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Abstract 
Ranking and returning the most relevant results 
of a query is a popular paradigm in Information 
Retrieval. We discuss challenges and investigate 
several approaches to enable ranking in 
databases, including adaptations of known 
techniques from information retrieval. We 
present results of preliminary experiments. 

1. Introduction 
Automated ranking of the results of a query is a popular 
aspect of the query model in Information Retrieval (IR) 
that we have grown to depend on. In contrast, database 
systems support only a Boolean query model. For 
example, a selection query on a SQL database returns all 
tuples that satisfy the conditions in the query. Therefore, 
the following two scenarios are not gracefully handled by 
a SQL system: 
1. Empty answers: When the query is too selective, the 

answer may be empty. In that case, it is desirable to 
have the option of requesting a ranked list of 
approximately matching tuples without having to 
specify the ranking function that captures 
“proximity” to the query.  An FBI agent or an analyst 
involved in data exploration will find such 
functionality appealing. 

2. Many answers: When the query is not too selective, 
too many tuples may be in the answer. In such a case, 
it will be desirable to have the option of ordering the 
matches automatically that ranks more “globally 
important” answer tuples higher and returning only 
the best matches.  A customer browsing a product 
catalog will find such functionality attractive.  

Conceptually, the automated ranking of query results 
problem is really that of taking a user query (say, a 
conjunctive selection query) and mapping it to a Top-K 

query with a ranking function that depends on given 
conditions in the user query. The key questions are: 

• How to derive such ranking functions 
automatically? How well do ranking functions 
from IR apply?  

• Are the ranking techniques for handling empty 
answers and many answers problems different? 

• How to execute such Top-K queries efficiently 
over large databases? 

We will start off by asking ourselves how to make it 
possible for relational databases to adapt ranking 
functions from IR for handling the database ranking 
problem. When each attribute in the relation is a 
categorical attribute, we can “mimic” the IR solution by 
applying the TF-IDF idea that is based on the frequency 
of occurrence of attribute values in the database. 
However, unlike text documents, databases contain 
numeric as well as categorical information. Therefore, we 
need to extend TF-IDF concepts to numerical domains. 
We develop IDF Similarity, a database ranking function 
that extends TF-IDF concepts to databases containing a 
heterogeneous mix of categorical as well as numeric data. 

While IDF Similarity works well for some database 
ranking applications, sometimes its effectiveness is quite 
limited. In certain instances the relevance of data values 
for ranking may be due to other factors in addition to their 
frequencies. This has been noted in the IR domain as well, 
where sometimes one has to go beyond TF-IDF 
weightings to derive accurate ranking functions. This begs 
the question: what else could be the basis of generic 
ranking in databases? We show that collecting the 
workload on the database can be quite useful for ranking. 
In a way, this may be viewed as a poor man’s choice of 
relevance feedback and collaborative filtering where a 
user’s final choice of relevant tuples is not recorded. 
Despite its primitive nature, such workload information 
can help determine the frequency with which database 
attributes and values are referenced. When used in 
conjunction with IDF, workload information boosts 
ranking quality. We develop QF Similarity, a ranking 
function that leverages such workload information. 

Much of the discussion in this paper focuses on the 
empty answers problem. Solving the many answers 
problem poses additional challenges because a ranking 
function that only depends on the conditions in the user 
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query is inadequate for this problem. We extend our 
ranking functions with additional query independent 
components that measure the “importance” of tuples in a 
global sense.      

Finally, even if we get the ranking functions right, for 
large databases, we have to minimize their impact on 
query processing. Although inverted lists are popular data 
structures for efficient retrieval in IR, they are inadequate 
for our purposes as we seek imprecise matches involving 
categorical and numerical attributes. We study 
adaptations of some recent algorithms for Top-K query 
processing, which leads us to yet another contribution of 
this paper; an index-based Top-K query processing 
algorithm, ITA that exploits our ranking functions.   

We have built a system in which our ranking 
algorithms have been implemented on a relational DBMS. 
The system has two major components, a pre-processing 
component and a query processing component. The 
preprocessing component is a ranking function extractor 
that leverages data and workload characteristics. The 
query processing component is a Top-K algorithm that 
uses the ranking function and exploits the physical 
database design. We have performed user experiments on 
our system to evaluate its effectiveness. However, despite 
our best efforts, our user experiments are preliminary. 
Unlike IR which relies on extensive available user studies 
and benchmarks, no infrastructure is available today for 
evaluating database ranking. 

The rest of this paper is organized as follows. In 
Section 2 we discuss related work. In Sections 3 and 4 
respectively, we describe two database ranking functions 
for the empty answers problem, IDF Similarity and QF 
Similarity. Section 5 discusses differences between the 
empty answers and the many answers ranking problem, 
and describes extensions to our ranking functions to solve 
the latter problem. Section 6 discusses key 
implementation details, especially choices among Top-K 
processing techniques and our ITA algorithm. We present 
experiments in Section 7, and conclude in Section 8. 

2. Related work 
Extracting ranking functions has been extensively 
investigated in areas outside database research such as 
Information Retrieval. The Cosine Similarity metric with 
TF-IDF weighting of the vector space model [4] is very 
successful in practice. We extend the TF-IDF weighting 
technique for database ranking to handle a heterogeneous 
mix of numeric and categorical data. 

Ranking is an important component in collaborative 
filtering research [5]. These methods require training data 
using queries as well as their ranked results. In contrast, 
we require workloads containing queries only.  

In database research, there has been some scattered 
work on the automatic extraction of similarity/ranking 
functions from a database. The early work of [21] 
considered vague/imprecise similarity-based querying of 

databases. The problem of integrating databases and 
information retrieval systems has been attempted in 
several works [12, 13, 17, 18]. Information retrieval based 
approaches have been extended to XML retrieval in [26].  
The papers [10, 23, 24, 32] employ relevance-feedback 
techniques for learning similarity in multimedia and 
relational databases. A keyword-based retrieval system 
over databases is proposed in [1]. 

The distinguishing aspects of our work from the above 
are (a) we address the challenges that a heterogeneous 
mix of numeric as well as categorical attributes pose, and 
(b) we propose a novel and easy to implement ranking 
method based on query workload analysis. Although [22] 
describes a ranking application for a mix of categorical 
and numeric data, the similarity function is not 
automatically derived but rather is based on domain 
knowledge of the application. The paper [30] proposes 
distance functions for heterogeneous data, but the 
emphasis is on classification applications. In [19, 20], the 
authors propose SQL extensions in which users can 
specify soft constraints in the form of preferences. These 
extensions broaden the expressiveness of search criteria 
by a user, but do not relieve the user from the onus of 
having to specify suitable ranking functions.  

