in principle we can apply anything from, say, classical

Hoare logic [Flo67, Hoa69], abstract interpretation [CC77] or model checking [BCCY99,

CGJ+00, McM06] to reason about quantitative properties of probabilistic programs.

We can also directly benefit from theoretical work on non-probabilistic verification

problems. For example, in the non-probabilistic setting, there exist several abstraction

frameworks that are known to be complete for both the verification and refutation of non-

probabilistic safety properties [KP00, DN04, DN05]. We are not aware of any abstraction

framework for MDPs that is complete.

We described an implementation of our approach which uses the interpolant-based

model checking algorithm in [McM06] and the interpolating decision procedure from

[KW09] to verify or refute probabilistic safety properties of instrumented programs, and

we presented an extensive experimental evaluation for this implementation. We were able

to verify properties of complex case studies such as NTP and PING as well as some smaller

case studies. In terms of the state space and the language features they use, these complex

case studies are significantly beyond the scope of existing probabilistic verification tools.

We now discuss loop invariants in more detail and follow this discussion with sugges-

tions for future research directions.

Detecting loop invariants As previously discussed, our current model checker is often

unable to find good loop invariants for instrumentations. Because of this, our current

verification back-end often simply enumerates various control-flow paths of instrumented

programs. These paths, in turn, correspond to sets of paths in the original uninstrumented

program — we essentially enumerate potential probabilistic counter-examples and check

the feasibility of these counter-examples with a decision procedure.

In this light, our verification procedure bears some resemblance to the probabilis-

tic bounded model checking method in [FHT08] and the probabilistic counter-example
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generation methods in, e.g., [HK07, AL09, WBB09]. However, in our approach, unlike

in [FHT08, HK07, AL09, WBB09], we are able to deal with real, compilable programs

instead of either low-level or abstract formal models.

More importantly, from a theoretical perspective, enumerating counter-examples is

not necessary with our approach. Various non-probabilistic model checking methods

are capable of preventing the enumeration of control-flow paths. In fact, we chose the

interpolation-based model checking method of [McM06] for this very reason — the enu-

meration we experience in the experimental results is due to the inability of the underlying

interpolating decision procedure to find good loop invariants. The discussion in the next

section includes potential ways to improve the detection of good loop invariants.

Verification of instrumentations Our current implementation is able to verify fewer

programs and properties than the abstraction-refinement approach presented in Chapter 5.

In part, this is an implementation issue — instrumented programs contain a mix of

infinite arrays, rational arithmetic and bit-level arithmetic and, as such, it is sometimes

challenging to prove these programs are safe. We emphasise that we believe there is much

scope to improve performance and applicability of our implementation by improving the

process of verifying instrumented programs.

Our first suggestion is to make the verification step incremental. That is, instrumented

programs for different bounds are extremely similar in nature and we think it is possible

to exploit this similarity in successive iterations of the instrumentation loop.

Secondly, we believe it is possible to improve the performance and applicability of

our current model checker by using interpolating decision procedures for theories that

better suit our instrumented programs. Interpolating decision procedures for a wide

range of theories are gaining an increasing amount of interest in the software verification

community (see, e.g., [CGS08, BZM08, BKRW10]). If one such procedure is better able

to find loop invariants of instrumented programs with, say, infinite loops, then this would

improve the range of properties we can handle. For the same reason, we think there is

also scope to further generalise and automate our “template invariants” extension. The

template-based discovery of invariants for non-probabilistic software is an active area of
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research (see, e.g., [CSS03, BHMR07, SG09, GSV09]). Compared to a general purpose

model checker, a template-based approach is potentially better able to exploit the fact that

we are verifying a particular class of programs, namely instrumented programs, instead

of an arbitrary non-probabilistic program.

There is also significant scope to consider alternative verification techniques, such as

bounded model checking or abstract interpretation, for the verification of instrumented

programs. How well such techniques would be able to deal with our instrumented pro-

grams requires further investigation.

Instrumentation schemes A simple adaptation of our instrumentation method that

we think may improve the performance of our of method is to enable backtracking from

end locations (without updating the probability mass). Whether or not this improves

performance requires further investigation — the additional backtracking would introduce

more behaviours to the instrumented programs but, at the same time, we argue that the

resulting instrumented programs will have a more regular structure and may potentially

be cheaper to verify.

An issue with our instrumented programs is that they have the ability to “skip” certain

behaviours of the original program. This induces a lot of non-determinism in instrumented

programs (in the form of control-flow paths) and directly affects the scalability of our

approach. It would be interesting to try instrumentation schemes where the ability to

skip behaviours has been removed (for example by first removing behaviours in the original

program that never reach the target state).

In this chapter, we limited our attention to probabilistic safety properties and, as

such, we cannot verify the full range of properties we considered in Chapter 5. An

interesting direction of research would be to extend our approach in such a way that we

can compute probabilistic liveness properties by verifying a number of non-probabilistic

liveness properties of instrumented programs. We remark that this is not possible with

our current instrumentation scheme because of the ability of instrumentations to skip

behaviours of the original model. We also believe our approach can be extended to deal

with cost properties, but this requires further investigation.
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Chapter 8

Conclusions

In this thesis, we set out to develop verification techniques for computing quantitative

properties of real, compilable software that contains probabilistic behaviour. Our main

motivation to do so is the success of various non-probabilistic software verification tech-

niques that are able to verify certain classes of computer programs directly from source

code in a scalable and fully automated way.

In Chapter 5, we introduced a probabilistic adaptation of non-probabilistic abstraction-

refinement techniques, using game abstractions. With this approach, we were able to

verify a wide range of properties on a range of case studies. Most promising is the veri-

fication of reliability properties of real network programs, PING, TFTP and NTP, which

are approximately 1,000 lines of complex ANSI-C code each. These case studies cannot

directly be verified with existing techniques. We also found that we do pay a price for

dealing with probabilistic behaviour. For example, we were not able to adapt standard

techniques to approximate transition functions of abstract models, or standard techniques

for using interpolation-based refinements, due to probabilistic behaviours.

The main problem in approximating transition functions of game abstractions is the

original formulation of game abstraction, which, for a given abstraction function, only

considers one game abstraction. In Chapter 6, we addressed this problem by developing a

much more fine-grained notion of abstraction for games through an abstraction preorder.

Our preorder opens up the possibility of extending the applicability and scalability of the

method in Chapter 5 by approximating game abstractions.
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We took an entirely different approach in Chapter 7. The work in this chapter is

motivated by our inability to fully exploit the state-of-the-art techniques that make soft-

ware model checking so successful. We therefore reduce the problem of computing a

probabilistic property of a probabilistic program to a series of non-probabilistic model

checks that can directly be verified with existing state-of-the-art verification techniques

and tools for non-probabilistic software. We again validated our approach by running it

on a large number of properties and programs. Although we were not able to verify all

the case studies we considered in Chapter 5, promisingly, we were able to verify PING

and NTP competitively. We argue that there is significant scope to improve the results

of our implementation further by considering alternative techniques and tools to perform

non-probabilistic model checks verification.

Future Work There are various opportunities for further work. An obvious sug-

gestion is to apply the abstraction preorder in Chapter 6 to the approach of Chap-

ter 5. More specifically, we propose to adapt the abstraction and refinement procedures

to compute the abstraction function of game abstractions incrementally, akin to, e.g.,

[DD01, BMR01, CKSY05, JM05, KS06]. Such an extension may help us deal more ef-

fectively with programs that are difficult to abstract with the current method and, in

particular, may help improve the range of probabilistic choices we can handle.

Another important direction of research is the development of better refinement meth-

ods and heuristics for Chapter 5. Our refinement scheme yields relatively simple and local

refinements using weakest preconditions — this is known not to work on all programs

in the non-probabilistic setting [JM06]. In the non-probabilistic setting state-of-the-art

model checkers use interpolating decision procedures for refinement [HJMM04, JM05].

We believe that the applicability and performance of our approach could be significantly

improved by adapting interpolant-based refinement methods to a probabilistic setting.

We remark that such an adaptation was employed in [HWZ08]. However, in [HWZ08], an

abstract probabilistic counter-example is decomposed into a set of finite abstract paths,

each of which is refined separately. This can lead to the introduction of many predi-

cates along the refinement step. An interesting direction of research would be to find

ways in which we can employ interpolating decision procedures directly on probabilistic
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counter-examples.

To broaden the applicability of our instrumentation-based technique in Chapter 7, it

would be interesting to adapt the instrumentation process to extend the range of proper-

ties that can be verified through instrumentations. We also think it would be interesting

to consider alternative instrumentation schemes for the properties we already handle.

Moreover, an important direction of research is to search for non-probabilistic verification

techniques that are better able to verify instrumented programs in practice. We think

it is possible that our approach could benefit from recent developments in interpolat-

ing decision procedures [CGS08, BZM08, BKRW10]. Moreover, we believe augmenting

our current implementation with a more elaborate template-based invariant generation

methods, such as [SG09, GSV09, BHMR07, CSS03], could significantly improve the ap-

plicability and scalability of our approach.

Unrelated to our verification methods, we argue that another important future direc-

tion of research is to consider different types of quantitative properties on probabilistic

programs. For example, there are many programs that are designed to never terminate.

For such programs, instead of computing expected total costs, it may be more meaningful

to compute expected long run average costs (see, e.g., [Put94]). It is also often mean-

ingful to consider conditional reachability probabilities. For example, on real programs

the minimum probability of reaching any target location is usually 0. This is because

the user may provide invalid arguments and the program terminates in its initialisation

phase. Hence, in such cases, we may want to check the minimum probability of reaching

the target location conditional on the fact that valid user arguments have been given.

Finally, we also think it would be interesting to consider computing parameterised

values of quantitative properties. That is, instead of computing a property for many

parameter values — as we did in our experiments — it is much more interesting to

compute the value of the property as a function of the given parameters.

Our final remark on future work regards the fact that our current model of probabilis-

tic programs is not able to deal with either recursive programs or concurrency. Also, our

verification techniques are not tailored to deal with programs that use the heap. How-

ever, there is a lot of work on verifying recursive, concurrent or heap-intensive programs
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in the non-probabilistic setting. Our final suggestion is to extend the verification methods

described in this thesis in this direction.

Conclusion In this thesis, we introduced verification for quantitative properties of

probabilistic software. We described two such techniques: one is a probabilistic adaptation

of abstraction-refinement methods and the other is via a reduction to non-probabilistic

verification problems. We provided extensive experimental results to demonstrate that,

with our techniques, we can verify programs and properties that are far beyond the

capabilities of existing probabilistic verification techniques. Our results demonstrate it is

feasible to formally establish quantitative properties of probabilistic software in a fully

automated way. Our work is, to the best of our knowledge, the first to verify probabilistic

properties of real, compilable software in a fully automated way.
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Appendix A

Proofs

A.1 Proofs of Chapter 3

A.1.1 Proof of Lemma 3.2

In this section we will prove Lemma 3.2 on page 26 holds.

Lemma 3.2. Let S1, S2 and S3 be sets and let R,R′ ⊆ S1 × S2 and R′′ ⊆ S2 × S3 be

relations over these sets. The following statements hold:

(i) If R is left or right-total then so is L(R).

(ii) If R is left or right-unique then so is L(R).

(iii) L(R−1) equals L(R)−1.

(iv) R ⊆ R′ implies L(R) ⊆ L(R′).

(v) L(R′′) ◦ L(R) is contained in L(R′′ ◦R).

(vi) Suppose I is a countable index set and {λ1
i }i∈I and {λ2

i }i∈I are families of distribu-

tions in DS1 and DS2, respectively, with 〈λ
1
i , λ

2
i 〉 ∈ L(R) for each i ∈ I, then for

every family of weights {wi}i∈I , we have that 〈
∑

i∈I wi · λ
1
i ,
∑

i∈I wi · λ
2
i 〉 ∈ L(R),

also.

Proof. We prove each claim separately.

(i) We first show that if R is right-total, then so is L(R). As R is right-total then for
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every s2 ∈ S2 there is an element of S1, say s2, such that 〈s2, s2〉 ∈ R. To show

L(R) is right-total we need to show that for every λ2 ∈ DS2 there is some λ2 ∈ DS1

such that 〈λ2, λ2〉 ∈ L(R). It is easy to verify this holds for λ2 if, for every s1 ∈ S1,

λ2(s1) is
∑

s1=s2
λ2(s2). The weight function δ witnessing this is defined as δ(s1, s2)

being λ2(s2) if s2 = s2 and 0 if s2 6= s1 for every 〈s1, s2〉 ∈ S1 × S2.

The case for left-totalness is symmetric.

(ii) We first show that if R is right-unique, then so is L(R). Assume R is right-unique.

To show L(R) is right-unique we need to show that for every λ1 ∈ DS1 there at most

one λ2 ∈ DS2 such that 〈λ1, λ2〉 ∈ L(R). Hence, let us take an arbitrary λ1 ∈ DS1

and an arbitrary λ2 ∈ DS2 such that 〈λ1, λ2〉 ∈ L(R). Suppose 〈λ1, λ2〉 ∈ L(R) is

witnessed by a weight function, δ ∈ S1 × S2 → [0, 1]. If R is right-unique, then, for

all 〈s1, s2〉 ∈ S1 × S2 we must have that δ(〈s1, s2〉) is λ1(s1) if 〈s1, s2〉 ∈ R and 0 if

〈s1, s2〉 6∈ R, in order to satisfy (3.1) for s1. As a result, without having made any

assumption on λ2 we have for all s2 ∈ S2 that

λ2(s2) =
∑

s1∈S1

δ(〈s1, s2〉) (Definition δ)

=
∑

s1∈R−1(s2)

δ(〈s1, s2〉) (Definition δ)

=
∑

s1∈R−1(s2)

λ1(s1) . (R is right-unique)

That is, λ2 is uniquely defined by λ1 and R, meaning L(R) is right-unique.

The case for left-uniqueness is symmetric.

(iii) Follows from the symmetry in Definition 3.1 and the definition of relational inverse.

(iv) Suppose 〈λ1, λ2〉 ∈ L(R) is witnessed by a weight function δ. If R ⊆ R′ then we can

use δ to witness 〈λ1, λ2〉 ∈ L(R
′). The only condition affected by the switch from R

to R′ is (3.3), which becomes weaker as 〈s1, s2〉 6∈ R′ implies 〈s1, s2〉 6∈ R.

(v) Suppose that 〈λ1, λ3〉 ∈ (L(R′′) ◦ L(R)). By definition there must be a distribution

λ2 ∈ DS2 s.t. 〈λ1, λ2〉 ∈ L(R) and 〈λ2, λ3〉 ∈ L(R
′′) as witnessed by weight functions

δ and δ′′, respectively. Remaining to show is that 〈λ1, λ3〉 ∈ L(R
′′ ◦R). We claim
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this is witnessed by the weight function δ, defined for every 〈s1, s3〉 ∈ S1 × S3 as

δ(〈s1, s3〉) =
∑

s2∈Supp(λ2)

δ(〈s1, s2〉) · δ
′′(〈s2, s3〉)

λ2(s2)
.

To show this we need to ensure conditions (3.1) up to (3.3) hold for λ1, λ3 and δ.

Condition (3.3) holds because if 〈s1, s3〉 6∈ (R′′ ◦R) then there is no s2 ∈ S for which

both 〈s1, s2〉 ∈ R and 〈s2, s3〉 ∈ R′′ and hence the numerators in δ(〈s1, s3〉)’s sum

are 0 for every s2 ∈ S2. We now show (3.1) holds for arbitrary s1 ∈ S1:

∑

s3∈S3

δ(〈s1, s3〉) =
∑

s3∈S3

∑

s2∈Supp(λ2)

δ′′(〈s2, s3〉)

λ2(s2)
· δ(〈s1, s2〉) (Definition δ)

=
∑

s2∈Supp(λ2)

(

∑

s3∈S3

δ′′(〈s2, s3〉)

λ2(s2)

)

· δ(〈s′1, s2〉) (Rearranging)

=
∑

s2∈Supp(λ2)

(

λ2(s2)

λ2(s2)

)

· δ(〈s′1, s2〉) (Definition δ′′)

=
∑

s2∈Supp(λ2)

δ(〈s1, s2〉) (Rearranging)

=
∑

s2∈S2

δ(〈s1, s2〉) = λ1(s1) . (Def. Supp, δ)

We can extend the sum from Supp(λ2) to S2 because δ′′(〈s2, s3〉) = 0 for s2 6∈

Supp(λ2) due to condition (3.1). The proof for (3.2) follows by symmetry.

