
CopyrightbyJoohyung Lee2005

The Dissertation Committee for Joohyung Leeerti�es that this is the approved version of the following dissertation:
Automated Reasoning about Ations

Committee:Vladimir Lifshitz, SupervisorRobert S. BoyerBrue W. PorterPeter StoneHudson Turner

Automated Reasoning about AtionsbyJoohyung Lee, B.S.
DissertationPresented to the Faulty of the Graduate Shool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDotor of Philosophy

The University of Texas at AustinMay 2005

To my family

Aknowledgments
Deepest thanks from the bottom of my heart to my advisor Vladimir Lifshitz for hisontinuous support and enouragement throughout this work. He has been patientlylistening to my immature thoughts and has taught me how to think. His way ofonduting researh and aring others is exemplary that I will ontinue to strive toemulate. Thanks also to Elena Lifshitz for valuable advie and are for my wifeand me.I am also thankful to the other members of the ommittee: Robert S. Boyer,Brue W. Porter, Peter Stone and Hudson Turner for areful reading of the disser-tation and useful omments on it.I have bene�ted from many disussions with teahers and friends. Thanks toall of them inluding Chitta Baral, Jonathan Campbell, Esra Erdem, Selim Erdo�gan,Paolo Ferraris, Mihael Gelfond, Yuliya Lierler, Fangzhen Lin, Maro Maratea, Wan-wan Ren and Hudson.I have relied on Yoonsuk Choe, Wongeun Chung, Yang-Suk Kee, SeunghanKim, Roberto E. Lopez-Herrejon and Jungkun Seo when I needed to make diÆultdeisions, and I am grateful to them for their thoughtful advie. I am also thankfulto Guru Huhahar, Eunjin Jung, Madhusudan Kayastha, Hyunok Oh, Chun-Yenv

Wang, the members of the Texas Ation Group at Austin, friends from the depart-ment of omputer sienes, friends from the Korean Baptist Churh of Austin, andfriends from Korea for their support and friendship.I was partially supported by a fellowship from the Korea Foundation forAdvaned Studies, and I am thankful for it. My researh was also partially supportedby NSF under Grant IIS-9732744 and Grant IIS-0412907, and the Texas HigherEduation Coordinating Board under Grant 003658-0322-2001.I thank my God who loves me without ever stopping. I thank my parentsSoo-Ung Lee and Chun-Hee Kim, my parents-in-law Jin Gyu Park and Sun HeeSuh, my brother Changhyung Lee and my sister-in-law Chae Yon Park for theirlove and support. My deepest love goes to my wife with whom I share everythingand to our �rst baby who is yet in his mom's womb.
Joohyung LeeThe University of Texas at AustinMay 2005

vi

Automated Reasoning about AtionsPubliation No.Joohyung Lee, Ph.D.The University of Texas at Austin, 2005Supervisor: Vladimir Lifshitz
The study of reasoning about ations is an important subarea of the theoryof ommonsense reasoning. It is onerned with developing appropriate systems oflogi for desribing ations and their e�ets on the world. In spite of the fat that thisreasoning is based on ommon sense and does not involve any speialized knowledge,attempts to formalize it using lassial logi enountered serious diÆulties, whihhave led to the emergene of a new �eld, nonmonotoni logis.In partiular, MCain and Turner introdued the ausal logi in whih thenotions of \being aused" and \being true" are distinguished. Based on their logi,Giunhiglia and Lifshitz proposed a high level ation language C, whih is a formalmodel of parts of natural language that are used for desribing properties of ations.The ausal logi and C, along with the onept of satis�ability planning, provided uswith a widely appliable and eÆient method of automated reasoning about ations,whih led to the reation of the Causal Calulator (CCal).vii

In this dissertation, we have identi�ed several essential limitations of theMCain{Turner ausal logi and ation language C. To overome these limitations,we de�ned an extension of the ausal logi to multi-valued formulas and a newation language C+. Language C+ an represent non-propositional uents, de�neduents, additive uents, rigid onstants, and defeasible ausal laws. Seond, wehave redesigned and reimplemented CCal to aount for these extensions, andtested the new CCal and the underlying theory by applying them to several new,more diÆult examples of ommonsense reasoning. The input language of the newCCal is more elaboration tolerant than the old version. Last, we have shown howto turn ausal logi into propositional logi based on the idea of \loop formulas"that originated from logi programming under the answer set semantis.

viii

Table of Contents
Aknowledgments vAbstrat viiList of Figures xvChapter 1 Introdution 1Chapter 2 Bakground 62.1 Problems in Formal Reasoning about Ations 72.2 Nonmonotoni Reasoning . 82.3 Nonmonotoni Theories of Causality 102.4 Ation Languages . 112.5 Elaboration Tolerane . 122.6 SAT solvers . 14Chapter 3 Logi Programs and the MCain{Turner Causal Logi 173.1 Answer Set Semantis for Normal Programs 183.2 Completion . 20ix

3.3 The MCain{Turner Causal Logi 203.4 Literal Completion . 233.5 The Causal Calulator (CCal) . 25Chapter 4 Ation Language C and the Causal Calulator 274.1 Language C . 274.1.1 Syntax . 274.1.2 Semantis . 294.1.3 States and Transitions . 324.2 Examples . 344.2.1 Monkey and Bananas . 344.2.2 Bloks World . 384.3 Language of the Causal Calulator 394.3.1 Monkey and Bananas in the Language of CCal 404.3.2 Bloks World in the Language of CCal 45Chapter 5 New Extensions of Earlier Work 495.1 Multi-valued Fluents . 495.2 Elaborating Ations by Attributes 505.3 De�ning New Fluents . 515.4 Rigid Constants . 525.5 Defeasible Causal Laws . 535.6 Additive Fluents . 545.7 Nonde�nite Causal Theories . 565.8 Extending CCal . 57x

Chapter 6 Multi-valued Causal Logi, Ation Language C+ and CCal 2.0 606.1 Multi-valued Causal Logi . 606.1.1 Multi-valued Formulas . 606.1.2 Multi-valued Causal Logi . 626.1.3 Multi-valued Completion . 646.2 Ation Language C+ . 666.2.1 Syntax of C+ . 666.2.2 Semantis of C+ . 666.2.3 Statially Determined Fluents 686.2.4 Defeasible Causal Laws . 696.2.5 Solving the Quali�ation Problem in C+ 716.2.6 Rigid Constants . 736.2.7 Ation Attributes . 756.3 Comparison with ADL . 766.4 Eliminating Multi-valued Constants 796.4.1 Eliminating Multi-valued Constants from Formulas 796.4.2 Eliminating Multi-valued Constants from Causal Theories . . 806.4.3 Eliminating Multi-valued Constants from C+ 816.5 CCal 2.0 . 826.6 Proving the Unsolvability of Planning Problems in CCal 876.7 Proofs . 91Chapter 7 Representing the Zoo World in the Language of the CausalCalulator 1047.1 Introdution . 104xi

7.2 The Desription of the Zoo World 1067.3 More on the Language of the Causal Calulator 1107.4 Formalization of the Zoo World . 1117.5 Testing . 124Chapter 8 Desribing Additive Fluents and Ations in C+ 1298.1 Conurrent Exeution of Ations in C+ 1298.2 Inrement Laws . 1318.3 Translating Inrement Laws . 1348.4 Reasoning about Money . 1388.5 Reasoning about Motion . 1428.6 Additive Ation Constants . 1468.7 Improving Plans . 1488.8 Properties of Additive Constants . 1528.9 Disussion . 1558.10 Proofs . 156Chapter 9 Elaborations of the Missionaries and Cannibals Puzzle 1599.1 Formalization of the Basi Problem 1609.2 Two Boats . 1649.3 Four Missionaries and Four Cannibals 1679.4 Boat Can Carry Three . 1679.5 Converting Cannibals . 1699.6 Walking on Water . 1709.7 The Bridge . 172xii

Chapter 10 Loop Formulas for Causal Logi 17410.1 Review of the Lin/Zhao Theorem . 17410.2 Loop Formulas for Causal Theories in Canonial Form 17710.2.1 Main Theorem for Canonial Theories 17710.2.2 Completion and Tight Causal Theories 18210.2.3 Turning Nonde�nite Theories into De�nite Theories 18310.2.4 Transitive Closure . 18610.3 Loop Formulas for Arbitrary Causal Theories 18810.4 Proofs . 19110.4.1 Proof of Proposition 14 . 19110.4.2 Proof of Theorem 3 . 19210.4.3 Proof of the Main Lemma . 193Chapter 11 Splitting Causal Theories 19611.1 Splitting Set Theorem for Causal Logi 19611.2 Proof of Proposition 4 . 19811.3 Related Work . 19911.4 Proof of the Splitting Set Theorem 200Chapter 12 Conlusion 20312.1 Summary of Contributions . 20312.2 Topis for Future Work . 204Appendix A Solutions for Elaborations of MCP found by CCal 207A.1 Solution for the Basi Problem . 207A.2 Solution for Two Boats . 210xiii

A.3 Solution for Four Missionaries and Four Cannibals 212A.4 Solution for the Boat Carrying Three 213A.4.1 Five Pairs . 213A.4.2 Six Pairs . 215A.5 Solution for Converting Cannibals 217A.6 Solution for Walking on Water . 219A.7 Solution for the Bridge . 221Bibliography 223Vita 233

xiv

List of Figures
4.1 The transition system desribed by SD 324.2 The Bloks World|A planning problem 394.3 Monkey and Bananas in the language of CCal|Delarations . . . 414.4 Monkey and Bananas in the language of CCal|Causal laws . . . 424.5 Monkey and Bananas in the language of CCal|Planning problem 434.6 Bloks World in the language of CCal 464.7 A Bloks World planning problem 475.1 Formalization of Two Gears in C . 586.1 Monkey and Bananas in the language of the new CCal|Delarations 846.2 Monkey and Bananas in the language of the new CCal|Causal laws 856.3 Monkey and Bananas in the language of the new CCal|Planningproblem . 866.4 Bloks World in the language of the new CCal 886.5 A query in the Bloks World with four bloks 896.6 De�nition of neighbor . 906.7 Four missionaries and four annibals|Unsolvable problem 92xv

7.1 A zoo landsape . 1258.1 A transition system . 1308.2 An ation desription in extended C+ 1338.3 The transition system desribed by Figure 8.2 1338.4 The result of translating inrement laws from Figure 8.2 1368.5 The desription from Figure 8.2 in the language of CCal 1388.6 File buying: Buying and selling . 1398.7 File buying-test: Do I have enough ash? 1408.8 File spaeraft: The spaeraft Integer 1448.9 File spaeraft-test: How to get there? 1458.10 A transition system with an additive ation onstant 1478.11 File bw-ost: Computing the ost of a plan 1498.12 File: bw-ost-test: Finding an eonomial solution to large. . . . 1508.13 Trade-o� between length and ost in solutions to large. 15210.1 The dependeny graph of �1 . 17510.2 The head dependeny graphs of T2, T3 178

xvi

Chapter 1
Introdution

For a long time humans have been extending their abilities via their own inventions.Mehanial devies have been developed to ful�ll part of the dream. Ever sineomputers were �rst built, the dream has geared its way to more intelligent tasks.One a task was well studied to automate, the use of omputers beame essential.As we learn how to build systems for doing suh tasks, omputers seemto beome more \intelligent." However, there are many human abilities that stillannot be automated using the knowledge that we have: how an we build a systemthat an understand and speak a natural language as well as a human (The NaturalLanguage Problem), how an we build a system that an see as well as a human(The Vision Problem), to list a few.The ability to reason is also one of them. The intelletual mehanisms in-volved in reasoning are not well understood, even1 in the ases when reasoningis based on ommon sense and does not involve any speialized knowledge. In-deed, everyday life is full of ommonsense problems, but a human has no diÆ-1Or one might say, espeially. 1

ulty solving them. However, we have little idea how a human's reasoning meh-anism works, let alone how to automate it. Even a simple-minded person aneasily devise a ommonsense problem that would be a onsiderable hallenge toresearhers in this area. For instanes of ommonsense problems that have parti-ularly interested researhers, one may onsult the Common Sense Problem Page(http://www-formal.stanford.edu/leora/s). A monograph by Davis [1990℄ontains a survey of various topis in this area.For instane, the following are a few instanes of problems we want to solveautomatially:� Monkey and Bananas There is a monkey in a room that ontains a boxand a bunh of bananas hanging from the eiling. The bananas are beyondhis reah, but if he limbs onto the box, he would be able to grasp it. Howan a monkey grasp the bananas?� Missionaries and Cannibals Three missionaries and three annibals ometo a river and �nd a boat that holds two. If the annibals ever outnumber themissionaries on either bank, the missionaries will be eaten. How shall theyross?� Getting to the Airport I am seated at my desk at home and my ar is athome also. How an I get to the airport [MCarthy, 1959℄? 2Many AI researhers have been trying to endow omputers with intelligenethrough formal logi. However, their �rst attempts were not suessful beausetheories based on lassial logi were not adequate for solving ommonsense prob-2This is the oldest planning problem in the AI literature.2

lems. It was a new hallenge that logiians had been ignorant of, but one that AIresearhers had to onfront to ful�ll their dream.One of the most fundamental diÆulties was that all systems of logis knownat the time were monotoni: if a onlusion is derivable from a set of axioms, then itis still derivable even after adding more axioms. We may use the same old derivationwhih does not inlude additional axioms. Monotoniity is natural in usual mathe-matis. However, it is not desirable in formalizing ommonsense reasoning, where aonlusion may no longer be derivable when we add new assumptions. For instane,a onlusion that is based on assumptions suh as \normally, the ar is drivable"may be retrated later under ertain exeptional irumstanes suh as \there is nogas in the ar," and then we may get a totally di�erent onlusion. This may oneagain be retrated if we are told that \the ar is run by eletriity, and it has enoughof it." Still the new onlusion an be retrated one again if we are told that \it isa toy ar." It appears that one an ontinue to build an arbitrarily long sequeneof exeptions to any ommonsense onlusion.Despite this fat, humans have no diÆulty drawing a onlusion. In asense, humans' reasoning may involve jumping to a onlusion. For instane, whenwe hear that there is a ar in the garage, we jump to a onlusion that the ar anbe used to drive. Suh a onlusion an be retrated in the presene of additionalinformation that defeats the assumptions on whih the onlusion was based. Logisthat have this property are alled nonmonotoni logis and they were proposed byAI researhers in the early 1980's. The formalism we propose in this dissertation isalso nonmonotoni.Although signi�ant progress has been made in the last deade, the theory3

of ommonsense reasoning is still far from being omplete. In this dissertation, wefous on the subarea alled reasoning about ations, in whih we are onerned withthe formalization and automation of reasoning about the e�ets of ations. By anation we mean anything that an be exeuted, and then may a�et the state ofthe world. In fat, one an see that all three examples above involve ations. Theseations are� walking, pushing the box, limbing onto the box, and grasping the bananas� rossing the river� walking and drivingrespetively. Walking hanges the loation of the monkey; limbing onto the boxhanges the status of being on the box; rossing the river a�ets the number ofpeople on eah bank, et.The automation of ommonsense reasoning about ations is the subjet ofthis dissertation. Our work is based on a few suesses in the last deade. In par-tiular, MCain and Turner introdued a nonmonotoni ausal logi [MCain andTurner, 1997℄, in whih the notions of \being aused" and \being true" are distin-guished. Based on it, Giunhiglia and Lifshitz proposed a high level ation languageC, whih is a formal model of parts of natural language that are used for desribingproperties of ations. The ausal logi and C, along with the onept of satis�abilityplanning, provided a widely appliable and eÆient method of automated reasoningabout ations, whih led to the reation of the Causal Calulator (CCal).In this dissertation, we have identi�ed several essential limitations of theMCain{Turner ausal logi and ation language C. To overome these limitations,4

we de�ned an extension of the ausal logi to multi-valued formulas and a newation language C+. Language C+ an represent non-propositional uents, de�neduents, additive uents, rigid onstants, and defeasible ausal laws. Seond, wehave redesigned and reimplemented CCal to aount for these extensions, andtested the new CCal and the underlying theory by applying them to several new,more diÆult examples of ommonsense reasoning. Last, we have shown how toturn ausal logi into propositional logi based on the idea of \loop formulas" thatoriginated from logi programming under the answer set semantis.After reviewing earlier work on the formalization and automation of reason-ing about ations in Chapters 2{4, we disuss the need to extend the MCain{Turnerausal logi, language C and an early version of CCal in Chapter 5. In Chapter 6we present an extension of the MCain{Turner ausal logi alled multi-valued ausallogi, a new ation language C+, and the new version of CCal that overome thelimitations, and relate C+ to the language ADL from [Pednault, 1994℄. In Chapter 7we test expressive possibilities of C+ and CCal by formalizing an ation domainof nontrivial size. We identify a lass of uents that we all additive and show howC+ an be used to talk about the e�ets of ations on suh uents in Chapter 8. InChapter 9 we formalize MCarthy's elaborations of the Missionaries and CannibalsPuzzle in the language of the new CCal. We show how to turn ausal logi intopropositional logi using the idea of loop formulas in Chapter 10, and apply loopformulas to the problem of splitting a ausal theory in Chapter 11.
5

Chapter 2
Bakground

In his lassi paper [MCarthy, 1959℄, MCarthy proposed to reate a softwaresystem that he alled the advie taker. The system is supposed to draw relevantonlusions from the set of premises, mainly in the form of delarative sentenes, de-sribing a domain of onsideration. If the information stored in the system needs tobe hanged, extended or deleted, that should be done by just updating the premises,rather than by rewriting the system's internal ode. Moreover, heuristis should alsobe introdued by delarative sentenes. The airport problem mentioned in Chap-ter 1 was the example used in the paper to explain this idea. The system is expetedto generate the plan of getting to the airport given a delarative desription of theproblem.The idea of the advie taker was new, and there were many details to belari�ed; many serious diÆulties were identi�ed later. In the ourse of disussion,Bar-Hillel ommented, \Dr. MCarthy's paper belongs in the Journal of Half-BakedIdeas." Even now, more than 40 years later, the idea is still being baked. However,6

we have seen muh progress. Reently, CCal was applied to solving the airportproblem [Lifshitz et al., 2000℄. In this hapter, we present how the researh in thisarea has evolved.2.1 Problems in Formal Reasoning about AtionsIt seems natural to hoose formal logi as a vehile for representing ommonsenseknowledge due to its preise and delarative semantis. Hayes [1977℄ pointed outthat a logial model theory provides aounts for the meaning of a representa-tion or representational language and helps us ompare di�erent representations orlanguages. Researhers hoped that a omputer would be able to derive relevantonlusion from properly axiomatized knowledge.But soon serious diÆulties with formal logi were reognized. Some of theproblems were due to the implausible number of axioms that were required. Themost important one is the frame problem, whih was �rst identi�ed in [MCarthyand Hayes, 1969℄. The problem is how to represent what remains unhanged afterexeuting an ation. Axiomatizers have to desribe not only the things that hange,but also the things that do not hange; without that, one would not be able to drawmany useful onlusions. The diÆulty is that, in ommonsense domains, thereare too many things that do not hange, and enumerating all of them would notbe feasible (it looks also non-ommonsensial to have to enumerate them all). Forinstane, when we desribe an ation of walking to the ar, we also need to list allthings that do not move: the desk, the ar, the airport, the house and so on.The frame problem beomes more diÆult in the presene of indiret e�etsof an ation. The problem of desribing indiret e�ets of an ation is alled the7

rami�ation problem [Finger, 1986℄. For instane, if I drive to the airport, not onlymy loation and the loation of the ar hange, but also the loations of things inmy poket and the trunk hange. Enumerating all indiret e�ets is also tedious.2.2 Nonmonotoni ReasoningIt was observed that the diÆulties with formal logi desribed above are related tothe fat that lassial logi is monotoni: for any sets of premises A and B suh thatA � B, if a sentene F follows from A, then F follows from B also. In other words,every onlusion that an be derived from A is also derivable from B. This is not de-sirable in ommonsense reasoning: as disussed in the introdution, when additionalassumptions are made, some of the onlusions may need to be retrated. This wasa hallenge to AI researhers, and several systems of nonmonotoni reasoning wereinvented in response.A 1980 issue of the journal of Arti�ial Intelligene presented three formsof nonmonotoni reasoning: irumsription by MCarthy [1980℄, default logi byReiter [1980℄, and a nonmonotoni logi by MDermott and Doyle [1980℄. The on-ept of irumsription was extended in [MCarthy, 1986℄, and an inuential modalnonmonotoni logi alled autoepistemi logi was introdued by Moore [1985℄.Every system of nonmonotoni reasoning provides a method for representing\defaults." One partiularly important default is the ommonsense law of inertia,whih says that everything tends to remain as it was. Formalizing this idea wasreognized as a key to solving the frame problem.While the earlier forms of nonmonotoni reasoning were going through re-�nements and improvements, in 1987, Hanks and MDermott hallenged the re-8

searh ommunity by arguing that formal logi is no good for representing om-monsense knowledge. As an example, they presented the so-alled \Yale shootingproblem" [Hanks and MDermott, 1987℄, where MCarthy's revised form of irum-sription [MCarthy, 1986℄ ould not aount for a simple fat.There is a gun and a person (in some versions, a turkey) whose nameis Fred. If the gun is loaded, shooting it kills Fred. Now onsider thefollowing senario. Initially Fred was alive, and the gun was not loaded.Next the gun is loaded, and after waiting, the gun is shot. Is Fred dead?Intuitively, the answer should be yes. However, MCarthy's 1986 proposalould not justify this. It left open the possibility that the gun gets unloaded byitself during the exeution of the wait ation.The failure disouraged some AI researhers and made them abandon thelogiist approah to ommonsense reasoning. But others ontinued to extend thesystems of logi and ame up with various solutions in response to the hallenge.Some of them are [Lifshitz, 1987℄, [Morris, 1988℄, [Gelfond, 1989℄, [Baker, 1991℄and [Lifshitz, 1991℄.Logi programming beame a member of the family of nonmonotoni rea-soning systems one the semantis of \negation as failure" was lari�ed. Among thesemantis, inuential are the ompletion semantis [Clark, 1978℄, the well-foundedsemantis [Van Gelder et al., 1991℄, and the stable model or the answer set seman-tis [Gelfond and Lifshitz, 1988℄. Gelfond [1987℄ showed how to translate logiprograms into autoepistemi logi. Solutions to the Yale Shooting problem usinglogi programs are desribed in [Eshghi and Kowalski, 1989℄, [Evans, 1989℄, [Aptand Bezem, 1990℄. 9

2.3 Nonmonotoni Theories of CausalityCausality has been a major subjet of study by philosophers from the anient times 1,and now it is studied in AI as well.In the natural sienes, the distintion between a material impliation (\IfA holds, then B holds") and a ausal relation (\A auses B") is ommonly disre-garded. Suh distintion, however, turned out to be quite useful in ommonsensereasoning. As a result, nonmonotoni theories based on ausality reeived onsider-able attention.Pearl [1988℄ investigated the distintion between ausal and non-ausal groundsin general default reasoning. Ge�ner [1990℄ introdued a modal operator for rep-resenting ausality. Lin [1995℄ introdued the prediate Caused ; his proposal madeit possible to onveniently express the indiret e�ets of an ation, as well as thediret e�ets, using irumsription.Later, MCain and Turner [1997℄ introdued a ausal logi in whih thenotions of \being aused" and \being true" are distinguished using expressions ofthe form F (G (2.1)where F and G are propositional formulas. Intuitively (2.1) is understood as theassertion that F is aused if G holds. The semantis of the ausal logi is basedon \the priniple of universal ausation," whih says that every fat that obtainsis aused. This strong philosophial ommitment is rewarded by the mathematialsimpliity in the semantis. Universal Causal Logi (UCL) [Turner, 1999℄ extends1Aristotle enumerated four kinds of auses: the material, the formal, the eÆient, and the�nal. Rene Desartes, David Hume, Immanuel Kant, and John Stuart Mill were also among thephilosophers who studied ausality. 10

the language of ausal theories to a modal framework. Although the syntax ofGe�ner's theory and UCL are similar, their semantis are not, and there seems tobe no preise relationship between them. The semantis of MCain and Turner'sausal logi is losely related to that of logi programming under the answer setsemantis.The systems proposed by Ge�ner, Lin, MCain and Turner allow us to ex-press \stati ausal laws"|ausal dependenies between uents. This is essentialfor solving the rami�ation problem.2.4 Ation LanguagesAtion languages [Gelfond and Lifshitz, 1998℄ are formal models of parts of naturallanguage that are used for desribing the e�ets of ations. They de�ne \transitionsystems"|direted graphs whose verties orrespond to states and whose edges arelabeled by ations. Originally, ation languages were developed to represent theproperties of ations in a high level notation. Their simple but onise syntax helpsus ompare them and improve our understanding of reasoning about ations.The STRIPS language [Fikes and Nilsson, 1971℄ is not an ation languagein the sense of [Gelfond and Lifshitz, 1998℄, but is losely related. Despite itslimited expressivity and semanti pitfalls [Lifshitz, 1987℄, STRIPS's inuene hasbeen signi�ant for two reasons: the language provides a built-in solution to theframe problem; eÆient omputation an be arried out by employing a resolutiontheorem prover in �nding a sequene of STRIPS operators that leads to a worldmodel in whih a given goal formula is true.Many extensions that improve the expressive power of STRIPS were pro-11

posed. Pednault's ADL [Pednault, 1994℄ extended STRIPS by allowing symbolsfor non-propositional uents and onditional e�ets of ations. Gelfond and Lif-shitz [1993℄ introdued language A (whih is essentially the propositional fragmentof ADL) and related it to logi programming. Similar results for a language thatpermits the onurrent exeution of ations were proved in [Baral and Gelfond,1997℄, and for a language with stati ausal laws in [Turner, 1997℄. That work,along with the theory of nonmonotoni ausal reasoning presented in [MCain andTurner, 1997℄, has led to the design of language C [Giunhiglia and Lifshitz, 1998℄,whih is a basis of the ation language C+ that we present in this dissertation.2.5 Elaboration ToleraneMCarthy [1998℄ expressed the view that human-level AI would require what healled elaboration tolerane:A formalism is elaboration tolerant to the extent that it is onvenientto modify a set of fats expressed in the formalism to take into aountnew phenomena or hanged irumstanes. Representations of infor-mation in natural language have good elaboration tolerane when usedwith human bakground knowledge. Human-level AI will require rep-resentations with muh more elaboration tolerane than those used bypresent AI programs, beause human-level AI needs to be able to takenew phenomena into aount.The simplest kind of elaboration is the addition of new formulas. Nextomes hanging the values of parameters. Adding new arguments to12

funtions and prediates represents more of a hange.In the paper MCarthy illustrated the idea by de�ning 19 variants of theMissionaries and Cannibals Puzzle (MCP). Here are some of his elaborations:� The boat an arry three.� There is an oar on eah bank.� Only one missionary and one annibal an row.� The biggest annibal annot �t in the boat with another person.� If the biggest annibal is isolated with the smallest missionary, the latter willbe eaten.� Three missionaries along with a annibal an onvert him into a missionary.� There is a bridge.� The boat leaks and must be bailed onurrently with rowing.� There is an island.� There are four annibals and four missionaries, but if the strongest of themissionaries rows fast enough, the annibals won't have gotten so hungry thatthey will eat the missionaries.When humans are told about the elaborations above, they understand thehanges using their bakground knowledge expressed in natural language withouthaving to start from srath. 13

Lifshitz [2000℄ showed how to formalize the ten elaborations of MCP abovein the language of CCal. Instead of formalizing eah elaboration from srath,he \fatored out" their ommon part; eah formalization of an elaboration does notmodify the ommon part, but just adds to it a few propositions that express thehange. This is the simplest kind of elaboration that MCarthy disussed. CCalhas determined the shortest number of steps to solve eah elaboration and showedthe solution.2.6 SAT solversSATISFIABILITY (or SAT for short) is the problem of determining whether agiven Boolean expression in onjuntive normal form is satis�able. This is the �rstproblem proven to be NP-omplete [Cook, 1971℄.Systems that solve instanes of this problem are alled SAT solvers. Manyof them are based on an algorithm due to Davis, Logemann and Loveland [1962℄.Various tehniques suh as intelligent baktraking, learning, bakjumping and arapid restart strategy have been used to improve the eÆieny of SAT solvers. Atthe time of this writing, hundreds of thousands of atoms, and millions of lauses anbe handled reasonably well in many ases.Sine various problems an be ast as propositional theories, SAT solversare widely applied. In \satis�ability planning" [Kautz and Selman, 1992℄ a plan-ning problem is enoded as a propositional theory so that a model of the theoryorresponds to a plan|a sequene of ations|that leads to a goal state from aninitial state. The plan an be found by running a SAT solver. Blakbox 2 is a2http://www.s.washington.edu/homes/kautz/blakbox .14

planning system that onverts a STRIPS formalization of a planning problem intoa propositional theory, and then �nds its models using SAT solvers.SAT solvers have many appliations to areas other than reasoning about a-tion. For instane, they have been applied to the formal veri�ation of hardwaresystems with emphasis in Bounded Model Cheking: NuSMV2 3 is a SAT-based sym-boli model heker that turned out to be more eÆient than BDD-based NuSMV;GrAnDe 4 is a theorem prover based on SAT solvers; SAT solvers have been alsoused for �nding attaks to a set of well-known authentiation protools [Armandoand Compagna, 2002℄.Some SAT solvers are omplete, that is, they �nd a model if there existsone, and answer \no" if there is none. Others sari�e ompleteness in return foreÆieny. Most SAT solvers today aept the DIMACS input format. This simpli�esthe e�orts required to test and ompare the solvers. Also systems employing SATsolvers as their searh engines have the exibility of hoosing di�erent solvers. Forinstane, one an run an inomplete solver �rst, and if it does not terminate afterertain time, run a omplete solver. Competitions for SAT solvers are held frequentlyto enourage the reation of more eÆient systems.5Carefully engineered solvers have shown signi�ant speed-up. Cha� [Moskewizet al., 2001; Zhang et al., 2001℄ was designed from the beginning to handle largeformulas from a very spei� area (mostly Bounded Model Cheking) using \lazy"data strutures, and also integrated a new form of learning, taking advantage ofthe overall lazy data strutures used. Cha� outperforms existing SAT solvers on a3http://nusmv.irst.it.it/ .4http://www.s.miami.edu/~tptp/ATPSystems/GrAnDe/ .5For a reent report, onsult http://www.satisfiability.org/SAT04/ .15

large set of \strutured" (as opposed to random) instanes. This eÆieny boost isexpeted to make SAT solvers more widely appliable.