A major concern of this paper is the query processing 
techniques for supporting ranking. Several techniques 
have been previously developed in database research for 
the Top-K problem [6, 7, 14, 15, 31]. We adopt the 
algorithm in [15] for our purposes, and discuss issues 
such as how the relational engine and 
indexes/materialized views can be leveraged for query 
performance.  

3. IDF Similarity: generalizing IR methods 
In this section, we develop IDF Similarity, a database 
ranking function based on information retrieval 
techniques. We consider a database table R with 
categorical and numerical attributes {A1, …, Am} and 
tuples {T1, …, Tn}. The selection conditions will be 
conjunctive conditions, i.e., of the form “WHERE C1 
AND … AND Cm”, where each atomic Ck is of the form 
“Ak = valuek”.  (More general conditions are discussed in 
Section 3.3. Also, our ranking techniques can be extended 
for multi-table databases; see Section 6.2.2). 

3.1 IDF Similarity for categorical data 

If the database only had categorical attributes, a very 
simple solution can be employed by essentially 
“mimicking” the well-known IR technique of Cosine 
Similarity with TF-IDF weighting by treating each tuple 
(and query) as a small document and defining a similarity 
function between tuples and queries. We note that such 
approaches have been considered in several prior works 
on database ranking (see Section 2). Henceforth in this 
paper ranking function and similarity function will be 
used interchangeably. 



 

We start by briefly reviewing this standard IR 
technique. Given a set of documents and a query (the 
latter specified as a set of keywords), the problem is to 
retrieve the Top-K documents most relevant, or most 
similar to the query.  Similarity between a document and 
the query is formalized as follows. Given a vocabulary of 
m words, a document is treated as an m-dimensional 
vector, where the ith component is the frequency of 
occurrence (also known as term frequency, or TF) of the 
ith vocabulary word in the document. Since a query is a 
set of words, it too has a vector representation. The 
Cosine Similarity between a query and a document is 
defined as the normalized dot-product of the two 
corresponding vectors. The Cosine Similarity may be 
further refined by scaling each component with the 
inverse document frequency (IDF) of the corresponding 
word (IDF(w) of a word w is defined as log(N/F(w)) 
where N is the number of documents, and F(w) is the 
number of document in which w appears). IDF has been 
used in IR to suggest that commonly occurring words 
convey less information about user’s needs than rarely 
occurring words, and thus should be weighted less.   

We can also adopt these techniques for our problem. 
More formally, for every value t in the domain of attribute 
Ak, we define IDFk(t) as log(n/Fk(t)), where n is the 
number of tuples in the database and Fk(t) is the frequency 
of tuples in the database where Ak = t. For any pair of 
values u and v in Ak’s domain, let the quantity Sk(u,v) be 
defined as IDFk(u) if u = v, and 0 otherwise. Consider 
tuple T = <t1,…,tm> and query Q = <q1,…,qm> (i.e. the 
latter has a C-condition of the form “WHERE A1 = q1 
AND … AND Am = qm”).  The similarity between T and Q 
is defined in Equation (1). We refer to the quantities 
Sk(u,v) as similarity coefficients; thus the similarity 
between T and Q is simply the sum of corresponding 
similarity coefficients over all attributes. (To improve 
readability in the rest of the paper, we shall omit the 
subscript k where ever possible. Thus S(t,q) will refer to 
the similarity coefficient Sk(t, q), while A will refer to the 
attribute Ak). 

This similarity function closely resembles the IR-like 
Cosine Similarity with TF-IDF weightings, except that the 
dot-product is un-normalized. Also note that in our case, 
the term frequency TF is irrelevant since each tuple is 
treated as a small document in which a word, i.e. a 
<attribute, value> pair can only occur once.  Henceforth 
we refer to this similarity function as IDF Similarity. 

IDF Similarity can be very effective in certain 
database ranking applications. For example, if we query 
an automobile database for a “CONVERTIBLE” made by 
“NISSAN”, the system first returns all Nissan 
convertibles, followed by other convertibles, and followed 

by other Nissan cars. This is because “CONVERTIBLE” 
is a rare car type and consequently has higher IDF than 
“NISSAN”, a common car manufacturer.   

3.2 Generalizing IDF Similarity for numeric data 

The following interesting research challenges arise when 
we try to extend IDF Similarity for more general database 
schemas containing a heterogeneous mix of categorical 
and numerical attributes. Intuitively, the similarity 
coefficient S(u, v) between values u and v of a numeric 
attribute A should be a smooth function inversely related 
to the “distance” between u and v. Thus, for numeric data 
it is inappropriate to adopt the definition of similarity 
coefficients in Section 3.1 because of their binary nature 
(where if u and v are arbitrarily close to each other yet 
distinct, S(u, v) will incorrectly evaluate to 0). Moreover, 
the “frequency” (and hence “IDF”) of a numeric value 
should depend on nearby values. For example, if we 
request for a home in a realtor database with price $300k 
and 10 bedrooms, the price is less important for ranking 
purposes (there may be many houses priced close to 
$300k, even if few have exactly that price) than the 
number of bedrooms (relatively fewer homes have around 
10 bedrooms).  

A simple solution is to discretize the domain of 
numeric attribute A into buckets, effectively treating a 
numerical attribute as categorical. However, most 
bucketing approaches are problematic since (a) 
inappropriate bucket boundaries may separate two values 
that are actually close to each other, (b) determining the 
correct number of buckets is not easy, and (c) values in 
different buckets are treated as completely dissimilar, 
regardless of the actual distance separating the buckets.  

Instead, we propose a more robust definition of 
similarity for numeric data that does not suffer from these 
shortcomings. Let {t1, t2, …, tn} be the values of attribute 
A that occur in the database. For any value t, we define 
IDF(t) as shown in Equation (2) (where h is the 
bandwidth parameter, to be defined later). 

Intuitively, the denominator in Equation (2) represents a 
numeric extension of the concept of “frequency” of t, i.e. 
the sum of “contributions” to t from every the other point 
ti in the database. These contributions are modeled as 
(scaled) Gaussian distributions, so that the further t is 
from ti, the smaller is the contribution from ti.  