(vi) Suppose that for each i ∈ I the fact that the tuple 〈λ1
i , λ

2
i 〉 is in L(R) is witnessed

by a weight function δi. We claim that

〈
∑

i∈I

wi · λ
1
i ,
∑

i∈I

wi · λ
2
i 〉 ∈ L(R)

is witnessed by the weight function δ =
∑

i∈I wi · δi, defined pointwise. To show this

we need to ensure conditions (3.1) up to (3.3) hold for these distributions and δ.

Condition (3.3) holds because for any 〈s1, s2〉 6∈ R we have that δi(〈s1, s2〉) = 0 for

every i ∈ I and hence δ(〈s1, s2〉) =
∑

i∈I wi · δi(〈s1, s2〉) = 0, also. To show (3.1),
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observe that for any s1 ∈ S1:

∑

s2∈S2

δ(〈s1, s2〉) =
∑

s2∈S2

∑

i∈I

wi · δi(〈s1, s2〉) (Definition δ)

=
∑

i∈I

wi ·

(

∑

s2∈S2

δi(〈s1, s2〉)

)

(Rearranging)

=
∑

i∈I

wi · (λ1(s1)) =

(

∑

i∈I

wi · λ1

)

(s1) . (Definition δi)

The proof that condition (3.2) also holds follows by symmetry.

A.1.2 Proof of Lemma 3.10

In this section we will prove Lemma 3.10 on page 29 holds, which we now recall:

Lemma 3.10. Let S and Ŝ be sets, let 〈L,≤〉 be a complete lattice and let R ⊆ Ŝ × S

be a relation. Moreover, let α+ : (S → L) → (Ŝ → L) and γ+ : (Ŝ → L) → (S → L) be

functions defined, for every v : S → L, v̂ : Ŝ → L, s ∈ S and ŝ ∈ Ŝ, as

α+(v)(ŝ) = sup{v(s) | s ∈ R(ŝ)} and γ+(v̂)(s) = inf{v̂(ŝ) | ŝ ∈ R
−1(s)} .

We have that 〈S → L,≤〉 −−−→←−−−
α+

γ+

〈Ŝ → L,≤〉 is a Galois connection.

Proof. The monotonicity of α+ and γ+ follows immediately from the definitions. Remain-

ing to show is that v ≤ γ+(α+(v)) and α+(γ+(v̂)) ≤ v̂ for all v : S → L, v̂ : Ŝ → L. We

first show v ≤ γ+(α+(v)). Following the pointwise ordering on 〈S → L,≤〉, we take an

arbitrary s ∈ S and show v(s) ≤ (γ+(α+(v)))(s) as follows:

(γ+(α+(v)))(s) = inf{α+(v)(ŝ) | ŝ ∈ R
−1(s)} (Definition γ+)

= inf{sup{v(s) | s ∈ R(ŝ)} | ŝ ∈ R
−1(s)} (Definition α+)

≥ v(s) .

The last inequality is perhaps non-obvious. Observe that if R−1(s) 6= ∅ then the infimum
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would be over an empty set, trivially yielding the top element of 〈L,≤〉 and trivially

satisfying the inequality. However, if R−1(s) 6= ∅ then we are taking the infimum over a

non-empty set comprising a value sup{v(s) | s ∈ R(ŝ)} for every ŝ ∈ R−1(s). However,

for every such value, as ŝ ∈ R−1(s), we have that sup{v(s) | s ∈ R(ŝ)} ≥ v(s). As every

value over which we take the infimum is greater or equal to v(s), the inequality holds.

The proof of α+(γ+(v̂)) ≤ v̂ is entirely symmetric.

A.1.3 Proof of Lemma 3.19

In this section we prove Lemma 3.19 on page 38 holds.

Lemma 3.19. Let M = 〈S, I, T, L,R〉 be an MDP. Let F-FinPathM ⊆ FinPathM

be precisely the set of finite paths, π ∈ FinPathM , for which L(Last(π),F) holds and

¬L(πi,F) for all i < |π|. For a fixed initial state s ∈ I and a fixed strategy σ ∈ StratM

we have:

PrsM,σ({π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)}) =
∑

π∈F-FinPathsM,σ

ProbM,σ(π) .

Proof. We trivially have that

{π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)} =
⋃

π∈F-FinPathsM,σ

CylsM,σ(π) .

Moreover, for any two paths π, π′ ∈ FinPathM such that π 6= π′ we have that CylsM,σ(π)

and CylsM,σ(π
′) are disjoint. Due to the additivity of probability measures (Definition 3.4,

item iii) we therefore get that:

PrsM,σ({π ∈ InfPathsM,σ | ∃i ∈ N : L(πi,F)}) =
∑

π∈F-FinPathsM,σ

PrsM,σ(CylsM,σ(π)) .

Finally, recall that, by definition of PrsM,σ, we have PrsM,σ(CylsM,σ(π)) = ProbM,σ(π),
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trivially yielding the desired equality.

A.2 Proofs of Chapter 6

A.2.1 Proof of Lemma 6.12

In this section we prove Lemma 6.12 on page 122 holds.

Lemma 6.12. Let M = 〈S, I, T, L,R〉 be an MDP for which there is a bound r ∈ R s.t.

R(s) ≤ r for all s ∈ S. Moreover, let Ŝ ′ be an abstract state space and let α : S → Ŝ ′

be an abstraction function. The game α(M) as defined by Definition 3.28 is such that

α(M) ⊑ ρ(M).

Proof. Let α(M) = 〈Ŝ, Î , T̂ , L̂, R̂〉 and let R ⊆ α(S)× S be the relation with

R = {〈ŝ, s〉 ∈ α(S)× S | α(s) = ŝ} .

By Definition 3.28 and the definition of R we have that Î = R−1(I) and I ⊆ R(Î).

Hence, to show α(M) ⊑ ρ(M), we only need to prove that R is a strong probabilistic

game simulation on α(M) ⊎ ρ(M). To show this, let 〈ŝ, s〉 be an arbitrary tuple in

R. We have to show condition (i) up to (iv) of Definition 6.10 hold for 〈ŝ, s〉. Given

Definition 3.27 and 6.1 conditions (i) and (ii) are trivially satisfied for 〈ŝ, s〉. Remaining

to show is that conditions (iii) and (iv) are satisfied for 〈ŝ, s〉. Recall that by the definition

of embeddings any player A transition from s in ρ(M) is of the form s→ T (s). Moreover,

by Definition 3.28, in α(M) there is a transition ŝ → {α(λ) | λ ∈ T (s)}. Suppose

we match the player A transition s → {T (s)} in ρ(M) with the player A transition

ŝ → {α(λ) | λ ∈ T (s)} in α(M) for both condition (iii) and (iv). Given the definition

of R and Definition 3.1 and 3.27 it is easy to see 〈α(λ), λ〉 ∈ L(R) for every λ ∈ T (s).

Hence, the conditions (iii) and (iv) are trivially satisfied. This means that all conditions

hold for all tuples in R and hence R is a strong probabilistic game simulation. With the

additional observation on initial states this means that α(M) ⊑ ρ(M).
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A.2.2 Proof of Lemma 6.14

In this section we will show that ⊑ is a preorder. That is, we will show:

Lemma 6.14. The abstraction relation ⊑ is a preorder.

Mainly due to the presence of combined transitions in Definition 6.10, proving that ⊑

is transitive is not straightforward. To deal with combined transitions, we first introduce

lemmas that guarantee the existence of certain combined player A and player C transitions

(namely Lemma A.1, A.2 and A.3). Then, we will lift the result in Lemma A.1.1 (item vi)

to player A transitions (Lemma A.4). As a final preparation for proving Lemma 6.14 we

will show that, in Definition 6.10, we can replace the universal quantification over normal

player A and player C transitions with a universal quantification over combined transitions

(Lemma A.5). This will then finally allow us to turn our attention to Lemma 6.14.

We start by showing that weighted combinations of combined transitions are combined

transitions again. We start with player C:

Lemma A.1. Let Λ ∈ PDS be some set of distributions on some set, S, and let {λi}i∈I

be a family of distributions over S such that Λ
Cmb
−−→ λi is a combined player C transition

for each i ∈ I. For any family of weights {wi}i∈I we have that

Λ
Cmb
−−→

∑

i∈I

wi · λi

is a valid combined player C transition, also.

Proof. Let {Ki}i∈I be a family of index sets and, for each i ∈ I, let {λi
k}k∈Ki

and {wi
k}k∈Ki

be a family of sets of distributions and weights, respectively, such that λi =
∑

k∈Ki
wi

k ·λ
i
k
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and λi
k ∈ Λ for each k ∈ Ki. We have the equality

∑

i∈I

wi · λi =
∑

i∈I

wi ·

(

∑

k∈Ki

wi
k · λ

i
k

)

(Definition λi)

=
∑

i∈I

∑

k∈Ki

wi · w
i
k · λ

i
k (Rearranging)

=
∑

i∈I,k∈Ki

wi · w
i
k · λ

i
k (Rearranging)

Due to this equality it is easy to see that Λ
Cmb
−−→

∑

i∈I wi·λi is the combined player C transi-

tion introduced by the family of weights {wi·w
i
k}i∈I,k∈Ki

and distributions {λi
k}i∈I,k∈Ki

.

We remark that, in the proof of Lemma A.1, we use families that are indexed by both

i ∈ I and k ∈ Ki simultaneously. This is merely a question of notation — they can easily

be rewritten using a single (countable) index set.

We now show that weighted combinations of combined transitions for player A are

combined player A transitions again:

Lemma A.2. Let s ∈ S be a state and let {Λi}i∈I be a finite family of sets of distribu-

tions in PDS such that s
Cmb
−−→ Λi is a combined player A transition for each i ∈ I. For

any finite family of weights {wi}i∈I we have that

s
Cmb
−−→

∑

i∈I

wi · Λi

is a valid combined player A transition, also.

Proof. Let {Ki}i∈I be a finite family of finite index sets and, for each i ∈ I, let {Λi
k}k∈Ki

and {wi
k}k∈Ki

be finite families of sets of distributions and weights, respectively, such that

Λi
k ∈ T (s) for each k ∈ Ki and Λi =

∑

k∈Ki
wi

k · Λ
i
k. We will show that the combined

transition induced by the families {wi ·w
i
k}i∈I,k∈Ki

and and {Λi
k}i∈I,k∈Ki

yields the desired

combined player A transition. We show this with the following equalities (by applying
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Definition 6.8 repeatedly):

∑

i∈I wi · Λi =
∑

i∈I wi ·
(
∑

k∈Ki
wi

k · Λ
i
k

)

(Definition Λi)

=
∑

i∈I wi ·
{
∑

k∈Ki
wi

k · λ
i
k | {λ

i
k}k∈Ki

s.t. λi
k ∈ Λi

k

}

(Definition 6.8)

(1)
=
{

∑

i∈I,k∈Ki
wi · w

i
k · λ

i
k | {λ

i
k}i∈I,k∈Ki

s.t. λi
k ∈ Λi

k

}

(Definition 6.8)

=
∑

i∈I,k∈Ki
(wi · w

i
k · Λ

i
k) (Definition 6.8)

Note that, according to Definition 6.8, the set on the right-hand side of equality (1) should

include a distribution
∑

i∈I wi · λi for every family of distributions {λi}i∈I with

λi ∈
{
∑

k∈Ki
wi

k · λ
i
k | {λ

i
k}k∈Ki

such that λi
k ∈ Λi

k

}

for each i ∈ I. Instead we (equivalently) include the distribution
∑

i∈I wi ·
(
∑

k∈Ki
wi

k · λ
i
k

)

for every family {λi
k}i∈I,k∈Ki

with λi
k ∈ Λi

k for every i ∈ I and k ∈ Ki.

With the equality above, the combined player A transition induced by {wi ·w
i
k}i∈I,k∈Ki

and {Λi
k}i∈I,k∈Ki

is s
Cmb
−−→

∑

i∈I wi ·Λi. To see this is a valid combined player A transition,

recall that both I is finite and, for every i ∈ I, the index set Ki is finite.

Again, in the proof of Lemma A.2, we use families that are indexed by both i ∈ I

and k ∈ Ki simultaneously. In this instance we easily rewrite this to families over a single

finite index set. We now strengthen Lemma A.1 by considering the available combined

transitions from a player C state
∑

i∈I wi · Λi:

Lemma A.3. Let {Λi}i∈I and {λi}i∈I be a finite family of sets of distributions in PDS

and a finite family of distributions in DS, respectively, such that Λi
Cmb
−−→ λi is a combined

player C transition for each i ∈ I, then, for each family of weights {wi}i∈I we have that

∑

i∈I

wi · Λi
Cmb
−−→

∑

i∈I

wi · λi (A.1)

is a combined player C transition, also.

Proof. Let Fam the countable set of all families of distributions {µi}i∈I with µi ∈ Λi



216 Proofs

for all i ∈ I. Intuitively, elements of Fam represent the player C states available from
∑

i∈I wi ·Λi. That is, every family {µi}i∈I ∈ Fam induces the (normal) player C transition

∑

i∈I

wi · Λi →
∑

i∈I

wi · µi .

Hence, by Lemma A.1, all we need to show is that (A.1) is a weighted combination of such

transitions. Because I is finite it must be the case that Fam is countable. This means we

can use Fam as an index set for a combined player C transition.

To define this combined transition, let us suppose that each player C transition Λi
Cmb
−−→

λi is induced by a family of distributions {λi
k}k∈Ki

in Λi and a family of weights {wi
k}k∈Ki

.

That is, for each i ∈ I we have:

λi =
∑

k∈Ki

wi
k · λ

i
k .

We will show that (A.1) is a combined transition from
∑

i∈I wi · Λi indexed by elements

of Fam. That is, we define a family of distributions {λf}f∈Fam available in
∑

i∈I wi · Λi

and weights {wf}f∈Fam such that (A.1) is

∑

i∈I

wi · Λi
Cmb
−−→

∑

f∈Fam

wf · λf .

For each family f = {µi}i∈I in Fam let us define

λf =
∑

i∈I

wi · µi , and

wf =
∏

i∈I

(

∑

λi
k
=µi

wi
k

)

.

Note that I is both non-empty and finite. For a given i ∈ I, we use a shorthand notation

to sum over those indices, k ∈ Ki, for which λi
k = µi.

It remains to show that
∑

f∈Fam wf · λf is equal to
∑

i∈I wi · λi. Before we show

this we first define, for every i ∈ I, the set Fami as the set of all families of distributions
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{µj}j∈I\{i} with µj ∈ Λj for all j ∈ I \ {i}.

∑

f∈Fam

wf · λf

(1)
=
∑

({µn}n∈I)∈Fam

((

∏

j∈I

(

∑

λ
j
k
=µj

wj
k

))

·
(
∑

i∈I wi · µi

)

)

=
∑

i∈I

∑

({µn}n∈I)∈Fam

((

∏

j∈I

(

∑

λ
j
k
=µj

wj
k

))

· wi · µi

)

(2)
=
∑

i∈I

∑

λ′
i∈Λi

∑

({µn}n∈I\{i})∈Fami

((

∏

j∈I\{i}

(

∑

λ
j
k
=µj

wj
k

))

·
(

∑

λi
k
=λ′

i
wi

k

)

· wi · λ
′
i

)

=
∑

i∈I

∑

λ′
i∈Λi

((

∑

({µn}n∈I\{i})∈Fami

(

∏

j∈I\{i}

(

∑

λ
j
k
=µj

wj
k

)))

·
(

∑

λi
k
=λ′

i
wi

k

)

· wi · λ
′
i

)

(3)
=
∑

i∈I

∑

λ′
i∈Λi

((

∏

j∈I\{i}

(

∑

µj∈Λj

(

∑

λ
j
k
=µj

wj
k

)))

·
(

∑

λi
k
=λ′

i
wi

k

)

· wi · λ
′
i

)

(4)
=
∑

i∈I

∑

λ′
i∈Λi

((

∑

λi
k
=λ′

i
wi

k

)

· wi · λ
′
i

)

=
∑

i∈I wi ·
(
∑

k∈Ki
wi

k · λ
i
k

)

=
∑

i∈I wi · λi

Equality (1) simply expands the definition of wf and λf . Equality (2) splits the sum

over all families ({µn}n∈I) ∈ Fam into a sum over all families ({µn}n∈I) ∈ Fami (i.e.

families without a distribution for i) and all distributions λ′
i and updates the product

accordingly. In equality (3) we use the fact that for a finite number of countable sums

that are absolutely converging1 the product of these countable sums is a Cauchy product.

