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Abstract. This paper reports the development of a proof strategy that
integrates the MetiTarski theorem prover as a trusted external decision
procedure into the PVS theorem prover. The strategy automatically dis-
charges PVS sequents containing real-valued formulas, including tran-
scendental and special functions, by translating the sequents into first
order formulas and submitting them to MetiTarski. The new strategy
is considerably faster and more powerful than other strategies for non-
linear arithmetic available to PVS.

1 Introduction

Formally reasoning about the behavior of safety-critical cyber-physical systems
is a difficult and well-known problem. To address the verification of these real-
world systems, state-of-the-art formal tools should be able to reason about more
than just polynomial functions. MetiTarski [1] is an automated theorem prover
for first order formulas containing inequalities between transcendental and spe-
cial functions such as sin, cos, exp, sqrt, etc. A modified resolution framework
guides the proof search, replacing instances of special functions by verified up-
per and lower polynomial bounds. During resolution, decision procedures for the
theory of real closed fields (RCF) are called to delete algebraic clauses that are
inconsistent with other derived facts. The current implementation of MetiTarski
takes advantage of the highly-efficient non-linear satisfiability methods within
the SMT solver Z3 for RCF decisions.

The Prototype Verification System (PVS) [8] is a formal verification environ-
ment that consists of a specification language, based on a classical higher-order
logic enriched with an expressive type system, and an interactive theorem prover
for this logic. The PVS specification language is strongly typed and supports
predicate subtyping. In particular, the numerical types are defined such that
nat (natural numbers) is a subtype of int (integers), int is a subtype of rat

(rationals), rat is a subtype of real (reals), and real is a subtype of the primi-
tive type number. The subtyping hierarchy of numerical types and the fact that
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rational arithmetic is built-in makes PVS well suited for real number proving.
In particular, ground numerical expressions are automatically (and efficiently)
simplified by the PVS theorem prover. For example, the numerical expression
1/3+1/3+1/3 is simplified to 1 and this simplification does not require a proof.
PVS has been extensively used at NASA in the formal verification of algorithms
and operational concepts for the next generation of air traffic management sys-
tems.3

The NASA PVS Library4, which is the de facto PVS standard library, in-
cludes several strategies for manipulating [3] and simplifying [5] real number
formulas. The most advanced proof strategies for real number proving available
in the NASA PVS Library are interval [2, 7] and bernstein [6]. These strate-
gies are based on provably correct interval arithmetic and Bernstein polynomial
approximations, respectively. The strategy interval automatically discharges
sequent formulas involving transcendental and other special functions. The strat-
egy bernstein automatically discharges simply-quantified multivariate polyno-
mial inequalities. The main characteristic of these strategies is that they preserve
soundness, i.e., proofs that use interval and bernstein can be expanded into
a tree of primitive PVS proof rules. Unfortunately, this also means that these
strategies are not as efficient as specialized theorems provers like MetiTarski.

For interactive theorem provers such as PVS, access to external decision
procedures for the theory of real closed fields can greatly speed up the verification
time of large and complex algorithms. This paper describes the integration of
MetiTarski as a trusted oracle within PVS. This integration greatly improves the
automated capabilities of PVS for proving properties involving real numbers.

2 The PVS Strategy metit

The proof strategy that integrates the RCF automated theorem prover Meti-
Tarski into the PVS theorem prover is called metit. This strategy, which is
currently available as part of the NASA PVS Library for PVS 6.0, requires
MetiTarski and an external arithmetic decision procedure such as Z3.5

In its simplest form, the strategy metit can be used to prove universally-
quantified formulas involving real numbers such as

∀v ∈ [200, 250], |φ| ≤ 35 :

∣∣∣∣ 180 g

πv 0.514
tan(

πφ

180
)

∣∣∣∣ < 3.825, (1)

where g = 9.8 (gravitational acceleration in meters per second squared) and π
is the well-known irrational constant. This formula, which appears in the formal
verification of an alerting algorithm for parallel landing [4], states that for an
aircraft flying at a ground speed between 200 and 250 knots and maximum bank
angle of 35 degrees, the angular speed is less than 3.825 degrees per second.

3 http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html.
4 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
5 The full distribution of the NASA PVS Library includes pre-installed binaries of

MetiTarski 2.2 and Z3 4.3.1 for Mac OSX 10.7.3 and 64-bits Linux.