16

Chapter 3
Logi Programs and theMCain{Turner Causal Logi

The underlying nonmonotoni formalism we hoose for formalizing the properties ofations is ausal logi. It is losely related to the answer set semantis (also knownas the stable model semantis) of logi programs by Gelfond and Lifshitz [1988℄,whih has led to a new delarative programming paradigm alled answer set pro-gramming [Lifshitz, 1999; Marek and Truszzy�nski, 1999; Niemel�a, 1999℄.A speial ase of the answer set semantis is losely related to a simplenonmonotoni formalism alled Clark's ompletion [Clark, 1978℄. Completion is at-trative beause it is de�ned as a transformation of logi programs to lassial logi,but it sometimes gives unintuitive results [Przymusinski, 1989, Setion 4.1℄. Theonept of ompletion was extended to ausal logi by MCain and Turner [1997℄,and the relationship between the semantis of ausal logi and ompletion turnedout to be more immediate than the relationship between the answer set semantis17

and ompletion. This idea has led to an eÆient implementation of automatedreasoning about ations.In this hapter we review the answer set semantis and the semantis ofausal logi, and their relationships with ompletion.3.1 Answer Set Semantis for Normal ProgramsWe review the answer set semantis for normal programs [Gelfond and Lifshitz,1988℄. The word atom is understood here as in propositional logi.A (normal) rule is an expression of the formp1 p2; : : : ; pm;not pm+1; : : : ;not pn (3.1)(1 � m � n) where all pi are atoms. Atom p1 is alled the head, and the partp2; : : : ; pm;not pm+1; : : : ;not pnis alled the body of the rule. We will often write (3.1) in the formp1 B;F (3.2)where B is p2; : : : ; pm, and F is not pm+1; : : : ;not pn, and we will sometimes iden-tify B with the set fp2; : : : ; pmg. If the body is empty, then an be dropped.A (normal logi) program is a �nite set of rules of form (3.1).1We say that a set X of atoms satis�es the body B;F of rule (3.2) (symboli-ally, X j= B;F) if p2; : : : ; pm 2 X and pm+1; : : : ; pn =2 X. We say that X satis�esa normal program � (symbolially, X j= �) if, for every rule (3.2) of that program,p1 2 X whenever X satis�es B;F .1In the literature, programs are allowed to ontain in�nitely many rules, but in this dissertation,for simpliity, we restrit attention to �nite programs only.18

Answer sets are de�ned by a �xpoint de�nition. The redut �X of a normalprogram � with respet to a set X of atoms is obtained from � by� deleting eah rule (3.2) suh that X 6j= F , and� replaing eah remaining rule (3.2) by p1 B.A set X of atoms is an answer set of � if X is minimal among the sets of atomsthat satisfy �X .For example, onsider the following program �1:p not qq not pConsider, one by one, all sets formed from the atoms p and q:� X1 = ;. The redut �X11 is fp; qg, whih X1 does not satisfy. Consequently,X1 is not an answer set of �1.� X2 = fpg. The redut �X21 is fpg. Sine X2 is minimal among the sets ofatoms that satisfy the redut, X2 is an answer set of �1.� X3 = fqg. Similarly to the above, the redut �X31 is fqg. Sine X3 is minimalamong the sets of atoms that satisfy �X31 , X3 is an answer set of �1.� X4 = fp; qg. The redut �X41 is ;, whih X4 satis�es, but it is not minimalamong the sets of atoms that satisfy the redut. Consequently, X4 is not ananswer set of �1.Thus we see that X2 and X3 are the only answer sets of �1.19

3.2 CompletionLet � be a program whose rules have the form (3.2). The ompletion of �, Comp(�),onsists of the equivalenes p1 � _p1 B;F 2 �B ^ F (3.3)for all atoms p1 that our in �.2For example, Comp(�1) is p�:qq �:p;whose models are fpg, fqg, whih are the same as the answer sets of �1.Proposition [Erdem and Lifshitz, 2003, Proposition 1℄ For any program � andany set X of atoms, if X is an answer set of � then X is a model of Comp(�).It is well known that the onverse of this proposition does not hold. The one-rule program p p is a standard ounterexample; both ; and fpg are the modelsof Comp(�), but only ; is the answer set of �.Fages [1994℄ showed that if a program is \tight," then the onverse of theproposition holds as well. Erdem and Lifshitz [2003℄ generalized Fages' theoremand extended it to a more general lass of programs.3.3 The MCain{Turner Causal LogiLike logi programs, ausal theories onsist of rules, but they are di�erent in thatheads and bodies are arbitrary formulas in propositional logi. In this sense they are2Completion de�ned here an easily be extended to the ase where rules are allowed to haveempty heads, whih is omitted here for simpliity.20

more \propositional logi friendly" than logi programs. In this setion we reviewthe semantis of ausal logi.A propositional signature is a set of symbols of propositional atoms. Aformula is a propositional ombination of atoms as in propositional logi. An inter-pretation of � is a funtion that maps eah element of � to the truth values.By a (ausal) rule we mean an expression of the formF (G(\F is aused if G holds"), where F , G are formulas in propositional logi of thesignature �. Formula F is alled the head and G is alled the body of the rule.Rules with the head ? are alled onstraints.A ausal theory is a �nite set of ausal rules.Like the semantis of a logi program, the semantis of a ausal theory isgiven by a �xpoint de�nition. Let T be a ausal theory, and I an interpretation ofits signature. The redut T I of T relative to I is the set of the heads of all rulesin T whose bodies are satis�ed by I. We say that I is a model of T if I is the uniquemodel of T I .Intuitively, T I is the set of formulas that are aused, aording to the rulesof T , under interpretation I. If this set has no models or more than one model,then, aording to the de�nition above, I is not onsidered a model of T . If T I hasexatly one model, but that model is di�erent from I, then I is not a model of Teither. The only ase when I is a model of T is when I satis�es every formula inthe redut, and no other interpretation does.If a ausal theory T has a model, we say that it is onsistent, or satis�able.If every model of T satis�es a formula F then we say that T entails F and write21

T j= F .As an example, take the following ausal theory T1 whose signature is fp; qg:p (qq (q:q (:q: (3.4)Consider, one by one, all interpretations of that signature (we identify aninterpretation with the set of literals that are true in it):� I1 = fp; qg. The redut onsists of the heads of the �rst two rules of T1:T I11 = fp; qg. Sine I1 is the unique model of T I11 , it is a model of T1.� I2 = f:p; qg. The redut is the same as above, and I2 is not a model of theredut. Consequently, I2 is not a model of T1.� I3 = fp;:qg. The only element of the redut is the head of the third ruleof T1: T I31 = f:qg. It has two models. Consequently, I3 is not a model of T1.� I4 = f:p;:qg. The redut is the same as above, so that I4 is not a modelof T1 either.Thus we see that I1 is the only model of T1.Consider another example T2 whose signature is again fp; qg:p _ :q (>:p _ q (>:The redut T I2 is equal to the set of the heads of the rules in T2 regardless of theinterpretation I, so that it has two models, fp; qg and f:p;:qg. Therefore, T2 hasno models. 22

T3 is the following theory of the same signature that adds one rule to T2:p _ :q (>:p _ q (>p _ q (>:Similarly to the previous example, T I3 is equal to the set of the heads of the rulesin T3 regardless of the interpretation I. Now f:p;:qg is not a model of T I3 , so thatT3 has one model: fp; qg.Theories T2 and T3 illustrate the nonmonotoniity of ausal logi: we mayget a new model by adding more rules.3.4 Literal CompletionA ausal theory is alled de�nite if the head of every rule in it is either a literal or ?.For a de�nite theory, we an desribe its models in terms of \literal ompletion"[MCain and Turner, 1997℄, whih is similar to Clark's ompletion for normal logiprograms.Consider a de�nite ausal theory T of a signature �. For eah literal l, theliteral ompletion formula for l is the formulal � G1 _ � � � _Gnwhere G1; : : : ; Gn (n � 0) are the bodies of the rules of T with head l. The (literal)ompletion of T is obtained by taking the ompletion formulas for every literal of �,along with the formula :F for eah onstraint ?(F in T .
23

For example, the ompletion of T1 isp� q:p�?q � q:q �:q; (3.5)
and its only model is fp; qg, whih is exatly the model found above using thede�nition of ausal logi.The relationship between ausal logi and ompletion is more immediate thanthe relationship between logi programs and ompletion desribed in Proposition 1from [Erdem and Lifshitz, 2003℄ (Setion 3.2):Proposition [MCain and Turner, 1997℄ The models of a de�nite ausal theoryare preisely the models of its ompletion.However, the method of ompletion is not appliable to nonde�nite theories,suh as T2 and T3.Here are two more examples of the use of ompletion. First, we will showhow to turn any set � of formulas into a ausal theory that has the same modelsas �. The rules of this theory are� l(l for every literal l of �, and� the onstraints ?(:F for every F 2 �.The ompletion of this theory onsists of the formulas l � l for all literals l and theformulas ::F for all F 2 �. Clearly, the ompletion is equivalent to �.24

Seond, de�nite theories an be used to express the \losed-world assump-tion," [Reiter, 1978℄ as follows. Take a signature �. The assumption that theelements of � are false by default an be expressed by the rules:a(:a (a 2 �) (3.6)(if a is false then there is a ause for this). If, for some subset S of �, we ombine (3.6)with the rules a(> (a 2 S);we will get a ausal theory whose only model is the interpretation I that assigns tto the atoms in S and f to all other atoms. Indeed, the ompletion of this theoryonsists of the formulas a�> (a 2 S);a�? (a 2 � n S);:a�:a (a 2 �);and I is the only model of these formulas.The proposition above shows that the satis�ability problem for de�nite ausaltheories belongs to lass NP. It is learly NP-omplete.3.5 The Causal Calulator (CCal)The proposition from Setion 3.4 tells us that the models of de�nite theories anbe omputed by SAT solvers. This idea led MCain to design the Causal Calu-lator (CCal) 3|an implementation of de�nite ausal theories. Computationally,CCal turns a de�nite theory into a propositional theory by literal ompletion,3http://www.s.utexas.edu/users/tag/ .25

and then alls SAT solvers to �nd the models of the propositional theory, whih, inturn, orrespond to the models of the ausal theory.The original version of CCal was implemented in Prolog as part of M-Cain's dissertation [MCain, 1997℄. The idea is similar to satis�ability planning [Kautzand Selman, 1992℄ but the formalism of CCal is muh more expressive than theSTRIPS based formalisms [MCain and Turner, 1998℄. An early version of CCalwas applied to formalizing several hallenge problems in the theory of ommon-sense knowledge, inluding MCarthy's airport example [Lifshitz et al., 2000℄ andelaborations of the Missionaries and Cannibals Puzzle [Lifshitz, 2000℄.We will talk about CCal in more detail in the following hapter.

26

Chapter 4
Ation Language C and theCausal Calulator

4.1 Language CThe review of C in this setion follows [Giunhiglia and Lifshitz, 1998℄.4.1.1 SyntaxIn C, a signature � is partitioned into two groups of symbols: uent symbols �fland ation symbols �at. A uent formula is a formula that does not ontain ationsymbols.Consider the monkey and bananas problem desribed in Chapter 1. To for-malize the problem in a delarative language, one needs to be able to desribe� the loations of the monkey, the bananas, and the box,� whether the monkey is on the box, and27

� whether the monkey has the bananas.Assuming that the possible loations of the monkey, the bananas, and thebox are L1; L2; L3, a signature that would allow us to talk about the states onsistsof symbols: At(x; l) (x2fMonkey ;Bananas ;Boxg; l2fL1; L2; L3g);HasBananas ; OnBox : (4.1)Ations in the domain an be denoted by symbols:Walk(l); PushBox (l); ClimbOn; ClimbO� ; GraspBananas : (4.2)There are two kinds of propositions, alled \ausal laws," in C. A stati lawis an expression of the form aused F if G (4.3)where F and G are uent formulas. For instane,aused At(Bananas ; l) if At(Monkey ; l) ^HasBananas (4.4)is a stati law. The intuitive meaning of the proposition is that the loation of thebananas is determined by the loation of the monkey if it has the bananas. Thehange of the loation of the bananas is an indiret e�et of any ation that a�etsthe loation of the monkey.A dynami law is an expression of the formaused F if G after H (4.5)where F and G are uent formulas and H is a formula. For instane,aused At(Monkey ; l) if > after Walk(l)28

is a dynami law desribing the e�et of an ation of walking.In both propositions (4.3) and (4.5), the formula F is alled the head. Thepart if G an be dropped if G is >.A ausal law is a stati law or a dynami law. An ation desription is a�nite set of ausal laws. An ation desription is de�nite if the head of every ausallaw of it is either a literal or ?.4.1.2 SemantisAs in [Giunhiglia and Lifshitz, 1998℄, the semantis of C an be de�ned in termsof ausal logi. An ation desription is mapped to a ausal theory whose modelsare in a 1{1 orrespondene with the paths in the transition system.More preisely, any ation desription an be viewed as an abbreviation fora sequene of ausal theories. For any ation desription D and any nonnegativeinteger m, the ausal theory Dm is de�ned as follows. The signature of Dm onsistsof the pairs i : suh that� i 2 f0; : : : ;mg and is a uent onstant of D, or� i 2 f0; : : : ;m� 1g and is an ation onstant of D.If is a uent, then i : means that holds at step i, and if is an ation, then i : means that ours between steps i and i + 1.In the desription of the rules of Dm below, the following onvention is used:for any formula F of the signature of D, i :F stands for the result of pre�xing alluent symbols and ation symbols in F with i : . The rules of Dm arei :F (i :G (4.6)29

for every stati law (4.3) in D and every i 2 f0; : : : ;mg;i+1:F (i+1:G ^ i :H (4.7)for every dynami law (4.5) in D and every i 2 f0; : : : ;m� 1g;0 :(0:0::(0:: (4.8)for every uent symbol ; i :(i :i ::(i :: (4.9)for every ation symbol , and every i 2 f0; : : : ;m� 1g.Rules (4.8) express that the initial values of all uents are \exogenous": theyan be hosen arbitrarily. Rules (4.9) express that all ations are exogenous: whetheror not an ation is exeuted an be deided arbitrarily.For instane, onsider the following simple ation desription SD where thereare only one uent symbol P and only one ation symbol A:aused P if > after Aaused P if P after Paused :P if :P after :P:The �rst line expresses that if the ation A is exeuted, then the value of P will beaused to be true; the next two lines express the ommonsense law of inertia: in theabsene of any evidene to the ontrary, the value of P after an event is assumed tobe the same as the value before the event. This is how C solves the frame problem.
30

The ausal theory SDm for ation desription SD onsists ofi + 1:P (i :Ai + 1:P (i + 1:P ^ i :Pi + 1::P (i + 1::P ^ i ::Pfor every i 2 f0; : : : ;m� 1g aording to (4.7);0 :P (0:P0::P (0::Paording to (4.8); i :A(i :Ai ::A(i ::Afor every i 2 f0; : : : ;m� 1g aording to (4.9).It is easy to hek that the models of the ompletion of SDm an be writtenas m equivalenes i + 1:P � i :A _ i :P (0 � i < m):SDm has 2m+1 models, eah haraterized by the truth values assigned to the on-stants 0 : P and i : A (i = 0; : : : ;m � 1). For instane, one of the models of SD2is f:0:P; :0:A; :1:P; 1:A; 2:Pg: (4.10)Intuitively, it means that P is false in the beginning, and remains false when ationA is not exeuted. Then the ation is exeuted, whih will make P true.Certain abbreviations are useful. If a is an ation onstant and F , G areuent formulas, then a auses F if G (4.11)31

PfAgfAgf:Ag f:Ag:P
Figure 4.1: The transition system desribed by SDstands for the dynami lawaused F if > after a ^G:The rule (4.11) an be used for desribing a onditional e�et of an ation, i.e., forexpressing that exeuting ation a auses F to be true if G holds in the urrentstate. The part if G an be dropped if G is >. So the �rst line of SD an beabbreviated as A auses P:There is also an abbreviation for the last two lines of SD :inertial P: (4.12)4.1.3 States and TransitionsThe models of SDm an be visualized as paths in a \transition system"|the graphshown in Figure 4.1. The two verties of the graph represent states; in one state,the value of the uent P is f, in the other it is t. The edges represent transitionsbetween states; the ation a is exeuted in two transitions, and it is not exeuted inthe other two. 32

There is a simple 1{1 orrespondene between the models of SDm and thepaths of length m in this transition system. For instane, the model of SD2 in (4.10)orresponds to the path h:P; :A; :P; A; P i:Indeed, any ation desription desribes a transition system. Consider anation desription D with a set �fl of uent symbols and a set �at of ation symbols.The transition system represented by D is de�ned by D0 and D1 as we will see soon.We an represent any interpretation of the signature of Dm in the form(0:s0) [(0 :e0) [(1 :s1) [(1 :e1) [� � � [(m :sm) (4.13)where s0; : : : ; sm are interpretations of �fl, and e0; : : : ; em�1 are interpretationsof �at.A state is an interpretation s of �fl suh that 0 : s is a model of D0. Statesare the verties of the transition system represented by D. A transition is a triplehs; e; s0i, where s and s0 are interpretations of �fl and e is an interpretation of �at,suh that 0 : s [0 : e [1 : s0 is a model of D1. Transitions orrespond to the edgesof the transition system: for every transition hs; e; s0i, it ontains an edge from s tos0 labeled e. These labels e will be alled events. One an hek that aording tothe de�nitions, the graph in Figure 4.1 is indeed the transition system desribed bySD . A history is a sequene of the formhs0; e0; s1; e1; : : : ; sm�1; em�1; smiwhere eah hs0; e0; s1i; hs1; e1; s2i; � � � ; hsm�1; em�1; smi is a transition.33

Proposition [Giunhiglia and Lifshitz, 1998, Proposition 2℄ For any m > 0, aninterpretation (4.13) of the signature of Dm is a model of Dm i�hs0; e0; s1; e1; : : : ; sm�1; em�1; smiis a history of D.4.2 Examples4.2.1 Monkey and BananasWe illustrate the use of C by formalizing the Monkey and Bananas domain. Thesignature is as given in Setion 4.1.1. In the following, x ranges over Monkey ,Bananas , Box ; l, l1, l2 range over L1, L2, L3.The �rst postulate expresses that there exists a loation for eah objet atevery instant: onstraint WlAt(x; l) (4.14)The symbol Wl denotes a multiple disjuntion over loations l. For a uent for-mula F , onstraint Fstands for the stati law aused ? if :F:The proposition onstrains the set of states: if an ation desription ontains theproposition, every state in the orresponding transition system must satisfy F .The seond postulate expresses that eah objet belongs to at most one34

loation: aused :At(x; l1) if At(x; l) (l 6= l1): (4.15)The fat that an objet, when moved to another loation, \disappears" from itsprevious loation an be treated as an indiret e�et, or \rami�ation," of themoving ation. This is represented by (4.15), whih illustrates how C solves therami�ation problem using stati laws. Note that stati laws do not mention ations,and we will soon see why the use of stati laws is an attrative solution for therami�ation problem.The next group of stati laws further onstrains the set of states: if themonkey has the bananas, then the bananas are at the loation where the monkeyis; if the monkey is on the box, then the monkey is at the loation where the box is.aused At(Bananas ; l) if At(Monkey ; l) ^HasBananasaused At(Monkey ; l) if At(Box ; l) ^OnBox : (4.16)The �rst law ensures that the hange in the loation of the bananas is an indirete�et of walking if the monkey has the bananas. Walking not only a�ets the loationof the monkey, but also the loation of the bananas if the monkey has them. Theseond e�et an be desribed byWalk(l) auses At(Bananas ; l) if HasBananas :But this law is redundant, beause in the presene of the �rst line of (4.16), thehange in the loation of the bananas is an indiret e�et of walking (and of any otheration that a�ets the loation of the monkey). The possibility of this simpli�ationis what makes the postulate (4.16) attrative.35

Similarly in view of the seond law, the hange in the loation of the monkeyis an indiret e�et of moving the box.1The e�ets and the preonditions of walking are desribed as follows:Walk (l) auses At(Monkey ; l)nonexeutable Walk(l) if At(Monkey ; l)nonexeutable Walk(l) if OnBox : (4.17)In the last two lines nonexeutable a if G (4.18)is an abbreviation for (4.11) when F is ?. The proposition is used to represent aquali�ation for exeuting ation a.Pushing the box has two e�ets and three preonditions:PushBox (l) auses At(Monkey ; l)PushBox (l) auses At(Box ; l)nonexeutable PushBox (l) if At(Monkey ; l)nonexeutable PushBox (l) if At(Monkey ; l1) ^At(Box ; l2) (l1 6= l2)nonexeutable PushBox (l) if OnBox : (4.19)1Of ourse in this domain with only one monkey, it is not possible to move the box with themonkey on it. But if we enhane the domain to allow multiple monkeys, then this will beomepossible.
36

The desriptions of the rest of ations have a similar struture:ClimbOn auses OnBoxnonexeutable ClimbOn if At(Monkey ; l) ^At(Box ; l1) (l 6= l1)nonexeutable ClimbOn if OnBoxClimbO� auses :OnBoxnonexeutable ClimbO� if :OnBoxGraspBananas auses HasBananasnonexeutable GraspBananas if HasBananasnonexeutable GraspBananas if At(Monkey ; l) ^At(Bananas ; l1) (l 6= l1)nonexeutable GraspBananas if :OnBox : (4.20)Every uent in this domain tends to keep its previous value. The inertiarules are inertial (4.21)for every uent symbol from (4.1).The onurrent exeution of ations an be prohibited by postulatingnonexeutable ^ d (4.22)for every pair of distint ation symbols , d from (4.2).Let us all this ation desription MB . The planning problem given in Chap-ter 1 asks to �nd a path in the transition system desribed by MB that starts fromthe state de�ned byAt(Monkey ; L1); At(Bananas ; L2); At(Box ; L3)37

and leads to a goal state that satis�esHasBananas :4.2.2 Bloks WorldIn the bloks world, a state is desribed by a set of staks of bloks on the table.In the following, b, b1, b2 range over bloks A, B, C and D; l ranges overbloks and Table. The symbol On(b; l) denotes the fat that blok b is on loationl; the symbol Move(b; l) denotes the ation of moving blok b onto loation l. As inthe previous example, we begin by postulating that On is a funtion that maps ablok into a loation:onstraint WlOn(b; l)aused :On(b; l1) if On(b; l) (l 6= l1): (4.23)In addition, we say that, in any state, two bloks annot be on top of thesame blok at the same time:onstraint :(On(b; b2) ^On(b1; b2)) (b 6= b1): (4.24)The e�et of moving a blok is represented by the following rule:Move(b; l) auses On(b; l): (4.25)The next three postulates desribe the preonditions of the ation: a blokan be moved only when it is lear; a blok an be moved only to a position that islear; a blok annot be moved onto a blok that is being moved also:nonexeutable Move(b; l) if On(b1; b)nonexeutable Move(b; b1) if On(b2; b1)nonexeutable Move(b; b1) ^Move(b1; l): (4.26)38

Initial ondition Goal
DAB C B DA CFigure 4.2: The Bloks World|A planning problemFinally the inertia rules are inertial On(b; l): (4.27)Let us all this ation desription BW . A typial problem in this domain isto �nd a sequene of moves that leads to a goal. For instane, onsider the problemin Figure 4.2: given an initial on�guration shown on the left, what is the shortestsequene of moves that turns it into the goal on�guration shown on the right? Thisis a planning problem that asks to �nd a path in the transition system desribed byBW that starts from the state de�ned byOn(A;B); On(B;Table); On(C;D); On(D;Table);and leads to the goal state de�ned byOn(A;Table); On(B;A); On(C;Table); On(D;C):

4.3 Language of the Causal CalulatorSine CCal is an implementation of de�nite ausal theories, it an handle de�niteation desriptions in C. Indeed, all examples of C ation desriptions we have seen39

so far belong to this ategory.Many ommonsense reasoning problems related to C ation desriptions anbe viewed as problems of generating paths in the orresponding transition systemsthat satisfy ertain onditions. As shown in Setion 4.1.2, paths of a transition sys-tem an be obtained by omputing the models of the orresponding ausal theory.An ation desription is translated by CCal �rst into a ausal theory by a maroexpansion mehanism and then into a set of propositional formulas using the literalompletion proedure (Setion 2.3). The models of the set of formulas, whih or-respond to paths in the transition system, are found by running SAT solvers, suhas sato [Zhang, 1997℄ and relsat [Bayardo and Shrag, 1997℄, in the spirit of sat-is�ability planning [Kautz and Selman, 1992℄. Below we present how the example Cation desriptions in the previous setion an be represented in the input languageof CCal.4.3.1 Monkey and Bananas in the Language of CCalA C input �le for the Causal Calulator onsists of delarations, propositions in C(or, more often, shemas with metavariables whose instanes are propositions in C),queries (for instane, planning problems) and omments. Among its delarations,a C input �le usually ontains a diretive to inlude the \standard" �le C.t whihontains rewrite rules for translating from C into the language of ausal logi, aswell as various sorts, variables, onstants, and domain independent ausal laws thathave been found to be useful in formalizing ation domains.A C input �le for MB (Setion 4.2.1) is shown in Figure 4.3|4.4: Figure 4.3ontains delarations for symbols used; Figure 4.4 ontains the orresponding ausal40