The summation over families Fami is a rearrangement of this Cauchy product. Finally,

equality (4) holds because, for each j ∈ I \ {i}, we have that

∑

µj∈Λj

∑

λ
j
k
=µj

wj
k =

∑

k∈Ki
wj

k = 1 .

Hence, we can eliminate the product term.

As
∑

f∈Fam wf equals
∑

i∈I wi ·λi we have found a combined player C transition that

satisfies our lemma.

1In our setting, where all terms are non-negative, this means the supremum over all partial sums is finite.
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Finally, before we prove that we can substitute the universal quantification over com-

bined transitions with normal transitions, we need a player A analogue of Lemma A.1.1

(item vi):

Lemma A.4. Let S be a set and let R ⊆ Ŝ × S be a relation. Let {Λ̂i}i∈I and {Λi}i∈I

be finite families of sets of distributions in PDŜ and PDS, respectively, such that

∀Λi → λ : ∃Λ̂i
Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) (A.2)

for all i ∈ I. For every family of weights, {wi}i∈I , the player C states, Λ =
∑

i∈I wi · Λi

and Λ̂ =
∑

i∈I wi · Λ̂i, are such that

∀Λ→ λ : ∃Λ̂
Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) . (A.3)

Proof. To show (A.3), let us consider an arbitrary player C transition Λ→ λ. By definition

of Λ it must be that λ is of the form
∑

i∈I wi · λi for some family of distributions {λi}i∈I

with λi ∈ Λi for all i ∈ I. For each i ∈ I, Λi → λi is a player C transition and we can

use (A.2) to obtain a player C transition Λ̂i
Cmb
−−→ λi such that 〈λi, λi〉 ∈ L(R). From

Lemma A.3 we learn
∑

i∈I wi · Λ̂i
Cmb
−−→

∑

i∈I wi · λ̂i is a valid combined player C transition

and from Lemma 3.2 (item vi) we learn 〈λ,
∑

i∈I wi · λ̂i〉 ∈ L(R). Because we did not

make any assumptions on the transition Λ→ λ, condition (A.3) must hold.

We are now finally in a position to show we can interchange the universal quantifi-

cation of normal player A and player C transitions in Definition 6.10 with a universal

quantification over combined transitions:

Lemma A.5. For games that are finitely branching for player A we can replace condition

(iii) and (iv) of Definition 6.10 with:

(iii) ∀s
Cmb
−−→ Λ : ∃ŝ

Cmb
−−→ Λ̂ : ∀Λ

Cmb
−−→ λ : ∃Λ̂

Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) and

(iv) ∀s
Cmb
−−→ Λ : ∃ŝ

Cmb
−−→ Λ̂ : ∀Λ̂

Cmb
−−→ λ̂ : ∃Λ

Cmb
−−→ λ : 〈λ̂, λ〉 ∈ L(R) .

Proof. Let G = 〈S, I, T, L,R〉 be a game and let R ⊆ S × S be a relation on S. We will

show that (iii) and (iv) of Definition 6.10 can be replaced with the conditions above.
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We first show that, for any non-empty sets of distributions Λ̂,Λ ∈ PDS, we have:

∀Λ→ λ : ∃Λ̂
Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) ⇐⇒

∀Λ
Cmb
−−→ λ : ∃Λ̂

Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) (A.4)

and

∀Λ̂→ λ̂ : ∃Λ
Cmb
−−→ λ : 〈λ̂, λ〉 ∈ L(R) ⇐⇒

∀Λ̂
Cmb
−−→ λ̂ : ∃Λ

Cmb
−−→ λ : 〈λ̂, λ〉 ∈ L(R) . (A.5)

We first show (A.4). The direction (⇐) holds trivially: every player C transition is a

combined player C transition. To show (⇒) let us take an arbitrary combined player C

transition Λ
Cmb
−−→

∑

i∈I wi · λi, for some family of weights {wi}i∈I and family of distribu-

tions {λi}i∈I in Λ, and show that there exists a combined player C transition Λ̂
Cmb
−−→ λ̂

such that 〈λ̂,
∑

i∈I wi · λi〉 ∈ L(R).

For each i ∈ I, we know Λ → λi is a normal player C transition and hence we can

use the premise of the implication to see there exists a combined player C transition

Λ̂
Cmb
−−→ λ̂i such that 〈λi, λ̂i〉 ∈ L(R). From Lemma A.1 we get that Λ̂

Cmb
−−→

∑

i∈I wi ·

λ̂i is a valid combined player C transition and from Lemma 3.2 (item vi) we get that

〈
∑

i∈I wi · λ̂i,
∑

i∈I wi · λi〉 ∈ L(R). As we made no assumption on the player C transition

this means (A.4) holds. By employing (A.4) on R−1 and due to Lemma 3.2 (item iii) we

get that (A.5) holds, also.

We now show that (iii) and (iv) in Definition 6.10 are equivalent to (iii) and (iv) as

defined above. Let ŝ, s ∈ S be arbitrary states. Due to (A.4) and (A.5), it is sufficient to

show that:

∀s→ Λ : ∃ŝ
Cmb
−−→ Λ̂ : ∀Λ→ λ : ∃Λ̂

Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) ⇔

∀s
Cmb
−−→ Λ : ∃ŝ

Cmb
−−→ Λ̂ : ∀Λ→ λ : ∃Λ̂

Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) (A.6)

∀s→ Λ : ∃ŝ
Cmb
−−→ Λ̂ : ∀Λ̂→ λ̂ : ∃Λ

Cmb
−−→ λ : 〈λ̂, λ〉 ∈ L(R) ⇔

∀s
Cmb
−−→ Λ : ∃ŝ

Cmb
−−→ Λ̂ : ∀Λ̂→ λ̂ : ∃Λ

Cmb
−−→ λ : 〈λ̂, λ〉 ∈ L(R) . (A.7)
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We first show (A.6). Again, the direction (⇐) is trivial. To show direction (⇒) consider

an arbitrary player A transition s
Cmb
−−→

∑

i∈I wi · Λi for some finite family of weights

{wi}i∈I and finite family of sets of distributions {Λi}i∈I in T (s). For each i ∈ I, we know

s → Λi is a normal player A transition and hence (from the premise of the implication)

there exists a combined player A transition ŝ
Cmb
−−→ Λ̂i such that

∀Λi → λ : ∃Λ̂i
Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) .

We can apply Lemma A.2 to get that ŝ
Cmb
−−→

∑

i∈I wi · Λ̂i is a valid combined player A

transition of G and, from Lemma A.4, we get that

∀
∑

i∈I wi · Λi → λ : ∃
∑

i∈I wi · Λ̂i
Cmb
−−→ λ̂ : 〈λ̂, λ〉 ∈ L(R) .

Hence, the combined player A transition ŝ
Cmb
−−→

∑

i∈I wi · Λ̂i
Cmb
−−→ λ̂ satisfies condition

(A.6) for the player A transition s
Cmb
−−→

∑

i∈I wi · Λi → λ. As we made no assumption

about the transition s
Cmb
−−→

∑

i∈I wi ·Λi this means that the direction (⇒) is also satisfied

and (A.6) holds. This implies that (iii) of Definition 6.10 are equivalent to condition (A.6)

as stated in the definition of this lemma. To show (A.7) we use again Lemma A.2 and

apply Lemma A.4 on R−1 (using Lemma 3.2, item iii). This implies the same argument

holds for (iv) of Definition 6.10.

Through Lemma A.5 we are finally in a position to prove that ⊑ is a preorder:

Lemma 6.14. The abstraction relation ⊑ is a preorder.

Proof. We first remark that, if Ĝ ⊑ G, then a strong probabilistic game simulation

R ⊆ Ŝ × S with I ⊆ R(Î) and Î ⊆ R−1(I) always exists. To see this consider any

two games Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 and G = 〈S, I, T, L,R〉 and a strong probabilistic game

simulation R ⊆ (Ŝ ⊎S)× (Ŝ ⊎S) on Ĝ⊎G with I ⊆ R(Î) and Î ⊆ R−1(I). The relation

R ∩ (Ŝ × S) is trivially also a strong probabilistic game simulation on Ĝ ⊎ G satisfying

the same property on initial states.

To show ⊑ is a preorder we need to show it is both reflexive and transitive. The
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reflexivity of ⊑ follows trivially. To show ⊑ is transitive let G1, G2 and G3 be games such

that G1 ⊑ G2 and G2 ⊑ G3. Suppose that Gi = 〈Si, I i, T i, Li, Ri〉 for every i ∈ {1, 2, 3}.

Let R1,2 ⊆ S1 × S2 and R2,3 ⊆ S2 × S3 be strong probabilistic game simulations on

G1 ⊎ G2 and G2 ⊎ G3, respectively, such that I2 ⊆ R1,2(I1), I1 ⊆ R
−1
1,2(I2), I3 ⊆ R2,3(I2)

and I2 ⊆ R
−1
2,3(I3).

We will show that G1 ⊑ G3 via a relation R ⊆ S1 × S3 defined as R = R2,3 ◦R1,2.

It is easy to see that I1 ⊆ R(I3) and I3 ⊆ R−1(I1) (as I2 is necessarily non-empty). It

remaining to show that R is indeed a strong probabilistic game simulation. That is, we

have to show that condition (i) up to (iv) of Definition 6.10 hold for every 〈s1, s3〉 ∈ R.

We first show conditions (i) and (ii). For 〈s1, s3〉 to be in R, there must be some

s2 ∈ S2 such that 〈s1, s2〉 ∈ R1,2 and 〈s2, s3〉 ∈ R2,3. As R1,2 and R2,3 are strong

probabilistic game simulations, it follows that L1(s1, a) ≤ L2(s2, a) ≤ L3(s3, a) for every

a ∈ AP and R1(s1) ≤ R2(s2) ≤ R3(s3). Hence, conditions (i) and (ii) hold for 〈s1, s3〉 due

to the transitivity of ≤.

It remains to show that (iii) and (iv) of Definition 6.10 hold for every 〈s1, s3〉 ∈

R in Definition 3.8. To do this, we will use the fact that conditions (iii) and (iv) of

Definition 6.10 can be equivalently defined with (iii) and (iv) in Lemma A.5. To show

this we use Lemma A.5. Again, for 〈s1, s3〉 to be in R, there must be some s2 ∈ S2 such

that 〈s1, s2〉 ∈ R1,2 and 〈s2, s3〉 ∈ R2,3.

We first focus on (iii) of Lemma A.5. Let s1
Cmb
−−→ Λ1 be any combined player A

transition in G1 from s1. Because R1,2 and R2,3 are strong probabilistic game simulations

there is a combined player A transition s2
Cmb
−−→ Λ2 in G2 and a combined player A

transition s3
Cmb
−−→ Λ3 in G3 such that

∀Λ1
Cmb
−−→ λ1 : ∃Λ2

Cmb
−−→ λ2 : 〈λ1, λ2〉 ∈ L(R1,2) and

∀Λ2
Cmb
−−→ λ2 : ∃Λ3

Cmb
−−→ λ3 : 〈λ2, λ3〉 ∈ L(R2,3) .

Moreover, because of Lemma 3.2 (item v), we have that if 〈λ1, λ2〉 ∈ R1,2 and 〈λ2, λ3〉 ∈

R2,3 then 〈λ1, λ3〉 ∈ R. Hence, s3
Cmb
−−→ Λ3, satisfies (iii) for the transition s1

Cmb
−−→ Λ2.

The condition (iv) in Lemma A.5 can be shown similarly. That is, let s1
Cmb
−−→ Λ1
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be any combined player A transition in G1 from s1. Because R1,2 and R2,3 are strong

probabilistic game simulations there is a combined player A transition s2
Cmb
−−→ Λ2 in G2

and a combined player A transition s3
Cmb
−−→ Λ3 in G3 such that

∀Λ3
Cmb
−−→ λ3 : ∃Λ2

Cmb
−−→ λ2 : 〈λ2, λ3〉 ∈ L(R2,3) and

∀Λ2
Cmb
−−→ λ2 : ∃Λ1

Cmb
−−→ λ1 : 〈λ1, λ2〉 ∈ L(R1,2) .

Hence, it follows that s3
Cmb
−−→ Λ3, satisfies (iv) for the transition s1

Cmb
−−→ Λ2.

As all conditions hold it must be that R is a strong probabilistic game simulation on

G1 ⊎ G3. This implies that G1 ⊑ G3 and, as we took arbitrary games, G1, G2 and G3,

this means that ⊑ is transitive and, hence, that ⊑ is a preorder.

A.2.3 Proof of Lemma 6.15

In this section we prove Lemma 6.15 on page 125 holds.

Lemma 6.15. Let M = 〈S, I, T, L,R〉 be an MDP for which there is a bound r ∈ R s.t.

R(s) ≤ r for all s ∈ S. Moreover, let Ŝ ′ be an abstract state space, let α : S → Ŝ ′ be an

abstraction function for which α(S) is finite and let R ⊆ α(S)×S be the relation defined

as {〈ŝ, s〉 ∈ α(S)× S | α(s) = ŝ}. A game Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 exists for which Ĝ ⊑ ρ(M)

with R and

– T̂ (ŝ) = {{[ŝ′]} | ŝ′ ∈ Ŝ} ∪ {{[ŝ′] | ŝ′ ∈ Ŝ}} for every ŝ ∈ Ŝ .

Moreover, for any such Ĝ we have that any other game Ĝ′ = 〈Ŝ, Î , T̂ ′, L̂, R̂〉 such that

Ĝ′ ⊑ ρ(M) with R and such that Ĝ′ agrees with Ĝ on Î , L̂ and R̂, is abstracted by Ĝ.

Proof. Let us first show a game Ĝ meeting our criteria exists. We can define Ŝ, Î, L̂ and

R̂ as we would in α(M) and use Definition 6.12 to show the conditions on initial states

as well as condition (i) and (ii) of Definition 6.10 are satisfied for every 〈ŝ, s〉 ∈ R.

Remaining to show for our first claim is that (iii) and (iv) of Definition 6.10 are

satisfied for every 〈ŝ, s〉 ∈ R. Let us first focus on (iii). Let s→ Λ be an arbitrary player
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A transition of ρ(M). We use the player A transition ŝ → {[ŝ′] | ŝ′ ∈ Ŝ} of Ĝ to match

this transition. We need to show that every player C transition Λ → λ of ρ(M) has a

matching player C transition from {[ŝ′] | ŝ′ ∈ Ŝ} in Ĝ.

To show this we use the fact that R is right-total and that, by Definition 3.2 (item (i)),

the relation L(R) is right-total, also. Hence, to match player C transition Λ→ λ of ρ(M)

we use the right-totalness of L(R) to get an λ̂ ∈ D(α(S)) such that 〈λ̂, λ〉 ∈ L(R). By

the definition of combined player C transitions, the transition {[ŝ′] | ŝ′ ∈ Ŝ}
Cmb
−−→ λ̂ exists.

Remaining to show for our first claim is that condition (iv) of Definition 6.10 is

satisfied for every 〈ŝ, s〉 ∈ R. To see this holds, let s → Λ be any player A transition in

ρ(M). We need to match this with a combined player A transition from ŝ in Ĝ. To do

this let Λ → λ be an arbitrary player C transition in ρ(M) and, by the right-totalness

of L(R), let us take a λ̂ ∈ D(α(S)) such that 〈λ̂, λ〉 ∈ L(R). Now let us write λ̂ as a

finite sum
∑

i∈I wi · [ŝi] of point distributions. Note this sum is finite due to the finiteness

restriction on α(S). Now let us match the player A transition s → Λ in ρ(M) with the

combined player A transition ŝ
Cmb
−−→

∑

i∈I wi · {[ŝi]} in Ĝ. This transition satisfies (iv)

as the only possible player C transition is
∑

i∈I wi · {[ŝi]} → λ̂ and the game ρ(M) can

match this with Λ
Cmb
−−→ λ.