We then define the similarity between t and q as 
shown in Equation (3), i.e. as the density at t of a 
Gaussian distribution centered at q, scaled by IDF(q). 
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As an illustration, consider the scenario where the 
numeric data resembles categorical data: there are nt 
tuples in the database with value t, and the remaining n – 
nt tuples have values far from t. If q belongs to the latter, 
then it is easy to see that S(t, q) is almost 0. Whereas, if q 
also has the value t, then S(t, q) degenerates to log(n/nt), 
which is exactly the formula for categorical data.  

The above numerical extensions to IDF have been 
derived using kernel density estimation techniques [25]. A 
popular estimate for the bandwidth is h = 1.06σ n−1/5, 
where σ is the standard deviation of {t1, t2, …, tn}. For 
theoretical justification of these extensions, see [2]. 

3.3 Other generalizations of IDF Similarity 

In Section 3.1 we had assumed a query model where C-
conditions are conjunctions of atomic conditions such as 
“Ak = qk”. A useful generalization is the ability to specify 
a range/set of values for numerical/categorical attributes.   

Let query Q have a C-condition “C1 AND … AND 
Cm”, where each Ck is generalized as “Ak IN Qk”, where Qk  
is a set of values for categorical attributes, or a range 
[lb,ub] for numeric attributes.  For uniformity of notation, 
we use IN to also specify numeric ranges, e.g. “Ak IN 
[lb,ub]”, instead of the more standard BETWEEN. Let T 
= <t1,…,tm> be any tuple. To generalize the similarity 
function SIM(T,Q) of Equation (1), we define similarity 
between tk and Qk as the maximum similarity coefficient 
between tk and  all values in Qk. The generalized similarity 
function is shown in Equation (4).  

In defining Equation (4), we considered the alternative of 
using avg instead of max. However, this can lead to an 
unintuitive scenario where a tuple that completely 
satisfies the selection condition may be ranked lower than 
a tuple that only partially satisfies the selection condition. 
A more detailed discussion on this issue is omitted. 

Thus far, our query model assumes that values for all 
attributes are specified in a query. In most real queries it 
is unlikely that all attributes are specified. We refer to 
these as missing attributes. Our approach is to restrict 
similarity calculations only to the attributes specified by 
the query, i.e., we only consider the projection of the 
database on the columns that are referenced in the query. 
This has parallels with approaches in IR, where similarity 
is calculated only using words that appear in the query. It 
is only when numerous tuples have the same similarity 
score that we use missing attributes to break ties.  Details 
of this scenario are discussed in Section 5.  

4. QF Similarity: leveraging workloads  
While IDF Similarity can be very useful in many 
applications of database ranking, it nevertheless has 
several shortcomings that need to be addressed. In this 
section we first discuss these shortcomings, and then 
discuss QF Similarity, a ranking function that leverages 
workload information to overcome these shortcomings.  

The following examples show that a data value may 
be important for ranking purposes irrespective of its 
frequency of occurrence in the database.  

Example 1: In a realtor database, more homes are built 
in recent years such as 2000 and 2001 as compared to 
earlier years such as 1980 and 1981. Thus recent years 
have smaller IDF. Yet the demand for newer homes is 
usually more than that for older homes.  

Example 2: In a bookstore database, the demand for an 
author is due to factors other than the number of books 
she has written (such factors may include for example, 
number of favorable reviews). 

We note that the above problems can be solved by a 
domain expert who can define a more accurate similarity 
function (e.g. by giving more weight to later years in 
Example 1). However, this can be highly dependent on 
the application, so we do not attempt a general discussion 
here. Instead, we show how to derive the similarity 
function automatically by analyzing other more easily 
available knowledge sources, such as past usage patterns 
of the database (i.e. workload). An important point is that 
our techniques do not require as inputs both workload 
queries and their correctly ranked results; getting the 
latter information is tedious and involves user feedback, 
whereas gathering queries only is relatively easy since 
profiling tools exist on most commercial DBMS that can 
log each query string that executes on the system.  

In the next subsection we describe a simple version of 
QF Similarity, in which the importance of attribute values 
is determined by the frequency of their occurrence in the 
workload. We follow this up in Section 4.2 with a more 
sophisticated variant of QF Similarity, in which similarity 
between pairs of different categorical attribute values can 
also be derived from the workload.  In Section 4.3 we 
briefly discuss a hybrid strategy, QFIDF Similarity, where 
we combine information from the workload as well as the 
data to derive importance of attribute values. 

4.1 Query frequencies of attribute values 

The idea behind the simple variant of QF Similarity is that 
the importance of attribute values is directly related to the 
frequency of their occurrence in query strings in the 
workload. Consider the realtor database discussed in 
Example 1. It is reasonable to assume that there are more 
queries requesting for newer homes than for older homes. 
Thus the frequency of the year 2001 appearing in the 
workload will be more than of the year 1981. A simple 
idea that takes advantage of this observation is to record 
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the frequency of attribute values appearing in the 
workload, and then let similarity coefficients depend on 
these frequencies. We make this precise as follows.  

Assume for simplicity only categorical data; we 
discuss numeric data in Section 4.3. Let RQF(q) be the 
raw frequency of occurrence of value q of attribute A in 
the query strings of the workload. Let RQFMax be the 
raw frequency of the most frequently occurring value in 
the workload. Let the query frequency, QF(q) be defined 
as RQF(q)/ RQFMax. We define the similarity coefficient 
S(t,q) as QF(q) if q = t, and 0 otherwise.  

We note that QF(q) has resemblance with the classical  
term frequency TF(q), except that it is the frequency of q 
over the entire workload rather than in the specific query. 

4.2 Similarity between different attribute values  

In this section we discuss a more sophisticated variant of 
QF Similarity. While the simple QF Similarity discussed 
in Section 4.1 can resolve Examples 1 and 2, it cannot 
resolve the following example; in fact, none of the 
ranking functions discuss so far can resolve Example 3.  

Example 3: In an automobile database, a HONDA 
ACCORD and a TOYOTA CAMRY are very dissimilar as 
measured by any of the previous similarity functions, 
since the similarity coefficients S(TOYOTA, HONDA) and 
S(CAMRY, ACCORD) are both  0. However, intuitively 
we know that the two cars are quite similar, e.g. they are 
family sedans, of comparable quality, and targeted to the 
same market segment.  