% File: 'monkey.t':- inlude 'C.t'.:- sortsthing;loation.:- variablesO :: thing;L, L1, L2 :: loation.:- onstantsmonkey, box, bananas :: thing;l1, l2, l3 :: loation;at(thing,loation), onBox, hasBananas :: inertialFluent;walk(loation), pushBox(loation),limbOn, limbOff, graspBananas :: ation.Figure 4.3: Monkey and Bananas in the language of CCal|Delarationslaws from Setion 4.2.1.Sine CCal is written in Prolog, the syntax of input �les follows the Prologtradition of apitalizing variables. The ranges of shemati variables delared inthe variables setion in Figure 4.3 are given names thing, loation in the sortdelaration setion at the beginning. The extent of eah sort is de�ned in the�rst two lines of the onstant delaration setion. Fluent symbols are delaredinertialFluents: the identi�er instruts CCal to delare the symbols uents,and moreover to postulate that the uents are inertial, i.e., impliitly added areinertial for eah uent symbol . This is a built-in solution in CCal forsolving the frame problem.The propositions in Figure 4.4 are almost idential to the ausal laws from41

onstraint [\/L | at(O,L)℄.aused -at(O,L1) if at(O,L) & L\=L1.aused at(bananas,L) if hasBananas & at(monkey,L).aused at(monkey,L) if at(box,L) & onBox.walk(L) auses at(monkey,L).nonexeutable walk(L) if at(monkey,L).nonexeutable walk(L) if onBox.pushBox(L) auses at(monkey,L).pushBox(L) auses at(box,L).nonexeutable pushBox(L) if at(monkey,L).nonexeutable pushBox(L) if at(monkey,L1) & at(box,L2) & L1\=L2.nonexeutable pushBox(L) if onBox.limbOn auses onBox.nonexeutable limbOn if at(monkey,L) & at(box,L1) & L\=L1.nonexeutable limbOn if onBox.limbOff auses -onBox.nonexeutable limbOff if onBox.graspBananas auses hasBananas.nonexeutable graspBananas if hasBananas.nonexeutable graspBananas if at(monkey,L) & at(bananas,L1) & L\=L1.nonexeutable graspBananas if -onBox.noonurreny.Figure 4.4: Monkey and Bananas in the language of CCal|Causal laws
42

% File: 'monkey-test.t':- inlude 'monkey.t'.:- planfats ::0: at(monkey,l1),0: at(banana,l2),0: at(box,l3);goals ::1..100: hasBananas.Figure 4.5: Monkey and Bananas in the language of CCal|Planning problemSetion 4.2.1. The ASCII representations of some symbols used in the language ofCCal are summarized in the following hart:Symbol : 6= ^ _ � � ? >ASCII representation - \= & ++ ->> <-> false trueEvery proposition in Figure 4.4 ontaining shemati variables is treated asan abbreviation for the set of C propositions. In a step alled \grounding," CCalreplaes eah variable with every objet in the range of the orresponding sort; someparts of a shema turn into 0-plae onnetives >, ?. For instane, grounding turnsL\=L1 in the shemaaused -at(O,L1) if at(O,L) & L\=L1.into > when L and L1 are instantiated by di�erent objets, and into ? otherwise.Figure 4.5 represents the planning problem for this domain. Symbols 0: and1..100: are \time stamps." 1..100: in the goal ondition instruts CCal to43

�rst try to �nd a plan of length 1, then 2, 3, and so on until it �nds a solution orfails after trying length 100.Given the query, CCal �nds a model of MBm that satis�es the initialonditions 0:At(Monkey ; L1); 0:At(Bananas ; L2); 0:At(Box ; L3) (4.28)and the goal m :HasBananas (4.29)where m is the smallest number for whih suh a model exists. CCal takes onse-utively m = 1; 2; : : : and looks for an interpretation satisfying both the ompletionof MBm and formulas (4.28), (4.29). Suh an interpretation will be �rst foundfor m = 4. It assigns the value t to0:Walk (L3); 1:PushBox (L2); 2:ClimbOn ; 3:GraspBananas :Aordingly, CCal output is as follows:| ?- plan 0.alling sato 3.1.2...run time (seonds) 0.00No plan of length 1,alling sato 3.1.2...run time (seonds) 0.01No plan of length 2,alling sato 3.1.2... 44

run time (seonds) 0.01No plan of length 3,alling sato 3.1.2...run time (seonds) 0.000: at(bananas,l2) at(box,l3) at(monkey,l1)ACTIONS: walk(l3)1: at(bananas,l2) at(box,l3) at(monkey,l3)ACTIONS: pushBox(l2)2: at(bananas,l2) at(box,l2) at(monkey,l2)ACTIONS: limbOn3: onBox at(bananas,l2) at(box,l2) at(monkey,l2)ACTIONS: graspBananas4: hasBananas onBox at(bananas,l2) at(box,l2) at(monkey,l2)yes
4.3.2 Bloks World in the Language of CCalFigure 4.6 is a formalization of the Bloks World BW in the language of CCal,similar to Setion 4.2.2. 45

% File: 'bw.t':- inlude 'C.t'.:- sortsloation >> blok.:- variablesB,B1,B2 :: blok;L,L1 :: loation.:- onstantstable :: loation;on(blok,loation) :: inertialFluent;move(blok,loation) :: ation.onstraint [\/L | on(B,L)℄.aused -on(B,L1) if on(B,L) & L\=L1.onstraint B�<B1 ->> -(on(B,B2) & on(B1,B2)).move(B,L) auses on(B,L).nonexeutable move(B,L) if on(B1,B).nonexeutable move(B,B1) if on(B2,B1).nonexeutable move(B,B1) & move(B1,L).Figure 4.6: Bloks World in the language of CCal
46

% File 'bw-test.t'.:- inlude 'bw.t'.:- onstantsa,b,,d :: blok.:- planfats::0: on(a,b), on(b,table), on(,d), on(d,table);goals::1..100: on(a,table), on(b,a), on(,table), on(d,).Figure 4.7: A Bloks World planning problemThe symbol >> between the names of two sorts expresses that the seond is asubsort of the �rst, so that every objet that belongs to the seond sort also belongsto the �rst. �< is a �xed total order between the symbols.Figure 4.7 represents the planning problem given at the end of Setion 4.2.2.CCal �nds a model of BWm that satis�es the initial onditions0:On(A;B); 0:On(B;Table); 0:On(C;D); 0:On(D;Table); (4.30)and the goalm :On(A;Table); m :On(B;A); m :On(C;Table); m :On(D;C): (4.31)where m is the smallest number for whih suh a model exists. CCal takes onse-utively m = 1; 2; : : : and looks for an interpretation satisfying both the ompletionof BWm and formulas (4.30), (4.31). Suh an interpretation will be �rst foundfor m = 2. The interpretation assigns the value t to0:Move(A;Table); 0:Move(C;Table); 1:Move(B;A); 1:Move(D;C):47

Note that some ations are exeuted onurrently.CCal has determined that at least two steps are needed and displayed thefollowing solution:alling sato 3.1.2...run time (seonds) 0.010: on(a,b) on(b,table) on(,d) on(d,table)ACTIONS: move(a,table) move(,table)1: on(a,table) on(b,table) on(,table) on(d,table)ACTIONS: move(b,a) move(d,)2: on(a,table) on(b,a) on(,table) on(d,)yes

48

Chapter 5
New Extensions of Earlier Work
In this dissertation we show how to overome several essential limitations of thework on ausal logi, language C and CCal.5.1 Multi-valued FluentsMost formalisms for representing properties of ations limit their attention to propo-sitional uents, and this is true for C as well. Multi-valued uents, suh as the lo-ation of an objet, or the number of missionaries on a bank, an be represented insuh formalisms by symbols with Boolean values, whih requires introduing rulesthat relate these symbols to eah other. For instane, in Setions 4.2.1 and 4.2.2 wedesribed the loation of an objet by Boolean onstants At(x; l) and On(b; l), andhad to express the existene and the uniqueness of a loation by postulates (4.14),(4.15) and (4.23). Suh ausal laws are needed quite often, whih is inonvenient. Inthis respet, C is inferior to the language ADL (see Setion 2.4) whih does inludesymbols for multi-valued uents. 49

In Setion 6.1 we extend usual propositional logi by adopting a slightly moregeneral de�nition of an atom that allows expressions of the form = v, where v isan element of the \domain" of a symbol . For instane, we may write Lo(Box)=L2 instead of At(Box ; L2). We extend ausal logi and C in aordane with thisextension.5.2 Elaborating Ations by AttributesConsider MCarthy's elaborations of the Missionaries and Cannibals Puzzle (Se-tion 2.5). There is only one ation, rossing, in the basi problem. We an representthis ation by a symbol suh as ross(boat,bank2,1,1) (1 missionary and 1 anni-bal ross to Bank 2 using the boat). Some of MCarthy's elaborations would requirethat ross be given more arguments. In one of the elaborations (Elaboration 17),it is neessary to distinguish between rowing fast and rowing slowly, whih wouldrequire an expression like ross(boat,bank2,1,1,fast). In another elaboration(Elaboration 6), only one missionary and one annibal an row, whih would requireto denote whih of the people on the boat an row.As MCarthy [1998℄ noted (Setion 2.5), adding arguments to funtions andprediates is what we want to avoid: if possible, we want to formalize elaborations byadding postulates. One way to ahieve this goal is to distinguish between ations and\attributes." Attributes are used to elaborate the exeution of ations. For instane,we may denote the ation of rossing in a boat V by ross(V). On the other hand,the destination of this ation may be denoted by an attribute symbol to(V) whosevalue is a loation; the number of a group G on a boat V rossing may be denotedby an attribute symbol howmany(V,G); the speed of a boat V may be denoted by an50

attribute symbol howfast(V).Suh elaborations mentioned above will involve extending the formalism byadding new attribute symbols, instead of adding new arguments to the existingation symbols. This allows us to reet elaborations by adding postulates thatdesribe the new e�ets of the ation in terms of the newly introdued attributes,rather than by modifying the existing desription.In Setion 6.2.7 we show how attributes an be represented in an extensionof C.5.3 De�ning New FluentsAttempts to de�ne new uents by ausal laws in C often do not lead to intuitivelyexpeted results. Suppose we add to the desription BW in Setion 4.2.2 new uentsNeighbor(b; b1), meaning that \one of the bloks b and b1 is on top of the other."One might be tempted to write the de�nition of Neighbor by the following ausallaws: aused Neighbor(b; b1) if On(b; b1) _On(b1; b)aused :Neighbor(b; b1) if :Neighbor(b; b1): (5.1)The seond line of (5:1) abbreviates the set of ausal laws:i :Neighbor(b; b1)(:i :Neighbor (b; b1):As disussed in Setion 3.4, rules like this represent, intuitively, the losed-worldassumption: by default, the uent Neighbor(b; b1) is assumed to be false.Let us all the extended desription with (5.1), BWN .Unfortunately, the desription (5.1) is not satisfatory: it does not express51

that every state satis�es the onditionNeighbor(b; b1) � On(b; b1) _On(b1; b); (5.2)or equivalently, that the models of D0 satisfy0 : Neighbor(b; b1) � 0 : On(b; b1) _On(b1; b); (5.3)as one would intuitively expet.To see why, onsider the literal ompletion formula of BW N0 for 0 :Neighbor (b; b1)and its negation:0 :Neighbor (b; b1)� 0:Neighbor (b; b1) _ (On(b; b1) _On(b1; b))0 ::Neighbor (b; b1)� 0::Neighbor (b; b1): (5.4)The seond equivalene is a tautology, and the impliation from the left to right ofthe �rst equivalene is also a tautology. Thus (5.4) is equivalent to0 : On(b; b1) _On(b1; b) � 0 : Neighbor(b; b1);whih is weaker than (5.3).The semantis of C needs to be orreted to avoid suh anomaly. In Se-tion 6.2.3, we show how this an be ahieved by introduing a new type of uentonstants alled \statially determined."5.4 Rigid ConstantsImagine that we want to enhane the desription of the Bloks World by speifyingthe materials that the bloks are made of, say wood or metal, or by desribing thesize of the bloks. Suh harateristis of bloks are not uents beause they do not52

depend on the state of the system. We all them rigid. Rigidity an be modeled inC using inertial uents: if no ation is assumed to a�et an inertial uent, then itsvalue never hanges. But this treatment looks somewhat unnatural.Modeling rigidity by uents is also omputationally ineÆient. As desribedin Setion 6.2.2, in turning an ation desription into a ausal theory, CCal gen-erates atoms i : for uent onstants and time stamps i. If the value of does nothange over time, then there is no need to generate opies of these atoms. This makesthe size of the translation more ompat, whih brings omputational eÆieny. InSetion 6.2.6, we introdue rigid onstants in an extension of C.5.5 Defeasible Causal LawsIn the CCal formalization of MCarthy's elaborations of the Missionaries andCannibals Puzzle from [Lifshitz, 2000℄, it was neessary to make some ausal laws\defeasible." For instane the formalization of the basi problem ontains a propo-sition saying that the boat an hold two people:onstraint apaity(boat; 2): (5.5)In one of the elaborations, it was required to hange this assumption: the boat anhold three people, instead of two. Rather than by removing the line above, the samee�et ould be obtained by adding ausal laws, in the spirit of elaboration tolerane.However, sine language C annot represent defeasible ausal laws, that paperhad to rely on ausal logi diretly to be able to make (5.5) defeasible. Moreover inthe version of CCal used there, only a few propositions, suh as onstraint andnonexeutable, ould be made defeasible.53

In Setion 6.2.4, we illustrate how an enhanement of C overomes the lim-itations: the semantis of defeasible ausal laws an be explained in terms of theenhanement of C; any ausal law an be made defeasible. Moreover CCal pro-vides a onvenient syntax for using defeasible ausal laws.5.6 Additive FluentsSome ation languages, inluding C, allow us to talk about the e�et of the onur-rent exeution of ations. The ausal lawWalk (l) auses At(Monkey ; l)is understood in C to imply that At(Monkey ; l) holds after any event that involvesthe exeution of Walk(l), even if other ations are exeuted onurrently.To distinguish the events involving the onurrent exeution of ations a1and a2 from the events that involve a1 but not a2, we an writea1 ^ a2 auses : : : ;a1 ^ :a2 auses : : : :In some ases, unfortunately, the auses onstrut of C and similar languagesis not diretly appliable to desribing the e�et of the onurrent exeution ofations. Consider, for instane, the e�et of the ation Buy(x; n) (ustomer x buys nbooks) on the number of books available at a bookstore. The ausal lawBuy(x; n) auses Available(k�n) if Available(k) (5.6)is appliable in the ase when no ustomer other than x is buying books at the sametime: k � n books are available after the event if there were k books in the store54

before the event. But (5.6) is not aeptable if we are interested in the onurrentexeution of suh ations. For instane, aording to (5.6), the ations Buy(x1; 3)and Buy(x2; 5) annot be exeuted onurrently, although intuitively we expet thenumber to be deremented by 8.Available is an example of an \additive" uent. An additive uent is a uentwith numerial values suh that the e�et of several onurrently exeuted ationson it an be omputed by adding the e�ets of the individual ations. For example,the gross reeipts of a store are represented by an additive uent: when severalustomers pay to di�erent ashiers simultaneously, the gross reeipts will inreaseby the sum of the \ontributions" of the individual ustomers. The voltage of abattery is an additive uent: the inrease in voltage obtained by adding several ellsto a battery an be omputed by addition. In mehanis, the veloity of a partile isan additive uent, beause the net e�et of several fores on this uent over a timeinterval equals the sum of the e�ets of the individual fores. Additive uents areubiquitous; this may be the reason why adding numbers is suh a useful operation.As noted above, the e�et of the onurrent exeution of ations on an addi-tive uent is not overed by the \built-in" treatment of the onurrent exeution ofations in C. This problem was �rst observed in [Lifshitz, 2000℄ in onnetion withthe elaborations of the Missionaries and Cannibals Puzzle that involve onurrentations. One of the postulates adopted in that paper is that if the number of mem-bers of a group (say, missionaries) in some loation (say, the left bank of the river)equals x, and a vessel arrives with y members of the group aboard, the numberwill beome x + y. But this may be inorret when several ations are exeutedonurrently. If, for instane, a boat is taking y missionaries to the left bank while55

another boat is taking z missionaries to the right bank then the number will beomex+y�z. To treat suh examples orretly, we need to view the number of membersof a group in a loation as an additive uent.In Chapter 8 we show how the new language an be used for representingadditive uents; in Chapter 9 we apply the new version of CCal, whih an rep-resent additive uents and defeasible ausal laws, to formalizing a few elaborationsof MCP.5.7 Nonde�nite Causal TheoriesAs disussed in Setion 3.4, it is straightforward to embed propositional logi intoausal logi. The other diretion, embedding ausal logi into propositional logi, ismore diÆult. Completion gives us a partial answer: if a theory is de�nite, it anbe turned into a propositional theory.In Chapter 10 we show how to turn arbitrary ausal theories into proposi-tional formulas. This proess inludes ompletion as a speial ase. It also allows usto turn any nonde�nite theory into an equivalent de�nite theory. Some of the the-orems about ausal logi an be proved more easily by turning a ausal theory intoan equivalent propositional theory, rather than by applying the �xpoint de�nitiondiretly. In Chapter 11 we show, for instane, how the idea an be used to provethe theorem on \splitting" ausal theories.Nonde�nite theories an be useful also in appliations to representing om-monsense knowledge. Although de�nite theories are widely appliable, there areases where nonde�nite theories yield more natural formalizations. An ation do-main of this kind, due to Mar Deneker, is disussed in [MCain, 1997, Setion56

7.5℄: Imagine that there are two gears, eah powered by a separate motor.There are swithes that toggle the motors on and o�, and there is abutton that moves the gears so as to onnet or disonnet them fromone another. The motors turn the gears in opposite (i.e., ompatible)diretions. A gear is aused to turn if either its motor is on or it isonneted to a gear that is turning.A nonde�nite ation desription representing this example in C is shown inFigure 5.1. The expression default Fstands for aused F if F(\There is a ause for F if F holds").5.8 Extending CCalMCain's CCal aepts C as an input language, but it does not handle the ex-tended C presented in the next hapter whih overomes the limitations disussedhere. In Setion 6.5 we present the new version of CCal that implements theextended language.Besides the implementation of the theoretial extensions, the new CCalprovides more onvenient features for ompat representation. For instane, M-Cain's CCal ould not automatially evaluate arithmetial expressions in rules,57

Notation: x ranges over 1; 2.Simple uent onstants: Domains:MotorOn(x), Turning(x), Conneted BooleanAtion onstants: Domains:Toggle(x);Push BooleanCausal Laws:inertial MotorOn(x)inertial ConnetedToggle(x) auses MotorOn(x) if :MotorOn(x)Toggle(x) auses :MotorOn(x) if MotorOn(x)Push(x) auses Conneted if :ConnetedPush(x) auses :Conneted if Connetedaused Turning(x) if MotorOn(x)default :Turning(x)aused Turning(1) � Turning(2) if ConnetedFigure 5.1: Formalization of Two Gears in C
58

and relied on the \is" prediate in underlying Prolog, so that to write a ausal lawsuh as (5.6) one had to write something likebuy(X,N) auses available(K1) if available(K) & K1 is K-N.Another improvement is related to grounding. Rather than blindly replaingeah shemati variable in ausal laws with every objet in the range of the orre-sponding sort, the new version of CCal allows us to limit grounding to instanesof the variables that satisfy a given test. We will see an example in Setion 6.5.Other new features of CCal will be disussed in Setion 6.5 also.

59

Chapter 6
Multi-valued Causal Logi,Ation Language C+ andCCal 2.0

To overome the diÆulties disussed in the previous hapter, we have extendedthe MCain{Turner ausal logi, proposed a new ation language C+ based on thisextension, and redesigned and reimplemented CCal aordingly.6.1 Multi-valued Causal Logi6.1.1 Multi-valued FormulasWe slightly extend formulas of the usual propositional logi to be able to representmulti-valued uents. Di�erently from propositional logi, where eah symbol ismapped to either f or t, in \multi-valued" propositional logi de�ned in this setion,60

a symbol an be mapped to an element of a ertain �nite set of values.A (multi-valued propositional) signature is a set � of symbols alled on-stants, along with a nonempty �nite set Dom() of symbols, disjoint from �, assignedto eah onstant . We all Dom() the domain of . An atom of a signature � isan expression of the form =v (\the value of is v") where 2 � and v 2 Dom().A formula of � is a propositional ombination of atoms.For instane, the following atoms may be used to desribe the loation of anagent in an apartment:Lo=Kithen;Lo=LivingRoom ;Lo=Bathroom ;Lo=Bedroom (6.1)where Lo is a onstant with the domainfKithen ;LivingRoom ;Bathroom ;Bedroomg:An interpretation of � is a funtion that maps every element of � to anelement of its domain. An interpretation I satis�es an atom =v (symbolially,I j= =v) if I() = v. For instane, the fat that the agent is in the kithen an bedesribed by an interpretation satisfying the �rst of the atoms in (6.1), so that theothers are not satis�ed.The satisfation relation is extended from atoms to arbitrary formulas a-ording to the usual truth tables for the propositional onnetives.The following de�nitions are standard in logi. Two formulas or sets offormulas are equivalent to eah other if they are satis�ed by the same interpretations.A model of a set � of formulas is an interpretation that satis�es all formulas in �.If � has a model, it is said to be onsistent, or satis�able. If every model of �satis�es a formula F then we say that � entails F and write � j= F .61

A Boolean onstant is one whose domain is the set of truth values ff; tg. ABoolean signature is one whose onstants are Boolean. If is a Boolean onstant,we will sometimes use as shorthand for the atom =t. When the syntax andthe semantis de�ned above are restrited to Boolean signatures and to formulasthat do not ontain f, they turn into the usual syntax and semantis of lassialpropositional formulas. In priniple, the domain of a onstant an be a singleton.Reall that, aording to the de�nition, an atom is an equality whose left-hand side is a onstant , and whose right-hand side is an element of the domainof . An expression of the form = d, where both and d are onstants, will beunderstood as an abbreviation for the disjuntion_v2Dom()\Dom(d)(=v ^ d=v):The symbol 6= will be used to abbreviate the negation of an equality of either kind.6.1.2 Multi-valued Causal LogiBy a (multi-valued) ausal rule we mean an expression of the form F (G (\F isaused if G is true"), where F and G are multi-valued formulas of a given signature �.A (multi-valued) ausal theory is a �nite set of ausal rules. From now on, we willoften drop the word \multi-valued."As in the Boolean ase, the redut T I of T relative to I is the set of theheads of all rules in T whose bodies are satis�ed by I; we say that I is a model of Tif I is the unique model of T I .For example, take � = fg; Dom() = f1; : : : ; ng62

for some positive integer n, and let the only rule of T be=1(=1: (6.2)The interpretation I de�ned by I() = 1 is a model of T . Indeed,T I = f=1g;so that I is the only model of T I . Furthermore, T has no other models. Indeed,for any interpretation J suh that J() 6= 1, T J is empty, and I is a model of T Jdi�erent from J .It follows that ausal theory (6.2) entails =1.Consider now what happens if we add the rule=2(> (6.3)to this theory. The redut of the extended theory relative to any interpretationinludes the atom =2. Consequently, the interpretation assigning 2 to is the onlypossible model of the extended theory. It is easy to see that this is indeed a model.The extended theory does not entail = 1; it entails = 2. This exampleillustrates the nonmonotoniity of the logi. Intuitively, rule (6.2) expresses that 1is \the default value" of , and rule (6.3) overrides this default.If the rule =2(=2 (6.4)is added to (6.2) instead of (6.3), we will get a ausal theory with two models. Thistheory entails =1 _ =2.
63

6.1.3 Multi-valued CompletionAs in the MCain{Turner ausal logi, a ausal theory is de�nite if the head ofevery rule of it is an atom or ?. For instane, ausal theory (6.2) is de�nite. Causaltheory (3.4) from Setion 3.3 is, stritly speaking, not de�nite, but it an be turnedinto a de�nite theory by replaing :q in the head of the last rule with the equivalentatom: p (q;q (q;q= f (:q: (6.5)The \multi-valued ompletion" proess desribed below extends the literalompletion for the MCain{Turner ausal theories. It redues the problem of �ndinga model of a de�nite ausal theory to the problem of �nding a model of a set offormulas.Take a de�nite ausal theory T of a signature �. We say that an atom =vof � is trivial if the domain of is a singleton. For eah nontrivial atom A, theompletion formula for A is the formulaA � G1 _ � � � _Gnwhere G1; : : : ; Gn (n � 0) are the bodies of the rules of T with head A. The(multi-valued) ompletion of T is obtained by taking the ompletion formulas for allnontrivial atoms of �, along with the formula :F for eah onstraint ?(F in T .As in the MCain{Turner ausal logi, the following proposition holds.Proposition 1 The models of a de�nite ausal theory are preisely the models ofits ompletion. 64

For instane, the ompletion of (6.2) is=1� =1;=v �? (v 2 Dom() n f1g) (6.6)if jDom()j > 1. Otherwise the atom = 1 is trivial, and the ompletion is empty.In both ases, the only model of the ompletion is de�ned by I() = 1. As disussedin Setion 6.1.2, this is the only model of (6.2).After adding rule (6.3), the ompletion turns into=1� =1;=2�>;=v �? (v 2 Dom() n f1; 2g):The only model of these formulas is de�ned by I() = 2.The ompletion of (6.5) is p� q;p= f�?;q � q;q= f�:q; (6.7)
whih orresponds to (3.5).The assertion of Proposition 1 would be inorret if we did not restrit theompletion proess to nontrivial atoms. Consider, for instane, the ausal theorywhose signature onsists of one onstant with the domain f0g, and whose set ofrules is empty. If the proess of ompletion were extended to trivial atoms then theompletion of this theory would be =0 � ?, whih is inonsistent.65

6.2 Ation Language C+6.2.1 Syntax of C+Constants in C+ are divided into two groups: uent onstants and ation onstants.Furthermore, the uent onstants are assumed to be partitioned into simple andstatially determined. By a uent formula we mean a formula suh that all onstantsourring in it are uent onstants. An ation formula is a formula that ontains atleast one ation onstant and no uent onstants.A stati law is an expression of the formaused F if G (6.8)where F and G are uent formulas. An ation dynami law is an expression of theform (6.8) in whih F is an ation formula and G is a formula. A uent dynamilaw is an expression of the formaused F if G after H (6.9)where F and G are uent formulas and H is a formula, provided that F does notontain statially determined onstants. A ausal law is a stati law, an ationdynami law, or a uent dynami law. An ation desription is a �nite set of ausallaws. An ation desription D is de�nite if the head of every ausal law of D is anatom or ?.6.2.2 Semantis of C+Just as the semantis of C is de�ned in terms of the MCain{Turner ausal logi,the semantis of C+ an be de�ned in terms of multi-valued ausal logi.66