Note that in our proof of (iii) and (iv) we did not actually make any assumptions on

ρ(M), Ŝ, Î, L̂ or R̂. In fact, T̂ is capable of simulating any player A transition from any

game so long that α(S) is finite and R is right-total.

This significantly simplifies the proof of our second claim. Let Ĝ be an arbitrary

game satisfying the criteria and let Ĝ′ be any other game for which Ĝ′ ⊑ G via R which

agrees on Ŝ, Î, L̂ and R̂ with Ĝ. Remaining to show is that Ĝ ⊑ Ĝ′. If we consider the

a relation R ′ which pairs every state of Ĝ with the identical state of Ĝ′ then conditions

(i) and (ii) of Definition 6.10 are trivially satisfied for every 〈ŝ, ŝ′〉 ∈ R (as well as the

necessary conditions on initial states). To see (iii) and (iv) of Definition 6.10 are satisfied

for every 〈ŝ, ŝ′〉 ∈ R observe that R ′ is also right-total and α(S) remains finite.
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A.2.4 Proof of Lemma 6.16

In this section we prove Lemma 6.16 on page 126 holds.

Lemma 6.16. Let M = 〈S, I, T, L,R〉 be an MDP for which there is a bound r ∈ R s.t.

R(s) ≤ r for all s ∈ S. Moreover, let Ŝ ′ be an abstract state space, let α : S → Ŝ ′ be an

abstraction function and let R ⊆ α(S)× S be the relation defined as {〈ŝ, s〉 ∈ α(S)× S |

α(s) = ŝ}. A game Ĝ = 〈α(S), Î , T̂ , L̂, R̂〉 exists for which Ĝ ⊑ ρ(M) with R and

– T̂ (ŝ) = {{α(λ) | λ ∈ T (s)} | s ∈ α−1(ŝ)} for all ŝ ∈ α(S) .

Moreover, for any such Ĝ we have that any other game Ĝ′ = 〈α(S), Î , T̂ ′, L̂, R̂〉 such that

Ĝ′ ⊑ ρ(M) with R and such that Ĝ′ agrees with Ĝ on Î , L̂ and R̂, abstracts Ĝ.

Proof. Our first claim regarding the existence of a suitable Ĝ is immediately satisfied

by observing that α(M) (as defined by Definition 3.27) satisfies all criteria and, by

Lemma 6.12, is such that α(M) ⊑ ρ(M).

For our second claim we take an arbitrary Ĝ′ = 〈α(S), Î , T̂ ′, L̂, R̂〉 such that Ĝ′ ⊑

ρ(M) via R and such that Ĝ′ agrees with Ĝ on Î , L̂ and R̂. In this proof, we will use the

fact that R is left-unique and hence, by Lemma 3.2 item (ii), L(R) is left-unique, also.

Consider the relation R ′ on Ĝ′ ⊎ Ĝ which pairs every state of Ĝ′ with the identical

state in Ĝ. As Ĝ′ and Ĝ agree on Î , L̂ and R̂, conditions (i) and (ii) of Definition 6.10

are trivially satisfied for every 〈ŝ′, ŝ〉 ∈ R ′ (as well as the necessary conditions on initial

states). Remaining to show is that (iii) and (iv) of Definition 6.10 are satisfied for every

〈ŝ′, ŝ〉 ∈ R ′.

Let us first look at condition (iii). It is sufficient to show that for every player A

transition ŝ → {α(λ) | λ ∈ T (s)} of Ĝ, induced by some s ∈ α−1(ŝ), there exist a

combined player A transitions from ŝ′ in Ĝ′ that satisfies condition (iii). As Ĝ′ ⊑ ρ(M)

via R and 〈ŝ, s〉 ∈ R there must be some combined player A transition ŝ′
Cmb
−−→ Λ̂ in Ĝ′

to match the player A transition s → T (s) in ρ(M). This means that for every player

C transition T (s) → λ in ρ(M) there is a combined player C transition Λ̂
Cmb
−−→ λ̂ in

Ĝ′ such that 〈λ̂, λ〉 ∈ L(R). Because of the left-uniqueness of L(R) this actually is the
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transition Λ̂
Cmb
−−→ α(λ). Hence, for every transition T (s)→ λ in ρ(M) we have a transition

Λ̂
Cmb
−−→ α(λ) in Ĝ′.

Hence, if we match the player A transition ŝ → {α(λ) | λ ∈ T (s)} in Ĝ with the

player A transition ŝ′
Cmb
−−→ Λ̂ in Ĝ′ then we know that for every player C transition

{α(λ) | λ ∈ T (s)} → α(λ) of Ĝ there is a matching combined a player C transition

Λ̂
Cmb
−−→ α(λ) in Ĝ′. Evidently, 〈α(λ), α(λ))〉 ∈ L(R ′), meaning that (iii) of Definition 6.10

is satisfied for 〈ŝ′, ŝ〉 ∈ R ′.

Analogously, for condition (iv) of Definition 6.10, it must be that some combined

player A transition ŝ′
Cmb
−−→ Λ̂ of Ĝ′ matches the player A transition s→ T (s) in ρ(M) for

condition (iv). That is, for every Λ̂ → λ̂ in Ĝ′ there is a T (s)
Cmb
−−→ λ in ρ(M) such that

〈λ̂, λ〉 ∈ L(R) and, because of left-uniqueness, λ̂ = α(λ).

Hence, if we match the player A transition ŝ → {α(λ) | λ ∈ T (s)} in Ĝ with the

player A transition ŝ′
Cmb
−−→ Λ̂ in Ĝ′ then we know that for every player C transition Λ̂→ λ̂

in Ĝ′ there is a distribution
∑

i∈I wi · [λi] ∈ D(T (s)) such that λ̂ = α(
∑

i∈I wi · λi). It

is not difficult to see that λ̂ = α(
∑

i∈I wi · λi) =
∑

i∈I wi · α(λi) and hence there is a

transition {α(λ) | λ ∈ T (s)}
Cmb
−−→ λ̂ also. That is, for every Λ̂ → λ̂ in Ĝ′ there is a

transition {α(λ) | λ ∈ T (s)}
Cmb
−−→ λ̂ in Ĝ. This means condition (iv) of Definition 6.10 is

also satisfied for 〈ŝ′, ŝ〉 ∈ R ′.

A.2.5 Proof of Theorem 6.18

In this section we set out to prove Theorem 6.18 on page 126, which we first recall:

Theorem 6.18. Let Ĝ and G be games such that Ĝ ⊑ G and Ĝ and G are finitely

branching for player A. We have that

Prob−(Ĝ) ≤ Prob−(G) and Prob+(Ĝ) ≤ Prob+(G) .
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To prove Theorem 6.18 we will use abstract interpretation methods in a similar fash-

ion to [WZ10], using the lattices in Lemma 3.10 and Corollary 3.11 and the fixpoint

characterisation of game properties in Section 3.4.2. Our main problem in doing this is

that the functions we use in the fixpoint characterisation take infima and suprema over

normal transitions whereas our abstraction preorder uses combined transitions. This is

mostly an issue for player A transitions because here we use a player C state (an element of

PDS) to represent a probabilistic combination of player C states (an element of DPDS).

Therefore, before we prove Theorem 6.18, we first prove that certain infima and

suprema over combined transitions coincide with infima and suprema over normal tran-

sitions. We first show that, if we are allowed to take any weighted combination of values

from a function, v : S → [0,∞], it never pays to use non-trivial weights:

Lemma A.6. Let S be a countable set and let v : S → [0,∞] be some mapping from S

to the non-negative reals extended with positive infinity. We have:

inf
s′∈S

v(s′) = inf
λ∈DS

(
∑

s′∈Supp(λ) v(s
′) · λ(s′)) and (A.8)

sup
s′∈S

v(s′) = sup
λ∈DS

(
∑

s′∈Supp(λ) v(s
′) · λ(s′)) (A.9)

Proof. The inequality ≥ for (A.8) and ≤ for (A.9) follow from the fact that for any s′ ∈ S

we have that [s] ∈ DS and the fact that v(s′) = (
∑

s′∈Supp([s]) v(s
′) · [s](s′)). It is remaining

to show ≤ for (A.8) and ≥ for (A.9).

We first show ≤ for (A.8). If infs′∈S v(s
′) =∞ then it must be the case that v(s′) =∞

for every s′ ∈ S. In this case, the sum (
∑

s′∈S v(s
′) · λ(s′)) must be ∞ for every dis-

tribution λ ∈ DS. Hence, infλ∈DS(
∑

s′∈S v(s
′) · λ(s′)) = ∞ and the inequality is pre-

served. We now consider the case when infs′∈S v(s
′) = r for some r ∈ [0,∞[. To see

r ≤ infλ∈DS(
∑

s′∈S v(s
′) · λ(s′)) observe that for every λ ∈ DS we have

r = (
∑

s′∈S r · λ(s
′)) ≤ (

∑

s′∈S v(s
′) · λ(s′))

because
∑

s′∈S λ(s
′) = 1 and r ≤ v(s′) for every s′ ∈ S.

It remains to show ≥ for (A.9). We first consider the case when supλ∈DS(
∑

s′∈S v(s
′) ·
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λ(s′)) =∞. We will show that sups∈S v(s) =∞ by contradiction. Suppose sups∈S v(s) =

r for some r ∈ [0,∞[. Then for any λ ∈ DS we get we must have

(
∑

s′∈S v(s
′) · λ(s′)) ≤ (

∑

s′∈S r · λ(s
′)) = r .

As for arbitrary λ ∈ DS the sum is bounded by r we arrive at the contradiction that

supλ∈DS(
∑

s′∈S v(s
′) · λ(s′)) ≤ r. Hence, it must be the case that sups∈S v(s) =∞.

Remaining to consider is the case when supλ∈DS(
∑

s′∈S v(s
′) · λ(s′)) = r for for some

r ∈ [0,∞[. To show sups′∈S v(s
′) ≥ r, by the definition of suprema, it is sufficient to

show that for every ǫ > 0 we have v(s′) > r − ǫ for some s′ ∈ S. We again prove this by

contradiction. Suppose v(s′) ≤ r − ǫ for all s′ ∈ S. Then

(
∑

s′∈S v(s
′) · λ(s′)) ≤ (

∑

s′∈S(r − ǫ) · λ(s′)) = (r − ǫ) .

This is again a contradiction.

We now extend Lemma A.6 to include quantifications over transitions. We start

by extending it with a quantification over player C transitions. Then we will consider

quantifications over both player A and player C transitions:

Lemma A.7. Let G = 〈S, I, T, L,R〉 be game and let v : S → [0,∞] be an arbitrary

mapping from states of G to the non-negative real numbers extended with positive infinity.

For every player C state Λ ∈ PDS we have

inf
Λ

Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) and

sup

Λ
Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′))

Proof. We first focus on showing the equality involving infima. Let us define a function,

v : Λ→ [0,∞], which yields

v(λ) =
∑

s′∈Supp(λ)

(v(s′) · λ(s′))
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for every λ ∈ Λ. Using Lemma A.6 we have the following:

inf
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
λ∈Λ

v(λ) (Definition of v)

= inf
λ∈DΛ

∑

λ∈Supp(λ)

(λ(λ) · v(λ)) (Lemma A.6)

Given this equality, to show the the infimum over combined transitions equals the infimum

over normal transitions, it is sufficient to show that:

inf
Λ

Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
λ∈DΛ

∑

λ∈Supp(λ)

(λ(λ) · v(λ)) . (A.10)

We first show that the inequality ≥ holds for (A.10) by taking an arbitrary combined

transition Λ
Cmb
−−→ λ and showing that the sum induced by λ on the left-hand side is equal

to the sum induced by some distribution λ ∈ DΛ on the right-hand side.

We take an arbitrary combined transition Λ
Cmb
−−→ λ. We let {wi}i∈I be the family of

weights and {λi}i∈I be the family of distributions in Λ such that λ =
∑

i∈I wi · λi. We

pick these families such that wi > 0 for every i ∈ I. For convenience, let us write I(s′)

to denote the index set {i ∈ I | s′ ∈ Supp(λi)} for arbitrary for arbitrary s′ ∈ S. For

λ =
∑

i∈I wi · [λi] we have the following equality:

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) =
∑

s′∈Supp(λ)

(

v(s′) ·

((

∑

i∈I

wi · λi

)

(s′)

))

(Definition of λ)

=
∑

s′∈Supp(λ)

(

v(s′) ·

(

∑

i∈I

wi · λi(s
′)

))

(Rewriting)

=
∑

s′∈Supp(λ)



v(s′) ·





∑

i∈I(s′)

wi · λi(s
′)







 (Definition of I(s′))

=
∑

s′∈Supp(λ)

∑

i∈I(s′)

(v(s′) · wi · λi(s
′)) (Rearranging)

=
∑

i∈I

∑

s′∈Supp(λi)

(wi · (v(s
′) · λi(s

′))) (Rearranging)
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=
∑

i∈I



wi ·





∑

s′∈Supp(λi)

(v(s′) · λi(s
′))







 (Rearranging)

=
∑

i∈I

(wi · v(λi)) (Definition of v)

=
∑

λ∈Supp(λ)

(λ(λ) · v(λ)) (Definition of λ)

This means that ≥ holds for (A.10). To see that ≤ holds also consider that there is a

combined transition from Λ matching every λ ∈ DΛ for which the above equality holds.

The equality involving suprema follows analogously.

We finally extend Lemma A.6 and Lemma A.7 to include player A transitions:

Lemma A.8. Let G = 〈S, I, T, L,R〉 be game that is finitely branching for player A

and let v : S → [0,∞] be an arbitrary mapping from states of G to the non-negative real

numbers extended with positive infinity. For every state s ∈ S we have

inf
s

Cmb−−→Λ

inf
Λ

Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
s→Λ

inf
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) and

inf
s

Cmb−−→Λ

sup

Λ
Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
s→Λ

sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) and

sup

s
Cmb−−→Λ

inf
Λ

Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = sup
s→Λ

inf
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) and

sup

s
Cmb−−→Λ

sup

Λ
Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = sup
s→Λ

sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) .

Proof. We first focus on showing the equality

inf
s

Cmb−−→Λ

sup

Λ
Cmb−−→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
s→Λ

sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) . (A.11)

Note that, by Lemma A.7, we can replace the supremum over combined player C transi-

tions on the left-hand side with a supremum over normal player C transitions. Hence, it
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is remaining to show that

inf
s

Cmb−−→Λ

sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) = inf
s→Λ

sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′)) . (A.12)

Let us define a function, v : T (s)→ [0,∞], which yields

v(Λ) = sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′))

for every Λ ∈ T (s).

Using Lemma A.6 we have the following:

inf
s→Λ



sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′))



 = inf
Λ∈T (s)

v(Λ) (Definition of v)

= inf
Λ∈D(T (s))





∑

Λ∈Supp(Λ)

(Λ(Λ) · v(Λ))



 (Lemma A.6)

Given this equality, to show the the infimum over combined player A transitions equals

the infimum over normal player A transitions, it is sufficient to show that:

inf
s

Cmb−−→Λ



sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′))



 = inf
Λ∈D(T (s))

∑

Λ∈Supp(Λ)

(Λ(Λ) · v(Λ)) . (A.13)

We first show that the inequality ≥ holds for (A.13) by taking an arbitrary combined

transition s
Cmb
−−→ Λ and showing that the value for Λ on the left-hand side is equal to

the value induced by some distribution on player C states Λ ∈ D(T (s)) on the right-hand

side.

We take an arbitrary combined transition s
Cmb
−−→ Λ. We let {wi}i∈I be the finite family

of weights and {Λi}i∈I be the finite family of player C states such that Λ =
∑

i∈I wi · Λi.