To resolve this problem, we need similarity coefficients 
that are non-zero even when the pair of categorical values 
is different. For example, S(TOYOTA, HONDA) may be 
0.8, while S(TOYOTA, FERRARI) may be 0.1.  

We discuss an approach for deriving such similarity 
coefficients by leveraging workload information in further 
ways. The intuition is that if certain pairs of values t <> u 
often “occur together” in the workload, they are similar. 
For example, there may be queries with C-conditions such 
as “MFR IN {TOYOTA, HONDA, NISSAN}”. Such 
workloads suggest that these manufacturers are more 
similar to each other than to, say FERRARI.  

 Let W(t) be the subset of queries in workload W in 
which categorical value t occurs in an IN clause. The 
Jaccard coefficient [29] measures the similarity between 
the two sets W(t) and W(q) as shown in Equation (5). 

 
 

 
 
 
The similarity coefficient between t and q is defined as 
this Jaccard coefficient, scaled by the QF factor as shown 
in Equation (6). 

 
 

Note that in the limit when W(t) is very similar to W(q), 
S(t, q) degenerates to QF(q), which is exactly the formula 
for S(t, q) in Section 4.1.  

4.3 Discussion 

Pair-wise similarity between different attribute values can 
be determined by other techniques in addition to 
analyzing IN clauses of queries. For example, perhaps 
there have been several recent queries in the workload by 
a specific user who has repeatedly requested for 
TOYOTA and HONDA cars in succession. Finding such 
co-occurrence of values over sequences of queries by 
specific users is the subject of ongoing work. 

Numerical values that occur in the workload can also 
benefit from query frequency analysis. For example, in 
the realtor database, if certain home prices are very 
frequently specified by workload queries, it is reasonable 
to treat them (and nearby values) as important values 
during similarity computations. Thus, as we did for IDF( ) 
in Section 3.2, we have to compute a smooth query 
frequency function QF( ).  

QF Similarity is purely workload-based, i.e. it does 
not use the data at all. This may be a disadvantage in 
situations where we have insufficient or unreliable 
workloads. We experimented with a hybrid ranking 
function, QFIDF Similarity, where we combined IDF and 
QF weights by multiplying them, i.e., S(t, q) = 
QF(q)*IDF(q) when t = q, and 0 otherwise. (In this 
formula we define QF(q) =  (RQF(q)+1)/ (RQFMax+1) so 
that even if a value is never referenced in the workload, it 
gets a small non-zero QF). Using multiplication to 
combine the two factors is inspired by the TF*IDF factors 
in the original TF-IDF ranking function [4]. The resulting 
function noticeably improved ranking quality in certain 
cases (see Section 7).  

5. The many answers problem: breaking ties 
In the previous two sections we have focused mainly on 
the empty answers ranking problem. In this section we 
discuss differences between the empty answers and many 
answers problem, and describe how our ranking functions 
can be extended to handle the latter problem. 

For ranking the results of a query that produces many 
answers, IDF Similarity and QF Similarity may 
sometimes run into the following problem: many tuples 
may tie for the same similarity score and thus get ordered 
arbitrarily.  For example, consider a query Q with a 
selection condition of the form “A1 = q1 AND … AND Ai 
= qi” where i < m (i.e. some of the columns, Ai+1, …, Am 
have not been specified by the query).  Suppose many 
tuples in the database satisfy this selection condition. We 
note that the projection of each of these tuples along the 
attributes specified in the query is the same, i.e. <q1, …, 
qi>. Thus SIM(T, Q,) for each answer tuple T will be the 
same, whether we use IDF Similarity or QF Similarity. 
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We observe that this problem can also arise in the 
empty answers problem: the top one or two tuples may 
have distinct similarity scores, followed by a large group 
of tuples that share the same similarity score. In general, 
if we only use the attributes specified in the query for 
ranking purposes, our similarity functions will partition 
the database into several equivalence classes, where 
tuples within each class have the same similarity score.  

To break ties among the tuples in each class, it is thus 
necessary to look beyond the attributes specified in the 
query, i.e. missing attributes. Investigating attributes 
beyond what has been specified by the query is 
particularly tricky since the ranking function does not 
know what the user’s preferences for the missing 
attributes are. The final ranking function could be a 
composition of weights of the missing attribute values. 
The problem thus is how do we in a principled manner 
determine these weights? 

Our approach is to determine weights of missing 
attribute values that reflect their “global importance” for 
ranking purposes, since we cannot possibly relate them to 
the preferences of the specific user who has issued the 
query. For example, suppose we seek homes with four 
bedrooms in a realtor database. Since there are many 
homes satisfying this condition, we examine attributes 
other than number of bedrooms to rank the result set. If 
we knew that “BELLEVUE” is a more important location 
than “CARNATION” in a global sense, we would rank 
four bedroom homes in Bellevue higher than four 
bedroom homes in Carnation.  

We use workload information to determine global 
importance of missing attribute values. The intuition is 
that if Bellevue is truly a popular neighborhood, the 
workload will contain many more queries requesting for 
Bellevue homes compared to Carnation homes. More 
formally, we define the global importance of missing 
attribute value tk as log(QFk(tk)), and extend QF Similarity 
to use the quantity �log(QFk(tk))

 to break ties in each 
equivalence class (larger this quantity1, higher the rank of 
the tuple) where the summation is over missing attributes.  

Extending IDF Similarity by using IDF values instead 
of QF values of missing attributes to break ties presents 
challenges. One possibility is to rank tied tuples higher if 
their missing attribute values have large IDF, i.e. occur 
infrequently in the database. But this gives rise to the 
undesirable scenario where, all else being equal, homes 
that occur in uncommon neighbourhoods are ranked 
before homes that occur in more common 
neighbourhoods. An alternative strategy is to rank tied 
tuples higher if their missing attribute values have small 
IDF, i.e. occur more frequently in the database. This will 

                                                           
1 If QFk(tk) is viewed as the probability of occurrence of value tk in a 

random query, the quantity �log(QFk(tk)) represents the log-likelihood of 
a query that requests the remaining values of T, which can be construed 
as the “importance” of T for ranking purposes. 
 

work well in the realtor example above, as homes in more 
popular neighbourhoods will be ranked higher than homes 
in strange neighbourhoods. Although more robust than the 
previous strategy, there are situations where this approach 
is also flawed. For example, suppose the database had a 
Boolean attribute “Deck”. Since only a small fraction of 
homes have decks, this ranking function will rank higher 
homes that do not have decks, which is contrary to 
intuition since a deck is usually a desirable feature. 