For any ation desription D and any nonnegative integer m, the ausaltheory Dm is de�ned as follows. As in C, the signature of Dm onsists of thepairs i : suh that� i 2 f0; : : : ;mg and is a uent onstant of D, or� i 2 f0; : : : ;m� 1g and is an ation onstant of D.The domain of i : is the same as the domain of .The rules of Dm are i :F (i :G (6.10)for every stati law (6.8) in D and every i 2 f0; : : : ;mg, and for every ation dynamilaw (6.8) in D and every i 2 f0; : : : ;m� 1g;i+1:F ((i+1:G) ^ (i :H) (6.11)for every uent dynami law (6.9) in D and every i 2 f0; : : : ;m� 1g;0 :=v(0:=v (6.12)for every simple uent onstant and every v 2 Dom().Note that the de�nition of Dm treats simple uent onstants and statiallydetermined uent onstants in di�erent ways: rules (6.12) are inluded only when is simple, so that the initial values of statially determined uents are not assumedto be exogenous (see Setion 4.1.2). We will see in the next setion why this isuseful. Similarly, the assumption (4.9) that the exeution of an ation is exogenousis not built into the semantis of C+, so that we need to write it expliitly if an67

ation is exogenous. We will see later in Setion 6.2.4 and Setion 8.3 when it isneessary to lift the exogeneity assumption for ations.The de�nitions of states, transitions, histories are the same as in C (Se-tion 4.1.3).Proposition 2 For any transition hs; e; s0i, s and s0 are states.We identify an interpretation I in the sense of Setion 6.1.1 with the set ofatoms that are satis�ed by this interpretation, that is to say, with the set of atomsof the form = I(). This onvention allows us to represent any interpretation ofthe signature of Dm in the form(0:s0) [(0 :e0) [(1 :s1) [(1 :e1) [� � � [(m :sm) (6.13)where s0; : : : ; sm are interpretations of �fl, and e1; : : : ; em�1 are interpretationsof �at.Proposition 3 For any m > 0, an interpretation (6.13) of the signature of Dm isa model of Dm i� hs0; e0; s1; e1; : : : ; sm�1; em�1; smiis a history of D.6.2.3 Statially Determined FluentsThe problem with de�ned uents disussed in Setion 5.3 an be orreted by las-sifying these uents as statially determined. For instane, in the extended BloksWorld domain BW N in Setion 5.3, if uents Neighbor(b; b1) are delared stati-ally determined, then the extent of the Neighbor relation is de�ned by the equa-tion (5.2), as desired. To see this, note that the ompletion formulas of BW N0 for68

0:Neighbor (b; b1) and its negation are now0:Neighbor (b; b1)� 0:On(b; b1) _On(b1; b)0 ::Neighbor (b; b1)� 0::Neighbor (b; b1): (6.14)The seond equivalene is a tautology, and the �rst equivalene is exatly (5.3).The transition system desribed by BWN is isomorphi to the one desribedby BW : every state of the latter an be turned into the orresponding state of theformer by assigning to Neighbor(b; b1) the truth values de�ned by (5.2).The following theorem desribes a general method of de�ning uents in C+.Proposition 4 Let D be an ation desription whose signature is �, Q a set of stat-ially determined uent onstants suh that �\Q = ;, and DQ an ation desriptionwhih onsists of ausal laws of the formaused q if Fwhere q 2 Q and F is a formula of �, and the ausal lawsaused :q if :q:for all q 2 Q. Then the transition system of D [DQ is isomorphi to the transitionsystem of D.6.2.4 Defeasible Causal LawsUsing statially determined uents, any stati law an be made defeasible. A defea-sible stati law has the formaused F if G unless ab (6.15)69

where ab is a statially determined uent onstant. It stands for the pair of ausallaws aused F if G ^ :abdefault :ab (6.16)(Reall that the seond law stands for aused :ab if :ab). Under exeptionalirumstanes where ab is true, ausal law (6.15) beomes ine�etive.For instane, a defeasible form of proposition (5.5) an be represented in thenew language by onstraint Capaity(Boat)=2 unless AbBoat :Similarly, any ation dynami law an be made defeasible: an ation dy-nami law (6.15) where ab is a Boolean ation onstant stands for the pair of ausallaws (6.16).A defeasible uent dynami law has the formaused F if G after H unless ab (6.17)where ab is a Boolean ation onstant. It stands for the pair of ausal lawsaused F if G after H ^ :abdefault :ab: (6.18)Under exeptional irumstanes where ab is true, ausal law (6.17) beomes inef-fetive.For instane, in the Monkey and Bananas domain,PushBox (l) auses At(Box ; l) unless AbBox (6.19)70

expresses that pushing the box normally involves hanging the loation of the box.Suppose we want to enhane the desription by postulating that the box is notmovable if it is too big. This an be done by addingaused AbBox if BigBox : (6.20)If the box is too big, then AbBox is aused and this makes (6.19) ine�etive. On theother hand, intuitively, when there are no exeptions, the unless lause in (6.19)an be disregarded. The following proposition makes the laim preise:Proposition 5 (a) Let D be an ation desription, L a stati ausal law, and aba Boolean statially determined uent. If ab does not our in the heads of anyausal laws of D, then the transition system desribed by D [fL unless abgis exatly the transition system desribed by D [fLg [faused :abg.(b) Let D be an ation desription, L a dynami ausal law, and ab a Booleanation onstant. If ab does not our in the heads of any ausal laws of D, thenthe transition system desribed by D [fL unless abg is exatly the transitionsystem desribed by D [fLg [faused :ab after >g.Notie that this method of making ausal laws defeasible was not possiblein C: statially determined uents were not available and ation onstant ab ouldnot be made non-exogenous due to the built-in exogeneity assumption (4.9) for allations.6.2.5 Solving the Quali�ation Problem in C+The quali�ation problem is the problem of representing properties of ations in away that makes new onditions for the suessful performane of an ation express-71

ible by adding new propositions. This is a speial ase of the problem of elaborationtolerane.We an distinguish between two kinds of onditions for the suessful per-formane of an ation [Reiter, 1991℄. It may happen that the ation is simply notexeutable when the ondition is violated. Or it may happen that some of the usuale�ets of the ation do not hold in the resulting state even if the ation was exeuted.Aordingly, we an distinguish between two parts of the quali�ation problem|onedeals with exeutability quali�ations, and the other with e�et quali�ations.We an further distinguish between two kinds of exeutability quali�ations|those stated expliitly, in terms of preonditions, and those expressed impliitly byonstraints on the states. For instane, the fat that the monkey annot walk if itis on the box an be expressed expliitly by adding nonexeutable proposition asin (4.16) (Setion 4.2.1); the fat that one annot buy more books than those avail-able in the bookstore (Setion 5.6) is expressed impliitly by the assumption thatAvailable has nonnegative values. Exeutability quali�ations an be represented inboth C and C+.On the other hand, e�et quali�ations an be expressed in C+, but not in C;the C+ solution involves the use of defeasible ausal laws whih C annot represent.As in the previous setion, the fat that a very big box aounts for an exeption tothe usual e�et of pushing ation an be represented by the ombination of ausallaw (6.19) that allows exeptions and ausal law (6.20) that spei�es an exeption.
72

6.2.6 Rigid ConstantsA uent onstant in the signature of an ation desription D is rigid (relativeto D) if, for every transition hs; e; s0i in the transition system represented by D,s0() = s(). Intuitively, rigid onstants represent the uents whose values are nota�eted by any events.The expression rigid stands for the set of ausal lawsaused ? if :(=v) after =vfor all v 2 Dom(). It is lear that is rigid relative to any ation desriptionontaining these laws.As noted in Setion 5.4, one of the reasons why rigid onstants are interestingis that, under some onditions, their presene allows us to make the ausal theoriesDm more ompat, whih an be omputationally advantageous. Let R be a set ofuent onstants that are rigid relative to D. Denote by DRm the ausal theory whoseonstants and ausal rules are obtained from the onstants and ausal rules of Dmby dropping the time stamps before eah onstant from R. For any interpretation Iof the signature of Dm, by IR we denote the interpretation of the signature of DRmde�ned by the formulas IR() = I(0 :) if 2 R;IR(i :) = I(i :) if =2 R:Proposition 6 If(i) every onstant in R is statially determined, and73

(ii) for every ausal law in D that ontains a onstant from R in the head, allonstants ourring in this law belong to R,then the mapping I 7! IR is a 1{1 orrespondene between the models of Dm andthe models of DRm.Thus dropping the time stamps in front of the rigid onstants from R doesnot a�et the meaning of Dm if, �rst, R ontains no simple onstants, and seond,no onstant from R \ausally depends" on a onstant that does not belong to R.The following example shows that the assertion of Proposition 6 would beinorret without the �rst ondition. Take D to berigid pdefault pwhere p is a Boolean simple uent, and let R = fpg. Then D1 is? ((1 :p) ^ :(0 :p)? (:(1 :p) ^ (0 :p)0 :p (0:p1:p (1:p0::p (0::pand DR1 is ? (p ^ :p? (:p ^ pp (p:p (:p:The interpretation fp = fg is a model of DR1 , but it does not have the form IR forany model I of D1. 74

The following example shows that the assertion of Proposition 6 would beinorret without the seond ondition. Take D to beaused p if qexogenous q;where p and q are statially determined uent onstants, and let R = fpg. Then D1is 0 :p (0:q1:p (1:q0:q (0:q1:q (1:q:0:q (:0:q:1:q (:1:qand DR1 is p (0:qp (1:q0:q (0:q1:q (1:q:0:q (:0:q:1:q (:1:q:The interpretation fp = t; 0:q = f; 1:q = tg is a model of DR1 , but it does not havethe form IR for any model I of D1.6.2.7 Ation AttributesSyntatially an attribute is a non-Boolean exogenous ation onstant. The domainof every attribute of an ation inludes the speial value None, whih the attribute75

is required to take if and only if the ation is not exeuted. For this purpose wepostulate aused ? if > after (attr =None) � a (6.21)for every attribute attr of ation a.An expression of the form always Fin C+ stands for aused ? if > after F:Thus (6.21) an be abbreviated asalways (attr =None) � a:Note that this treatment of attributes was not possible in C, sine everyation onstant in C was Boolean.6.3 Comparison with ADLTo larify the relation of C+ to the language ADL mentioned in Setion 2.4, we showhow Pednault's idea of \update onditions" an be inorporated into the syntatiframework of Setion 6.2.1.As a preliminary step, onsider a multi-valued propositional signature �whose onstants have the same domain Dom . The elements of Dom will be alledvalues. The onept of a formula of a signature � an be extended as follows. Aterm is a onstant of �, a value, or a variable (from a �xed in�nitely ountableset). An extended atom is an expression of the form t = v where t is a term and76

v is a value. Extended formulas are formed from atoms using propositional on-netives and quanti�ers, as in �rst-order logi. We will sometimes identify a losedextended formula F with the formula in the sense of Setion 6.1.1 that is obtainedfrom F as follows: �rst, eliminate from F all quanti�ers by replaing eah subfor-mula of the form 8xG(x) with Vv G(v), where v ranges over Dom , and eah 9xG(x)with Wv G(v); seond, replae all ourrenes of atoms of the form v = v with >,and all ourrenes of atoms of the form v = w, where v is a value di�erent fromw, with ?. This onvention allows us, for instane, to talk about the satisfationrelation between interpretations of � and losed extended formulas.Consider a multi-valued signature � partitioned into uent onstants �fl andation onstants �at , suh that all uent onstants have the same domain, and allation onstants are Boolean. An ADL ation desription onsists of� a losed extended formula Preonda of signature �fl for every ation on-stant a, and� an extended formula Updatea(x) of signature �fl, with no free variables otherthan x, for every ation onstant a and every uent onstant .An ADL ation desription is onsistent if, for every ation onstant a, every uentonstant , and every pair of distint values v and w, formula Preonda entails:(Updatea (v) ^Updatea (w)):Let D be a onsistent ADL ation desription, s and s0 interpretations of � ,and a an ation onstant. We say that s0 is the result of exeuting a in s aordingto D if s j= Preonda77

and, for every uent onstant ,s0() = 8>><>>:v if s j= Updatea(v);s() if s j= :9xUpdatea(x):Now we will de�ne a translation from this version of ADL into C+. In the C+ounterpart of an ADL ation desription D, all uent onstants of D are treatedas simple. The propositions of this C+ ation desription areinertial exogenous anonexeutable a if :Preondaa auses =v if Updatea(v) (6.22)
for every uent onstant , ation onstant a, and value v.In the following theorem, we identify a Boolean ation onstant e with theevent that maps e to t and maps every other ation onstant to f.Theorem 1 For any onsistent ADL ation desription D, any interpretations s; s0of �fl, and any e 2 �at , s0 is the result of exeuting e in s aording to D i�transition hs; e; s0i is a transition of the ounterpart of D in language C+.The version of ADL desribed above is signi�antly less expressive than C+.ADL is mapped here into the subset of C+ that inludes no statially determineduent onstants; it has neither onurrent ations nor non-inertial uents; there areno stati laws or ation dynami laws in it, and onsequently it does not solve therami�ation problem.

78

6.4 Eliminating Multi-valued ConstantsIn fat, the extension of ausal logi by multi-valued onstants desribed in thishapter is not essential in the sense that multi-valued onstants an be eliminatedin favor of Boolean onstants: we an replae a multi-valued onstant with a familyof Boolean onstants, one for eah element of Dom(). In this setion we show howthis idea applies to multi-valued formulas and then extend it to multi-valued ausaltheories and to C+.6.4.1 Eliminating Multi-valued Constants from FormulasBegin with a multi-valued propositional signature �, and a onstant 2 �. By �we denote the signature obtained from � by replaing onstant with Booleanonstants (v) for all v 2 Dom().Let � be a set of formulas of signature �, and �0 a set of formulas of sig-nature �. We will say that �0 orretly redues in � (to a family of Booleanonstants) if the following holds: an interpretation of � is a model of �0 i� itorresponds to a model of �.Let elim be the formula_v (v)=t ^ v̂ 6=v0((v)= f _ (v0)= f) : (6.23)Notie that the models of elim are preisely the interpretations of � that orre-spond to an interpretation of �.For any formula F of �, by F we denote the formula obtained from F byreplaing eah ourrene of an atom =v with (v)=t. The elimination of from �is the set of formulas fF : F 2 �g [felimg.79

Proposition 7 For any set � of formulas and any onstant , the elimination of from � orretly redues in �.6.4.2 Eliminating Multi-valued Constants from Causal TheoriesBegin with a ausal theory T whose signature is �, and a onstant 2 �. We under-stand the notation � as in the previous setion. We will say that a ausal theory T 0with signature � orretly redues in T (to a family of Boolean onstants) if thefollowing holds: an interpretation of � is a model of T 0 i� it orresponds to a modelof T .General Elimination Method for Causal TheoriesThe general elimination of from T is the ausal theory with signature � obtainedby replaing eah ourrene of an atom = v in T with (v) = t, and adding theausal rule elim(>: (6.24)Proposition 8 For any ausal theory T and any onstant , the general eliminationof from T orretly redues in T .A drawbak of this simple elimination method is that rule (6.24) is not de�-nite. For this reason, even in appliation to a de�nite theory, this proess leads toa theory that is not de�nite. Sine de�niteness is useful, we next introdue anotherelimination method that preserves it.
80

De�nite Elimination Method for Causal TheoriesThe de�nite elimination of from T is the ausal theory with signature � obtainedby replaing eah ourrene of an atom = v in T with (v) = t, and adding theausal rules (v0)= f((v)=t (6.25)for all v; v0 2 Dom() suh that v 6= v0, and also adding?(v̂ (v)= f: (6.26)Proposition 9 For any ausal theory T and any onstant suh that (i) Dom()has at least two elements, and (ii) every head in whih ours is an atom, thede�nite elimination of from T orretly redues in T .6.4.3 Eliminating Multi-valued Constants from C+A multi-valued onstant in an ation desription an be replaed by a family ofBoolean onstants using methods similar to those introdued for ausal theories.We will say that an ation desription D0 with signature � orretly redues in D (to a family of Boolean uent onstants) if the following holds.� s is a state of D i� s0 is a state of D0.� hs; e; s1i is a transition of D i� hs0; e0; s01i is a transition of D0.General Elimination Method for Ation DesriptionsThe general elimination of a uent or ation onstant from D is the ation desrip-tion with the signature � obtained by replaing eah ourrene of an atom =v81

in D with (v)=t, and adding the stati lawaused elim if > : (6.27)Proposition 10 For any ation desription D and any onstant , the generalelimination of from D orretly redues in D.De�nite Elimination Method for Ation DesriptionsThe de�nite elimination of a onstant from D is the ation desription with ationsymbols �at and uent symbols � obtained by replaing eah ourrene of anatom =v in D with (v)=t, and adding the ausal lawsaused (v0)= f if (v)=t (6.28)for all v; v0 2 Dom() suh that v 6= v0, and also adding the ausal lawaused ? if v̂ (v)= f : (6.29)Proposition 11 For any ation desription D and any onstant suh that (i)Dom() has at least two elements, and (ii) any head in whih ours is an atom,the de�nite elimination of from D orretly redues in D.6.5 CCal 2.0We have redesigned and reimplemented CCal aording to the extensions of theausal logi and C+ desribed above. The new CCal is available athttp : ==www:s:utexas:edu=users=tag=al= :82

The input language of the new CCal provides a onvenient and onise syntaxfor desribing ation desriptions in C+. The new version of CCal has beensuessfully applied to hallenging problems in the theory of ommonsense knowl-edge [Campbell and Lifshitz, 2003℄, [Akman et al., 2004℄ and to the formalizationof multi-agent omputational systems [Artikis et al., 2003a; Artikis et al., 2003b;Chopra and Singh, 2003℄.Compare Figures 4.3|4.5 with Figures 6.1|6.3, a desription of the monkeyand bananas domain in the language of the new CCal.Constant delarations are now divided into two parts: objet delarationsand onstant delarations. Objet delarations de�ne the extents of sorts; onstantdelarations de�ne uent and ation symbols, along with the values to whih thesymbols an be mapped. The set of values is spei�ed in parentheses, as in theexpression inertialFluent(loation):The delarationonBox,hasBananas :: inertialFluentis understood as shorthand foronBox,hasBananas :: inertialFluent(Boolean)Notie that we delare the ations exogenousAtion to distinguish themfrom non-exogenous ations. Upon reading the delaration :: exogenousAtion;CCal adds exogenous 83

% File: 'monkey':- sortsthing;loation.:- objetsmonkey,bananas,box :: thing;l1,l2,l3 :: loation.:- variablesL :: loation.:- onstantslo(thing) :: inertialFluent(loation);onBox,hasBananas :: inertialFluent;walk(loation),pushBox(loation),limbOn,limbOff,graspBananas :: exogenousAtion.Figure 6.1: Monkey and Bananas in the language of the new CCal|Delarationsto the ation desription automatially.Sine we an represent the loation of an objet using loation-valued uentsymbols, we do not need to write rules suh as (4.14) and (4.15).The linepushBox(L) auses walk(L)is the ation dynami law that stands foraused walk(L) if pushBox(L). 84

walk(L) auses lo(monkey)=L.nonexeutable walk(L) if lo(monkey)=L.nonexeutable walk(L) if onBox.pushBox(L) auses lo(box)=L.pushBox(L) auses walk(L).nonexeutable pushBox(L) if lo(monkey)\=lo(box).limbOn auses onBox.nonexeutable limbOn if lo(M)\=lo(box).nonexeutable limbOn if onBox.limbOff auses -onBox.nonexeutable limbOff if -onBox.graspBananas auses hasBananas.nonexeutable graspBananas if hasBananas.nonexeutable graspBananas if lo(monkey)\=lo(bananas).nonexeutable graspBananas if -onBox.noonurreny.Figure 6.2: Monkey and Bananas in the language of the new CCal|Causal laws
85

:- querymaxstep :: 2..4;0: lo(alie)=l1,lo(bananas)=l2,lo(box)=l3;maxstep: hasBananas(alie).Figure 6.3: Monkey and Bananas in the language of the new CCal|PlanningproblemDue to this law saying that pushing the box involves walking, we do not need torepeat the desription of the e�ets and preonditions of pushing whih are also thee�ets and preonditions of walking.The expressionlo(monkey)\=lo(box)(Reall that \= is the ASCII representation of 6=) is shorthand for-[\/L | lo(monkey)=L & lo(box)=L℄.Figure 6.3 is a ounterpart of Figure 4.5 in the language of the newCCal. Aquery onsists of two omponents. One is an integer, alled maxstep, that spei�esthe length of the paths the query is about. It is similar to the maximum timeimpliitly spei�ed in the goal ondition of Figure 4.5; its value determines how toturn the given ation desription into a sequene of ausal theories. The seondomponent is a set of formulas onstraining the paths of interest.Figure 6.4 is a desription of the bloks world in the language of the newCCal. Funtion onstant lo represents an operation that turns a blok into auent. This uent is inertial, and its value is a loation. The operation denoted86

by move turns a blok into an ation|moving that blok. Operation destinationgives an attribute of that ation|the destination of the move. Upon proessing thedelaration of an attribute attr , CCal automatially inludes (6.21).In the last ausal law of Figure 6.4, a \where" lause, ontaining a test,is appended. The lause instruts CCal to limit grounding to instanes of theshemati variables that satisfy the given test, whih produes less number ofgrounded instanes: in all instanes of the last ausal law that CCal generates, Band B1 are di�erent from eah other.Figure 6.5 shows a query on the domain desription in Figure 6.4, a oun-terpart for the query from Figure 4.7.Figure 6.6 is an extension of Figure 6.4. The word sdFluent in the delara-tion ofneighbor(blok,blok) stands for \statially determined uent onstant." Reallthat `++' is the ASCII representation of `_' in the language of CCal.More features of the language of the new CCal will be presented in Se-tion 7.3.6.6 Proving the Unsolvability of Planning Problems inCCalFor a planning problem desribed by a query with its maximum number of stepsspei�ed, CCal an �nd, in priniple, a plan of that length if suh a plan exists; ifit determines that a plan of the given length does not exist, it answers no. However,suh queries annot help us establish that a problem annot be solved in any number87

% File: 'bw':- sortsloation >> blok.:- objetstable :: loation.:- onstantslo(blok) :: inertialFluent(loation);move(blok) :: ation;destination(blok) :: attribute(loation) of move(blok).:- variablesB,B1 :: blok;L :: loation.% effet of moving a blokmove(B) auses lo(B)=L if destination(B)=L.% a blok an be moved only when it is learnonexeutable move(B) if lo(B1)=B.% a blok an be moved only to a position that is learnonexeutable move(B)if destination(B)=lo(B1) & destination(B)\=table.% a blok an't be moved onto a blok that is being moved alsononexeutable move(B) & move(B1) if destination(B)=B1.% two bloks an't be on the same blok at the same timeonstraint lo(B)=lo(B1) ->> lo(B)=table where B �< B1.Figure 6.4: Bloks World in the language of the new CCal
88

% File: 'bw-test':- inlude 'bw'.:- objetsa,b,,d :: blok.:- query% initial ondition goal%% a b d% b d a % --------- ---------maxstep :: 1..100;0: lo(a)=b, lo(b)=table, lo()=d, lo(d)=table;maxstep: lo(a)=table, lo(b)=a, lo()=table, lo(d)=.Figure 6.5: A query in the Bloks World with four bloks

89

% File: 'bw-neighbor':- inlude 'bw'.:- onstantsneighbor(blok,blok) :: sdFluent.:- variablesB, B1 :: blok;L :: loation.% definition of neighboraused neighbor(B,B1) if lo(B)=B1 ++ lo(B1)=B.default -neighbor(B,B1).Figure 6.6: De�nition of neighborof steps. For instane, every elaboration of MCP formalized in [Lifshitz, 2000℄ hasa solution, so that by speifying the number of steps to try, CCal found one.However, some other elaborations in the MCarthy's list are not solvable. Forexample, one elaboration asks whether it is possible to have a solution if there arefour missionaries and four annibals instead of three in eah group.A well-known general method of using invariants helps us prove the unsolv-ability of planning problems. As disussed in [MCarthy, 1998℄, we need to hekthe following three onditions given a property I of states:� the initial state satis�es I,� every state that satis�es I is not a goal state,� in every transition hs; e; s0i where s satis�es I, s0 also satis�es I.In terms of transition systems, the onditions ensure that every state that is90

reahable from the initial state satis�es the invariant but the goal state does not,so that it is not possible to reah a goal state from the initial state. For instane,an invariant for the unsolvable problem mentioned above is that either the boat ison the �rst bank on whih there are more than 2 missionaries, or the boat is onthe seond bank on whih there are less than 3 missionaries. One a property Iis seleted, heking that it satis�es the three onditions above an be redued tothe satis�ability problem. CCal provides a onvenient syntax for doing this asshown in Figure 6.7. The line maxstep :: any instruts CCal that this queryis about unsolvability. The next two lines desribe the initial and the goal states.An invariant is spei�ed with invariant:.CCal alls a SAT solver three times to hek eah of these onditions (Initis the formula spei�ed with 0: in the query and Goal is the formula spei�ed withmaxstep:):(i) if Comp(D0) [0:Init [0:I is satis�able;(ii) if Comp(D0) [0:I [0:G is unsatis�able;(iii) if Comp(D1) [0:I [:(1 :I) is unsatis�able.In heking eah of onditions (ii) and (iii), if the theory is satis�able, then a SATsolver returns a model, whih is a ounterexample to the laim.6.7 ProofsThe proof of Proposition 4 is given in Setion 11.2.Proposition 1 The models of a de�nite ausal theory are preisely the models of91

% File: 'jm3-test':- querymaxstep :: any;0: num(mi,bank1)=4, num(a,bank1)=4;maxstep: num(mi,bank2)=4 & num(a,bank2)=4;invariant:num(mi,bank1)+num(mi,bank2)=4 & num(a,bank1)+num(a,bank2)=4& (lo(boat)=bank1 & num(mi,bank1)>2 ++lo(boat)=bank2 & num(mi,bank2)<3).Figure 6.7: Four missionaries and four annibals|Unsolvable problemits ompletion.Proof Let T be a de�nite ausal theory. Assume that I is a model of T . It followsthat, for every rule of the form ?(F in T , I does not satisfy F , and thus satis�esevery formula in the ompletion of T that is obtained from a onstraint. It remainsto show that I satis�es the ompletion formula for every nontrivial atom A. Considertwo ases.Case 1: A 2 T I . Sine T is de�nite and I j= T I , T I is a set of atoms truein I. So I satis�es A, whih is the left-hand side of the ompletion formula for A.Sine A 2 T I , there is a rule with head A whose body is true in I. Hene I alsosatis�es the right-hand side of the ompletion formula for A.Case 2: A =2 T I . So there is no rule in T with head A whose body is true in I,whih shows that I does not satisfy the right-hand side of the ompletion formulafor A. It remains to show that I 6j= A. Sine T I is a set of atoms whose uniquemodel is I, every nontrivial atom true in I belongs to T I . Sine A is a nontrivialatom that does not belong to T I , we an onlude that A is false in I.92