We can take these families such that wi > 0 for every i ∈ I. Let Fam be the set of all

families {λi}i∈I such that λi ∈ Λi for all i ∈ I. For convenience, for some {λi}i∈I and

state s′ ∈ S let us write I({λi}i∈I , s
′) to denote the index set {i ∈ I | s′ ∈ Supp(λi)}. For
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Λ =
∑

i∈I wi · [Λi] we have the following equality:

sup
Λ→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′))
(1)
= sup

{λj}j∈I∈Fam

∑

s′∈Supp(
∑

k∈I wk·λk)

(

v(s′) ·

(

∑

i∈I

wi · λi

)

(s′)

)

= sup
{λj}j∈I∈Fam

∑

s′∈Supp(
∑

k∈I wk·λk)

(

v(s′) ·

(

∑

i∈I

wi · λi(s
′)

))

(2)
= sup

{λj}j∈I∈Fam





∑

s′∈Supp(
∑

k∈I wk·λk)

∑

i∈I({λk}k∈I ,s′)

(wi · (v(s
′) · (λi(s

′))))





(3)
= sup

{λj}j∈I∈Fam





∑

i∈I

∑

s′∈Supp(λi)

(wi · (v(s
′) · (λi(s

′))))





(4)
=
∑

i∈I



 sup
Λi→λ





∑

s′∈Supp(λ)

(wi · (v(s
′) · λ(s′)))









=
∑

i∈I



wi ·



 sup
Λi→λ

∑

s′∈Supp(λ)

(v(s′) · λ(s′))









(5)
=
∑

i∈I

(wi · v(Λi))

(6)
=

∑

Λ∈Supp(Λ)

(Λ(Λ) · v(Λ))

Equality (1) uses the fact that every normal player C transition from the player C state
∑

i∈I wi · Λi is of the form
∑

i∈I wi · Λi →
∑

i∈I wi · λi for some family of distributions

{λi}i∈I with λi ∈ Λi for every i ∈ I. In (2) we use the definition of I({λk}k∈I , s
′). Equality

(3) rearranges the terms of the summand. For (4), observe that we take a supremum over

a set which contains for each family {λi}i∈I a sum over i ∈ I where each summand is a

value that depends only λi and not other members of the family. As we can choose each

member of the family independently, this is equivalent to taking the sum over over all

i ∈ I and where each summand is a supremum over distributions λ ∈ Λi. Equality (5)

and (6) are due to the definition of v and λ, respectively.

Because of this equality we have that ≥ holds for (A.13). To see that ≤ holds also

consider that, for games that are finitely branching for player A, there is a combined
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player A transition from s matching every Λ ∈ D(T (s)).

Analogous arguments show the remaining equalities also hold.

We are now finally in a position to focus on Theorem 6.18. We will use abstract

interpretation techniques to prove this theorem. Before we prove this theorem, however,

we first prove that the fixpoint characterisations on games Ĝ, G such that Ĝ ⊑ G are

related via the lattices defined in Lemma 3.10 and Corollary 3.11.

Lemma A.9. Let G = 〈S, I, T, L,R〉 and Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 be games that are finitely

branching for player A and suppose Ĝ ⊑ G via a strong probabilistic game simulation

R ⊆ Ŝ × S. Let

〈S → [0, 1],≤〉 −−−→←−−−
α+

γ+

〈Ŝ → [0, 1],≤〉 and 〈Ŝ → [0, 1],≤〉 −−−−→←−−−−
γ−

α−

〈S → [0, 1],≤〉

be the lattices as discussed in Lemma 3.10 and Corollary 3.11 for R. Moreover, let

p−−
G , p+−

G , p−+
G , p++

G : (S → [0, 1])→ (S → [0, 1]) and

p−−

Ĝ
, p+−

Ĝ
, p−+

Ĝ
, p++

Ĝ
: (Ŝ → [0, 1])→ (Ŝ → [0, 1])

be the functions as defined in Section 3.4.2 for G and Ĝ. We have:

(γ− ◦ p−−

Ĝ
◦ α−) ≤ p−−

G and (α+ ◦ p+−
G ◦ γ+) ≤ p+−

Ĝ
and (A.14)

(γ− ◦ p−+

Ĝ
◦ α−) ≤ p−+

G and (α+ ◦ p++
G ◦ γ+) ≤ p++

Ĝ
(A.15)

Proof. Let us first consider inequalities in (A.14) and (A.15). Following the definition of

≤, it is sufficient to show that, for every valuation v̂ : Ŝ → [0, 1] and v : S → [0, 1] and

for every ŝ ∈ Ŝ and s ∈ S, the following inequalities hold:

γ−(p−−

Ĝ
(α−(v)))(s) ≤ p−−

G (v)(s) and α+(p+−
G (γ+(v̂)))(s) ≤ p+−

Ĝ
(v̂)(ŝ) and

γ−(p−+

Ĝ
(α−(v)))(s) ≤ p−+

G (v)(s) and α+(p++
G (γ+(v̂)))(s) ≤ p++

Ĝ
(v̂)(ŝ)

To show these inequalities hold, following the definition of γ−, α+, it is sufficient to show
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that for every 〈ŝ, s〉 ∈ R we have:

p−−

Ĝ
(α−(v))(ŝ) ≤ p−−

G (v)(s) and p+−
G (γ+(v̂))(s) ≤ p+−

Ĝ
(v̂)(ŝ) and (A.16)

p−+

Ĝ
(α−(v))(ŝ) ≤ p−+

G (v)(s) and p++
G (γ+(v̂))(s) ≤ p++

Ĝ
(v̂)(ŝ) (A.17)

Because R is a strong probabilistic game simulation we have that L̂(ŝ,F) ≤ L(s,F).

Hence, by definition of ≤ in Definition 3.8 we have

LB(L̂(ŝ,F))⇒ LB(L(s,F)) and UB(L̂(ŝ,F))⇐ UB(L(s,F)) .

This means that if the left-hand side of the inequalities in (A.16) is 1 due to the proposi-

tional labelling, then so is the right-hand side. Hence, by the definition of p−−
G , p+−

Ĝ
, p−+

G ,

p++
G it remains to show that

inf
ŝ→Λ̂

inf
Λ̂→λ̂

∑

ŝ′∈Supp(λ̂)(α
−(v)(ŝ′) · λ̂(ŝ′)) ≤ inf

s→Λ
inf
Λ→λ

∑

s′∈Supp(λ)(v(s
′) · λ(s′)) and (A.18)

sup
s→Λ

inf
Λ→λ

∑

s′∈Supp(λ)(γ
+(v̂)(s′) · λ(s′)) ≤ sup

ŝ→Λ̂

inf
Λ̂→λ̂

∑

ŝ′∈Supp(λ̂)(v̂(ŝ
′) · λ̂(ŝ′)) and (A.19)

inf
ŝ→Λ̂

sup
Λ̂→λ̂

∑

ŝ′∈Supp(λ̂)(α
−(v)(ŝ′) · λ̂(ŝ′)) ≤ inf

s→Λ
sup
Λ→λ

∑

s′∈Supp(λ)(v(s
′) · λ(s′)) and (A.20)

sup
s→Λ

sup
Λ→λ

∑

s′∈Supp(λ)(γ
+(v̂)(s′) · λ(s′)) ≤ sup

ŝ→Λ̂

sup
Λ̂→λ̂

∑

ŝ′∈Supp(λ̂)(v̂(ŝ
′) · λ̂(ŝ′)) . (A.21)

To prove (A.18), we first show that, for all 〈λ̂, λ〉 ∈ L(R) we have

∑

ŝ′∈Supp(λ̂)

(α−(v)(ŝ′) · λ̂(ŝ′)) ≤
∑

s′∈Supp(λ)

(v(s′) · λ(s′)) and (A.22)

∑

s′∈Supp(λ)

(γ−(v̂)(s′) · λ(s′)) ≤
∑

ŝ′∈Supp(λ̂)

(v̂+(ŝ′) · λ̂(ŝ′)) . (A.23)

The inequality in (A.22) follows easily if we consider the weight function δ : Ŝ×S → [0, 1]
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witnessing 〈λ̂, λ〉 ∈ L(R) (see Definition 3.1):

∑

ŝ∈Supp(λ̂)

α−(v)(ŝ) · λ̂(ŝ)
(1)
=

∑

ŝ∈Supp(λ̂)

(

α−(v)(ŝ) ·

(

∑

s∈S

δ(ŝ, s)

))

=
∑

ŝ∈Supp(λ̂)

∑

s∈{s′∈S|δ(ŝ,s′)>0}

(α−(v)(ŝ) · δ(ŝ, s))

(2)
=

∑

s∈Supp(λ)

∑

ŝ∈{ŝ′∈Ŝ|δ(ŝ′,s)>0}

(α−(v)(ŝ) · δ(ŝ, s))

(3)

≤
∑

s∈Supp(λ)

∑

ŝ∈{ŝ′∈Ŝ|δ(ŝ′,s)>0}

(v(s) · δ(ŝ, s))

=
∑

s∈Supp(λ)



v(ŝ) ·





∑

ŝ∈Ŝ

δ(ŝ, s)









=
∑

s∈Supp(λ)

v(s) · λ(ŝ)

The equality in (1) follows from the definition of weight functions. Then, the equality in

(2) is a rearrangements of terms. To see this recall that, by definition of weight functions,

δ(ŝ, s) is 0 whenever s 6∈ Supp(λ) or ŝ 6∈ Supp(λ̂). Finally, to see (3), by definition of

δ, we have that whenever δ(ŝ, s) > 0, we must have that 〈ŝ, s〉 ∈ R. As a result, by

definition of α−, it must be the case that α−(v)(ŝ) ≤ v(s). The inequality for (A.23)

follows analogously.

Now recall that 〈ŝ, s〉 are in a strong probabilistic game simulation, and hence condi-

tion (iv) of Definition 6.10 hold for ŝ and s. Following these conditions and the inequalities
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in (A.22) and (A.23) we get:

inf
ŝ

Cmb−−→Λ̂

inf
Λ̂

Cmb−−→λ̂

∑

ŝ′∈Supp(λ̂)(α
−(v)(ŝ′) · λ̂(ŝ′)) ≤ inf

s→Λ
inf
Λ→λ

∑

s′∈Supp(λ)(v(s
′) · λ(s′)) and

sup
s→Λ

inf
Λ

Cmb−−→λ

∑

s′∈Supp(λ)(γ
+(v̂)(s′) · λ(s′)) ≤ sup

ŝ
Cmb−−→Λ̂

inf
Λ̂→λ̂

∑

ŝ′∈Supp(λ̂)(v̂(ŝ
′) · λ̂(ŝ′)) and

inf
ŝ

Cmb−−→Λ̂

sup
Λ̂→λ̂

∑

ŝ′∈Supp(λ̂)(α
−(v)(ŝ′) · λ̂(ŝ′)) ≤ inf

s→Λ
sup

Λ
Cmb−−→λ

∑

s′∈Supp(λ)(v(s
′) · λ(s′)) and

sup
s→Λ

sup
Λ→λ

∑

s′∈Supp(λ)(γ
+(v̂)(s′) · λ(s′)) ≤ sup

ŝ
Cmb−−→Λ̂

sup

Λ̂
Cmb−−→λ̂

∑

ŝ′∈Supp(λ̂)(v̂(ŝ
′) · λ̂(ŝ′)) .

These inequalities are like the inequalities in (A.18) up to (A.21), except that they

sometimes quantify over combined transitions. It follows directly from Lemma A.7 and

Lemma A.8 these inqualities coincide for games that are finitely branching for player A.

We are now finally in a position to prove Theorem 6.18:

Theorem 6.18. Let Ĝ and G be games such that Ĝ ⊑ G and Ĝ and G are finitely

branching for player A. We have that

Prob−(Ĝ) ≤ Prob−(G) and Prob+(Ĝ) ≤ Prob+(G) .

Proof. Suppose Ĝ = 〈Ŝ, Î , T̂ , L̂, R̂〉 and G = 〈S, I, T, L,R〉 are games and suppose that

R ⊆ Ŝ × S is the strong probabilistic game simulation such that Ĝ ⊑
R

G.2 Because

I ⊆ R(Î) and Î ⊆ R−1(I), by Definition 3.23 and by the definition of ≤ in [0, 1]× [0, 1],

the inequalities hold if for all 〈ŝ, s〉 ∈ R the following inequalities hold:

Prob−−(Ĝ, ŝ) ≤ Prob−−(G, s) and Prob+−(G, s) ≤ Prob+−(Ĝ, ŝ) and (A.24)

Prob−+(Ĝ, ŝ) ≤ Prob−+(G, s) and Prob++(G, s) ≤ Prob++(Ĝ, ŝ) . (A.25)

2The existence of such a R was discussed in the proof of Lemma 6.14.
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Using Lemma 3.10 and Corollary 3.11 we can rewrite (A.24) and (A.25) to:

(LFP(p−−

Ĝ
))(ŝ) ≤ (LFP(p−−

G ))(s) and (LFP(p+−
G ))(s) ≤ (LFP(p+−

Ĝ
))(ŝ) (A.26)

(LFP(p−+

Ĝ
))(ŝ) ≤ (LFP(p−+

G ))(s) and (LFP(p++
G ))(s) ≤ (LFP(p++

Ĝ
))(ŝ) . (A.27)

Now suppose we consider these functions as functions on the lattices 〈Ŝ → [0, 1],≤〉 and

〈S → [0, 1],≤〉. Considering definition of γ−, γ+ in Lemma 3.10 and Corollary 3.11 it is

sufficient to show that

γ−(LFP(p−−

Ĝ
)) ≤ LFP(p−−

G ) and LFP(p+−

Ĝ
) ≤ γ+(LFP(p+−

G )) and (A.28)

γ−(LFP(p−+

Ĝ
)) ≤ LFP(p−+

G ) and LFP(p++

Ĝ
) ≤ γ+(LFP(p++

G )) . (A.29)

The right-hand inequalities in (A.28) and (A.29) follow directly from Lemma A.9, 3.10

and 3.12. Similarly, the left-hand inequalities in (A.28) and (A.29) follow directly from

Lemma A.9, Corollary 3.11 and Lemma 3.12.

A.3 Proofs of Chapter 7

A.3.1 Proof of Theorem 7.8 (Model-level Soundness)

We will devote this section to proving Theorem 7.8 — i.e. we will show that model-level

instrumentations satisfy the soundness requirement. However, first we require an ordering

on paths of MDPs. We have already informally discussed that transition orderings induce

an order over finite paths — we now formally define this ordering:

Definition A.10. Let M = 〈S, I, T, L,R〉 be an MDP and let �M be a transition or-

dering on M . We define the ordering ≤M ⊆ FinPathM × FinPathM on paths of M as

follows. For π, π′ ∈ FinPathM we let π <M π′ if and only if there exists an index i ∈ N

such that all of the following conditions hold:

(i) i ≤ |π|,

(ii) i < |π′|,
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(iii) ∀k < i : Trans(π, k) = Trans(π′, k) and

(iv) i = |π| or Trans(π, i) ≺M Trans(π′, i).

Definition A.10 is based on so called dictionary orders or lexographical orders. Es-

sentially, if π <M π′, it must either be that π is a prefix of π′ or that π and π′ share a

common prefix and that Trans(π, i) ≺M Trans(π′, i) for the smallest i ∈ N for which

Trans(π, i) 6= Trans(π′, i). Before starting the main proof of Theorem 7.8 we first show

that Definition A.10 satisfies some properties.

Lemma A.11. Let M = 〈S, I, T, L,R〉 be an MDP. The relation ≤M is a partial order.

Moreover, when restricted to paths of a fixed initial state si ∈ I and a pure strategy

σ ∈ PureStratM , then ≤M is total.