Figure 1 shows Formula 1 as a sequent in PVS. The double hash symbol
“##” is the inclusion operator of closed intervals, which are denoted using the
parenthesis operator “[| |]”. The sequent, which consists of one universally-
quantified formula in the consequent, is automatically discharged by the proof
strategy metit in less than one second. The strategy uses PVS’ internal utilities
to parse the sequent. If the sequent is recognized as a set of first order formulas
involving real numbers, the strategy translates the sequent into a TPTP6 formula
and submits it to MetiTarski. If MetiTarski returns SZS status Theorem, the
result is trusted by PVS and the sequent is closed. If MetiTarski returns SZS
status Timeout or SZS status GaveUp then the sequent in question is returned
back to PVS unchanged. Application of other proof strategies would be required
at this stage.

|-------

{1} FORALL (v, phi:real): abs(phi) <= 35 AND v ## [|200, 250|] IMPLIES

abs(180*9.8*tan(phi*pi/180)/(pi*v*0.514)) < 3.825

Rule? (metit)

Metitarski Input =

fof(pvs2metit,conjecture, (![V1, PHI2]: (((abs(PHI2) <= 35) & (200 <=

V1 & V1 <= 250)) => (abs((((180*(98/10))*tan(((PHI2*pi)/180)))/((pi*V1)

*(514/1000)))) < (3825/1000))))).

SZS status Theorem for tr_35.tptp

Processor time: 0.680 = 0.184 (Metis) + 0.496 (RCF)

Trusted source: MetiTarski.

Q.E.D.

Fig. 1. Automated proof of Formula 1 using metit

Although universally-quantified real-number formulas such as Formula 1 oc-
cur in the verification of complex systems, a more common use case for the
strategy metit is in the context of an interactive proof of a large theorem where
multiple formulas appear in a sequent. The strategy metit only deals with se-
quents that are sets of first order formulas containing real-number inequalities
between transcendental and special functions. However, the user may optionally
specify formulas of interest in a given sequent. Other formulas in the sequent
will be ignored by the strategy.

Moreover, in an interactive theorem prover such as PVS, sequent formulas
may also involve data structures such as records, arrays, tuples, and abstract data
types. For example, the sequent in Figure 2 appears in a lemma that characterizes

6 The TPTP format is used by the Thousands of Problems for Theorem Provers library
(http://www.cs.miami.edu/˜tptp.)



aircraft trajectories that are repulsive.7 This sequent consists of 12 antecedent
formulas and one consequent formula. All of the formulas are quantifier-free, but
free-variables (Skolem constants, in PVS terminology) occurring in the sequent
can be understood as universally-quantified variables. In addition to the real
variable eps, this sequent involves record variables v, rd, dv, and mps, which
represent vectors in a 2-D Euclidean space.

The strategy metit does not directly deal with data structures. However,
it recognizes that an expression such as v‘x, which accesses the field x of 2-D
vector variable v, denotes a real-number variable. Hence, the strategy appropri-
ately translates record and tuple access expressions as variables in the TPTP
syntax. Furthermore, the strategy metit allows the user to specify the formulas
of interest that are to be sent to MetiTarski. The proof command (metit *),
where the asterisk symbol “*” specifies all formulas in the sequent, translates
the 13 formulas of the sequent into a TPTP formula involving 9 variables. This
particular TPTP formula is discharged by MetiTarski in less than 0.2 seconds.

Further analysis of the sequent in Figure 2 reveals that all the formulas in the
sequent are necessary to discharge it. For example, the proof command (metit

(^ -1)), where (^ -1) denotes all formulas in the sequent but the first one in
the antecedent, does not succeed to prove the sequent. In total, the proof of the
lemma where this particular sequent appears requires 171 invocations of metit
and, including all the other proof rules, the lemma is proved in 37 seconds. The
largest sequent discharged by metit in this proof involves 13 variables. It is
important to note that none of these sequents can be discharged by any other
automated strategies available to PVS.

The use case for the PVS strategy metit is ideally for lemmas containing
transcendental functions and special functions. However proofs of purely poly-
nomial problems can also take advantage of the integration of PVS, MetiTarski,
and Z3. What distinguishes Z3 from other state-of-the-art SMT solvers is that
its proof heuristics for non-linear real arithmetic are customizable through a
strategy language. MetiTarski itself also implements its own set of strategies
that work in combination with those of Z3.

3 Results and Conclusion

To test the capabilities of the integration of MetiTarski with PVS, the proof
strategy metit was run on the suite of examples from the PVS contribution
interval arith.8 These examples involve trigonometric and other special func-
tions, which are not supported by the strategy bernstein. The experiments were
run on an Intel Core2Duo 2.4GHz processor with 4GB of RAM. The results are

7 Lemma repulsive criteria iterative reduces seq divergent special of theory
repulsive iterative in the contribution ACCoRD of the NASA PVS Library. Thanks
to Anthony Narkawicz, NASA Langley, for providing this example.