Proof in the other diretion is similar.Proposition 2 For any transition hs; e; s0i, s and s0 are states.Proof Let X = 0:s [0:e [1:s0 be a model of D1. We need to show that 0:s and0 : s0 are models of D0. By i :�fl we denote the set of all onstants of the form i : where 2 �fl.To show that 0 : s is a model of D0, observe that D0 is the part of D1onsisting of rules (6.10) for stati laws with i = 0 and rules (6.12). The redutDX0 is a set of formulas over 0 : �fl and every formula from DX1 with a onstantfrom 0 : �fl belongs to DX0 . Sine X is the unique model of DX1 , we an onludethat 0:s is the unique model of DX0 . But DX0 = D0:s0 , so that 0:s is a model of D0.Next we show that 0:s0 is a model of D0. Let T be the part of D1 onsistingof rules (6.10) for stati laws with i = 1, rules (6.10) for ation dynami laws withi = 0, and rules (6.11) with i = 0. Let � = TX . It is straightforward to verify that �is a set of formulas over 1:�fl and that every formula from DX1 with a onstant from1:�fl belongs to �. Sine X is the unique model of DX1 , we an onlude that 1:s0 isthe unique model of �. Let �0 be the set of formulas over 0:�fl obtained from � byreplaing eah time stamp 1: with 0:. Then 0:s0 is the unique model of �0. We needto show that 0:s0 is also the unique model of D0:s00 . Observe �rst that every formulain D0:s00 that does not belong to �0 is an atom from 0 : s0 that ame to the redutfrom one of the rules (6.12) of D0. Hene 0 : s0 satis�es D0:s00 . Due to the preseneof rules (6.12) in D0, any interpretation that satis�es D0:s00 must agree with 0:s0 onsimple uent onstants. On the other hand, the formulas in �0 that do not belongto D0:s00 do not ontain statially determined onstants, beause their ounterparts93

in � ame from the heads of dynami laws. Consequently any interpretation thatsatis�es D0:s00 must agree with 0 : s0 on statially determined uent onstants. Itfollows that 0:s0 is the unique model of D0:s00 , so that 0:s0 is a model of D0.Proposition 3 For any m > 0, an interpretation (6.13) of the signature of Dm isa model of Dm i� hs0; e0; s1; e1; : : : ; sm�1; em�1; smiis a history of D.Proof We understand the notation i :�fl as in the previous proof, and the meaningof i :�at is similar.Take a model X of Dm, represent it in the form (6.13), and take anyj 2 f0; : : : ;m� 1g. We need to show that 0 : sj [0 : ej [1 : sj+1 is a model ofD1. Let T be the subset of Dm onsisting of rules (6.10) for stati laws withi = j + 1, rules (6.10) for ation dynami laws with i = j, and rules (6.11) withi = j. Let � = TX . It is straightforward to verify that � is a set of formulasover j : �at [j+1 : �fl, and that every formula from DXm with a onstant fromj : �at [j+1 : �fl belongs to �. Sine X is the unique model of DXm , it followsthat j :ej [j+1:sj+1 is the unique model of �. Let �0 be the set of formulas over0 :�at [1 :�fl obtained from � by replaing j : with 0 : and j + 1 : with 1 :. Then0:ej [1:sj+1 is the only interpretation of 0 :�at [1:�fl that satis�es �0.The proof of the previous proposition is easily adapted to show that sj is astate, whih is to say that 0:sj is a model of D0. That is, 0 :sj is the unique modelof D0:sj0 = D0:sj[0:ej[1:sj+10 . 94

It remains to observe that D0:sj[0:ej[1:sj+10 [�0 = D0:sj[0:ej[1:sj+11 , so that0:sj [0:ej [1:sj+1 is the unique model of this set of formulas, and, onsequently,a model of D1.For the other diretion, assume that, for eah j 2 f0; : : : ;m� 1g, the triplehsj; ej ; sj+1i is a transition. We need to show that the orresponding interpreta-tion X of form (4.13) is a model of Dm.For eah j, let Tj be the subset of Dm onsisting of rules (6.10) for statilaws with i = j + 1, rules (6.10) for ation dynami laws with i = j, and rules(6.11) with i = j. Notie that Dm = D0 [T0 [� � � [Tm�1. Let �j = TXj . Of ourseDXm = DX0 [�0 [� � � [�m�1.For any suh j, sine hsj ; ej ; sj+1i is a transition, 0 :sj [0:ej [1:sj+1 is theunique model of ofD0:sj [0:ej [1:sj+11 = D0:sj0 [T 0:sj [0:ej [1:sj+10 :Reasoning muh as before, it follows that 0:ej [1:sj+1 is the unique model ofT 0:sj [0:ej [1:sj+10 : This is equivalent to saying that j :ej [j+1:sj+1 is the uniquemodel of T j:sj [j:ej [j+1:sj+1j = �j :From the previous proposition, we an onlude also that 0:s0 is the uniquemodel of DX0 .Finally, sine DXm = DX0 [�0 [� � � [�m�1, we an onlude that X is theunique model of DXm , and thus a model of Dm.Proposition 5 95

(a) Let D be an ation desription, L a stati ausal law, and ab a Boolean stati-ally determined uent. If ab does not our in the heads of any ausal laws ofD, then the transition system desribed by D [fL unless abg is exatly thetransition system desribed by D [fLg [faused :abg.(b) Let D be an ation desription, L a dynami ausal law, and ab a Booleanation onstant. If ab does not our in the heads of any ausal laws of D, thenthe transition system desribed by D [fL unless abg is exatly the transitionsystem desribed by D [fLg [faused :ab after >g.Proof(a) First we will hek that the two transition systems have the same set of states,that is, (D [fL unless abg)0 and (D [fLg [faused :abg)0 have the samemodels. Let X be a model of (D [fL unless abg)0. i.e.,D0[(aused F if G ^ :ab)0[(aused :ab if :ab)0where L is aused F if G.It holds that X(0 : ab) = f. Otherwise (D [fL unless abg)X0 does notontain 0 : ab and onsequently it ontradits that X is the unique model of(D [fL unless abg)X0 .It is easy to see that(D [fL unless abg)X0 = DX0 [fLgX0 [f:0:abg= DX0 [fLgX0 [faused :abgX0= (D [fLg [faused :abg)X0 :96

Proof in the other diretion is similar.The same reasoning applies to show that the transition systems have the sameedges, i.e., (D [fL unless abg)1 and (D [fLg [faused :abg)1 have thesame models.(b) The proof is similar to the proof of (a).
Proposition 6 If(i) every onstant in R is statially determined, and(ii) for every ausal law in D that ontains a onstant from R in the head, allonstants ourring in this law belong to R,then the mapping I 7! IR is a 1{1 orrespondene between the models of Dm andthe models of DRm.Proof Using the fat that s0() = s() for every 2 R and for every transitionhs; e; s0i, it is easy to verify that if I is a model of Dm, then IR is a model of DRm. Inother words, the mapping I 7! IR is a funtion from the set of models of Dm intothe set of models of DRm. It is also easy to see that the funtion is 1{1. It remainsto show that the funtion is onto.Take any model J of DRm. De�ne the interpretation I of the signature of Dmas follows: I(i :) = 8>><>>:J() if 2 R;J(i :) otherwise:97

Then I(0 :) = � � � = I(m :) (6.30)for all 2 R, and IR = J . We will hek that I is a model of Dm, that is to say,the only model of DIm.For any formula F of the signature of Dm, let FR be the result of droppingthe time stamps in front of all onstants from R in F . It is easy to see that I satis�esa formula F i� J satis�es FR. It follows that(DRm)J = fFR : F 2 DImg: (6.31)Sine J is a model of (DRm)J , it follows that I is a model of DIm. It remains to showthat DIm has no other models.Take any model I1 of DIm. By (6.31), IR1 is a model of (DRm)J . Sine J isthe only model of (DRm)J , IR1 = J . Let i0 be a number from f0; : : : ;mg. De�ne theinterpretation I2 of the signature of Dm as follows:I2(i :) = 8>><>>:I1(i0 :) if 2 R;I1(i :) otherwise:We want to show that I2 is a model of DIm as well. Sine I1 is a model of DIm,I2 satis�es all formulas from DIm that do not ontain onstants from R. Considera formula from DIm that ontains at least one onstant from R. Sine all onstantsin R are statially determined, this formula has the form i : F for some stati ausallaw (6.8) in D and some time stamp i suh that I satis�es i : G. By ondition(ii), all onstants ourring in F , G belong to R. For every onstant from R, Iassigns to i : and i0 : the same value; onsequently, I satis�es i0 : G, so that i0 : Fbelongs to DIm. It follows that I1 satis�es i0 : F . Sine I2 does not di�er from I198

on the onstants ourring in this formula, it follows that I2 satis�es i0 : F . Forevery onstant from R, I2 assigns to i : and i0 : the same value; onsequently, I2satis�es i : F . We have established that I2 indeed satis�es DIm.In view of this fat, it follows from (6.31) that IR2 satis�es (DRm)J . We anonlude that IR2 = J . So, for every 2 R, I2(0 :) = J(), and onsequentlyI1(i0 :) = J(). Sine i0 was arbitrary, we have proved thatI1(0 :) = � � � = I1(m :) (6.32)for every 2 R. And sine IR = J = IR1 , it follows from (6.30) and (6.32) thatI1 = I. This shows that DIm has no models other than I.Theorem 1 For any onsistent ADL ation desription D, any interpretations s; s0of �fl, and any e 2 �at , s0 is the result of exeuting e in s aording to D i�transition hs; e; s0i is a transition of the ounterpart of D in language C+.Proof Reall that (6.22) stands foraused =v if =v after =vaused a=t if a=taused a= f if a= faused ? if > after a=t ^ :Preondaaused =v if > after a=t ^Updatea (v):(Left-to-right) Assume that s0 is the result of exeuting e in s aordingto D. For eah uent onstant , the formula 0 : = s() is in D0:s[0:e[1:s01 , and theformula 1 : = s0() is in D0:s[0:e[1:s01 (onsider two ases, depending on whethers j= Updatee(v) for some v); for eah ation onstant a, the formula 0:a=e(a) is in99

D0:s[0:e[1:s01 ; no other formulas are in the redut. Consequently, 0 : s [0 : e [1 : s0is the only interpretation satisfying the redut, i.e., hs; e; s0i is a transition of D.(Right-to-left) Assume that hs; e; s0i is a transition of D. Then s j= Preond e,beause otherwise ? would be in D0:s[0:e[1:s01 . Take a uent onstant . If, forsome v, s j= Updatee(v), then 1:=v is in D0:s[0:e[1:s01 , so that s0() = v. If, on theother hand, s j= :9xUpdatee(x) then s0() = s(). Indeed, suppose that s0() 6= s().Then no formula of the form 1 : = v is in D0:s[0:e[1:s01 . But jDomj � 2, beauses(); s0() 2 Dom. Consequently, 1 : s0 annot be the only interpretation satisfyingall formulas of the form 1:=v in D0:s[0:e[1:s01 .For eah interpretation I of � there is a orresponding interpretation I of �suh that f or all atoms A ommon to both signaturesI j= A i� I j= A ;and for all v 2 Dom() I j= =v i� I j= (v)=t :The following lemma is easily proved by strutural indution.Lemma 1 For any formula F and any interpretation I, I j= F i� I j= F .Proposition 7 For any set � of formulas and any onstant , the elimination of from � orretly redues in �.Proof Follows from Lemma 1 and the fat that the models of elim are preiselythe interpretations of � that orrespond to an interpretation of �.100

Proposition 8 For any ausal theory T and any onstant , the general eliminationof from T orretly redues in T .Proof Let T be the general elimination of from T . Beause of (6.24), any modelof T I , for any interpretation I of �, orresponds to an interpretation of �. Considerany interpretations I; J of �, and the orresponding interpretations I; J of �. Itis easy to verify (using Lemma 1) thatJ j= T I i� J j= T I :The result follows easily from these observations.Proposition 9 For any ausal theory T and any onstant suh that (i) Dom()has at least two elements, and (ii) every head in whih ours is an atom, thede�nite elimination of from T orretly redues in T .We begin the proof of Proposition 9 with a lemma.Lemma 2 Let T be the de�nite elimination of a onstant from a ausal theory T .For any interpretations I; J of �, and the orresponding interpretations I; J of �,if I()=J(), then J j= T I i� J j= T I .Proof From Lemma 1, T I = fF : F 2 T I g [f (v)= f : v 6= I() g.(Left-to-right) Assume that J j= T I . By Lemma 1, J j= fF : F 2 T I g.Sine I()=J(), J j= (v)= f for every v di�erent from I(). Therefore J j= T I .(Right-to-left) Assume that J j= T I . Then J j= fF : F 2 T I g, and byLemma 1, J j= T I . 101

Proof of Proposition 9 Let T be the de�nite elimination of from T . We mustshow that an interpretation is a model of T i� it orresponds to a model of T .(Left-to-right) For any interpretation I of �, if T I is satis�able, thenby (6.26) at least one atom (v)=t belongs to I, and by (6.25) at most one suhatom belongs to I. It follows that any model of T orresponds to an interpretationof �. Assume that I is a model of T. By Lemma 2, I j= T I . It remains to showthat it is the only one. Sine I is the unique model of T I , it follows that T I entails(v) = t for v 2 Dom() suh that I() = v. Sine any onsequent of T in whih ours is an atom, so is any onsequent of T in whih (v) ours. We an onludethat (v) = t belongs to T I . By Lemma 1, it follows that =v is in T I . Let J beany model of T I . Then J j= =v, and onsequently I() = J(). By Lemma 2, itfollows that J j= T I . Sine I is the unique model of T I , J=I. ConsequentlyI=J . We proved that I is the only model of T I .(Right-to-left) Assume that I is a model of T . By Lemma 2, I j= T I . Sineany formula of T I in whih ours must be an atom, and Dom() has at least twoelements, we an onlude that =v is in T I , where v is the element of Dom()suh that I j= =v. It follows by Lemma 1 that (v)=t is in T I . Moreover,by (6.25), (v0)= f is in T I for all v0 2 Dom() suh that v0 6= v. So any modelof T I orresponds to an interpretation of �. Let J be any interpretation suh thatJ j= T I . Sine T I ontains exatly one formula of the form (v)=t and ontains(v0)= f for all v0 2 Dom() suh that v0 6= v, it follows that I((v))=J((v)) forall v 2 Dom(), or I() = J(). By Lemma 2, it follows that J j= T I . Sine I is amodel of T , it follows that I=J . Consequently I=J. We proved that I is theonly model of T I . 102

Propositions 10 and 11 follow from Propositions 8 and 9 eah.

103

Chapter 7
Representing the Zoo World inthe Language of the CausalCalulator
7.1 IntrodutionResearh on formalizing ommonsense knowledge has been mostly foused on \toyproblems," whih an be formalized by, say, several lines of axioms, as in the Monkeyand Bananas problem. On the other hand, ommonsense knowledge that humanshave inludes many thousands or maybe millions of fats. In this sense we are notlose to the goal yet.The work desribed in this hapter is intermediate between these two. Weformalize a domain whih requires several pages of axioms to formalize. Thus testingthe the formalization by hand is not feasible, so that an automated system suh as104

CCal is essential to test the formalization.The test domain disussed in this hapter, the Zoo World, is the one of thehallenge problems proposed by Erik Sandewall in his Logi Modelling Workshop(LMW)1|an environment for ommuniating axiomatizations of ation domains ofnontrivial size. The Zoo World onsists of several ages and the exterior, gatesbetween them, and animals of several speies, inluding humans. Ations in thisdomain inlude moving within and between ages, opening and losing gates, andmounting and riding animals. More details an be found in the next setion, whihontains extensive quotes from the LMW desriptions of the domain.In aordane with our goal, we have attempted to translate these desrip-tions into the input language of CCal as losely as we ould, inluding the elementsthat look somewhat arbitrary. One suh element in the LMW desription of the ZooWorld has to do with the \oupany restrition"|there an be at most one largeanimal in eah position. On the one hand, LMW spei�es that this restrition holdseven dynamially: a onurrent move, where one animal moves into a position atthe same time as another animal moves out of it, is only possible if at least oneof the animals is small. On the other hand, the spei�ation tells us that an at-tempt to mount an animal fails if the animal moves at the same time, in whih ase\the result of the ation is that the human moves to the position where the animalwas." Thus a failed mount is an exeption to the oupany restrition. In viewof this fat, the oupany restrition has to be formalized as a defeasible dynamilaw. It is interesting to note that expressing suh laws in C+ alls for the use ofnon-exogenous ation onstants|a new feature of this language, not available in its1http://www.ida.liu.se/ext/etai/lmw/ .105

anestor C.We present our formalization of the Zoo World along with detailed ommentsin Setion 7.4, and show how we used CCal to test it in Setion 7.5.7.2 The Desription of the Zoo WorldThe following is the exat LMW desription of the Zoo World that we want toformalize:The ZOO is a senario world ontaining the main ingredients of a las-sial zoo: ages, animals in the ages, gates between two ages as wellas gates between a age and the exterior. In the ZOO world there areanimals of several speies, inluding humans. Ations in the world mayinlude movement within and between ages, opening and losing gates,feeding the animals, one animal killing and eating another, riding ani-mals, et.: : :A �nite surfae area onsists of a large number of positions. For ex-ample, one may let eah position be a square, so that the entire area islike a hekerboard. However, the exat shape of the positions is not sup-posed to be haraterized, and the number of neighbors of eah positionis left open, exept that eah position must have at least one neighbor.The neighbor relation is symmetri, of ourse, and the transitive losureof the neighbor relation reahes all positions.One designated loation is alled the outside; all other loations arealled ages: : : The distintion between a `large' number of positions106

and a `small' number of loations suggests in partiular that loationsan be individually named under a unique names assumption, that everyloation is thus named, but on the other hand that at most a few of thepositions are named, and that the number of positions is left unspei�edin every senario.Eah position is inluded in exatly one loation. Informally, eah ageas well as the outside onsists of a set of positions, viewed for exampleas tiles on the oor. Two loations are neighbors if there is one positionin eah that are neighbors.The senario also ontains a small number (in the same sense as above) ofgates. Informally, these are to be thought of as gates that an be openedand losed, and that allow passage between a age and the outside, orbetween two ages. Formally, eah gate is assoiated with exatly twopositions that are said to be at its sides, and these positions must belongto di�erent loations.: : : Some designated animals will need to be named, but the set of animalsin a senario may be large, and it may not be possible to know them allor to name them all. Animals may be born and may die o� over time.Eah animal belongs to exatly one of a number of speies. All thespeies are named and expliitly known. The membership of an animalin a speies does not hange over time. The speies human is alwaysde�ned, and there is at least one human-speies animal in eah senario.Eah animal also has the boolean properties large and adult. Some107

speies are large, some are not. Adult members of large speies are largeanimals; all other animals are small (non-large).Eah animal has a position at eah point in time. Two large animals annot oupy the same position, exept if one of them rides on the other(see below).: : :Animals an move. In one unit of time, an animal an move to oneof the positions adjaent to its present one, or stay in the position whereit is. Moves to non-adjaent positions are never possible. Movement isonly possible to positions within the same loation (for example, withinthe same age), and between those two positions that are to the side ofthe same gate, but only provided the gate is open. Several animals anmove at the same time.Movement ations must also not violate the oupany restrition: atmost one large animal in eah position. This restrition also holds withinthe duration of moves, in the sense that a onurrent move where animalA moves into a position at the same time as animal B moves out of it,is only possible if at least one of A and B is a small animal.This means in partiular that two large animals an not pass througha gate at the same time (neither in the same diretion nor oppositediretions).: : :The following ations an be performed by animals: : :� Move To Position. Can be performed by any animal, under the re-stritions desribed above, plus the restrition that a human riding108

an animal an not perform the Move-To-Position ation (omparebelow).� Open Gate. Can be performed by a human when it is loated in aposition to the side of the gate, and has the e�et that the gate isthen open until the next time a Close Gate ation is performed.� Close Gate. Can be performed by a human when it is loated in aposition to the side of the gate, and has the e�et that the gate islosed until the next time an Open Gate ation is performed.� Mount Animal. Can be performed by a human mounting a largeanimal, when the human is in a position adjaent to the position ofthe animal. The ation fails if the animal moves at the same time,and in this ase the result of the ation is that the human moves tothe position where the animal was. If suessful, the ation resultsin a state where the human rides the animal. This ondition holdsuntil the human performs a Geto� ation or the animal performs aThrowo� ation.When a human rides an animal, the human an not perform theMove ation, and his position is the same as the animal's positionwhile the animal moves.� Geto� Animal to Position. Can be performed by a human ridingan animal, to a position adjaent to the animal's present positionprovided that the animal does not move at the same time. Fails ifthe animal moves, and in this ase the rider stays on the animal.� Throwo�. Can be performed by an animal ridden by a human, and109

results in the human no longer riding the animal and ending in aposition adjaent to the animal's present position. The ation isnondeterministi sine the rider may end up in any suh position.If the resultant position is oupied by another large animal thenthe human will result in riding that animal instead.7.3 More on the Language of the Causal CalulatorBelow we explain the features of the language of CCal whih have not beenexplained in Setion 6.5 but are used in the formalization of the Zoo World.1. Rigid onstants (Setion 6.2.6) an be delared as in the following example.:- onstantssp(animal) :: speies.Funtion onstant sp represents an operation that turns an animal into its speies.2. The arguments of onstants are supposed to be objets; when a onstant appearsas an argument of another onstant, the former is understood as the value of theonstant. For instane, the shemanonexeutable move(ANML,pos(ANML))(\an animal annot move into its urrent position") has the same meaning asnonexeutable move(ANML,P) if pos(ANML)=Pwhere P is a position variable.3. Maros an be delared as in the following example.110

% two loations are neighbors if there is one position in eah% that are neighbors:- marosneighbor1(#1,#2) ->((#1)\=(#2) & [\/P \/P1 | lo(P)=(#1) & lo(P1)=(#2)& neighbor(P,P1)℄).(#1,#2,: : : are parameters for maros.) Upon reading an input �le, CCal replaesevery ourrene of a pattern in the left-hand side of -> with the orrespondinginstane of the right-hand side.7.4 Formalization of the Zoo WorldOur formalization of the Zoo World shown below is also available online2.We distinguish between the general assumptions about the Zoo World quotedin Setion 7.2 above, and spei� details, suh as the \topography" of the zoo(inluding the number of ages and gates), names of speies other than human, andso forth. We formalize here the general assumptions only, and leave these detailsunspei�ed. A desription of all the spei�s has to be added to our formalizationto get an input �le aepted by CCal. The spei� topography used in ouromputational experiments is desribed in Setion 7.5.The annotation (lmw) found in many omments below refers to the LogiModelling Workshop desription of the Zoo World quoted in Setion 7.2.%%% ZOO LANDSCAPE %%%2http://www.s.utexas.edu/users/tag/al/zoo/ .111

:- sortsposition;loation >> age;gate.:- variablesP,P1 :: position;L :: loation;C :: age;G,G1 :: gate.:- onstants% Eah position is inluded in exatly one loation (lmw)lo(position) :: loation;neighbor(position,position) :: boolean;side1(gate) :: position;side2(gate) :: position;opened(gate) :: inertialFluent.
default -neighbor(P,P1).% Eah position must have at least one neighbor (lmw)112

onstraint [\/P1 | neighbor(P,P1)℄.% The neighbor relation is irreflexiveonstraint -neighbor(P,P).% The neighbor relation is symmetri (lmw)onstraint neighbor(P,P1) ->> neighbor(P1,P).:- objets% One designated loation is alled the outside (lmw)outside :: loation.% All other loations are ages (lmw)onstraint [\/C | L=C℄ where L\=outside.% Two positions are the sides of a gate:- onstantssides(position,position,gate) :: boolean.aused sides(P,P1,G) if side1(G)=P & side2(G)=P1.aused sides(P,P1,G) if side1(G)=P1 & side2(G)=P.default -sides(P,P1,G).% Eah gate is assoiated with exatly two positions that are said to be% at its sides, and these positions must belong to different loations113

% (lmw)onstraint lo(side1(G))\=lo(side2(G)).(As in 2 of Setion 7.3, the argument of lo is supposed to be an objet,not a onstant. Here side1(G), side2(G) are understood to be the valueof eah onstant.)% No two gates have the same two sidesonstraint sides(P,P1,G) & sides(P,P1,G1) ->> G=G1.% Two positions are neighbors if they are the sides of a gateonstraint sides(P,P1,G) ->> neighbor(P,P1).% Two positions in different loations are neighbors only if they are the% two sides of a gateonstraint lo(P)\=lo(P1) & neighbor(P,P1) ->> [\/G | sides(P,P1,G)℄.
%%% ANIMALS %%%:- sortsanimal >> human;speies.:- variablesANML,ANML1 :: animal;114

H,H1 :: human;SP :: speies.:- objets% One of the speies is human (lmw)humanSpeies :: speies.:- onstants% Eah animal belongs to exatly one of a number of speies (lmw)% Membership of an animal in a speies does not hange over time (lmw)sp(animal) :: speies;% Some speies are large, some are not (lmw)largeSpeies(speies) :: boolean;% Eah animal has a position at eah point in time (lmw)pos(animal) :: inertialFluent(position);% Boolean property of animals (lmw)adult(animal) :: boolean;mounted(human,animal) :: inertialFluent.default largeSpeies(SP).default adult(ANML).% Humans are a speies alled humanSpeies115

aused sp(H)=humanSpeies.onstraint sp(ANML)=humanSpeies ->> [\/H | ANML=H℄.:- maros% Adult members of large speies are large animals (lmw)large(#1) -> adult(#1) & largeSpeies(sp(#1)).% There is at least one human-speies animal in eah senario (lmw)onstraint [\/H | true℄.% Two large animals an not oupy the same position, exept if one of them% rides on the other (lmw)onstraint pos(ANML)=pos(ANML1) & large(ANML) & large(ANML1)->> [\/H | (H=ANML & mounted(H,ANML1)) ++(H=ANML1 & mounted(H,ANML))℄ where ANML�<ANML1.(�< is a �xed total order.)%%% CHANGING POSITION %%%:- onstantsaessible(position,position) :: sdFluent.aused aessible(P,P1)if neighbor(P,P1) & -[\/G | sides(P,P1,G) & -opened(G)℄.default -aessible(P,P1). 116

% In one unit of time, an animal an move to one of the positions% aessible from its present one, or stay in the position where it is.% Moves to non-aessible positions are never possible (lmw)onstraint pos(ANML)\=P1 after pos(ANML)=P & -(P=P1 ++ aessible(P,P1)).(The proposition onstraint F afterG is an abbreviation for aused? if :F afterG:)% A onurrent move where animal A moves into a position at the same time% as animal B moves out of it, is only possible if at least one of A and% B is a small animal. (lmw)% Exeptions for (failed) mount ations and ertain ourrenes of% throwOff -- when thrown human ends up where another large animal was% (see the first two propositions in '%%% ACTIONS %%%')onstraint -(pos(ANML)=P & pos(ANML1)\=P)after pos(ANML)\=P & pos(ANML1)=P & large(ANML) & large(ANML1)unless ab(ANML).% Two large animals annot pass through a gate at the same time% (neither in the same diretion nor opposite diretions) (lmw)onstraint -(pos(ANML)=P1 & pos(ANML1)=P1)after pos(ANML)=P & pos(ANML1)=P & sides(P,P1,G)& large(ANML) & large(ANML1) where ANML�<ANML1.onstraint -(pos(ANML)=P & pos(ANML1)=P1)after pos(ANML)=P1 & pos(ANML1)=P & sides(P,P1,G)& large(ANML) & large(ANML1) where ANML�<ANML1.117

% While a gate is losing, an animal annot pass through itonstraint -opened(G) ->> pos(ANML)\=P1after pos(ANML)=P & sides(P,P1,G) & opened(G).
%%% ACTIONS %%%:- variablesA,A1 :: exogenousAtion.:- onstantsmove(animal,position),open(human,gate),lose(human,gate),mount(human,animal),getOff(human,animal,position),throwOff(animal,human) :: exogenousAtion.:- maros% Ation #1 is exeuted by animal #2doneBy(#1,#2) ->([\/P | #1==move(#2,P)℄ ++[\/G | #1==open(#2,G) ++ #1==lose(#2,G)℄ ++[\/ANML | #1==mount(#2,ANML)℄ ++118