In Section 7 we discuss experiments which show that 
for ranking queries with numerous answers, the quality of 
QF Similarity is noticeably better than the quality of IDF 
Similarity (both functions extended as described above). 

6. Implementation 
In this section we discuss the implementation of the pre-
processing and query processing components of our 
database ranking system. 

6.1 Pre-processing component 

The main task of the pre-processing component is to 
compute and store a representation of the similarity 
function in auxiliary database tables. Computing IDF(t) 
(resp. QF(t)) for all categorical values t involves scanning 
the database (resp. scanning/parsing the workload) to 
compute frequency of occurrences of values in the 
database (resp. workload), and storing the results in 
auxiliary tables. For a numeric attribute, since we do not 
know what value q will be specified by a query, we 
cannot pre-compute IDF(q) (resp. QF(q)); thus we have to 
store an approximate representation of the smooth 
function IDF( ) (resp. QF( )) so that the function value at 
any q can be retrieved at runtime. We mention that since 
kernel density estimation techniques have been used to 
smoothen these functions, they can be approximated as 
histograms in linear time by the WARPing method [25]; 
we omit further details from this paper. The approximated 
functions are stored in auxiliary tables. 

For identifying similarity coefficients for QF 
Similarity between all pairs of values u and v of any 
attribute A (Section 4.2), we avoid space/time 
requirements quadratic in the size of A’s domain by only 
storing similarity coefficients that are above a certain 
threshold. They can be efficiently computed using a 
frequent itemset algorithm [3]. 

6.2 Query processing component 

The main task of the query processing component is, 
given a query Q and an integer K, to efficiently retrieve 
the Top-K tuples from the database using one of our 
ranking functions. We assume that the ranking function 
has already been extracted in a pre-processing phase 
(Section 6.1). We focus exclusively on the empty answers 
problem; the query processing challenges of the many 
answers problem is part of our ongoing work. 



 

Our objective was to use the available functionality of 
a traditional SQL DBMS for solving this Top-K problem. 
Thus, we decided not to adopt techniques that build 
specialized multi-dimensional indexes for arbitrary 
similarity spaces (e.g. Fast-Map [16]). Another possible 
approach is to use inverted lists, a popular data structure 
in information retrieval. We discarded this approach from 
further consideration since (a) this requires the presence 
of indexes on all columns specified in a query, which may 
be impractical and (b) it does not work for numeric data. 

6.2.1 Handling a simpler query processing problem 

We first focus on a much simpler version of the query 
processing problem; the more general problem is 
discussed in Section 6.2.2.  
• Inputs: (a) a database table R with m categorical 

columns, clustered on key column TID, where 
standard database indexes exist on a subset of 
columns,  (b) A query expressed as a conjunction of 
m single-valued conditions of the form Ak = qk., and 
(c) an integer K. 

• Similarity function: We assume a very simple 
similarity function which we call Overlap Similarity. 
This function measures the number of values in the 
tuple that match the corresponding values in the 
query. In Section 6.2.2 we discuss implementations 
of the more general similarity functions developed 
earlier in this paper. 

• Output: The Top-K tuples of R most similar to Q. 

We discuss two solutions to this restricted problem. 

Traditional implemention of Top-K operator: Many 
SQL database systems (e.g. Microsoft SQL Server) 
support Top-K query processing features. The SQL for 
the above restricted problem is shown in Figure 1.  
 
 
 

 
 
 
 
 
 
 
 
 

 
Most database systems would create a computed column 
(created on the fly in a pipelined manner) corresponding 
to the ranking function (e.g., in the ORDER BY clause in 
Figure 1) and then use a Sort_TopK operator, i.e., sort the 
relation to get Top-K results. Recent papers have focused 
on how to efficiently implement a Sort_TopK operator [8, 
9].  It is important to note that the assumed semantics of 
Top-K is nondeterministic, i.e., ties are broken arbitrarily.  

An index-based Top-K implementation: In most SQL 
systems, the above algorithm cannot leverage any 
available indexes and has to scan every database tuple. 
However, we observe that the Overlap Similarity function 
(in fact, all similarity functions discussed in this paper) 
satisfies a useful monotonic property: if T and U are two 
tuples such that for all k, Sk(tk, qk) � Sk(uk, qk), then SIM(T, 
Q) � SIM(U, Q). This enables us to adapt Fagin’s 
Threshold Algorithm (TA) and its derivatives [7, 15] to 
retrieve the Top-K tuples without having to process all 
tuples of the database.  

To adapt TA for our purposes, we have to implement 
two types of access methods: (a) sorted access along any 
attribute Ak, in which TIDs of tuples can be efficiently 
retrieved one-by-one in order of decreasing similarity of 
their Ak attribute value from qk, and (b) random access, in 
which the entire tuple corresponding to any given TID can 
be efficiently retrieved. In brief, Fagin’s algorithm 
performs sorted access along each attribute in “lock-step”, 
retrieves the complete tuples corresponding to the TIDs 
seen using random access, and maintains a buffer of the 
Top-K tuples seen thus far. The monotonic property of the 
similarity function allows the use of an early stopping 
condition, by which the algorithm can detect that the final 
Top-K tuples have been retrieved before all tuples have 
been processed.    

We leverage available database indexes such as B+ 
trees to efficiently implement these two access methods. 
Since it is unrealistic to assume that indexes are always 
present on all attributes specified by any query, we adapt 
a derivative of TA [7] that works even if sorted access is 
not available on some attributes. Our resulting adaptation, 
called the Index-based Threshold Algorithm, or ITA, is 
shown in Figure 2.  

Assume that indexes are present on columns A1, ..., Ap 
and not present on columns Ap+1, ..., Am. The essence of 
ITA is to do index seeks on orderings L1, ..., Lp where 
each Lk is defined as an ordering of tuples where tuples 
with Ak = qk precede the tuples with Ak <> qk. We use the 
following terminology: (a) TupleLookup(TID), where the 
complete tuple for the given TID is retrieved from R, and 
(b) IndexLookupGetNextTID(Lk), where given an ordering 
Lk of a column Ak, the next matching TID of R is retrieved 
using the available index on that column. These 
operations are respectively equivalent to the random 
access and sorted access operations described earlier. 
TupleLookup(TID) can be implemented by traditional 
indexes in a relational databases. Efficient implementation 
of IndexLookupGetNextTID(Lk) using the indexing 
support in relational database engine requires more care; 
we omit further details from this paper. 