Proof. Reflexivity of ≤M follows directly from its definition. Antisymmetry also follows

directly from (ii), (iii) and (iv) of Definition A.10. To show ≤M is transitive let π1, π2, π3

be arbitrary finite paths of M such that π1 <M π2 and π2 <M π3. We will show that

π1 ≤M π3 holds. If either π1 = π2 or π2 = π3, then this follows trivially. The remaining

case to consider is when π1 <M π2 and π2 <M π3. In this case, let i21, i
3
2 ∈ N be the indices

for which π1 <M π2 and π2 <M π3 hold in Definition A.10, respectively. We will show

that π1 <M π3 via index min(i21, i
3
2). Conditions (i) up to (iii) of Definition A.10 hold

trivially. We will show that (iv) of Def. A.10 also holds for π1, π3 and index min(i21, i
3
2) —

i.e. that either |π1| = min(i21, i
3
2) or Trans(π1,min(i21, i

3
2)) ≺M Trans(π3,min(i21, i

3
2)) —

by case splitting on i21 = i32, i
2
1 < i32 and i21 > i32.

If i21 = i32, then i21 = i32 = min(i21, i
3
2). We know either |π1| = i21 holds orTrans(π1, i

2
1) ≺M

Trans(π2, i
2
1) holds (using condition (iv) on π1 <M π2). In the former case, we are

done. In the latter case, as |π2| > i21 = i32 (using condition (ii) on π2 <M π3) we obtain

Trans(π2, i
3
2) ≺M Trans(π3, i

3
2) (using condition (iv) on π2 <M π3). Finally, we get that

Trans(π1,min(i21, i
3
2)) ≺M Trans(π3,min(i21, i

3
2)) by transitivity of ≺M .

If i21 < i32, then we must have that Trans(π2,min(i21, i
3
2)) = Trans(π3,min(i21, i

3
2))

(using condition (iii) on π2 <M π3). That our premise holds follows directly from condition

(iv) π1 <M π2 with this equality and from the fact that i21 = min(i21, i
3
2).
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Finally, if i21 > i32, we have i32 = min(i21, i
3
2) and, because |π2| 6= i32 (using condition

(ii) on π2 <M π3), we must have (Trans(π1,min(i21, i
3
2)) =) Trans(π2,min(i21, i

3
2)) ≺M

Trans(π3,min(i21, i
3
2)).

As we showed all cases satisfy (iv), it must be that (iv) holds for π1, π3 and index

min(i21, i
3
2). Moreover, as all conditions of Definition A.10 are satisfied for π1 and π3, it

must be that π1 <M π3. As we made no assumption about the paths π1, π2, π3 this

concludes our proof of <M ’s transitivity.

To prove the final part of the lemma we take an arbitrary s ∈ I and σ ∈ PureStratM

and two arbitrary paths π, π′ ∈ FinPathsM,σ. We will show that either π ≤M π′ or π′ ≤M π

holds. Evidently, if π = π′, then we trivially satisfy the totality requirement. Otherwise,

let i ∈ N to be the greatest natural number such that i ≤ |π| and i ≤ |π′| and condition

(iii) holds for i, π and π′. We case split on the lengths of π and π′.

Observe that the first three cases are trivial: if |π| = |π′| = i, then π = π′, and hence

π ≤M π′ and π′ ≤M π; if i = |π| and i < |π′|, then π <M π′ and, if i < |π| and i = |π′|,

then π′ <M π. The remaining case is more involved. Suppose i < |π| and i < |π′|.

By our choice of i, Trans(π, i) 6= Trans(π′, i). Recall π and π′ share the same source

state and, if i > 0, then it must be that Trans(π, i − 1) = Trans(π′, i − 1) by our

assumption on i — this means transitions Trans(π, i) and Trans(π′, i) share the same

source state. Moreover, because π and π′ are both consistent with the pure strategy σ the

transitions Trans(π, i) and Trans(π′, i) share the same same distribution, also. Hence,

by Definition 7.3, either Trans(π, i) ≺M Trans(π′, i) or Trans(π′, i) ≺M Trans(π, i)

and, depending on which case holds we get π <M π′ or π′ <M π, respectively.

As π and π′ are comparable in all cases we conclude that π and π′ are comparable.

As we made no assumption on s, σ, π or π′ we conclude the lemma holds.

The order in which instrumentation visit the paths of the original program is dictated

by the ordering described above. The knowledge that, say, this ordering is irreflexive is

essential in our main proof.

We are now in a position to prove soundness of our MDP-level instrumentation:
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Theorem 7.8 (Model-level soundness). Let M be an MDP and let Mp be an in-

strumentation of M for some bound, p ∈ [0, 1[ ∩Q. We have that

Reach+(Mp) if and only if Prob+(M) > p .

Proof. Suppose M = 〈S, I, T, L,R〉 and Mp = 〈Sp, Ip, T p, Lp, Rp〉. We assume the tran-

sition ordering �M is used and that ≤M is the order over paths defined in Definition A.10.

We prove each direction of the equivalence constructively.

(⇐) Assume Prob+(M) > p. We will show that Reach+(Mp) holds by showing there

exists a finite path

πp = 〈π0,mass0〉
λ
p

0−→ 〈π1,mass1〉
λ
p

1−→ . . .
λ
p

n−1
−−−→ 〈πn,massn〉 ,

in FinPathI
p

Mp such that Lp(πn,F) holds. From Section 7.2.1, we know there must

exist some initial state si ∈ I, pure strategy ρ ∈ PureStratM and finite set Π ⊆

F-FinPathsiM,σ in the original model, M , such that

∑

π∈Π

ProbM(π) > p . (A.30)

Because ρ is a pure strategyn and because of Lemma A.11n we obtain a total order

on the paths in Π. Suppose π0, π1, . . ., πk are the paths in Π ordered by <M .

We will construct πp by “visiting” each path π0, π1, . . . , πk in <M -order in πp. We

will use i to range over indices of πp and j to range over paths in π0, . . . , πk. The

invariant of our construction of πp is that if a state, 〈πi,massi〉, of π
p is such that

πi = πj for some j, then we have

massi =

j−1
∑

l=0

ProbM(πl) . (A.31)
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We let the initial state of πp be 〈si, 0〉 ∈ Ip. Now consider the path π0. We can use

explorative transitions (see condition (i) of Definition 7.6) to construct a path in

Mp from 〈si, 0〉 to 〈π0, 0〉. This construction trivially preserves (A.31). Recall that

during exploration we have full control over the path of M we follow. Moreover,

explorative transitions are enabled because, for any πi to be in F-FinPathsiM,σ, it

must be that only in their last state L(πi,F) holds.

Now suppose the last state 〈πi,massi〉 of the path fragment of πp constructed so far

is such that we have πi = πj for some j < k such that (A.31) holds. We will show

we can continue the construction of πp by showing there is a path from 〈πi,massi〉

to 〈πj+1,massi + ProbM(πi)〉 in Mp (preserving (A.31)).

Observe that πj satisfies F in M and hence we must backtrack first. By definition of

F-FinPathsiM,σ we know that πj is not a prefix of πj+1. As πj <M πj+1 it must be that

the paths πj and πj+1 share the prefix up to some length l and then Trans(πj, l) ≺

Trans(πj+1, l). Hence, the prefix of πj+1 of size l + 1, πprefix
j+1 say, satisfies all

criteria of the backtracking condition (ii) of Definition 7.6. We add the backtracking

transition 〈πi,massi〉 → 〈π
prefix
j+1 ,massi + ProbM(πi)〉 to πp. We can then use the

exploration condition as before to extend πp to 〈πj+1,massi + ProbM(πi)〉.

We can continue this construction of πp and, because |Π| is finite, we will eventually

reach πk at some state 〈πi,massi〉 of π
p satisfying (A.31). For this state, by our

invariant (A.31):

ProbM(πi) +massi = ProbM(πk) +
k−1
∑

j=0

ProbM(πj) (Equation A.31)

=
∑

π∈Π

ProbM(π) (Rewriting)

> p (Equation A.30)

By definition of Lp this means that Lp(〈πi,massi〉,F) holds and hence, because

there is a finite path, πp, that reaches the target in Mp we have that Reach+(Mp).

(⇒) Assume Reach+(Mp) holds. To show Prob+(M) > p we will show there exists an

initial state and a pure strategy ρ of M under which the probability mass of paths
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reaching the target exceeds p. We will construct ρ from a path

πp = 〈π0,mass0〉
λ0−→ 〈π1,mass1〉

λ1−→ . . .
λn−1
−−−→ 〈πn,massn〉 .

ofMp witnessing Reach+(Mp). W.l.o.g. we assume πp is taken such that 〈πn,massn〉

is the only state of πp where F holds. That is, if Lp(〈πi,massi〉,F) for some i < n

then we consider πp’s prefix of length i instead of πp. By definition of Lp, we have

massn + ProbM(πn) > p and L(Last(πn),F).

By definition of πp, all transitions of πp must be due to conditions (i) or (ii) of

Definition 7.6.3 By the definition of these conditions it easily follows that for that

all transitions 〈πi,massi〉
λi−→ 〈πi+1,massi+1〉 in πp we have that πi <M πi+1 where

≤M is the order introduced in Definition A.10.

From the fact that π0 <M π1 <M . . . <M πn and from the transitivity and irreflex-

ivity of <M established in Lemma A.11, it follows that all πi are distinct. This

allows us to define ρ as any pure strategy of M with ρ(πi) = [λi] for all i < n with

¬L(Last(πi),F). Clearly all paths π0, π1, . . . , πn are consistent with ρ. To complete

the proof we show that Prob+(M) > p. First, let Π ⊆ {π0, . . . , πn} be the set such

that, for each i ≤ n, we have πi ∈ Π if and only if L(Last(πi),F). Note that by

the assumptions on πp we have πn ∈ Π. Simple inductive arguments on πp show

that Π ⊆ F-FinPathsM,ρ for some s ∈ I and that massn — the mass component of

3A transition cannot be due to (iii) as then 〈πn,massn〉 would not be the only state of πp satisfying F.
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the final state of πp — equals
∑

πi∈Π\{πn}
ProbM(πi). We have:

Prob+(M) = sup
σ∈StratM , s′∈I

∑

π∈F-FinPaths
′

M,ρ

ProbM(π) (Def. Prob+, Lem. 3.19)

≥
∑

π∈F-FinPathsM,ρ

ProbM(π) (Def. sup)

≥
∑

πi∈Π

ProbM(πi) (As Π ⊆ F-FinPathsM,ρ)

= ProbM(πn) +
∑

πi∈Π\{πn}

ProbM(πi) (As πn ∈ Π)

= ProbM(πn) +massn (As massn=
∑

πi∈Π\{πn}

ProbM(πi))

> p (Def. Lp, πp)

From our premise, Reach+(Mp), we have deduced that Prob+(M) > p holds — this

implication is also valid.

As we have proved both implications we conclude Theorem 7.8 holds.

A.3.2 Proof of Theorem 7.18 (Program-level Soundness)

In this section we will show our program-level instrumentations are sound. That is, we

will prove Theorem 7.18 on page 162. We first recall this theorem:

Theorem 7.18 (Program-level soundness). Let P be any probabilistic program and

let p ∈ [0, 1[ ∩Q be an arbitrary bound. Let P p be the program-level instrumentation of

P for bound p. We have

Reach+(JP pK) if and only if Prob+(JP K) > p .

The main lines of our proof follow the following equivalences:
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Prob+(JP K) > p ⇐⇒ Reach+(JP Kp) (Theorem 7.8)

⇐⇒ Reach+(JP pKS
′

) (Stuttering simulations)

⇐⇒ Reach+(JP pK) (Reduction)

where JP Kp is the model-level instrumentation of JP K and JP pKS
′

is a transformation of

JP pK induced by a set of states S ′. The first equivalence uses the soundness result for

model-level instrumentations, i.e. Theorem 7.8. Given this theorem, we only need to show

that the program-level instrumentation, JP pK, can reach a target state if and only if the

model-level instrumentation, JP Kp, can. Due to the complexity of P p we will do this

through a third MDP, JP pKS
′

. This MDP is a relatively simple transformation of JP pK.

The definition of JP pKS
′

, the preservation between JP pKS
′

and JP Kp and the preser-

vation between JP pKS
′

and JP pK require some definitions and lemmas.

We start with a lemma that shows a stuttering simulation preserves Reach+. Unlike

[DNV95], we deliberately do not restrict to equivalence relations:

Lemma A.12. Let M1 = 〈S1, I1, T 1, L1, R1〉 and M2 = 〈S2, I2, T 2, L2, R2〉 be non-

probabilistic MDPs and let R be a stuttering relation on S1 ⊎ S2 such that I1 ⊆ R−1(I2).

We have:

Reach+(M1) =⇒ Reach+(M2) .

Proof. We remark our proof is related to Theorem 2.3.2 in [DNV95]. If Reach+(M1) then,

by definition of Reach+, there is a finite path s0 → . . . → sk ∈ FinPathM1
with s0 ∈ I1

and L1(sk,F). As S1 ⊆ R(S2), let t0 ∈ I2 be an initial state of M2 such that 〈s0, t0〉 ∈ R.

Using the property of stuttering simulations, with a simple inductive argument, we can

show there exists, for every i ≤ k, a finite path t0 → . . . → tm ∈ FinPathM2
with

〈si, tm〉 ∈ R. The case when i = k implies there is a finite path in M2 that starts from

an initial state and that end in a target state — it must be that Reach+(M2) holds.

We will apply Lemma A.12 by finding a relation R on JP pKS
′

and JP Kp’s states such

that both R and R−1 are stuttering simulations satisfying the necessary restrictions on
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initial states.

We now define a non-probabilistic MDP MS′
for any given non-probabilistic MDP M

and set of states S ′.

Definition A.13. Let M = 〈S, I, T, L,R〉 be a non-probabilistic MDP and let S ′ ⊆ S

be subset of S. We let MS′
= 〈SS′

, IS
′
, T S′

, LS′
, RS′
〉 be the MDP with:

– SS′
= S ′,

– IS
′
= I ∩ S ′

– T S′
is the smallest function satisfying:

– [s′] ∈ T S′
(s) if there is some finite path s0 → . . .→ sk ∈ FinPathsM in M such

that s0 = s, sk = s′ and ∀0 < i < k : si 6∈ S ′, and

– [s] ∈ T S′
(s) if there is no finite path s0 → . . . → sk ∈ FinPathsM in M such

that s0 = s and sk ∈ S ′,

– LS′
(s, a) = L(s, a) for all s ∈ SS′

and a ∈ AP and

– RS′
is defined arbitrarily.

Informally, MS′
is M where finite paths between states of S ′ are turned into tran-

sitions. We will use this transformation to turn the sequences of transitions we need to

realise backtracking in JP pK, into single backtracking transitions in JP pKS
′

. With some

minor restrictions on the definition of the set S ′, the reduction in Definition A.13 preserves

Reach+. We formalise this in the following lemma:

Lemma A.14. Let M = 〈S, I, T, L,R〉 be a non-probabilistic MDP and let S ′ ⊆ S be

subset of S such that I ⊆ S ′ and {s ∈ S | L(s,F)} ⊆ S ′. We have that:

Reach+(M) if and only if Reach+(MS′

) .

Proof. We show both directions separately.

(⇒) If Reach+(M) then, by definition of Reach+, there is a finite path s0 → . . . →

sk ∈ FinPathM with s0 ∈ I and L(sk,F). Recall that, by our constraint on S ′,
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we have s0 ∈ S ′. By induction, for every i ≤ k with si ∈ S ′ there is a finite path

t0 → . . . → tn ∈ FinPathMS′ with t0 = s0 and tn = si. As, by our assumption on

S ′, we also have sk ∈ S ′, there must be a finite path in MS′
from s0 to sk. As sk is

a target state in MS′
it must be that Reach+(MS′

) holds.

(⇐) If Reach+(MS′
) then, by definition of Reach+, there is a finite path t0 → . . . →

tk ∈ FinPathMS′ with t0 ∈ IS
′
and LS′

(tk,F). By our assumption on S ′ we have

that t0 ∈ I. Let n ≤ k be the smallest index for which LS′
(tn,F) holds. By this

assumption it must be that all transitions in t0 → . . . → tn are due to the first

condition of T S′
. Using this condition, with a inductive argument, we can show

there exists, for every i ≤ n, a finite path s0 → . . .→ sm ∈ FinPathM with t0 = s0

and sm = ti. The case when i = n implies there is a finite path in M that starts

from an initial state and that end up in tn — a target state in M — and hence it

must be that Reach+(M) holds.