[\/ANML \/P | #1==getOff(#2,ANML,P)℄ ++[\/H | #1==throwOff(#2,H)℄).(Di�erent from \=" used in an atom, \==" is a omparison operator.)% A failed mount is not subjet to the usual, rather strit,% movement restrition on large animalsmount(H,ANML) auses ab(H).% If the position a large human is thrown into was previously oupied by% another large animal, the usual movement restrition doesn't applythrowOff(ANML,H) auses ab(H).(The two propositions above desribe exeptional irumstanes for themovement restrition between large animals.)% Every animal an exeute only one ation at a timenonexeutable A & A1 if doneBy(A,ANML1) & doneBy(A1,ANML1) where A�<A1.% Diret effet of move ationmove(ANML,P) auses pos(ANML)=P.% An animal an't move to the position where it is nownonexeutable move(ANML,pos(ANML)).% A human riding an animal annot perform the move ation (lmw)nonexeutable move(H,P) if mounted(H,ANML).119

% Effet of opening a gateopen(H,G) auses opened(G).% A human annot open a gate if he is not loated at a position to the% side of the gate (lmw)nonexeutable open(H,G) if -(pos(H)=side1(G) ++ pos(H)=side2(G)).% A human annot open a gate if he is mounted on an animalnonexeutable open(H,G) if mounted(H,ANML).% A human annot open a gate if it is already openednonexeutable open(H,G) if opened(G).% Effet of losing a gatelose(H,G) auses -opened(G).% A human annot lose a gate if he is not loated at a position to the% side of the gate (lmw)nonexeutable lose(H,G) if -(pos(H)=side1(G) ++ pos(H)=side2(G)).% A human annot lose a gate if he is mounted on an animalnonexeutable lose(H,G) if mounted(H,ANML).
120

% A human annot lose a gate if it is already losednonexeutable lose(H,G) if -opened(G).% When a human rides an animal, his position is the same as the animal's% position while the animal moves (lmw)aused pos(H)=P if mounted(H,ANML) & pos(ANML)=P.% If a human tries to mount an animal that doesn't hange position,% mounting is suessfulaused mounted(H,ANML) if pos(ANML)=P after pos(ANML)=P & mount(H,ANML).% The ation fails if the animal hanges position, and in this ase the% result of the ation is that the human ends up in the position where% the animal was (lmw)aused pos(H)=P if pos(ANML)\=P after pos(ANML)=P & mount(H,ANML).% A human already mounted on some animal annot attempt to mountnonexeutable mount(H,ANML) if mounted(H,ANML1).% A human an only be mounted on a large animalonstraint mounted(H,ANML) ->> large(ANML).% A human annot attempt to mount a small animal (lmw)nonexeutable mount(H,ANML) if -large(ANML).121

% A large human annot be mounted on a humanonstraint mounted(H,H1) ->> -large(H).% A large human annot attempt to mount a humannonexeutable mount(H,H1) if large(H).% An animal an be mounted by at most one human at a timeonstraint -(mounted(H,ANML) & mounted(H1,ANML)) where H�<H1.% A human annot attempt to mount an animal already mounted by a humannonexeutable mount(H,ANML) if mounted(H1,ANML).% A human annot be mounted on a human who is mountedonstraint -(mounted(H,H1) & mounted(H1,ANML)).% A human annot attempt to mount an animal if the human is already% mounted by a humannonexeutable mount(H,ANML) if mounted(H1,H).% A human annot attempt to mount a human who is mountednonexeutable mount(H,H1) if mounted(H1,ANML).% The getOff ation is suessful provided that the animal does not move122

% at the same time. It fails if the animal moves, and in this ase the% rider stays on the animal (lmw)aused pos(H)=P if pos(ANML)=P1 after pos(ANML)=P1 & getOff(H,ANML,P).aused -mounted(H,ANML) if pos(ANML)=P1after pos(ANML)=P1 & getOff(H,ANML,P).% The ation annot be performed by a human not riding an animal (lmw)nonexeutable getOff(H,ANML,P) if -mounted(H,ANML).% A human annot attempt to getOff to a position that is not aessible% from the urrent positionnonexeutable getOff(H,ANML,P) if -aessible(pos(ANML),P).% The throwOff ation results in the human no longer riding the animal% and ending in a position adjaent to the animal's present position.% It is nondeterministi sine the rider may end up in any position% adjaent to the animal's present position (lmw)throwOff(ANML,H) may ause pos(H)=P.throwOff(ANML,H) auses -mounted(H,ANML).% If the resultant position is oupied by another large animal then the% human will result in riding that animal instead (lmw)aused mounted(H,ANML1) if pos(H)=pos(ANML1) & large(ANML1)123

after throwOff(ANML,H) where H\=ANML1.% The ation annot be performed by an animal not ridden by a human (lmw)nonexeutable throwOff(ANML,H) if -mounted(H,ANML).% The ations getOff and throwOff annot be exeuted onurrentlynonexeutable getOff(H,ANML,P) & throwOff(ANML,H).7.5 TestingTo test our formalization, we gave CCal queries and heked that its answersmathed our expetations. Queries related to ation domains and their CCalrepresentations are disussed in [Giunhiglia et al., 2004, Setions 3.3, 6℄. Besidesthe representation of the Zoo World shown above, the CCal input inluded thedesription of a spei� landsape. The zoo we used for testing is small. It inludes2 loations|a age and the outside|that are separated by a gate and onsist of 4positions eah (Figure 7.1). All positions within the age are eah other's neighbors,as well as all outside positions. The input also inluded information about thespei� animals mentioned in eah query.1. The gate is losed, and Homer, an adult human, is in position 6. His goal is tomount Jumbo, an adult elephant, whih is in position 3 and is not going to movearound. How many steps are required to ahieve this goal?This question an be represented by the following CCal query::- query 124

...1 23 4 5 67 8gateAO
ageA outside

Figure 7.1: A zoo landsapemaxstep :: 3..4;0: -opened(gateAO),pos(homer)=6;maxstep: mounted(homer,jumbo);T=<maxstep ->> (T: pos(jumbo)=3).(In the last line, T is a variable for the initial segment of integers|numbers from 0to 10.)CCal has determined that the length of the shortest solution is 4. It founda solution in whih Homer walks to the gate, opens it, walks into the age, and thenmounts Jumbo.2. The gate was losed, and Homer was outside; after two steps, he was inside.What an we say about his initial position?To answer this question, we asked CCal to �nd all models satisfying the onditions0: -opened(gateAO),lo(pos(homer))=outside;2: lo(pos(homer))=ageA. 125

CCal has determined that Homer's only possible initial position is 7. Homeropened the gate and moved to position 4.3. Initially Homer was outside, and Snoopy, a dog, was inside the age, with thegate losed. Is it possible that they swithed their loations in one step? in twosteps? If the elephant Jumbo is substituted for Snoopy, will the answers be thesame?What is essential here is that small animals, unlike elephants, are not a�eted bythe oupany restrition (Setion 7.2); Homer and Snoopy an pass through thegate simultaneously. In response to the query:- querymaxstep :: 1..2;0: -opened(gateAO),lo(pos(homer))=outside,lo(pos(snoopy))=ageA;maxstep:lo(pos(homer))=ageA,lo(pos(snoopy))=outside.CCal reported that the length of the shortest solution is 2. In ase of Jumbo,CCal surprised us by disovering that the length of the shortest solution is 4, andnot 5 as we had thought. Homer opens the gate, mounts Jumbo (on the other side),dismounts (by either being thrown o� or getting o�), following whih Jumbo movesout of the age. When we told CCal that Homer never mounts Jumbo, CCalagreed that the length of the shortest possible sequene of ations is 5.126

4. Can a large animal move into a position at the same time as another large animalmoves out of it?The answer is yes. Although the oupany restrition applies within the durationof moves (Setion 7.2), this senario is possible in the proess of a failed attemptof the �rst animal to mount the seond. There is also the possibility that the �rstanimal is thrown o� into the position just vaated by the seond.To investigate this, we asked CCal whether the following is possible:[\/P | (0: -(pos(homer)=P)) &(1: pos(homer)=P) &(0: pos(jumbo)=P) &(1: -(pos(jumbo)=P))℄;0: mounted(homer,silver).(Silver is a horse.) CCal found a solution in whih Silver throws o� Homer. Thenwe replaed the last line of the query with0: [/\ANML| -throwOff(ANML,homer)℄.CCal found a solution in whih Homer tried to mount Jumbo. On the other hand,a horse annot possibly move into a position at the same time as an elephant movesout of it. Aordingly, CCal determined that there is no model satisfying theondition[\/P | (0: -(pos(silver)=P)) &(1: pos(silver)=P) &(0: pos(jumbo)=P) &(1: -(pos(jumbo)=P))℄. 127

5. In position 1, Jumbo throws o� Homer. What are the possible positions of Jumboand Homer after that?This question illustrates the nondeterministi harater of the Throwo� ation (Se-tion 7.2). The given assumption an be represented by the ondition0: pos(jumbo)=1,throwOff(jumbo,homer).Aording to CCal, in the models satisfying this ondition Homer is thrown intopositions 2, 3 and 4; Jumbo always stays in position 1.

128

Chapter 8
Desribing Additive Fluents andAtions in C+
8.1 Conurrent Exeution of Ations in C+Consider a transition system representing the e�et of buying a book on the numberof books that the person owns (Figure 8.1). It uses two uent onstants|Has(A)(the number of books that Alie has) and Has(B) (the number of books that Bobhas)|with the domain f0; : : : ; Ng, where N is a �xed nonnegative integer, andtwo Boolean ation onstants|Buy(A) (Alie buys a book) and Buy(B) (Bob buysa book). Every state is represented by two equations showing the values of theuent onstants. Every event is represented by the set of ation onstants that aremapped to t. The loops are labeled by the trivial event ; (no ations are exeuted).The horizontal edges are labeled by the event in whih Alie buys a book and Bobdoesn't; along eah of the vertial edges, Bob buys a book and Alie doesn't. The129

..
......................................

...................................... ...

..

.. ...
...

..
......................................

......................................
...

......................................
......................................
......................................

......................................

......................................

fBuy(A)g Has(A)=1Has(B)=0Has(A)=0Has(B)=1 fBuy(A)gfBuy(A), fBuy(A)gHas(A)=1Has(B)=1 fBuy(A),
fBuy(A), fBuy(A),Buy(B)g

Has(A)=0Has(B)=0
fBuy(A)g..

Buy(B)g Has(A)=NHas(B)=0Has(A)=NHas(B)=1 ;...
...

;;
;fBuy(B)g

fBuy(B)g
fBuy(B)g
fBuy(B)g fBuy(B)g

fBuy(B)g

Has(B)=NHas(A)=0 fBuy(A)g fBuy(A)gHas(B)=NHas(A)=1 Has(B)=NHas(A)=N ;; ...

Buy(B)g
Buy(B)g

..
...;

;
;

Figure 8.1: A transition systemdiagonal edges orrespond to Alie and Bob buying books onurrently.The transition system an be desribed by the following ation desription:inertial Has(x)exogenous Buy(x)Buy(x) auses Has(x)=k+1 if Has(x)=knonexeutable Buy(x) if Has(x)=N (8.1)
where x 2 fA;Bg and k 2 f0; :::; N � 1g.This ation desription does not say expliitly that the trivial event ; has noe�et on the values of Has(A) and Has(B), or that event fBuy(A)g does not a�etthe value of Has(B). Nevertheless, every edge of the transition system labeled ; is a130

loop, and every edge labeled fBuy(A)g is horizontal, beause of the �rst line of (8.1)that expresses, under the semantis of C+, the persistene property of Has(x).Similarly, ation desription (8.1) does not say anything about the onurrentexeution of ations Buy(A) and Buy(B). But the edges labeled fBuy(A);Buy(B)gin Figure 8.1 are direted diagonally, in aordane with our ommonsense expe-tations. This fat illustrates the onveniene of the approah to onurreny inor-porated in the semantis of C+.However, as disussed in Setion 5.6, this built-in mehanism is not diretlyappliable to the e�ets of ations on additive uents, suh as the number of booksavailable in the bookstore in the presene of the onurrent exeution of buyingations. In this hapter we extend C+ with the additional notation that resolvesthis diÆulty. We introdue here a syntati onstrut, inrements, that allows usto desribe the e�ets of ations on additive uents. Semantially this onstrut istreated as \syntati sugar" on top of C+: the propositions involving that onstrutare viewed as abbreviations for ausal laws of C+. The interpretation of inrementsdesribed below has been used to extend CCal to over additive uents.8.2 Inrement LawsIn our proposed extension of C+, some of the simple uent onstants an be des-ignated as additive. The domain of every additive uent onstant is assumed tobe a �nite set of numbers. We understand \numbers" as (symbols for) elements ofany set with an assoiative and ommutative binary operation + that has a neutralelement 0.1 E�ets of ations on additive uents are desribed in an extended C+ by1The additive group of integers is the main example we are interested in, and this is the asethat has been implemented. The max operation on an ordered set with the smallest element is131

ausal laws of a new kind|\inrement laws." Aordingly, we modify the de�nitionof a ausal law shown in Setion 6.2.1 in two ways. First, in ausal laws of theforms (6.8) and (6.9) formula F is not allowed to ontain additive uent onstants.Seond, we extend the lass of ausal laws by inluding inrement laws|expressionsof the form a inrements by n if G (8.2)where� a is a Boolean ation onstant,� is an additive uent onstant,� n is a number, and� G is a formula that ontains no Boolean ation onstants.We will drop `if G' in (8.2) if G is >.In the next setion we de�ne the semantis of the extended C+ by desribinga translation that eliminates inrement laws in favor of additional ation onstants.As an example, onsider the e�ets of ations Buy(A), Buy(B) on the num-ber of books available in the bookstore where Alie and Bob are buying books. Adesription of these e�ets in extended C+ is shown in Figure 8.2 (as before, N is a�xed nonnegative integer). The transition system represented by the translation ofFigure 8.2 in the non-extended language C+ is depited in Figure 8.3 (with the aux-iliary ation onstants dropped from the edge labels). The ausal laws in Figure 8.2do not say expliitly that the trivial event ; has no e�et on the value of Available, orthat the onurrent exeution of ations Buy(A) and Buy(B) derements the valueanother interesting ase. 132

Notation: x ranges over fA;Bg.Ation onstants: Domains:Buy(x) BooleanAdditive uent onstant: Domain:Available f0; : : : ; NgCausal laws:Buy(x) inrements Available by �1exogenous Buy(x)Figure 8.2: An ation desription in extended C+
.......................................

......................................
...

..
..

..

..
......................................

Available = 0Available = 1Available = 2;;fBuy(A),Buy(B)g
Available = N fBuy(A),Buy(B)g;

fBuy(A),Buy(B)g
.
fBuy(A)gfBuy(A)g fBuy(B)gfBuy(B)gfBuy(B)gfBuy(A)gfBuy(A)g fBuy(B)g

;

Figure 8.3: The transition system desribed by Figure 8.2133

of this uent by 2. Nevertheless, every edge of the orresponding transition systemlabeled ; is a loop, and every edge labeled fBuy(A);Buy(B)g goes up 2 levels, inaordane with our ommonsense expetations. This happens beause Figure 8.2lassi�es Available as an additive uent onstant.The ausal laws in this ation desription do not say expliitly that ationsBuy(x) are not exeutable when Available = 0, and that ations Buy(A), Buy(B)annot be exeuted onurrently when Available = 1. This is taken are of by oursemantis of inrement laws, in view of the fat that the domain of Available doesnot ontain negative numbers.8.3 Translating Inrement LawsLet D be an ation desription in extended C+. In onnetion with the inrementlaws (8.2) in D, the following terminology will be used: about the Boolean ationonstant a, the additive uent onstant and the number n in (8.2) we will say thata is a -ontributing onstant, and that n is a ontribution of a to .The auxiliary ation onstants introdued in the translation are expressionsof the form Contribution(a;), where is an additive uent onstant, and a is a-ontributing ation onstant. The domain of Contribution(a;) onsists of allontributions of a to and number 0.To translate the inrement laws from D, we(i) replae eah inrement law (8.2) in D with the ation dynami lawaused Contribution(a;)=n if a=t ^G; (8.3)
134

(ii) for every auxiliary onstant Contribution(a;), add the ation dynami lawaused Contribution(a;)=0 if Contribution(a;)=0; (8.4)(iii) add the uent dynami lawsaused =v +Pa va if > after =v ^ Va Contribution(a;)=va (8.5)for every additive uent onstant , every v 2 Dom(), and every funtiona 7! va that maps eah -ontributing onstant a to an element of the domainof Contribution(a;) so that v +Pa va is in the domain of .The sum and the multiple onjuntion in (8.5) range over all -ontributing on-stants a.Causal law (8.3) interprets inrement law (8.2) as the assertion that exeut-ing a (possibly along with other ations) auses onstant Contribution(a;) to getthe value n, under some onditions haraterized by formula G. Causal laws (8.4)say that the value of this onstant is 0 by default, that is to say, when another valueis not required by any inrement law. Causal laws (8.5) say that the value of anadditive uent onstant after an event an be omputed as the sum of the value ofthis onstant prior to the event and the ontributions of all ations to this onstant.The result of translating inrement laws from Figure 8.2 is shown in Fig-ure 8.4. In this ase, the translation desribed above introdues two auxiliary ationonstants: Contribution(Buy(A);Available) and Contribution(Buy(B);Available).The domain of eah of them has 2 elements: the ontribution�1 of Buy(x) to Availableand number 0.The edges of the transition system desribed by Figure 8.4, and the orre-sponding events, an be omputed using the methods presented in Setion 6.1.3.135

Notation: x ranges over fA;Bg.Ation onstants: Domains:Buy(x) BooleanContribution(Buy(x);Available) f�1; 0gAdditive uent onstant: Domain:Available f0; : : : ; NgCausal laws:aused Contribution(Buy(x);Available)=�1 if Buy(x)=taused Contribution(Buy(x);Available)=0 if Contribution(Buy(x);Available)=0aused Available=v+v1+v2 if > after Available=v ^Contribution(Buy(A);Available)=v1 ^Contribution(Buy(B);Available)=v2for all v 2 f0; : : : ; Ng and v1; v2 2 f�1; 0g suh that v + v1 + v2 � 0exogenous Buy(x)Figure 8.4: The result of translating inrement laws from Figure 8.2

136

Every event assigns values to eah ation onstant, inluding the auxiliary on-stants Contribution(Buy(x);Available). For instane, the labels;; fBuy(A)g; fBuy(B)g; fBuy(A);Buy(B)gin Figure 8.3 represent the following events E0; : : : ; E3 respetively:E0(Buy(A)) = f; E0(Contribution(Buy(A);Available)) = 0;E0(Buy(B)) = f; E0(Contribution(Buy(B);Available)) = 0;E1(Buy(A)) = t; E1(Contribution(Buy(A);Available)) = �1;E1(Buy(B)) = f; E1(Contribution(Buy(B);Available)) = 0;E2(Buy(A)) = f; E2(Contribution(Buy(A);Available)) = 0;E2(Buy(B)) = t; E2(Contribution(Buy(B);Available)) = �1;E3(Buy(A)) = t; E3(Contribution(Buy(A);Available)) = �1;E3(Buy(B)) = t; E3(Contribution(Buy(B);Available)) = �1:
(8.6)

For spei� values of N , the set of edges an also be generated mehanially,by running CCal. The translation of Figure 8.2 into the input language of CCalis shown in Figure 8.5. When instruted to �nd the edges of the orrespondingtransition system for n equal to 2, CCal displays 8 solutions, in the followingformat:Solution 4:0: available=2 137

% File: 'available':- sortsperson.:- objetsa, b :: person.:- variablesX :: person.:- onstantsavailable :: additiveFluent(0..n);buy(person) :: exogenousAtion.buy(X) inrements available by -1.Figure 8.5: The desription from Figure 8.2 in the language of CCalACTIONS: buy(a) buy(b)1: available=0
8.4 Reasoning about MoneyAs an appliation of these ideas to automated ommonsense reasoning, onsider thefollowing example:I have $6 in my poket. A newspaper osts $1, and a magazine osts $3.Can I buy two newspapers and one magazine? Or one newspaper andtwo magazines? 138

% File: 'buying':- sortsagent;resoure >> item.:- variablesAg :: agent;Res :: resoure;It :: item;M,N :: 0..maxAFValue.:- objetsbuyer,seller :: agent;money :: resoure.:- onstantsprie(item) :: 0..maxAFValue;has(agent,resoure) :: additiveFluent(0..maxAFValue);buy(item) :: exogenousAtion;howmany(item) :: attribute(0..maxAFValue) of buy(item).buy(It) inrements has(buyer,It) by N if howmany(It)=N.buy(It) derements has(seller,It) by N if howmany(It)=N.buy(It) inrements has(seller,money) by M*Nif howmany(It)=N & prie(It)=M where M*N =< maxAFValue.buy(It) derements has(buyer,money) by M*Nif howmany(It)=N & prie(It)=M where M*N =< maxAFValue.Figure 8.6: File buying: Buying and selling
139

% File: 'buying-test':- maxAFValue :: 7.:- inlude 'buying'.:- objetsnewspaper,magazine :: item.prie(newspaper)=1.prie(magazine)=3.% I have $6 in my poket. A newspaper osts $1, and a magazine% osts $3. Do I have enough money to buy 2 newspapers and a magazine?% A newspaper and 2 magazines?:- querylabel :: 1;maxstep :: 1;0: has(buyer,money) = 6,buy(newspaper),howmany(newspaper) = 2,buy(magazine),howmany(magazine) = 1.:- querylabel :: 2;maxstep :: 1;0: has(buyer,money) = 6,buy(newspaper),howmany(newspaper) = 1,buy(magazine),howmany(magazine) = 2.:- show has(buyer,money).Figure 8.7: File buying-test: Do I have enough ash?140

These questions are about the exeutability of some onurrently exeuted ations,and the answers are determined by the e�ets of these ations on an additive uent|the amount of money that I have.Figure 8.6 desribes the relevant properties of buying and selling in the inputlanguage of the new CCal. There are objets of four sorts in this domain: agents,resoures, items (to be purhased) and (nonnegative) integers; items are a subset ofresoures. The buyer and the seller are agents; money is a resoure; 0; : : : ; maxIntare integers. The prie of an item is an integer. The number of units of a resourethat an agent has is an integer-valued additive uent. Buying is an exogenous ation.The four ausal laws that follow these delarations are self-explanatory; derementsis an abbreviation de�ned in terms of inrements.Figure 8.7 expresses the two questions stated at the beginning of this setion.The �rst question is whether the transition system ontains an edge that begins ina state in whih the buyer has $6, and whose label inludes buying two newspapersand one magazine. CCal responds to this query by �nding suh an edge.2| ?- query 1.% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 2156 atoms (inluding new atoms), 8134 lauses% Writing input lauses... done. (0.35 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.11 seonds (prep 0.09 seonds, searh 0.02 seonds)0: has(buyer,money)=62This example involves the onurrent exeution of two ations, but in general the CCalimplementation of additive uents does not impose any spei� restrition on the number of ationsthat an be exeuted onurrently. 141

ACTIONS: buy(newspaper,howmany=2) buy(magazine,howmany=1)1: has(buyer,money)=1Its reply to a similar question about one newspaper and two magazines is negative:| ?- query 2.% Shifting atoms and lauses... done. (0.01 seonds)% After shifting: 2156 atoms (inluding new atoms), 8134 lauses% Writing input lauses... done. (0.34 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.11 seonds (prep 0.09 seonds, searh 0.02 seonds)No solution with maxstep 1.
8.5 Reasoning about MotionSome additive uents mentioned in the introdution|for instane, the veloity of apartile|are real-valued, rather than integer-valued. CCal annot deal with realnumbers yet, and its input language does not allow us to express properties of suhuents.But let's imagine a movable objet that is immune to this ompliation|the spaeraft Integer. Far away from stars and planets, the Integer is not a�etedby any external fores. As its proud name suggests, the mass of the spaeraft isan integer. For every integer t, the oordinates and all three omponents of theInteger's veloity vetor at time t are integers; the fores applied to the spaeraftby its jet engines over the interval (t; t + 1), for any integer t, are onstant vetors142

whose omponents are integers as well. If the rew of the Integer attempts to violateany of these onditions, the jets fail to operate!The motion of the Integer is desribed in Figure 8.8. The three uents of theform pos(axis) represent the urrent position of the Integer. The additive uentsvel(axis) are the omponents of its veloity. Aording to Newton's Seond Law,the aeleration reated by �ring a jet an be omputed by dividing the fore by themass of the spaeraft. The �rst proposition in Figure 8.8 expresses this fat withoutmentioning the aeleration expliitly, in terms of the hange in the veloity overa unit time interval. Symbol // stands for integer division; the seond propositiontells us that �ring a jet is impossible if this division gives a non-zero remainder.The third proposition says that the position of the spaeraft at time t+1 anbe omputed by adding its average veloity over the interval (t; t+ 1) to its positionat time t. Beause the aeleration over this interval is onstant, the average veloityis omputed as the arithmeti mean of the veloities at times t and t+1. We do notinlude any assumptions about the ase when the division by 2 involved in omputingthis arithmeti mean produes a fration. The semantis of the language of CCalguarantee atually that �ring jets to ahieve this result would be impossible.Finally, to make planning for the Integer more interesting, we use the on-stant maxFore to limit the power of the jets.To test our representation, we instrut CCal to answer the following ques-tion (Figure 8.9):The mass of the Integer is 1. The Integer has two jets, and the forethat an be applied by eah jet along eah axis is at most 2. The urrentposition of the Integer is (�1; 0; 1), and its urrent veloity is (0; 1; 1).143

% File: 'spaeraft':- sortsinteger;axis;jet.:- objets-maxAFValue..maxAFValue :: integer;x,y,z :: axis;jet1,jet2 :: jet.:- variablesAx :: axis;J :: jet;F,V,V1,P :: integer.:- onstantspos(axis) :: simpleFluent(integer);vel(axis) :: additiveFluent(integer);fire(jet) :: exogenousAtion;fore(jet,axis) :: attribute(integer) of fire(jet).fire(J) inrements vel(Ax) by V // mass if fore(J,Ax) = V.nonexeutable fire(J) if fore(J,Ax) mod mass \= 0.aused pos(Ax) = P+((V+V1)//2) if vel(Ax) = V1after vel(Ax) = V & pos(Ax) = P where (V+V1) mod 2 = 0,P+((V+V1)//2) >= -maxAFValue,P+((V+V1)//2) =< maxAFValue.nonexeutable fire(J) if abs(fore(J,Ax)) > maxFore.Figure 8.8: File spaeraft: The spaeraft Integer144

% File: 'spaeraft-test':- maxAFValue :: 7.:- marosmass -> 1;maxFore -> 2.:- inlude 'spaeraft'.:- querymaxstep :: 1;0: (pos(x) = -1 & pos(y) = 0 & pos(z) = 1);0: (vel(x) = 0 & vel(y) = 1 & vel(z) = 1);1: (pos(x) = 0 & pos(y) = 3 & pos(z) = 1).:- show pos(Ax); vel(Ax).Figure 8.9: File spaeraft-test: How to get there?How an it get to (0; 3; 1) within 1 time unit?Here is one of the nine answers produed by CCal:Solution 1:0: pos(x)=-1 pos(y)=0 pos(z)=1 vel(x)=0 vel(y)=1 vel(z)=1ACTIONS: fire(jet1,fore(x)=1,fore(y)=2,fore(z)= -2)fire(jet2,fore(x)=1,fore(y)=2,fore(z)=0)1: pos(x)=0 pos(y)=3 pos(z)=1 vel(x)=2 vel(y)=5 vel(z)=-1
145

8.6 Additive Ation ConstantsBesides additive uent onstants, we an introdue \additive ation onstants," asfollows. Some of the ation onstants an be designated as additive. Their domains,just as the domains of additive uent onstants, are assumed to onsist of numbers.Additive ation onstants are not allowed in formula F in ation dynami laws (6.9).An inrement law is now de�ned as an expression of the form (8.2), where� a is a Boolean ation onstant,� is an additive uent onstant or an additive ation onstant,� n is a number,� G is an ation formula that ontains neither Boolean ation onstants noradditive ation onstants.In the translation of inrement laws (8.2) desribed in Setion 8.3, in the ase when is an additive ation onstant, lause (iii) is modi�ed as follows:(iii0) add the ation dynami lawsaused =Xa va if â Contribution(a;)=vafor every funtion a 7! va that maps eah -ontributing onstant a to anelement of the domain of Contribution(a;) so that Pa va is in the domain of.These ausal laws say that the value of an additive ation onstant during an eventan be omputed as the sum of the ontributions of all ations to this ation onstantduring that event. 146

...
..............................