Index seeks on L1, ..., Lp may be interleaved or ordered 
in a variety of ways based on heuristics or data statistics. 
The most important step is the stopping condition, i.e. 
identifying that no more index seeks on any column will 
be needed. We discuss this next. 

 
SELECT  TOP K  R.* 
FROM  R 
ORDER BY  

((CASE WHEN R.A1 = q1 THEN 1 ELSE 0 END) + 
 (CASE WHEN R.A2 = q2 THEN 1 ELSE 0 END) + 
  … 
 (CASE WHEN R.Am = qm THEN 1 ELSE 0 END)) 

DESC 
   

Figure 1: Top-K query in SQL 



 

Stopping Condition: We define a hypothetical tuple by 
taking the “current” value a1, …, ap for A1, ..., Ap 
corresponding to index seeks on L1, ..., Lp and using the 
values qp+1, ..., qm for the remaining columns. This creates 
the very best tuple we can hope to find in the data that is 
yet to be seen. If the similarity of this hypothetical tuple 
to the query is no more than the tuple in the Top-K buffer 
with the lowest similarity, the algorithm successfully 
terminates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Although ITA does not require indexes on all columns 
referenced by the query, fewer indexes imply that the 
algorithm may need to do more tuple lookups using TIDs 
before it can terminate. We also note that the same tuple 
may be retrieved several times via TID lookup because its 
TID may be encountered multiple times during index 
lookups along different columns. The main disadvantage 
of this approach is that it introduces random accesses, and 
this can have an adverse affect on performance if too 
many index lookups are needed (see Section 7.3.2). 

6.2.2 Handling more general query processing 

Our basic framework for Top-K query processing extends 
to the more general similarity functions developed in the 
paper. These extensions are described next.  

Presence of QFIDF tables: Let us consider query 
processing when we use one of the more general ranking 
functions described in Sections 3 and 4.1. In addition to 
the base table R, several small auxiliary tables, one per 
categorical column of R, have been created during 
preprocessing that contain information about the 
similarity function. We call these tables QFIDF tables. 

We assume that each such QFIDF table has two attributes 
<ColVal, QFIDFVal> and is clustered on the ColVal 
attribute. ColVal contains all distinct values of the 
specific database column that corresponds to this QFIDF 
table, while QFIDFVal contains the respective weights 
(for ranking purposes) of these distinct values. The 
specific QFIDFVal weights depend on the ranking 
function we adopt, e.g., IDF, QF or QF*IDF.  

Let us consider the impact of this generality on the 
two Top-K implementations described in the previous 
subsection. First, to know the QFIDFVal weights, we 
need to look up the QFIDF tables. Since the QFIDF 
lookup is based only on the conditions in the query and is 
independent of the data tuple, this may be accomplished 
by an initialization step. The retrieved QFIDFVal weights 
are then used during subsequent processing in the 
traditional Top-K computation for the creation of the 
computed column based on the ranking function.  

The above initialization step is also common to ITA. 
Subsequent computation in ITA remains unaffected, 
except that the ranking function computations have to 
take into account the retrieved QFIDFVal weights. 

Numerical columns: We consider the important case 
when some of the database columns are numeric.  

We adapt ITA for numeric conditions in a query as 
follows. Suppose the query has a condition Ak = qk for a 
numeric column Ak. Because Ak is numeric, unlike 
categorical cases, it is now possible to return “nearby 
matches” based on increasing value of |Ak – qk| once no 
more exact matches Ai = qk exist in the data. We perform 
two index scans on Ak: one that retrieves TIDs of tuples 
with values greater than qk in increasing order, and 
another that retrieves TIDs of tuples with values lesser 
than qk in decreasing order. We then pick the TIDs from 
the merged stream. Once we have ensured that each index 
on a numeric attribute can produce tuples in the order of 
decreasing similarity in the above fashion, the rest of the 
implementation is the same as what has been described 
for categorical attributes. 

Handling numeric conditions in a query using 
traditional Top-K SQL is straightforward and is omitted 
from this paper. 

Other generalizations:  ITA can be extended to handle 
other generalizations, such as IN and range conditions in 
the query (Section 3.3), non-zero pair-wise similarity 
coefficients (Section 4.2), and for breaking ties among 
tuples (Section 5). Further details of these extensions to 
ITA may be found in [2]. 

When our ranking order is over the result of a 
relational query, defined over a set of tables, additional 
challenges arise. Appropriate materialized views can 
greatly enhance applicability of our techniques. 
Furthermore, indexes on base tables can be leveraged but 
the trade-off in query processing and optimization is 
increasingly more complex. 

ITA: Index-based Threshold Algorithm 
Initialize Top-K buffer to empty 

REPEAT 

FOR EACH k = 1 TO p DO 

1. TIDk = IndexLookupGetNextTID(Lk) 

2. Tk = TupleLookup(TIDi) 

3. Compute value of ranking function for Tk 

4. If rank of Tk is higher than the lowest ranking tuple in the 
Top-K buffer   

then update Top-K buffer  

5. If stopping condition has been reached then EXIT 

END FOR 

UNTIL  indexLookupGetNextTID(L1) … 
indexLookupGetNextTID(Lp)  

are all completed 
 

Figure 2: Index-based Threshold Algorithm for Top-K 
query processing 



 

7. Experiments 
We implemented the techniques described in this paper 
and conducted experiments to evaluate their effectiveness. 
All experiments were run on a machine with an x86 450 
MHz processor with 256 MB RAM and an internal 5GB 
hard drive running Microsoft Windows 2000 and 
Microsoft SQL Server 2000.  

We first tested the ranking quality as well as 
performance of the following similarity functions on 
queries with empty/few answers: Overlap (Section 6.2.1), 
IDF (Section 3), QF and QFIDF (Section 4). We then 
tested the extensions to IDF and QF for breaking ties 
among tuples (Section 5). Finally, we compared the query 
processing performance of the threshold algorithm using 
indexes (ITA) against SQL Server Top-K using these 
similarity functions (Section 6). 