8 The test suite is available in the theory metit examples in the contribution
MetiTarski of the NASA PVS Library.



repulsive_criteria_iterative_reduces_seq_divergent_special.3.1.1.1 :

[-1] eps = 1 OR eps = -1

[-2] v`y*eps <= 0

[-3] rd`y*eps < 0

[-4] ((v`x = 0 AND v`y = 0) IMPLIES rd`x >= 0)

[-5] ((v`x /= 0 OR v`y /= 0) IMPLIES rd`x > v`x)

[-6] rd`x*v`y*eps-rd`y*v`x*eps <= 0

[-7] mps`y*eps+rd`y*eps < 0

[-8] v`x >= 0

[-9] (dv`x /= 0 OR dv`y /= 0)

[-10] mps`x*rd`y*eps-mps`y*rd`x*eps <= 0

[-11] -1*(dv`x*mps`y*eps)-dv`x*rd`y*eps+ dv`y*mps`x*eps+dv`y*rd`x*eps < 0

[-12] ((rd`x*mps`x+rd`x*rd`x+rd`y*mps`y+rd`y*rd`y < 0 AND

dv`x*rd`y*eps-dv`y*rd`x*eps < 0) OR (rd`x*mps`x+rd`x*rd`x+

rd`y*mps`y+rd`y*rd`y >= 0 AND dv`x*mps`x+dv`x*rd`x+dv`y*mps`y+

dv`y*rd`y > rd`x*mps`x+rd`x*rd`x+rd`y*mps`y+rd`y*rd`y

AND dv`x*rd`y*eps-dv`y*rd`x*eps <= 0))

|-------

[1] (dv`x /= 0 OR dv`y /= 0) AND dv`y*eps < 0 AND ((v`x = 0 AND v`y = 0)

IMPLIES dv`x >= 0) AND ((v`x /= 0 OR v`y /= 0) IMPLIES dv`x > v`x)

AND dv`x*v`y*eps-dv`y*v`x*eps <= 0

Fig. 2. Sequent involving 13 formulas and 9 variables

displayed in Table 1. Each row is a separate attempt to prove the specified lem-
mas. The next two columns each list the total proof time for the respective proof
strategy. On average, the speed up to proof times was on the factor of 18. In an
interactive proof where multiple sub-problems of the type listed in Table 1 occur,
the potential reduction in overall proof time is substantial. However, it should
be noted that while interval is a proof-producing strategy, i.e., interval pre-
serves the soundness of the PVS proof system, metit integrates MetiTarski and
its RCF decision methods as trusted oracles into the PVS theorem prover.

Proving theorems over the reals with proof assistants such as PVS can require
a significant amount of manual and computational effort. Sending difficult sub-
problems to trusted oracles is an accepted method for decreasing proof times.
Since MetiTarski uses several external arithmetic decision methods (Mathemat-
ica, QEPCAD or Z3) itself for deciding the satisfiability of RCF sentences, the
strategy metit greatly expands the number of options available to PVS for au-
tomatically dealing with problems from the theory of the reals. Experiments
show that the new strategy is considerably better than other methods currently
available to PVS for closing sequents containing real-valued functions.

For a certification environment, where external oracles may not be allowed,
the PVS development includes several means to disable trusted strategies. For
instance, metit has no effect on any theory that imports MetiTarski@Disable.
Furthermore, the Emacs command M-x disable-oracle MetiTarski temporar-



Lemma interval (s) metit (s) Speed up

sqrt23 1.39 0.154 9.27
sin6sqrt 1.76 0.120 14.67
sqrtx3 1.65 0.195 8.46
tr 35 1.97 0.680 2.77
tr 35 le 1.87 0.113 16.55
A and S 1.38 0.036 38.30
atan implementation 2.55 0.154 16.56
ex1 ba 1.59 0.073 21.78
ex2 ba 1.51 0.049 30.82
ex3 ba 1.65 0.059 27.97
ex4 ba 1.71 0.078 21.92
ex5 ba 1.84 0.075 24.53
ex6 ba 1.60 0.105 15.24
ex7 ba 1.54 0.111 13.87

Table 1. Interval vs metit strategy run-times

ily disables the strategy during a PVS session and the proveit option -disable

MetiTarski disables the strategy while reproving a PVS theory in batch mode.
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