...
............................... ..

......

..
..............................

Available = 0Available = 1Available = 2fBuy(A),Buy(B)g,. Available = N
Sold=2Sold=1

fBuy(B)g,fBuy(B)g,fBuy(B)g,fBuy(B)g, fBuy(A),Buy(B)g,
fBuy(A)g,Sold=1fBuy(A)g,.. ...

fBuy(A),Buy(B)g,
fBuy(A)g,
fBuy(A)g,Sold=1 Sold=1Sold=0Sold=0Sold=0

;,;,;,
;,Sold=0 Sold=1Sold=1 Sold=1Sold=1

Sold=2
Sold=2Figure 8.10: A transition system with an additive ation onstantHere is an example of the use of additive ation onstants for representingommonsense knowledge. In Setion 8.2 we desribed how the number of booksavailable in the bookstore is a�eted by ations of ustomers. We an ask, on theother hand, how the ations of ustomers determine the total number of booksthat are being sold to them at a partiular moment; in the ase of 2 ustomers, thatnumber is either 0, 1 or 2. The number of books that are being sold is assoiated withan event ourring between two suessive states, and not with a state. Aordingly,we represent that number by an additive ation onstant, rather than an additiveuent onstant. Extend the ation desription shown in Figure 8.2 by the additiveation onstant Sold with the domain f0; 1; 2g, and by the ausal lawBuy(x) inrements Sold by 1:The transition system represented by this extension of Figure 8.2 is shown in Fig-ure 8.10. 147

8.7 Improving PlansIn satis�ability planning, when a plan without onurrent ations is desired, it isusual to make the proess of plan generation more eÆient by allowing a subset ofations to be exeuted onurrently as long as that subset is \serializable." In suh aplan, the ations that are sheduled for the same time period an be instead exeutedonseutively, in any order. For example, the restritions on bloks world plans in�le bw.t (Figure 4.6) ensure serializability. The 2-step plan shown in Setion 6.5 anbe turned into a 4-step sequential plan by ordering the ations move(a,table) andmove(,table) in an arbitrary way, and then ordering move(b,a) and move(d,)in an arbitrary way.Generating serializable solutions is a omputationally useful trik, but thereis a diÆulty assoiated with it. As observed in [Kautz and Walser, 1999℄, whenthe shortest possible serializable plan is found, we annot generally expet that asequential plan obtained from it by serialization will be optimal in the sense ofthe number of steps. Consider, for instane, the bloks world benhmark problemlarge. from [Kautz and Selman, 1996℄ and [Niemel�a, 1999℄. The problem involves 15bloks. The shortest serializable solution to this problem onsists of 8 steps. Suh asolution, found by CCal using sato as the searh engine, inludes 52 moves; therewill be only 38 moves, however, if relsat is used instead. The shortest serializablesolution to large. found by smodels 2.25 on the basis of the formalization givenin [Niemel�a, 1999℄ onsists of 29 moves. But all these numbers are atually muhlarger than neessary: as disussed below, there exists a serializable solution tolarge. that has length 8 and onsists of 18 moves.Let's de�ne the ost of a solution to a bloks world planning problem to be148

% File: 'bw-ost':- inlude 'bw'.:- onstantsost :: additiveFluent(0..maxAFValue).move(B) inrements ost by 1.Figure 8.11: File bw-ost: Computing the ost of a planthe total number of move ations in it. In the ase of a serializable plan, this isthe same as the length of a sequential plan obtained from it by serialization. Usingthe additive uent mehanism, we an easily haraterize the ost of a plan in thelanguage of CCal (Figure 8.11). Then CCal an be used to hek whether theost of a plan that it has found is minimal. For instane, in Figure 8.12 we instrutCCal to �nd a serializable solution to large. whose length is 8 and whose ost isat most 18. It produes the following plan:% Calling mChaff...% Solution time: 9.23 seonds (prep 2.51 seonds, searh 6.72 seonds)0: ost=0ACTIONS: move(,destination=table) move(i,destination=table)move(k,destination=table)1: ost=3ACTIONS: move(b,destination=table) move(h,destination=table)149

% File: 'bw-ost-test':- maxAFValue :: 19.:- maroslength -> 8;maxCost -> 18.:- inlude 'bw-ost'.:- variablesN :: 0..maxAFValue.:- objetsa,b,,d,e,f,g,h,i,j,k,l,m,n,o :: blok.:- querymaxstep :: (length-1)..length;0: ost=0, lo(m)=table, lo(l)=m, lo(a)=l, lo(b)=a, lo()=b,lo(o)=table, lo(n)=o, lo(d)=n, lo(e)=d, lo(j)=e,lo(k)=j, lo(f)=table, lo(g)=f, lo(h)=g, lo(i)=h;maxstep: ost=<maxCost, lo(e)=j, lo(a)=e, lo(n)=a, lo(i)=d,lo(h)=i, lo(m)=h, lo(o)=m, lo(k)=g, lo()=k, lo(b)=,lo(l)=b.:- show ost.Figure 8.12: File: bw-ost-test: Finding an eonomial solution to large.
150

move(j,destination=table)2: ost=6ACTIONS: move(e,destination=j) move(k,destination=g)3: ost=8ACTIONS: move(a,destination=e) move(,destination=k)move(d,destination=table)4: ost=11ACTIONS: move(b,destination=) move(i,destination=d)5: ost=13ACTIONS: move(h,destination=i) move(l,destination=b)move(n,destination=a)6: ost=16ACTIONS: move(m,destination=h)7: ost=17ACTIONS: move(o,destination=m)8: ost=18yes If we make maxCost equal to 17 then CCal tells us that the problem is not151

Length of serializable plan Smallest possible ost8 189 1610 1511 1512 1513 1414 14Figure 8.13: Trade-o� between length and ost in solutions to large.solvable.It is interesting to note that large. has sequential solutions whose lengthis less than 18. Suh solutions annot be obtained, however, by serializing shortonurrent solutions. This kind of trade-o� between the length of a serializablesolution and the length of the orresponding sequential solution was demonstratedby Kautz and Walser [1999℄ in the logistis domain. We have used CCal toinvestigate this phenomenon in the ase of problem large.. Aording to the resultsshown in Figure 8.13, the length of the shortest sequential solution is 14, but suha plan annot be obtained from a serializable plan whose length is less than 13.8.8 Properties of Additive ConstantsBy examining Figure 8.3 in isolation from its symboli desription in Figure 8.2 wean see that the onstant Available exhibits some features typial for additive uentonstants.Consider, for instane, the edges that start at the vertex Available = 2and are labeled by the events fBuy(A)g and fBuy(B)g. Eah of them leads to152

the vertex Available = 1, so that eah of these two events, when it ours in thestate Available=2, inrements the value of Available by �1. In aordane with theintuitive idea of an additive uent, we an expet that the \union" of these events,when it ours in the same state, will inrement the value of Available by (�1)+(�1).And this is true, beause the edge in Figure 8.3 that starts at the vertex Available=2and is labeled fBuy(A);Buy(B)g leads to the vertex Available=0.Proposition 12 below generalizes this observation to a lass of ation desrip-tions in the language C+ extended as desribed in Setions 8.2, 8.3. By D we denoteany ation desription in this language.About events e0, e1,...,en (n � 0) in the transition system represented by Dwe say that e0 is a disjoint union of e1,...,en if, for every Boolean ation onstant a,� if e0(a) = t then there exists a unique i > 0 suh that ei(a) = t; for this i,e0(a0) = ei(a0) for every non-Boolean ation onstant a0;� if e0(a)= f then, for all i > 0, ei(a)= f.In the rest of this setion we assume that the set of numbers is a ommutativegroup.Proposition 12 Let be an additive uent onstant, let s, s0; :::; sn (n � 0) bestates, and let e0; :::; en be events suh that e0 is a disjoint union of e1; : : : ; en. If,for all i 2 f0; : : : ; ng, the transition system represented by D ontains an edge thatleads from s to si and is labeled ei thens0()� s() = nXi=1(si()� s()):
153

The speial ase orresponding to n = 0 tells us that additive uent onstantsare not a�eted by \trivial" events. In this sense, they are similar to the uentonstants for whih inertia is postulated.Corollary 1 Let e be an event suh that for every Boolean ation onstant a,e(a) = f. If the transition system represented by D ontains an edge that leadsfrom a state s to a state s0 and is labeled e then, for any additive uent onstant ,s0() = s().The speial ase orresponding to n = 1 implies that the e�ets of any set ofations on an additive uent is deterministi:Corollary 2 If the transition system represented by D ontains an edge that leadsfrom a state s to a state s0 and is labeled e, and an edge that leads from s to astate s1 and is also labeled e, then, for any additive uent onstant , s0() = s1().Here are the ounterparts of the three fats stated above for additive ationonstants:Proposition 13 Let be an additive ation onstant, let s be a state, and lete0; :::; en (n � 0) be events suh that e0 is a disjoint union of e1; : : : ; en. If, forall i 2 f0; : : : ; ng, the transition system represented by D ontains an edge thatstarts at s and is labeled ei then e0() = nXi=1 ei():Corollary 3 Let e be an event ourring in the transition system represented by D.If, for every Boolean ation onstant a, e(a) = f then, for any additive ation on-stant , e() = 0. 154

Corollary 4 Let s be a state, and let e0, e1 be events suh that for every non-additive ation onstant a, e0(a) = e1(a). If the transition system represented by Dontains an edge that starts at s and is labeled e0, and an edge that starts at s andis labeled e1, then, for any additive ation onstant , e0() = e1().8.9 DisussionIn this hapter we showed how an implemented, delarative language for desribingations an be used to talk about the e�ets of ations on additive uents. This wasaomplished by extending the syntax of the ation language C+ from [Giunhigliaet al., 2004℄ by inrement laws and by showing how to treat these laws as abbre-viations.It is interesting to note that this treatment of additive uents would havebeen impossible if, instead of C+, we used its predeessor C. Non-Boolean, non-exogenous ation onstants suh as Contribution(a;), and ation dynami lawssuh as (8.3) and (8.4) are among the features of C+ that were not available in C.In literature on planning, uents with numerial values are often referred toas \resoures" [Koehler, 1998℄. The onurrent exeution of the ations that involveresoures is usually limited to the \serializable" ase, when all ways of sequeningthe onurrent ations are well-de�ned and equivalent. This ondition is not satis-�ed, however, for many uses of additive uents, inluding the spae travel example(Setion 8.5). For instane, in the spaeraft example, �ring the jets in one diretionand then in the other diretion is not the same as �ring them onurrently. Thisexample shows that �ring jets is not serializable.155

8.10 ProofsProposition 12 Let be an additive uent onstant, let s, s0; :::; sn (n � 0) bestates, and let e0; :::; en be events suh that e0 is a disjoint union of e1; : : : ; en. If,for all i 2 f0; : : : ; ng, the transition system represented by D ontains an edge thatleads from s to si and is labeled ei thens0()� s() = nXi=1(si()� s()):
Proof Assume that hs; e0; s0i,hs; e1; s1i,: : : ,hs; en; sni are transitions. Consider theredut D0:s [0:ei [1:si1 where i > 0. Sine (8.3) and (8.4) are the only ausal lawsin D that ontain onstants of the form Contribution(a;) in the heads, there existsa unique va suh that 0 : Contribution(a;) = va 2 D0:s [0:ei [1:si1 for every 0 :Contribution(a;) (Otherwise hs; ei; sii would not be a transition). If there is aausal law (8.3) in D suh that ei(a) = t, ei j= G, s j= H, then va = n, a ontributionof a to . Otherwise va = 0. Sine 0 : ei satis�es every atom 0 :Contribution(a;),(0 :ei)(0 :Contribution(a;)) = va. Let i =Pa va.Note that (8.5) is the only ausal law in D that ontains in the head. Sothe redut ontains a unique atom1: = (0:s)(0 :) +Xa (0 :ei)(0 :Contribution(a;))for onstant 1 : . Sine 1 : si satis�es the atom, it follows that si() = s() + i, ori = si()� s().Now onsider the redut D0:s [0:e0 [1:s01 . Again sine (8.3) and (8.4) are theonly ausal laws in D that ontain onstants of the form Contribution(a;) in the156

heads, there exists a unique va suh that 0:Contribution(a;) = va 2 D0:s [0:e0 [1:s01for every 0:Contribution(a;). Notie that� va = (0 : ei)(0 :Contribution(a;)) for any ei suh that ei(a) = t if e0(a) = t(indeed there is a unique suh ei), and� va = 0 if e0(a) = f.(Indeed, suppose e0(a) = t. There exists a unique ei suh that ei(a) = t. If thereis a ausal law (8.3) in D suh that e0(a) = t, e0 j= G, s j= H, then ei(a) = t,ei j= G also. So 0 : Contribution(a;) = n belongs to both D0:s [0:e0 [1:s01 andD0:s [0:ei [1:si1 . If e0(a) = t, but either e0 6j= G or s 6j= H, then either ei 6j= G or s 6j=H. So aording to (8.4), 0 :Contribution(a;) = 0 belongs to both D0:s [0:e0 [1:s01and D0:s [0:ei [1:si1 .)Sine 0:e0 satis�es the atoms, it follows that, for every a,(0 :e0)(0 :Contribution(a;)) = (0:ei)(0 :Contribution(a;))for any ei suh that ei(a) = t if e0(a) = t and(0:e0)(0 :Contribution(a;)) = 0if e0(a) = f.Note that (8.5) is the only ausal law in D that ontains in the head. Sothe redut ontains a unique atom1: = (0:s)(0 :) +Xa (0 :e0)(0 :Contribution(a;))for onstant 1:. 157

We see thatXa (0 :e0)(0 :Contribution(a;)) = Xe0(a)=t(0 :e0)(0 :Contribution(a;))= X1�i�n Xei(a)=t(0 :ei)(0 :Contribution(a;))= X1�i�n i = X1�i�n(si() � s())Sine 1:s0 satis�es the atom, it follows thats0() = s() + X1�i�n(si()� s())
The proof of Proposition 13 is similar to the proof of Proposition 12.

158

Chapter 9
Elaborations of the Missionariesand Cannibals Puzzle
As disussed in Setion 2.5, MCarthy used elaborations of the Missionaries andCannibals Puzzle to illustrate the idea of elaboration tolerane. Lifshitz [2000℄showed how to formalize MCarthy's elaborations of MCP in an early version ofCCal. His representation did not introdue names for individual missionaries orannibals; rather, a state was desribed in terms of the number of members of eahgroup on eah bank of the river. As noted in Setion 5.6, the \diÆult" onurrenyidenti�ed in that paper has led to the investigation of additive uents (Chapter 8).Our formalization presented in this hapter overomes several limitations ofLifshitz's formalization thanks to the improvements of the language of CCal.This inludes the implementations of additive uents, defeasible ausal laws, andattributes. Rather than presenting all elaborations, we list some of them whihillustrate these points. 159

9.1 Formalization of the Basi ProblemAs in [Lifshitz, 2000℄, we start with formalizing the parts that are ommon for allelaborations. File ommon1 desribes the ation of rossing using an attribute thatdenotes the destination.% File 'ommon1':- sortsvessel;loation. % objets of these sorts should be defined elsewhere:- variablesV :: vessel;L,L1 :: loation.:- onstantslo(vessel) :: inertialFluent(loation);ross(vessel) :: exogenousAtion;to(vessel) :: attribute(loation) of ross(vessel).ross(V) auses lo(V)=L if to(V)=L unless ab1(V,L).nonexeutable ross(V) if to(V)=lo(V) unless ab2(V).The line 160

to(vessel) :: attribute(loation) of ross(vessel)delares that to is an attribute of ation ross whose value is a loation. Theattribute desribes the destination of rossing.All ausal laws in the �le are made defeasible. In eah elaboration later, ifneessary, some of the laws here will be retrated.File ommon2 extends ommon1 by introduing new attributes, howmany(vessel,group),that denote how many members of various groups are rossing. As disussed in Se-tion 5.6, the number of members of a group G in a loation L should be treated asan additive uent to handle \diÆult" onurreny. afValue is a prede�ned sort inCCal that ranges over numbers an additive uent an take.% File 'ommon2':- inlude 'ommon1'.:- sortsgroup. % group objets should be defined elsewhere:- variablesN,N1 :: afValue;G :: group.:- onstantsnum(group,loation) :: additiveFluent(afValue);howmany(vessel,group) :: attribute(afValue) of ross(vessel).161

ross(V) inrements num(G,L) by N if to(V)=L & howmany(V,G)=Nunless ab3(V,G,L).ross(V) derements num(G,L) by N if lo(V)=L & howmany(V,G)=Nunless ab4(V,G,L).File basi desribes the spei�s about the original Missionaries and Canni-bals Puzzle, inluding objets suh as the boat, banks, and groups, and onstraintssuh as missionaries should not be outnumbered. This �le will be inluded in allelaborations. Again, all assertions in it are made defeasible.% File 'basi':- inlude 'ommon2'.:- objetsboat :: vessel;bank1, bank2 :: loation;mi,a :: group.:- onstantsapaity(vessel) :: 1..maxCapaity.exogenous apaity(V) unless ab5(V).:- maros 162

outnumbered(#1,#2) % #1 missionaries are-> (#2 > #1) & (#1 > 0). % outnumbered by #2 annibals% missionaries should not be outnumbered in any loationonstraint -outnumbered(num(mi,L),num(a,L)) unless ab6(L).% additional preonditions for rossing:% someone should be in the boatnonexeutable ross(V) if howmany(V,mi)+howmany(V,a)=0 unless ab7(V).% but not too manynonexeutable ross(V)if howmany(V,mi)+howmany(V,a) > apaity(V) unless ab8(V).% missionaries should not be outnumbered on the waynonexeutable ross(V) if outnumbered(howmany(V,mi),howmany(V,a))unless ab9(V).% boat apaityonstraint apaity(boat)=2 unless ab10.To test this formalization, we use the following �le basi-test. Test �lesfor other elaborations whih ask to �nd plans are similar to this one.% File 'basi-test': original MCP163

:- maxAFValue :: 3.:- marosmaxCapaity -> 2.:- inlude 'basi'.:- querymaxstep :: 10..11;0: num(mi,bank1)=3, num(a,bank1)=3, num(mi,bank2)=0, num(a,bank2)=0,lo(boat)=bank1;maxstep: num(mi,bank2)=3, num(a,bank2)=3.The diretive maxAFValue spei�es the maximum value an additive uentan take. It also instruts CCal that additive uents will be used.The query instruts CCal to try to �nd a plan of length 10 and if there isno suh plan, try length 11. Sine the shortest step solution for the basi probleminvolves at least 11 steps, CCal answered that there is no plan of length 10, andreturned a plan of length 11. The solution returned by CCal, along with solutionsfor other elaborations, is shown in Appendix A.9.2 Two BoatsBefore presenting formalizations of MCarthy's elaborations, let us onsider a simpleelaboration in whih we allow one more boat whih holds only one person. This164

modi�ation is more diÆult to formalize than the original form of MCP. Besidesthe diÆulty desribed in Setion 5.6, there are other diÆulties. Consider theoriginal form of the problem, and imagine that there is a single annibal with theboat on the left bank. Our postulates should make it impossible, of ourse, for twoannibals to ross in this state. In the absene of a seond boat, we don't have toworry about this: two annibals leaving would have made the number of annibalson the left bank negative, whih is impossible. With two boats, this reasoning doesnot apply any more, beause a annibal rossing simultaneously in the oppositediretion would make the number of annibals on the left bank equal to 0, whihis a legal value. To prohibit suh ations, we need to say that the total numberof members of a group leaving a loation does not exeed the number of membersof the group in that loation. This is expressed in the formalization below usingadditive ation onstant departing(G,L): the total number of members of group Gwho are departing from loation L.Another problem whih is similar to the above has to do with a onstraint onthe number of missionaries and annibals during an event. Imagine that there aretwo missionaries and two annibals on the left bank, and only one of the missionariesis leaving. This should be prohibited and indeed if there were only one boat, thiswould be ahieved by the �rst onstraint proposition in File basi. However,with two boats, if the third missionary arrives into the loation simultaneously,the onstraint proposition does not prohibit the event. Besides the onstraint onthe number of groups in a loation in eah state, we need to represent a similaronstraint during an event. Below this is expressed using staying(G,L), a marode�ned in terms of departing(G,L). 165

% File 'departing':- onstantsdeparting(group,loation) :: additiveAtion(afValue).:- marosstaying(#1,#2) -> num(#1,#2)-departing(#1,#2).ross(V) inrements departing(G,L) by N if lo(V)=L & howmany(V,G)=Nunless ab11(V,G,L).% the number of people departing from a loation does not exeed the number% of people therealways departing(G,L)=<num(G,L) unless ab13(G,L).% the missionaries staying in a loation should not be outnumbered by% the annibals there.always staying(mi,L)\=0 ->> staying(mi,L)>=num(a,L) unless ab12(L).File two-boats below inludes departing, and introdues one more boat,boat1, that holds at most one person. Given a query similar to basi-test above,CCal has determined that a solution requires at least 7 steps, and returned a planof that length.% File 'two-boats' 166

:- marosmaxInt -> 3.:- inlude 'basi'; 'departing'.:- objetsboat1 :: vessel.aused apaity(boat1)=1 unless ab14.9.3 Four Missionaries and Four CannibalsThere are four missionaries and four annibals. The problem is now unsolvable.We simply use a query of the new form available in CCal, whih was givenin Setion 6.69.4 Boat Can Carry ThreeThe boat an arry three. Five pairs an ross, but not six. The assumption in Filebasi that the boat an arry only two people should be retrated.% File 'jm4': MCarthy's Elaboration No. 4% retrat onstraint apaity(boat)=2 unless ab10.167

:- inlude 'basi'.aused ab10.onstraint apaity(boat)=3 unless ab14.CCal has determined that at least 11 steps are required if there are �vepairs, and returned a plan of that length. It also veri�ed that no solution exists nomatter how many steps are given if there are six pairs.% File 'jm4-test':- maxAFValue :: 6.:- marosmaxCapaity -> 3.:- inlude 'jm4'.% Five pairs an ross.:- querylabel :: 1;maxstep :: 10..11;0: num(mi,bank1)=5, num(a,bank1)=5, num(mi,bank2)=0, num(a,bank2)=0,lo(boat)=bank1;maxstep: 168

num(mi,bank2)=5, num(a,bank2)=5.% Six pairs an't ross.:- querylabel :: 2;maxstep :: any;0: num(mi,bank1)=6, num(a,bank1)=6, num(mi,bank2)=0, num(a,bank2)=0,lo(boat)=bank1;maxstep:num(mi,bank2)=6, num(a,bank2)=6;invariant:num(mi,bank1)+num(mi,bank2)=6 & num(a,bank1)+num(a,bank2)=6& (lo(boat)=bank1 & num(mi,bank1)>=4++ lo(boat)=bank2 & num(mi,bank2)=<3).9.5 Converting CannibalsThree missionaries alone with a annibal an onvert him into a missionary. Lif-shitz [2000℄ noted:Do we allow rossing the river and onverting a annibal to our inparallel? Can a solution begin, for instane, with two annibals rossingto Bank 2 while the third annibal is being onverted into a missionaryon Bank 1? If yes, this is an example of \diÆult" onurreny (Setion5) that the approah of this paper does not allow.169

Here we do allow the onurreny of this kind. The problem an be solvedin 9 steps, one step shorter than the solution reported in [Lifshitz, 2000℄.% File 'jm11': MCarthy's elaboration No. 11:- inlude 'basi'; 'departing'.:- onstantsonvert(loation) :: exogenousAtion.onvert(L) inrements num(mi,L) by 1 unless ab14(L).onvert(L) derements num(a,L) by 1 unless ab15(L).% onverting is possible only if there are three missionaries and only one% annibal in the bankalways onvert(L) ->> (staying(mi,L)>=3 & staying(a,L)=1) unless ab16(L).9.6 Walking on WaterOne of the missionaries is Jesus Christ, who an walk on water. This is similar, butnot quite equivalent to the elaboration in Setion 9.2.We treat j as a singleton subset of group mi. The fat that j is a subset ofmi is expressed by the postulates that prohibit the states in whih the number of jis greater than the number of mi in the same loation, and that prohibit the eventsin whih the number of j rossing is greater than the number of mi rossing.170

Sine walking and rossing may be exeuted at the same time, this is anotherinstane of \diÆult" onurreny. CCal has determined that the shortest stepsolution involves at least 7 steps, and returned a plan of that length.% File 'jm10': MCarthy's Elaboration No. 10:- inlude 'basi'; 'departing'.:- objetsj :: group.:- onstantswalk :: exogenousAtion;walk_to :: attribute(loation) of walk.% j is a subgroup of missionariesonstraint num(j,L)=<num(mi,L) unless ab14(L).nonexeutable ross(V) if howmany(V,j)>howmany(V,mi) unless ab15(V).% j an be present at most one loationonstraint num(j,L)=1 ->> num(j,L1)=0 where L\=L1.nonexeutable walk if howmany(V,j)>0 unless ab17(V).% annot walk to the same loationnonexeutable walk_to=L if num(j,L)>0 unless ab18(L).171

walk inrements num(mi,L) by 1 if walk_to=L unless ab19(L).walk derements num(mi,L) by 1 if walk_to=L1 & L\=L1 unless ab20(L,L1).walk inrements num(j,L) by 1 if walk_to=L unless ab21(L).walk derements num(j,L) by 1 if walk_to=L1 & L\=L1 unless ab22(L,L1).walk inrements departing(mi,L) by 1 if walk_to=L1 & L\=L1 unless ab23(L,L1).walk inrements departing(j,L) by 1 if walk_to=L1 & L\=L1 unless ab23(L,L1).9.7 The BridgeThere is a bridge, wide enough for two to ross at one. This is another instane of\diÆult" onurreny sine using the bridge and the boat onurrently a�ets thenumber of people in a loation at the same time.CCal returned a shortest step solution that involves 4 steps, one stepshorter than the solution reported in [Lifshitz, 2000℄.% File 'jm13': MCarthy's elaboration No. 13:- inlude 'basi'; 'departing'.:- onstantsuseBridge :: exogenousAtion;useBridge_from, 172

useBridge_to :: attribute(loation) of useBridge;useBridge_howmany(group) :: attribute(afValue) of useBridge.useBridge inrements num(G,L) by Nif useBridge_to=L & useBridge_howmany(G)=N unless ab14(G,L).useBridge derements num(G,L) by Nif useBridge_from=L & useBridge_howmany(G)=N unless ab15(G,L).useBridge inrements departing(G,L) by Nif useBridge_from=L & useBridge_howmany(G)=N unless ab16(G,L).nonexeutable useBridge if useBridge_from=L & useBridge_to=L1unless ab17(G,L) where -((L=bank1 & L1=bank2) ++ (L=bank2 & L1=bank1)).always useBridge ->> useBridge_howmany(mi)+useBridge_howmany(a)>0 &useBridge_howmany(mi)+useBridge_howmany(a)=<2unless ab18.