7.1 Summary of results 

Quality results 
• For queries with empty answers, QFIDF produced 

the best rankings, followed by QF, then IDF, and 
finally Overlap. 

• For queries with empty answers, the ranking quality 
of QF improves with increasing workload size. 

• For queries with numerous answers, QF produced 
better rankings than IDF. 

Performance results 
• The preprocessing time and space requirements of all 

our techniques scale linearly with data size. 
• When all indexes are present, ITA is more efficient 

than SQL Server Top-K for all our similarity 
functions. 

• Even when a subset of indexes is present, ITA can 
perform well; the performance is strongly determined 
by how effective the algorithm is in reducing the 
number of processed tuples. 

7.2 Quality experiments 

Evaluating and comparing the quality of different 
database ranking alternatives is challenging. Unlike 
Information Retrieval which relies on extensive user 
studies and available benchmarks (such as the TREC 
collection [28]), such infrastructure is not available today 
for evaluating database ranking. Nonetheless, we 
conducted user studies on several real databases.  

In this paper we only report results for one real 
database, Realtor, which is part of a large real estate 
database from http://homeadvisor.msn.com. We first 
collected about 72,000 tuples representing homes for sale 
in Washington State. Of these, we retained 4099 tuples 
representing homes for sale in the Seattle Eastside. We 
chose a mixture of 10 categorical and numerical attributes 
for our experiments: City, Deck, Fenced, Culdesac, Price, 
Datebuilt, Bedrooms, Sqft. For building a workload, we 

requested eight people, some of them actual homeowners 
in Seattle Eastside, to provide us with queries that they 
would execute if they wanted to buy a home. An example 
of a typical query was: “SELECT * FROM homes 
WHERE Bedrooms > 3 AND Bathrooms > 2 AND Price 
< 350000”; the user commented he had in mind young 
families with not too much money, but have children and 
hence need space. We collected a total of 84 queries, each 
typically referencing 2-5 attributes. We used five people 
to provide test queries to evaluate the quality results. We 
selected a mix of 6-10 test queries similar to the ones 
provided by users during workload generation.  We first 
describe a few sample results informally, and then present 
a formal evaluation of the ranking quality. 

7.2.1 Informal quality results 

All ranking functions produced rankings that were quite 
intuitive and reasonable. IDF was obviously superior to 
Overlap in several queries; for example when requesting 
for homes with price $300k located on a cul-de-sac, the 
latter attribute value was given more importance since 
only a small fraction of homes (around 15%) are located 
on cul-de-sacs, whereas a much larger fraction of homes 
have prices close to $300k. 

However, there were several interesting examples 
where IDF was unable to obtain the rankings generated by 
the users. When requesting for a home located on a cul-
de-sac and with a fenced yard, IDF was unable to 
distinguish between the importance of these two values, 
as both had approximately the same relative frequencies 
in the database (around 15% of homes also had fenced 
yards). But to the users a cul-de-sac location is more 
important than a fence (because fences can be easily 
constructed whereas a home location cannot be changed). 
QF Similarity obtained better rankings as even in our 
modest-sized workload there were many more queries that 
requested cul-de-sacs than fences.  

7.2.2 Formal quality results 

We now present a formal evaluation of the ranking quality 
produced by the ranking functions. Since it would have 
been very tedious to have users rank the entire database 
for each query, we used the following strategy. For each 
test query Qi we generated a list Hi of 25 tuples likely to 
contain a good mix of “relevant” and “irrelevant” tuples 
to the query (we omit details from this paper, but we did 
this by ranking the entire database using these ranking 
functions and mixing a few highly ranked tuples with a 
few randomly selected tuples). Finally, we presented the 
queries along with the corresponding lists (with tuples 
randomly permuted) to each user in our study. Each user’s 
responsibility was to mark each tuple in Hi as relevant or 
irrelevant to the query Qi. We then applied our ranking 
functions against the test queries.  

For formally comparing the ranking quality of the 
various ranking functions with the human responses, we 



 

used a standard collaborative filtering metric R to 
measure ranking quality (Equation (7)). In the equation, ri 
is the subject’s preference for the ith tuple in the ranked 
list returned by the ranking function (1 if it is marked 
relevant, and 0 otherwise). The intuition behind the R 
metric is that if relevant tuples are ranked low, they 
contribute less to the value of R with exponential decay 
(see [2] for further discussion on the R metric). 

 
 
 
 
 

We next present the R metric values obtained in various 
quality experiments (R values are normalized by dividing 
by the maximum possible value for R).  

Comparing quality of different ranking functions: In 
Figure 3 we present the average R metric for each ranking 
function on the test queries.  
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The best ranking function in average ranking quality was 
QFIDF, followed by QF, then IDF, and finally Overlap. 
All ranking functions did better than a naïve ranking 
function that retrieves K random tuples (this naïve 
function’s average R value is 0.66, not shown in the 
chart). We mention that the differences in quality are 
likely to have been more significant if our users were able 
to score many more than 25 tuples per query. 

Quality versus workload size:  
 

0.6

0.7

0.8

100% w orkload 50% w orkload 25% w orkload

Workload size

R
 m

et
ri
c

 
 

 

We explored the dependence of quality to workload size 
in QF Similarity by training it on randomly sampled 
fractions of the entire workload. The results (Figure 4) 
indicate that larger workloads lead to better quality, 
because they are likely to contain more accurate QF 
values. 

Comparing quality on queries with many answers: We 
compared the quality of IDF Similarity with QF 
Similarity, both extended to use missing attributes to 
break ties as discussed in Section 5. For this experiment, 
our users especially created 6 test queries whose selection 
conditions were satisfied by many tuples (order of 
hundreds). QF has better ranking quality (R = 0.76) than 
IDF (R = 0.68). Again, we emphasize that the difference 
in quality is likely to have been more significant if users 
were able to score many more than 25 tuples per query. 

7.3 Performance experiments 

We evaluated the pre-processing and query processing 
performance of our ranking algorithms. We used the 
Realtor database for Washington State with 72,000 tuples 
(Section 7.2), as well as synthetic databases generated by 
using the publicly available program [11] for generating 
the popular TPC-H databases [27] with differing data 
skew. For our experiments we generated the lineitem fact 
table with 600,000 rows and varying skew parameter z. 
Here we report results for z = 2.0 (similar results occurred 
for values of z from 0.5 to 3). We treated all 17 attributes 
as categorical. There are 6 attributes with less than 10 
distinct values, 3 attributes with order of tens distinct 
values, 5 attributes with hundreds, and 3 with thousands.  