Having introduced the necessary definitions and lemmas we are now in a position to

present our main soundness proof:

Theorem 7.18 (Program-level soundness). Let P be any probabilistic program and

let p ∈ [0, 1[ ∩Q be an arbitrary bound. Let P p be the program-level instrumentation of

P for bound p. We have

Reach+(JP pK) if and only if Prob+(JP K) > p .

Proof. From Theorem 7.8 we have that Prob+(JP K) > p if and only if Reach+(JP Kp).

Remaining to show is that Reach+(JP pK) if and only if Reach+(JP Kp). To this end, suppose

P = 〈〈L ,E 〉, {Ln,Lp,Lb}, ℓi,Lt,Lc,Var,Sem〉, JP K
p
= 〈Sp

1 , I
p

1 , T
p

1 , L
p

1 , R
p

1 〉,

P p = 〈〈L p,E p〉, {L p

n ,L p

p ,L p

b }, ℓ
p

i
,L p

t ,L p

c ,Varp,Semp〉 and JP pK = 〈Sp

2 , I
p

2 , T
p

2 , L
p

2 , R
p

2 〉 .

For simplicity we will assume ℓi 6∈ Lt — a dummy initial location could easily be added to

alleviate this restriction. In accordance with the proof strategy discussed at the beginning
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of this section, let

S ′ = {〈ℓ2, u2〉 ∈ L
p ×UVar

p | ℓ2 ∈ (L \Lt) ∪ {init, hit,miss}} .

By definition Definition 7.17 and 4.2 we have that

Ip2 = ({init} ×UVar
p) ⊆ S ′ and

{s2 ∈ S2 | L2(s2,F)} = ({hit} ×UVar
p) ⊆ S ′ .

Hence, all conditions to apply Lemma A.14 are satisfied and we obtain that Reach+(JP pK)

if and only if Reach+(JP pKS
′

). Remaining to show is that Reach+(JP pKS
′

) if and only if

Reach+(JP Kp). We will show this via stuttering simulations. To define this simulation we

first define a function, ProbLocs : FinPath
{ℓi}×UVar

JP K ×N→ PN which is defined for every

π1 = 〈ℓ
0
1, u

0
1〉 → . . .→ 〈ℓn1 , u

n
1 〉 ∈ FinPath

{ℓi}×UVar

JP K and i ∈ N as

ProbLocs(π1, i) = {j ∈ N | j < n, j ≤ i, ℓj1 ∈ Lp} .

Informally, ProbLocs(π1, i) yields the set of all state-indices of π1 less or equal to i that

are probabilistic locations in π1.

We will define R ⊆ Sp
1 × Sp,S′

2 such that R and R−1 are stuttering simulations on

JP Kp⊎ JP pKS
′

and such that Ip1 ⊆ R−1(Ip,S
′

2 ) and Ip,S
′

2 ⊆ R(Ip1 ). The idea is then we can

apply Lemma A.12 twice to show Reach+(JP Kp) if and only if Reach+(JP pKS
′

).

We now will define R. Let 〈s1, s2〉 be a tuple in Sp
1 ×Sp,S′

2 . Suppose s1 = 〈π1,mass1〉

with suppose π1 = 〈ℓ01, u
0
1〉

λ0−→ 〈ℓ11, u
1
1〉

λ1−→ . . .
λn−1
−−−→ 〈ℓn1 , u

n
1 〉 and suppose s2 = 〈ℓ2, u2〉.

The relation R includes 〈s1, s2〉 iff one of the following conditions holds:

(R1) All of the following conditions hold:

(a) 〈s1, s2〉 ∈ Ip1 × Ip,S
′

2 and

(b) ∀var ∈ Var : un
1 (var) = u2(var).

(R2) All of the following conditions hold:

(a) ℓn1 = ℓ2 and ℓn1 , ℓ2 ∈ L \Lt,
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(b) ∀var ∈ Var : un
1 (var) = u2(var),

(c) mass1 = u2(mass),

(d) ProbJP Kp(π1) = u2(prob),

(e) |ProbLocs(π1, n)| = u2(index) and

(f) ∀i ∈ ProbLocs(π1, n) all of the following conditions hold:

(1) ui+1
1 (LValueℓi1

) = u2(resℓi1)[|ProbLocs(π1, i)|],

(2) ℓi1 = u2(loc)[|ProbLocs(π1, i)|] and

(3) ∀var ∈ Var : ui
1(var) = u2(copy var)[|ProbLocs(π1, i)|].

(4) ProbJP Kp(〈ℓ
0
1, u

0
1〉

λ0−→ . . .
λi−1
−−→ 〈ℓi1, u

i
1〉) = u2(copy prob)[|ProbLocs(π1, i)|].

(R3) All of the following conditions hold:

(a) ℓn1 ∈ Lt,

(b) ℓ2 = hit if u2(mass) + u2(prob)(π1) > p and ℓ2 = miss otherwise,

(c) conditions (R2.b) — (R2.f) hold.

Trivially, we have that Ip1 ⊆ R−1(Ip,S
′

2 ) and Ip,S
′

2 ⊆ R(Ip1 ) due to (R1). Remaining to

prove is that R and R−1 are stuttering simulations on JP Kp ⊎ JP pKS
′

.

To show R and R−1 are stuttering simulations, according to Definition 3.20, we firstly

need that L(s1, a) = L(s2, a) for all atomic propositions a ∈ AP for all 〈s1, s2〉 ∈ R. This

trivially holds because only F can hold in states of instrumentations and the validity of F

matches in JP Kp and JP pKS
′

due to condition (R3.a) and (R3.b) (and because ℓi 6∈ Lt).

Remaining to show is that the transitions of JP Kp and JP pKS
′

can be matched. That is,

for any 〈s1, s2〉 ∈ R we need to show that the following conditions hold:

(C1) ∀s1 → s′1 : ∃s
0
2 → . . .→ sk2 ∈ FinPath

JP pKS
′ : such that s2 = s02 and

– 〈s1, s
i
2〉 ∈ R for all i < k, and

– 〈s′1, s
k
2〉 ∈ R, and

(C2) ∀s2 → s′2 : ∃s
0
1 → . . .→ sk1 ∈ FinPathJP Kp : such that s1 = s01 and

– 〈si1, s2〉 ∈ R for all i < k, and

– 〈sk1, s
′
2〉 ∈ R, and
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We now take an arbitrary 〈s1, s2〉 ∈ R and show (C1) and (C2) hold for this tuple. We

again suppose s1 = 〈π1,mass1〉 with π1 = 〈ℓ01, u
0
1〉

λ0−→ 〈ℓ11, u
1
1〉

λ1−→ . . .
λn−1
−−−→ 〈ℓn1 , u

n
1 〉 and

suppose s2 = 〈ℓ2, u2〉. Clearly, if 〈s1, s2〉 ∈ R, then either (R1), (R2) or (R3) applies. We

consider each case separately:

(R1) We first show (C2). Observe there is only one transition from s2 in JP pKS
′

, namely

s2 → 〈ℓ
′
2, u

′
2〉, where u′

2(mass) = 0, u′
2(prob) = 1 and u′

2(index) = 0 and u′
2(var) =

u2(var) for all var ∈ Var. We have that ℓ′2 = ℓi unless ℓi ∈ Lt, in which case either

ℓ′2 = miss or ℓ′2 = hit. This special treatment for Lt follows from the definition of

JP pKS
′

— the locations in Lt are not in S ′ and hence, depending on the value of

u′
2(mass) + u′

2(prob), we would transition to either “miss” or “hit” instead.

Suppose ℓi 6∈ Lt. The path s1 (without any transitions) trivially satisfies (C2) as

s1 ∈ Ip,S
′

1 impliesmass = 0, n = 0, ℓ01 = ℓi, ProbMJP K(π1) = 1 andProbLocs(π1, n) =

∅ — trivially, 〈〈π1,mass1〉, 〈ℓ
′
2, u

′
2〉〉 ∈ R due to (R2). The case for when ℓi ∈ Lt is

analogous but uses (R3), instead.

Remaining to show is (C1). Let s1 → s′1 be any transition from s1 in JP Kp. We

have already shown that there exists a transition s2 → s′2 such that 〈s1, s
′
2〉 ∈ R

due to condition (R2) or (R3) of R’s definition. We depend on the proof of (C1)

for condition (R2) and (R3) to give us a finite path π2 of JP pKS
′

such that the path

s2 → π2 satisfies (C1).

(R2) Note that, because ℓn1 6∈ Lt, we only have to deal with “explorative” transitions.

We do a case split on the location type of ℓn1 , ℓ2:

– Suppose ℓn1 , ℓ2 ∈ Le \Lt. By Definition 4.2 and 7.6, the only outgoing tran-

sition in JP Kp is s1 → 〈π1 → 〈ℓ
n
1 , u

n
1 〉,mass1〉. Analogously, by Definition 4.2,

the only only outgoing transition in s2 is the self-loop s2 → s2. The transition

added to π1 is non-probabilistic per definition and has no influence on the con-

ditions of (R2) — we trivially have 〈〈π1 → 〈ℓ
n
1 , u

n
1 〉,mass1〉, s2〉 ∈ R and (C1)

and (C2) are trivally satisfied.

– Suppose ℓn1 , ℓ2 ∈ (Ln ∪ Lb ∪ Lc) \ Lt. Let us first show (C1). Clearly,

the all transitions from s1 = 〈π1,mass1〉 in JP Kp are due to the exploration
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condition (i) of Definition 7.6. Let us take an arbitrary such transition s1 →

〈π → 〈ℓn+1
1 , un+1

1 〉,mass1〉

From Definition 7.17 we know 〈ℓ2, ℓ
n+1
1 〉 ∈ E

p
2 and Semp

2 (〈ℓ2, ℓ
n+1
1 〉) is lifted

from Sem(〈ℓn1 , ℓ
n+1
1 〉). This means there exists a transition s2 → 〈ℓ

n+1
1 , un+1

2 〉

in JP pK — but maybe not in JP pKS
′

— such that the original variables of P

match in un+1
1 and un+1

2 and the instrumentation variables do not change value.

By definition of S ′, this transition is present in JP pKS
′

only if ℓn+1
1 6∈ Lt.

Observe that in this case we have

〈〈π → 〈ℓn+1
1 , un+1

1 〉,mass1〉, 〈ℓ
n+1
1 , un+1

2 〉〉

via condition (R2) and hence transition s2 → 〈ℓ
n+1
1 , un+1

2 〉 satisfies (C1). To

deal with the case when ℓn+1
1 ∈ Lt, observe that we have a transition s2 →

〈hit, un+1
2 〉 in JP pKS

′

if un(mass) + un(prob) > p and a transition s2 →

〈miss, un+1
2 〉, otherwise. In either case it is easy to see all conditions of (R3)

are satisfied.

Finally, because we matched transitions to transitions (instead of longer path)

and because our discussion covered all the transitions from s2 in JP pKS
′

, con-

dition (C2) is satisfied, also.

– Suppose ℓn1 , ℓ2 ∈ Lp\Lt. We first show (C1). Clearly, all transitions from s1 =

〈π1,mass1〉 in JP Kp are due to the exploration condition (i) of Definition 7.6.

Let us take an arbitrary such transition

〈π1,mass1〉 → 〈π1
λn−→ 〈ℓn+1

1 , un+1
1 〉,mass1〉

where, by definition, ℓn+1
1 ∈ L and un

1 and un+1
1 differ only in their value

for LValueℓn1
. Let us assume for now that ℓn+1

1 6∈ Lt. We will match this

transition with a transition s2 → s′2 in JP pKS
′

. Let us take the finite path from

s2 = 〈ℓ2, u2〉 in JP pK of the form

〈ℓ2, u2〉 → 〈explℓ , u
′
2〉 → 〈validℓ , u

′′
2〉 → 〈ℓ

′
2, u

′′
2〉
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where u′
2(resℓ)[u2(index)+ 1] = un+1

1 (LValueℓ2). Evidently, considering the

definition of S ′ and because we assumed ℓn+1
1 6∈ Lt, 〈ℓ2, u2〉 → 〈ℓ

′
2, u

′′
2〉 is a

transition of JP pKS
′

. Moreover, it is easy to see

〈〈π1
λn−→ 〈ℓn+1

1 , un+1
1 〉,mass1〉, 〈ℓ

′
2, u

′′
2〉〉 ∈ R

via condition (R2) as, by following the definition of Semp in Definition 7.17, it

easily follows all conditions of (R2) hold for this tuple.

To see (C1) also holds when ℓn+1
1 ∈ Lt we simply augment the transition

〈ℓ′2, u
′′
2〉 → 〈hit, u

′′
2〉 or 〈ℓ

′
2, u

′′
2〉 → 〈miss, u′′

2〉 to the path of JP pK we consider

(depending on whether u′′
2(mass) + u′′

2(prob) > p) and use an analogous proof

with condition (R3) instead of condition (R2).

Due to the constraint in “validℓ” our discussion covers all transitions of JP pKS
′

and hence (C2) holds, also.

(R3) We first show (C1). Let us first consider the case when s1 → s′1 is a bracktracking

transition. An arbitrary such transition is

〈〈ℓ01, u
0
1〉

λ0−→ . . .
λi−1
−−→ 〈ℓi1, u

i
1〉

λi−→ 〈ℓi+1
1 , ui+1

1 〉
λi+1
−−→ . . .

λn−1
−−−→ 〈ℓn1 , u

n
1 〉,mass1〉 −→

〈〈ℓ01, u
0
1〉

λ0−→ . . .
λi−1
−−→ 〈ℓi1, u

i
1〉

λi−→ 〈ℓ′1, u
′
1〉,mass1 + ProbM(π1)〉

where ui+1
1 (LValueℓi1

) 6= u′
1(LValueℓi1

) as well as 〈ui+1
1 (LValueℓi1

), u′
1(LValueℓi1

)〉 ∈

Orderℓ for some i < n.

We will match this transition with a transition s2 → s′2 in JP pKS
′

. To this end, we

will show there is a finite path π2 from s2 = 〈ℓ2, u2〉 to 〈ℓ
′
1, u

′
2〉 in JP pK such that

〈〈〈ℓ01, u
0
1〉

λ0−→ . . .
λi−→ 〈ℓ′1, u

′
1〉,mass1 + ProbM(π1)〉, 〈ℓ

′
1, u

′
2〉〉 ∈ R . (A.32)

We know that ℓ2 is either “hit” or “miss”. We start with a transition 〈ℓ2, u2〉 →

〈backtr, ut1
2 〉 to π2. Note the only difference between π2 and πt1

2 is the value of mass,

i.e. ut1
2 (mass) = u2(mass) + u2(prob).
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We now need to iterate through probabilistic choices that come after the prob-

abilistic choice we wish to backtrack to. Suppose m1, . . . ,mk are the indices in

ProbLocs(π1, n) − ProbLocs(π1, i) in descending order. We augment π2 with

the transitions

〈backtr, ut1
2 〉 → 〈backtrℓm1

1
, . . .〉 → 〈chooseℓm1

1
, . . .〉 → 〈skip, . . .〉 →

〈backtr, . . .〉 → 〈backtrℓm2
1
, . . .〉 → 〈chooseℓm2

1
, . . .〉 → 〈skip, . . .〉 →

. . .

〈backtr, . . .〉 → 〈backtrℓmk
1

, . . .〉 → 〈chooseℓmk
1

, . . .〉 → 〈skip, ut2
2 〉 →

〈backtr, umk

2 〉 → 〈backtrℓi1 , . . .〉 → 〈chooseℓi1 , . . .〉 → 〈takeℓi1 , . . .〉 →

〈orderℓi1 , . . .〉 → 〈explℓi1 , . . .〉 → 〈validℓi1
, u′

2〉 → 〈ℓ
′
1, u

′
2〉

with, of course, u′
2(resℓ)[u2(index)] = u′

1(LValueℓi1
). Although ut1

2 and ut2
2 differ

in their values for the variables in Var and prob, they agree on mass as well as

the arrays in the instrumentation. We also have ut2(index) = ut1(index) − k =

|ProbLocs(π1, i)|.