Note that although we use TPC-H databases, the 
workloads used in our experiments are quite different 
from standard TPC-H benchmarks. Thus, our results do 
not reflect the TPC-H benchmark numbers. 

7.3.1 Preprocessing performance experiments 

We omit reporting results as the preprocessing was very 
efficient: a scan of the table R in case of IDF Similarity, a 
scan/parse of the workload in case of QF Similarity (and 
variants), accompanied by the creation of the appropriate 
small auxiliary tables.  

7.3.2 Query processing performance experiments 

We report query processing experiments for the ranking 
functions developed in Sections 3 and 4. We do not report 
query processing performance experiments for the many 
answers problem (Section 5) as it is part of ongoing work. 

We implemented three versions of our index-based 
threshold algorithm ITA: ITA-OL that uses Overlap 
Similarity, ITA-IDF that uses IDF Similarity and ITA-QF 
that uses QF Similarity. (Performance results for ITA-
QFIDF are essentially the same as for ITA-QF and have 
been omitted). For comparison, we used the SQL Server’s 
Top-K mechanism to retrieve the Top-K tuples for all of 

Figure 3: Quality of various ranking 
functions on Realtor database 

Figure 4: Ranking quality of QF Similarity on 
Realtor database as workload size varies 
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our similarity functions. For the first two parts of the 
experiment, non-clustered indexes were available on all 
columns referenced in the queries. 

Varying number of attributes in query: We used the 
TPC-H database and generated 5 workloads W1 through 
W5 of 100 queries each (Wi is a workload containing 
queries each referencing i attributes). The attributes and 
values in a query were randomly selected from the 
underlying database.  
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As Figure 5 shows, the running times (as a ratio of time 
taken by SQL Server’s Top-K processing) increased as 
the number of attributes increased, which was expected. 
We also observed the query performance of all the three 
techniques to be almost identical to each other, but 
significantly better than SQL Server’s Top-K processing 
(as the number of tuples processed was orders of 
magnitude less than SQL Server’s Top-K processing). 

Varying K in Top-K: Here we used the TPC-H database 
and a workload with 100 queries. The number of 
attributes in a query was randomly selected between 1 and 
5. Figure 6 shows that all the techniques had almost 
identical performance (ITA-OL was slightly faster than 
both ITA-IDF and ITA-QF as it involves the least 
processing during querying) and outperformed SQL 
Server’s Top-K processing by almost a factor of 5.  
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Note the decrease in time when K is increased from 10 to 
100; this is because the time taken for SQL Server’s Top-

K increased as well (extra time was spent in maintaining 
the larger Top-K buffer). 

Varying number of indexes in database: We 
investigated the performance when only some of the 
columns specified in a query have indexes. For a given 
number of available indexes N for a query Q we used two 
strategies: (a) ITA-QF-Exhaustive where the best running 
time was selected from amongst all possible subsets of N 
column indexes relevant for Q and (b) ITA-QF-Random 
where the N indexes to be retained for Q were randomly 
selected from amongst all relevant indexes for Q. We 
report results on the Realtor database with 72,000 tuples 
for this experiment. We generated a workload of 100 
queries (each query referenced 4 attributes; the specific 
attributes and values were selected randomly from the 
underlying database). We fixed K = 10 and varied the 
number of available indexes N for each query from 4 
down to 1.   

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 shows the running time of ITA-QF-Exhaustive 
and ITA-QF-Random for different values of N, expressed 
as a ratio of the time taken by SQL Server’s Top-K 
processing. We observed that as the number of available 
indexes was decreased from 4 to 2, the running time of 
ITA-QF-Exhaustive remained almost the same, yet 
significantly (an order of magnitude) better than SQL 
Server’s Top-K processing. This is due to the fact that the 
available indexes can still be used to answer the Top-K 
queries efficiently. At N = 1 there was a steep increase in 
running time (outperformed by SQL Server’s Top-K 
processing) even though the number of tuples processed 
was still about 30% of the total tuples. This is due to the 
significantly higher cost of random access in databases 
compare to sequential access. We observed that the 
running time of ITA-QF-Random was much (3-8 times) 
worse than SQL Server’s Top-K processing for N = 3, 2 
and 1.  ITA-QF-Random could not leverage the stopping 
criteria effectively; it accessed a large number of tuples 
(more than 30% of total data).  

These experiments demonstrate that ITA-QF can be 
efficient even when a subset of indexes is available, but 
the performance is strongly tied with the nature of subset. 
The choice of determining such an optimal subset of 
indexes is a part of ongoing work.   

Figure 6: Time taken by ITA compared to SQL 
Server’s Top-K processing as K varies 

Figure 5: Time taken by ITA compared to SQL 
Server’s Top-K processing as number of attributes 
varies 

Figure 7: Time taken by ITA compared to SQL 
Server Top-K processing as indexes are dropped 
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3 0.10 2.90 

2 0.12 4.30 
1 2.76 7.80 

 



 

8. Conclusions 
In this paper, we have presented our experience in 
attempting to build a generic automated ranking 
infrastructure for SQL databases.  This is consistent with 
our research philosophy of seeding the relational database 
management infrastructure with functionality necessary 
and useful for data exploration.  

Our attempt was to extend TF-IDF based techniques 
from information retrieval to numerical and mixed data, 
as well as develop techniques of workload tracking as a 
weak form of collaborative filtering. Our approaches have 
shown promise, and are worthy of further investigation, 
especially more conclusive user studies. Equally 
important is to develop benchmarks. While TREC has 
served the IR community wonderfully well, there is no 
such infrastructure to move forward this nascent field.  

We were also aware that a meaningful solution has to 
take into account the impact on query processing. Our 
proposals lead to an implementation of the ranking 
function that exploits indexed access by drawing on 
insights from Fagin’s Threshold Algorithm.  

Are we trying to solve too hard a problem? One could 
argue that ranking is extremely domain and/or user 
specific and we cannot hope to automate such a difficult 
task. We remind the readers that one could have raised 
similar concerns about IR ranking as well. To explore 
what information a database system can intelligently 
bring to bear at a modest cost to solve database ranking to 
reduce the burden of an application designer or user is a 
dream worth pursuing.  
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