Suppose ℓ′1 6∈ Lt. Because of the definition of S ′ we have that 〈ℓ2, u2〉 → 〈ℓ
′
2, u

′
2〉 is a

transition of JP pKS
′

. Moreover, it turns out that (A.32) holds because all conditions

in (R2) are satisfied. To see this, observe that due to (R2.f), the variables in Var

coincide with ui
1 after the transition 〈backtrℓi1 , . . .〉 → 〈chooseℓi1 , . . .〉. Analogously

prob equals the probability of of π1’s prefix of length i after this transition. Both the

variables in P and prob are updated to encorporate the final step 〈ℓi1, u
i
1〉

λi−→ 〈ℓ′1, u
′
1〉

in the transition from “explℓi1”.

If ℓ′1 ∈ Lt then we can use an analogous argument with by augmenting π2 with a

transition to 〈hit, ℓ′2〉 or 〈miss, ℓ′2〉 and considering the conditions in (R3) instead.

There is also a possibility that there is no backtracking transition available in s1.

In this case there is a self-loop in s1 and hence we have to match the transition

〈π1,mass1〉 → 〈π1,mass1〉. This, of course, we can do with the path s2 (without any

transitions).

The conditions in “backtr”, “orderℓ”, “validℓ” are such that all transitions from
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〈ℓ2, u2〉 of JP pKS
′

correspond with a backtracking transition of JP Kp as described

above. Hence, (C2) holds also.

This concludes that R and R−1 are indeed stuttering simulations on JP Kp ⊎ JP pKS
′

.

We already established that Ip1 ⊆ R−1(Ip,S
′

2 ) and Ip,S
′

2 ⊆ R(Ip1 ) and hence we can use

Lemma A.12 twice to obtain

Reach+(JP Kp) =⇒ Reach+(JP pKS
′

) and Reach+(JP pKS
′

) =⇒ Reach+(JP Kp) .

Combining this with the previous equivalences we get

Reach+(JP pK)⇔ Reach+(JP pKS
′

)⇔ Reach+(JP Kp)⇔ Prob+(JP K) > p .
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Tools

In this appendix, we describe we developed to evaluate the verification techniques pre-

sented in this thesis. We start with QPROVER in Section B.1, an implementation of

the abstraction-refinement approach described in Chapter 5. Section B.2 then concerns

PROBITY, a tool implementing the instrumentation-based approach of Chapter 7. .

B.1 QPROVER

The abstraction-refinement methodology described in Chapter 5 is implemented in a tool

we call QPROVER.1 This model checker verifies ordinary ANSI-C programs which call

quantitative functions such as those shown in Figure 4.3, page 56. Our implementation

is an extensive adaptation of the CEGAR-based model checker SATABS [CKSY05]. To

obtain a probabilistic program as defined in Definition 4.1 we use SATABS’ infrastructure

for preprocessing, compiling source code, removing side-effects and function pointers and

for inlining function calls [Kro10b, CKSY05]. We also use a built-in constant propagation

analysis to simplify programs wherever possible. Because game-based abstractions are

substantially different from those used in SATABS, we have reimplemented most of the

abstraction-refinement loop. We still rely on existing functionality for the abstraction

procedure (generating SAT formulas from syntax) and the refinement procedure (taking

weakest preconditions). To model check game abstractions we employ an adapted version

1QPROVER is available from http://www.prismmodelchecker.org/qprover/.

http://www.prismmodelchecker.org/qprover/
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of PRISM’s symbolic value iteration algorithms for MDPs.2 For a detailed discussion we

refer to [Par02].

Our tool can deal with most of ANSI-C, including bit-level operations, functions,

pointers, side-effects, function pointers, type casts, arrays, structs, unions and goto state-

ments. However, it is currently not able to deal with recursion, concurrency or dynamic

memory allocation in a meaningful way.

B.2 PROBITY

The instrumentation-based verification technique described in Chapter 7 is implemented

in a tool called PROBITY.3 Like QPROVER, the software that can be verified by this

model checker are ordinary ANSI-C programs that call certain quantitative functions.

The program-level instrumentation function described in Chapter 7 is implemented as

a source-code transformation in PROBITY. Like QPROVER we use the infrastructure

of the model checker SATABS for preprocessing, compiling source code and removing

side-effects and function pointers (see, e.g., [Kro10b, CKSY05]).

To verify instrumented programs we rely on an adapted version of a model checker

called WOLVERINE, which implements the interpolation-based model checking algorithm

in [McM06]. The interpolating decision procedure that is used in WOLVERINE is the

one described in [KW09]. We adapted this model checker with the extensions and opti-

misations described in Section 7.4, including the analysis of proofs and counter-examples,

the greedy explation heuristic and the template invariant extension.

2This part of the implementation is due to David Parker.
3PROBITY is available from http://www.prismmodelchecker.org/probity/.

http://www.prismmodelchecker.org/probity/
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Case Studies

In this section, we discuss the case studies that are considered in this thesis. The case

studies we have considered can be categorised as follows:

– PING, TFTP, NTP (network clients),

– FREI, HERM (randomised algorithms),

– MGALE, AMP, FAC (pGCL programs),

– BRP, ZERO, CONS (PRISM programs).

Each case study is a probabilistic program written in ANSI-C.1 To give some indication

of scale, we give the number of lines of code and the number of control-flow locations for

each case study in Figure C.1. Note that this is the number of locations after inlining.

In Figure C.2, we show the types of properties we consider for each case study, following

the notation in Section 3.3.2. .

We discuss the network clients, randomised algorithms, pGCL programs and PRISM

programs in more detail in Section C.1, C.2, C.3 and C.4, respectively. For each case

study, we will provide a brief description of the program as well as the parameter space

and the properties that we consider.

1The source code for each case study is available from http://www.prismmodelchecker.org/qprover/.

http://www.prismmodelchecker.org/probity/
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LOC Nodes
ping 1,091 291
tftp 1,018 514
ntp 1,185 1,404
frei 94 82
herm 94 40
mgale 80 32
amp 70 32
fac 67 28
brp 141 94
zero 59 45
cons 58 77

Figure C.1: The number of lines of
code (LOC) and control-flow locations
(Nodes) for each case study.

a b c d a+ b+

ping Prob+ Prob+ Cost+ Prob+ – –
tftp Prob+ Prob+ Cost+ – – –
ntp Prob+ Prob+ Cost+ – – –
frei Prob+ Prob− – – – –
herm Prob− Cost+ Prob+ Prob− – –
mgale Prob+ Prob− Cost+ – – Prob+

amp Prob− Prob− Prob+ – Prob+ Prob+

fac Prob− Cost+ – – – –
brp Prob+ Prob+ Prob− – – –
zero Prob− Cost+ – – – –
cons Prob− Prob− – – – –

Figure C.2: We show for each case study the types of
properties that we consider. Properties are marked with
labels A, B, C, D (and A+, B+ in Chapter 7).

C.1 Network Programs

In this section we describe our three main case studies: PING, TFTP and NTP. All three

of these programs are real network clients of approximately 1,000 lines of code. These

programs feature complex ANSI-C programming constructs such as structs, functions,

arrays, pointers, function pointers.

PING

This program is a familiar network utility that is often used to establish connectivity in

a network. Our source code is based on the PING client found in GNU InetUtils 1.5 that

is widely employed in many LINUX distributions. Essentially, the protocol broadcasts

an ICMP packet to a specific host a number of times and waits for a reply packet. For

the purposes of model checking we replaced the kernel call that opens a socket with a

probabilistic choice such that this function fails with probability 1
100

and we replaced the

kernel call for sending a packet with a probabilistic choice such that sending a packet

fails with probability 2
25
. We replaced the remaining kernel calls with non-deterministic

choices.

Parameters The number of ICMP requests that is sent (0 meaning an infinite amount).
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Properties We check the following properties of this program:

A “maximum probability of receiving replies to none of the ICMP requests.”

B “maximum probability of receiving replies to some but not all ICMP requests.”

C “maximum expected number of ICMP requests until one reply is received.”

D “maximum probability of receiving replies to all ICMP requests.”

A File Transfer Protocol (TFTP)

This case study is an implementation of a client of a file transfer protocol (TFTP) based

on the client TFTP-HPA 0.48. The protocol starts by establishing what is called a write

request. This involves the client and host both sending one packet. Then, the protocol

sends some file data over the network. When the host receives a packet he will send back

an acknowledgement. The protocol has some simple mechanisms for dealing with packet

loss. For the purposes of verification we replaced the kernel functions used to send and

receive packets with stubs that fail with probability 1
5
.

Parameters None.

Properties We check the following properties of this program:

A “maximum probability of establishing a write request.”

B “maximum probability of sending some file data.”

C “maximum expected amount of data packets that is sent before a timeout occurs.”

Network Time Protocol (NTP)

Our final network client is an implementation of the network time protocol (NTP). The

program is based on the client implementation “ntpclient 365”. The aim of the NTP pro-

tocol is to synchronise the system time of a client with a reference time on a host system.

It does this by sending a number of packets over an unreliable connection and waiting for

replies from the host. For the purposes of model checking we replaced the kernel call that

is used to receive packets from the host with a stub that fails with probability 2
25
.

Parameters The number of probes that is sent (0 meaning an infinite amount).
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A “maximum probability of failing to receive a reply.”

B “maximum probability of receiving a reply.”

C “maximum expected number of NTP probes sent before a reply packet is received

or the program terminates.”

C.2 Randomized Algorithms

In this section we consider two randomised algorithms: namely Freivald’s algorithm and

Herman’s self-stabilisation protocol [Her90].

Freivald’s Algorithm (FREI)

The idea of Freivald’s algorithm is to use a Monte Carlo algorithm to check whether, for

three n×n matrices A, B and C, we have that AB = C. The algorithm probabilistically

chooses an n-vector of 0’s and 1’s, v, and then computes whether A(Bv) = Cv holds. From

theoretical results we know that if AB = C then A(Bv) = Cv for every v. Moreover,

if AB 6= C, then it is guaranteed that A(Bv) 6= Cv with probability 1
2
or more. The

motivation for using randomisation is that checking A(Bv) = Cv is computationally

much less costly then checking whether AB = C. We consider an implementation of this

algorithm with 2× 2 matrices.

Parameters The number of bits for each data element of A,B and C.

Properties We check the following properties of this program:

A “maximum probability of not detecting AB 6= C.”

B “minimum probability of not detecting AB 6= C.”

Herman’s Self-stabilisation Protocol (HERM)

Our second randomised protocol is Hermans self-stabilisation protocol [Her90]. The idea

is that there are a number of nodes in a ring topology. Depending on the local state of

these nodes a node has a token or not. A stable state in the ring is a state where only
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one node has a token. The self-stabilisation protocol executes in rounds. In each round,

the synchronously processes update their local state with some probabilistic choice. This

update directly affects the way tokens are distributed. We use a sequentialised version of

this protocol taken from the APEX tool [LMOW08]. The APEX case study is, in turn, a

sequentialised version of a PRISM model.

Parameters The number of nodes.

Properties We check the following properties of this program:

A “minimum probability of terminating in a stable state.”

B “maximum expected number of rounds.”

C “maximum probability of terminating in an unstable state.”

D “minimum probability of terminating.”

C.3 pGCL Case Studies

These probabilistic programs are from [MM05] and have been translated from a prob-

abilistic guarded command language (pGCL). The characteristics of these programs is

that they are very small and use a very small subset of ANSI-C but, due to the use of

probabilistic choice in these models, they are not simple to verify.

Martingale (MGALE)

This case study concerns the behaviour of a gambler in a casino and originates from

[MM05, Section 2.5.1].2 The rules of the casino are that the gambler may bet any amount

of his money after which the casino will either return double his bet (with probability

1
2
) or nothing (with probability 1

2
). The gambler decides on what he believes to be an

infallible strategy and first bets $1, and, if he loses, he bets $2, $4, $8, etc. This way, as

soon as the gambler wins, he is sure to make a profit. Of course, the gambler has only

finite resources and his chance of actually making a profit depends on his initial capital.

2Note that our program is, in fact, the one in Figure 2.10.1 of [MM05] and not the variant in Figure 2.5.1 —
i.e. our program terminates when the gambler runs out of money.
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Parameters The initial capital of the gambler.

Properties We check the following properties of this program:

A “maximum probability of eventually making a profit.”

B “minimum probability of eventually finishing gambling.”

C “maximum expected number of bets.”

In Chapter 7, we also consider the property:

B+ “maximum probability of eventually finishing gambling.”

Amplification (AMP)

This example originates from [MM05, Section 2.5.2] and describes a typical Monte Carlo

algorithm. The idea is that this Monte-Carlo algorithm attempts to decide wether some

hypothesis Q is true or false by running a test repeatedly inside a loop — whether the

hypothesis Q holds non-deterministically decided at the beginning of the program. If Q is

false, then, in our program, the test will detect this with probability 1
4
. However, if Q if

true then we have no way of establishing this via our test.

Parameters The number of tests.

Properties We check the following properties of this program:

A “minimum probability of establishing the correct value for Q.”

B “minimum probability of termination.”

C “maximum probability of terminating with the incorrect value for Q.”

In Chapter 7, we also consider the variants:

A+ “maximum probability of establishing the correct value for Q.”

B+ “maximum probability of termination.”

Faulty Factorial (FAC)

Our final program originates from [MM05, Section 2.5.3] and describes a procedure that

computes the factorial of a natural number n iteratively. The idea of this case study is to
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introduce a small probability of an iteration of this procedure failing to execute correctly.

We let an iteration fail to execute correctly with probability 1
100

. We consider a slightly

different failure than that of [MM05] and do not replace an decrement with a increment,

but instead replace it with a “skip” command.

Parameters The number n to compute the factorial of.

Properties We check the following properties of this program:

A “minimum probability of termination.”

B “maximum expected number of loop iterations until termination.”

C.4 PRISM Case Studies

Our final set of programs are PRISM case studies. They have been translated and se-

quentialised into ANSI-C from a simple probabilistic guarded command language. These

programs are relatively small in terms of specification, but exhibit some non-trivial prob-

abilistic behaviour.3

Bounded Retransmission Protocol (BRP)

The bounded retransmission protocol (BRP) is a protocol for sending a number of chunks

of data from a client to a server with some fault tolerance [DJJL01]. The client sends

each chunk in sequence and waits for an acknowledgement from the server. The basic

idea is that, if a chunk fails to transmit or its acknowledgement is lost, then the chunk is

resent at most MAX times. We consider a sequentialised PRISM model of this protocol

for which MAX=4.

Parameters The number of chunks to send.

Properties We check the following properties of this program:

A “maximum probability that the receiver does not receive any chunk.”

B “maximum probability that eventually the sender reports an uncertainty on the

3 For more information on these models we refer to http://www.prismmodelchecker.org/.

http://www.prismmodelchecker.org/
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success of the transmission.”

C “minimum probability that eventually the sender reports a successful transmis-

sion.”

We note that brp a and brp b are “property 4” and “property 2” in [DJJL01].

IPv4 ZeroConf Protocol (ZERO)

This program is a sequentialised version of the IPv4 ZeroConf Protocol [CAG05]. The

aim of the ZeroConf protocol is to make networks self-configuring. In particular, the focus

of this model is on the selection of an IP address. The idea is that a network client picks

an IP address probabilistically and then sends a number of probes into the network. It

then awaits any responses from other nodes in the network that indicate the address is

already in use. We consider a sequentialised version of a PRISM model of this protocol.

Parameters The number of probes that are sent.

Properties We check the following properties of this program:

A “minimum probability of eventually configuring with a fresh IP address.”

B “maximum expected number of probes that are sent.”

Consensus Protocol (CONS)

The idea of the consensus protocol (CONS) is for N processes to agree one out of two

outcomes [AH90]. This outcome is chosen through a random walk from 0. At each

point in time a process can request to flip a coin. If the coin is heads then the counter

is incremented, if it is tails it is decremented. For some parameter, K, we choose one

outcome if the counter reaches the value K · N or the other outcome if the counter

reaches the value −K · N . We consider a sequentialised version of the PRISM model of

this protocol for which N = 1.

Parameters The value of the constant K.

Properties We check the following properties of this program:
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A “minimum probability that all processes that enter the coin protocol also leave

the protocol.”

B “minimum probability that all processes that enter the protocol leave with all

coins equal to 1.”
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