173

Chapter 10
Loop Formulas for Causal Logi

By adding so-alled \loop formulas" to ompletion, Lin and Zhao ensured thatthe answer sets of a normal logi program are exatly the models of the modi�edompletion. This idea has been extended to more general lasses of logi programs,suh as programs that allow lassial negation, in�nite programs, and programs withnested expressions [Lee and Lifshitz, 2003; Lee, 2005℄. In this hapter we show howto redue the general ase of ausal theories to propositional formulas using the ideaof loop formulas.For simpliity, we limit our attention to Boolean ausal theories, that is, toausal theories in the sense of Setion 3.3. From Proposition 8 (Setion 6.4.2) weknow that, in priniple, any ausal theory an be redued to a theory of this kind.10.1 Review of the Lin/Zhao TheoremLet � be a normal program (Setion 3.1). The positive dependeny graph of � isthe direted graph suh that 174

p q r sFigure 10.1: The dependeny graph of �1� its verties are the atoms ourring in �, and� its edges go from p1 to p2; : : : pm for eah rule (3.1) of �.A nonempty set L of atoms is alled a loop of � if, for every pair p1, p2 ofatoms in L, there exists a path from p1 to p2 in the positive dependeny graph of �suh that all verties in this path belong to L. A loop is alled trivial if the looponsists of a single atom suh that there is no edge from the atom to itself in thepositive dependeny graph.1For example, onsider the following program �1:p qq pr ss rp not rr not p:The positive dependeny graph of �1, shown in Figure 10.1, has six loops: fpg, fqg,frg, fsg, fp; qg, fr; sg.1The example of a singleton loop shows that a loop of � does not neessarily orrespond toa loop (or yle) of the positive dependeny graph of � in the sense of graph theory. Lin andZhao [2004℄ did not allow paths of length 0.
175

For any set Y of atoms, the external support formula for Y is the disjuntionof the onjuntions B ^ F (10.1)for all rules (3.2) of � suh that� p1 2 Y , and� B \ Y = ;.We denote this external support formula by ES�;Y . The (disjuntive) loop formulaof a loop L for � is the formula _L � ES�;L:2 (10.2)By LF (�) we denote the set of formulas (10.2) for all nontrivial loops L of �.Theorem [Lin and Zhao, 2004, Theorem 1℄ For any normal program �, a set ofatoms is an answer set of � i� it is a model of Comp(�) [LF (�).If we inlude loop formulas for trivial loops, we an reformulate the theoremas follows without referring to ompletion. In the following we identify � with apropositional theory by identifying `not ' with `:', `;' with `^', `;' with `_', and ` 'with impliation.Corollary [Lee, 2005℄ For any normal program �, a set of atoms is an answer setof � i� it is a model of� ^ ^L is a loop of ��_L � ES�;L�:2When W is applied to a set L as in the anteedent of this formula, it stands for the disjuntionof all elements of L. 176

10.2 Loop Formulas for Causal Theories in CanonialForm10.2.1 Main Theorem for Canonial TheoriesReall that a (Boolean) ausal rule is an expression of the formF (G;where F , G are propositional formulas.If the head of a ausal rule is a onjuntion, then the rule an be broken intosimpler rules: replaing a rule F ^G(Hin a ausal theory by the rules F (H; G(Hdoes not hange the set of models. This fat allows us to replae any rule in aausal theory by several rules whose heads are lauses. We will all suh ausalrules anonial.A anonial ausal theory is a �nite set of anonial ausal rules.Let T be a anonial ausal theory. The head dependeny graph of T is thedireted graph suh that� its verties are the literals of �, and� for eah rule l1 _ � � � _ ln (F of T , it has an edge from eah li to eah ljwhere j 6= i, 1 � i; j � n.33l denotes the literal omplementary to literal l.177

:qp q:p :qT2
p q:p T3Figure 10.2: The head dependeny graphs of T2, T3Thus head dependeny graphs of ausal theories di�er from positive dependenygraphs of logi programs in two ways. First their verties are literals, and not onlyatoms. Seond, the edges of a graph ome from the heads of the rules.For instane, the head dependeny graphs of T2 and T3 (Setion 3.3) areshown in Figure 10.2.1.Similarly to logi programs, a nonempty onsistent set L of literals is alleda loop of T if, for every pair l1, l2 of literals in L, there exists a path from l1 to l2 inthe head dependeny graph of T suh that all verties in this path belong to L. Aloop is alled trivial if the loop onsists of a single literal suh that there is no edgefrom the literal to itself in the head dependeny graph.For instane, T2 has six loops: fpg, f:pg, fqg, f:qg, fp; qg, f:p;:qg, amongwhih the �rst four are trivial.The following fat easily follows from the de�nition of a loop. Given a set Lof literals, L is the set of literals omplementary to literals in L.Fat 1 For any anonial ausal theory T , if a set L of literals is a loop of T , L isa loop of T also.For any set Y of atoms, the external support formula for Y is the disjuntion178

of the onjuntions G ^ ^l2FnY lfor all rules F (G of T suh that� F \ Y 6= ;, and� F \ Y = ;.We denote the external support formula by EST;Y .Given a anonial ausal theory T , propositional theory Tr b(T) onsists of(i) the impliations G � Ffor all rules F (G in T ,(ii) the impliations _Y � EST;Y (10.3)for all onsistent sets Y of literals of �.Propositional theory Tr (T) is de�ned in the same way exept that instead of for-mulas (10.3),� theory Tr (T) inludes ^L � EST;L (10.4)for all loops L of T .When L is a loop, we all formula (10.4) the onjuntive loop formula of L for T .Theorem 2 For any anonial ausal theory T and any interpretation X of thesignature of T , the following onditions are equivalent to eah other:179

(a) X is a model of T .(b) X is a model of Tr b(T).() X is a model of Tr (T).Sine onditions (b) and () of Theorem 2 are equivalent to eah other, anyintermediate ondition between the two is also equivalent to (a){(). In partiularwe onsider the following translations, Trd and Tr e, whih are de�ned in the sameway as Tr b exept that instead of formulas (10.3),� theory Trd(T) inludes ^Y � EST;Yfor all nonempty onsistent sets Y of literals of �.4� theory Tr e(T) inludes _L � EST;L (10.5)for all loops L of T .When L is a loop, we all formula (10.5) the disjuntive loop formula of L for T .Corollary 5 For any anonial ausal theory T and any interpretation X of thesignature of T , the following onditions are equivalent to eah of onditions (a){()of Theorem 2:(d) X is a model of Trd(T).(e) X is a model of Tr e(T).4The requirement that Y be onsistent an be dropped sine the impliation is trivially true inthis ase. 180

Notie that the set of formulas in eah of the onditions (b){(e) onsists of twoparts. The �rst is a modular translation of T into propositional logi: it reads eahrule of T as an impliation. On the other hand, the seond part is a non-modulartranslation. For instane, to �nd loops and to write the onsequents of (10.4), onehas to look at the whole theory.For example, onsider T2 from Setion 3.3. The theory is not de�nite, sothat we annot use the literal ompletion method to �nd its models. But ondition() of Theorem 2 tells us that the models of T2 are exatly the models of(p _ :q) ^ (:p _ q)^ (p � q) ^ (q � p) ^ (:p � :q) ^ (:q � :p) ^ (p ^ q � ?) ^ (:p ^ :q � ?):Theory T3 from Setion 3.3 is another example to whih we annot apply literalompletion. Aording to Theorem 2, the models of T3 are exatly the models of(p _ :q) ^ (:p _ q) ^ (p _ q) ^ (p � q _ :q) ^ (q � p _ :p)^(:p � :q) ^ (:q � :p) ^ (p ^ q � >) ^ (:p ^ :q � ?):Note that all translations (b)|(e) involve the exponential number of loopsin the worst ase, and this may be seen as a defet of the translations. However,assuming a onjeture from the theory of omputational omplexity whih is widelybelieved to be true, we an show that any equivalent transformation from ausaltheories to propositional formulas without introduing new atoms involves a signif-iant inrease in size, in the worst ase. This is a onsequene of a similar result forlogi programs proved by Lifshitz and Razborov [2004℄, in ombination with thelemma from [Giunhiglia et al., 2004, Setion 8.3℄.
181

10.2.2 Completion and Tight Causal TheoriesWe an extend the literal ompletion method to anonial theories, not neessarilyde�nite, as follows. The (literal) ompletion of a anonial theory T , denoted byComp(T), is the onjuntion of T with the impliationsl � EST;flgfor all literals l of the signature of T . Note that this de�nition is a generalization ofthe literal ompletion of de�nite theories (Setion 3.4).Sine every singleton set of literals is a (trivial) loop, Comp(T) an be viewedas the onjuntion of T with loop formulas of all trivial loops of T . Thus it is learthat Tr (T) implies Comp(T), but not vie versa. The following is a orollary toTheorem 2 (Setion 10.2.1):Corollary 6 For any anonial theory T , if X is a model of T then it is a modelof Comp(T).As in the ase of logi programs (see Setion 3.1), we an de�ne a \tight"ausal theory, for whih the impliation in the other diretion also holds. Ourde�nition is based on the notion of a loop. For a anonial ausal theory T , we willsay that T is tight if all loops of T are trivial. It is lear that any de�nite theoryis tight. On the other hand, theories T2 and T3 (Setion 3.3) are not tight. Thefollowing example is a nonde�nite theory whih is tight:p _ :q (>r _ q (>:r (:r:182

Sine Comp(T) and Tr (T) are the same if T is tight, we get the followingorollary to Theorem 2, whih generalizes the proposition from Setion 3.4.Corollary 7 For any tight anonial ausal theory T and any interpretation X ofthe signature of T , X is a model of T i� X is a model of Comp(T).For tight theories, the translations from the previous setion give polynomial-size propositional formulas.10.2.3 Turning Nonde�nite Theories into De�nite TheoriesA orollary of Theorem 2 tells us that any nonde�nite theory an be turned intoan equivalent de�nite theory. Let T be a anonial ausal theory of a signature �.For every rule F (G of T , the orresponding set of de�nite rules DR(F (G) isde�ned as follows:DR(F (G) = (l (G ^ ^l02Fnflg l0 : l 2 F)if jF j > 1; DR(F (G) = fF (Gg otherwise.The set of de�nite rules orresponding to T is the union of DR(r) for allrules r in T : DR(T) = [r2T DR(r):Note that DR(T) = T when T is de�nite.
183

For example, for T3 from Setion 3.3, DR(T3) isp (q:q (:p:p (:qq (pp (:qq (:p;and its only model is fp; qg, whih is the only model of T3 also.For T2 from Setion 3.3, whih has no models, DR(T2) isp (q:q (:p:p (:qq (p; (10.6)
whih has two models, fp; qg and f:p;:qg.Aording to Proposition 5 from [Giunhiglia et al., 2004℄, adding a onstraint?(F (Setion 3.3) to a ausal theory T does not introdue new models, but simplyeliminates the models of T that does not satisfy F . Thus we get the following as aorollary to Theorem 2.Corollary 8 For any anonial ausal theory T , the following onditions are equiv-alent to eah other:(a) X is a model of T .(b) X is a model of DR(T)[f?(:(WY � EST;Y) : Y is a onsistent set of literals of �g.184

() X is a model of DR(T)[f?(:(VL � EST;L) : L is a nontrivial loop of Tg.(d) X is a model of DR(T)[f?(:(VY � EST;Y) : Y is a nonempty onsistent set of literals of �g.(e) X is a model of DR(T)[f?(:(WL � EST;L) : L is a nontrivial loop of Tg.For example, the onstraints that express the onjuntive loop formulas ofnontrivial loops for T2 are ?(:(p ^ q � ?)?(:(:p ^ :q � ?): (10.7)Corollary 8 tells us that the models of T2 are exatly the models of the ausal theorywhih onsists of (10.6) and (10.7).As another example, onsider the ation desription shown in Figure 5.1.Reall that it is nonde�nite beause of the last ausal law, whih is translated intoa set of ausal rules:i :Turning(1) � i :Turning(2)(i :Conneted : (10.8)Aording to Corollary 8, the ausal theory orresponding to Figure 5.1 an beturned into a de�nite theory with the same set of models by replaing the rule (10.8)with the following rules 5:i ::Turning(x) (i ::Turning(x1) ^ i :Conneted (x 6= x1)i :Turning(x) (i :Turning(x1) ^ i :Conneted (x 6= x1)? (:�Vx i :Turning(x) � Wx i :MotorOn(x)�: (10.9)5The �rst rule an be dropped without hanging the set of models.185

10.2.4 Transitive ClosureThe omparison of the de�nition of a loop in logi programs and in ausal logian guide us in translating a representation from one formalism to the other. Forexample, the dependeny graph of p q and the dependeny graph of p(q aredi�erent: while the former has an edge from p to q, the latter has no edges. Onthe other hand, q � p(> has two edges: one from p to q, and the other from :qto :p. In logi programming the following set of rules desribes the transitive losuret of a binary relation p on a set A:p(x; y) for any pair x; y 2 A suh that p(x; y) holdst(x; y) p(x; y)t(x; z) p(x; y); t(y; z): (10.10)One might be tempted to write the orresponding representation in ausallogi as follows:p(x; y) (> for any pair x; y 2 A suh that p(x; y) holdst(x; y) (p(x; y)t(x; z) (p(x; y) ^ t(y; z):p(x; y) (:p(x; y):t(x; y) (:t(x; y): (10.11)
Note that the ompletion of (10.10) is equivalent to the ompletion of (10.11).If p is ayli, then t in (10.11) desribes the transitive losure orretly. Other-wise, the representation may allow spurious models that do not orrespond to thetransitive losure. 186

The presene of the spurious models is related to the \yli ausality" in thethird rule of (10.11). The loop formulas for (10.11) are not equivalent to the loopformulas for (10.10). In (10.10) the third rule tells us that the positive dependenygraph has edges that go from t(x; z) to t(y; z), while in (10.11) the orrespondingrule does not ontribute to the edges of the head dependeny graph. Indeed, (10.11)has trivial loops only.This problem an be orreted by moving t(y; z) in the third rule from thebody to the head, to ensure that the head dependeny graph ontains the orre-sponding edges: t(y; z) � t(x; z)(p(x; y):6The modi�ed ausal theory may have more loops than (10.10), but the loopformulas for these extra loops are tautologies, beause eah of the loops ontainsat least one negative literal, and there is a rule : (: in the theory for everyatom . Thus it is easy to see that the loop formulas for the modi�ed ausal theoryare equivalent to the loop formulas for (10.10). The translation of the ausal logirepresentation of transitive losure to the orresponding logi program provides analternative proof of Theorem 2 from [Do�ganda�g et al., 2004℄, whih shows the or-retness of the modi�ed asual theory for representing transitive losure. Aordingto Corollary 8, t an also be desribed by de�nite theories using the translationfrom Setion 10.2.3.6Aording to Proposition 2 of [Lee, 2004℄, we an also write p(x; y) ^ t(y; z) � t(x; z)(>:Sine p(x; y) does not ontribute to any loops, moving p(x; y) from the head to the body does nothange loop formulas. The ase is similar with the seond rule of (10.11).
187

10.3 Loop Formulas for Arbitrary Causal TheoriesWe an extend Theorem 2 to arbitrary ausal theories, not neessarily anonial.An example of a non-anonial ausal theory is given in Setion 10.2.3; the theoryis non-anonial beause some rules have equivalenes in the heads.About an ourrene of a literal l in a formula, we say that it is singular if l isa positive literal preeded by :, and that it is regular otherwise. Given a formula F ,NNF (F) denotes the negation normal form of F , that is, the formula obtained fromF by distributing : over ^ and _ until it applies to atoms only.Let T be a ausal theory of a signature �. The head dependeny graph of Tis the direted graph suh that� its verties are the literals of �, and� it inludes an edge from a vertex l to a vertex l0 if there is a rule F (G in Tsuh that l ours regularly in NNF (F), and l0 ours regularly in NNF (F).This de�nition redues to the earlier de�nition (Setion 10.2.1) when T is anonial.Given a formula F and a onsistent set Y of literals, by FY we denote theformula obtained from F by replaing� eah ourrene of atom a suh that a 2 Y by ?, and� eah ourrene of atom a suh that :a 2 Y by >.By TY we denote the theory obtained from T by replaing all rules F (G in Twith FY (G. Note that in the proess of onstruting TY we transform only theheads of the rules. 188

In appliation to anonial ausal theories, this operation is losely relatedto external support formula:Proposition 14 Let T be a anonial ausal theory of a signature �, and X aninterpretation of � that satis�es T . For any onsistent set Y of literals of �, Xsatis�es EST;Y i� X does not satisfy TY .The translations Tr b, Tr , Trd, Tr e from Setion 10.2 an be extended toarbitrary ausal theories as follows: propositional theory Tr b(T) onsists of(i) the impliations G � Ffor all rules F (G in T , and(ii) the impliations _Y � :TY (10.12)for all onsistent sets Y of literals of �.In the ase when T is anonial, this de�nition di�ers from the de�nitionfrom Setion 10.2.1 only in that in formulas (10.12) we use TY instead of EST;Y . Inview of Proposition 14 this di�erene is not essential.The translations Tr , Tr d, and Tr e are de�ned in the same way exept thatinstead of formulas (10.12),� theory Tr (T) inludes ^L � :TL (10.13)for all loops L of T , 189

� theory Trd(T) inludes ^Y � :TYfor all nonempty onsistent sets Y of literals of �,� theory Tr e(T) inludes _L � :TL (10.14)for all loops L of T .Theorem 3 For any ausal theory T and any interpretation X of the signatureof T , the following onditions are equivalent to eah other:(a) X is a model of T .(b) X is a model of Tr b(T).() X is a model of Tr (T).Corollary 9 For any ausal theory T and any interpretation X of the signatureof T , the following onditions are equivalent to eah of onditions (a){() of Theo-rem 3:(d) X is a model of Trd(T).(e) X is a model of Tr e(T).The idea above an also be used to prove theorems about the relationshipbetween logi programs and ausal logi. For instane, the proof of Proposition 2from [Lee, 2004℄, whih shows how to embed disjuntive logi programs into ausallogi, is given by turning both logi programs and ausal theories into propositionaltheories and showing that these propositional theories are equivalent to eah other.190

10.4 ProofsIn this setion, we prove Proposition 14 and Theorem 3. These two theorems implyTheorem 2.We will sometimes identify a ausal theory T with the orresponding proposi-tional theory, and say that an interpretation satis�es T if it satis�es the propositionaltheory.10.4.1 Proof of Proposition 14Proposition 14 Let T be a anonial ausal theory of a signature �, and X aninterpretation of � that satis�es T . For any onsistent set Y of literals of �, Xsatis�es EST;Y i� X does not satisfy TY .Proof (Left-to-right) Assume that X j= EST;Y . Then there is a ruleF (G (10.15)in T suh that X j= G;X \ (F n Y) = ;F \ Y 6= ;; andF \ Y = ;: (10.16)It follows that X 6j= FY , and onsequently, X 6j= TY .(Right-to-left) Assume that X 6j= TY . We �rst show that X satis�es FY (Gfor every rule F (G that does not satisfy (10.16).� For every rule F (G suh that X 6j= G, X \ (F n Y) 6= ;, or F \ Y 6= ;, Xsatis�es FY (G trivially. 191

� For every rule F (G suh that F \Y = ;, sine X satis�es T , it follows thatX 6j= G, or X \ (F n Y) 6= ;. In either ase, it is easy to hek that X satis�esFY (G.It follows that there exists a rule that satis�es (10.16). Therefore X j= EST;Y .10.4.2 Proof of Theorem 3The proof of Theorem 3 uses the following lemma, proved in Setion 10.4.3.Main Lemma Let T be a ausal theory of a signature �, X an interpretation of �that satis�es T , and Y a nonempty onsistent set of literals of �. If X does notsatisfy TL for any loop L that is ontained in Y , then X does not satisfy TY .The proof of Theorem 3 uses the following fats as well.Fat 2 For any ausal theory T and any interpretation X of the signature of T ,X j= T i� X j= TX .This is immediate by strutural indution.Fat 3 Let F be a formula, T a ausal theory, X an interpretation of the signatureof T , and Y a onsistent set of literals.(i) X j= FY i� (X n Y) [Y j= F:(ii) X j= TY i� (X n Y) [Y j= TX :Part (i) is immediate by strutural indution. Part (ii) follows from (i).Theorem 3 For any ausal theory T and any interpretation X of the signatureof T , the following onditions are equivalent to eah other:192

(a) X is a model of T .(b) X is a model of Tr b(T).() X is a model of Tr (T).Proof From (b) to () is lear.From (a) to (b): Let X be a model of T . From the de�nition of a model, itfollows that X satis�es T . Let Y be any onsistent set of literals suh that Y \X 6= ;.Sine X is a model of T , (X nY)[Y , whih is di�erent from X, does not satisfy TX .By Fat 3, it follows that X does not satisfy TY .From () to (a): Assume that X satis�es T , and, for every loop L of T thatis ontained in X, X does not satisfy TL. First, by Fat 2, X j= TX . Let Y be anyinterpretation that is di�erent from X. We will show that Y 6j= TX . Let Z = X nY .Sine Z is nonempty, and X 6j= TL for any loop L that is ontained in Z, by themain lemma, it follows that X 6j= TZ , whih is equivalent to (X nZ)[Z 6j= TX , i.e.,Y 6j= TX by Fat 2. Therefore X is the unique interpretation satisfying TX .10.4.3 Proof of the Main LemmaLemma 3 Let T be a ausal theory of a signature �, X an interpretation of � thatsatis�es T , Y a onsistent set of literals of �, and L a nonempty subset of Y suhthat the head dependeny graph of T has no edge from a literal in L to a literalin Y n L. If X does not satisfy TL, then X does not satisfy TY .Proof Assume that X does not satisfy TL. There exists a ruleH B193

in T suh that X satis�es B, but does not satisfy HL. By Fat 3,(X n L) [L 6j= H: (10.17)On the other hand, X j= H (10.18)beause X satis�es T . From (10.17) and (10.18), it follows that at least one literalin L ours regularly in NNF (H).Next we will show that X 6j= TY . Sine the head dependeny graph of T hasno edge from a literal in L to a literal in Y n L, it follows that there is no literall 2 Y n L suh that l ours regularly in NNF (H). It follows from (10.17) that(X n Y) [Y 6j= H;whih is equivalent to X 6j= HY by Fat 3. Therefore, X 6j= TY .Main Lemma Let T be a ausal theory of a signature �, X an interpretation of �that satis�es T , and Y a nonempty onsistent set of literals of �. If X does notsatisfy TL for any loop L that is ontained in Y , then X does not satisfy TY .Proof In view of Lemma 3, it is suÆient to show that there exists a loop L suhthat the head dependeny graph of T has no edge from a literal in L to a literalin Y n L. We will show the existene of suh loops.Let G be the subgraph of the head dependeny graph of T indued by Y ,and let G0 be the graph obtained from G by ollapsing the strongly onnetedomponents of G (that is, the verties of G0 are the strongly onneted omponentsof G and G0 has an edge from vertex V to vertex V 0 if G has an edge from a literal194

in V to a literal in V 0). Sine Y is nonempty, there is at least one loop in Y .Consequently, there is at least one vertex in G0.It follows that there exists a terminal vertex in G0. Let L be that vertex. Itis lear that there is no edge from a literal in L to a literal in Y n L in the headdependeny graph of T .

195

Chapter 11
Splitting Causal Theories

The splitting set theorem [Lifshitz and Turner, 1994℄ allows us, under ertain on-ditions, to split a logi program into two parts and determine how the answer sets ofthe �rst part are a�eted by adding the seond part. In this hapter, we extend thisidea to ausal logi. The proof of the theorem uses Theorem 3 from the previoushapter. In Setion 11.2, we illustrate the usefulness of the splitting set theorem byusing it to prove a proposition regarding the use of statially determined uents inC+.11.1 Splitting Set Theorem for Causal LogiLet us onsider T1 (Setion 3.3). Without the �rst rule, the theory onsists of therules of the signature fqg, that is, q (q:q (:q: (11.1)
196

This theory, assuming its signature is fqg, has two models: fqg, f:qg. If we seletfqg, and \plug in the value" to the �rst rule, then the resulting theory onsists of arule of the signature fpg, that is p(>: (11.2)This theory, assuming its signature is fpg, has one model: fpg. The union of thetwo models, fqg [fpg, oinides with the model of T1.On the other hand, if we selet f:qg, the theory isp(?; (11.3)whih has no models.The example gives us an idea how a ausal theory an be \split." Morepreisely, we have the following result, whih is similar to the splitting set theoremfor logi programs [Lifshitz and Turner, 1994℄.Let T be a ausal theory of a signature �. A subset U of � is a splittingset for T if, for every rule F (G in T suh that F ontains a onstant from U ,all onstants ourring in F or G belong to U also. The bottom of T relative to asplitting set U , denoted by bU (T), is the ausal theory of the signature U onsistingof all rules F (G from T suh that all onstants ourring in F or G belong to U .By tU (T) (the top of T relative to U) we denote the ausal theory of the signature� that onsists of all rules of T not inluded in bU (T).For example, fqg is a splitting set for T1; the bottom of T1 relative to fqg,bfqg(T1), is theory (11.1) with the signature fqg; the top of T1 relative to fqg,tfqg(T1), onsists of the �rst rule of T1 with the signature fpg.Let F be a formula of the signature �, U a subset of �, and X a set of atoms = v suh that 2 U . By eU (F;X) we denote the formula obtained from F by197

replaing eah ourrene of atom =v with 2 U by > if it belongs to X and by? otherwise. For a ausal theory T of the signature �, by eU (T;X) we denote theausal theory of the signature � nU that onsists of the rules eU (F;X)(eU (G;X)for all rules F (G of T .For example, the theory efqg(tfqg(T1; fqg) is (11:2); the theory efqg(tfqg(T1; f:qg)is (11:3).Theorem 4 Let T be a ausal theory whose signature is �, and U a splitting setfor T . An interpretation of � is a model of T i� it an be written as X [Y whereX is a model of bU (T) and Y is a model of eU (tU (T);X).Aording to Theorem 4, the model of T1 an be written as fqg [fpg wherefqg is a model of bfqg(T1) and fpg is a model of efqg(tfqg(T1); fqg).11.2 Proof of Proposition 4Proposition 4 Let D be an ation desription whose signature is �, Q a setof statially determined uent onstants suh that � \ Q = ;, and DQ an ationdesription whih onsists of ausal laws of the formaused q if Fwhere q 2 Q and F is a formula of �, and the ausal lawsaused :q if :q:for all q 2 Q. Then the transition system of D [DQ is isomorphi to the transitionsystem of D. 198

Proof First, take the signature U = 0 : � as a splitting set of (D [DQ)0. ThenbU ((D [DQ)0) is D0 and tU ((D [DQ)0) is (DQ)0. By Theorem 4, any model of(D [DQ)0 an be written as X [Y where X is a model of D0 and Y is a model ofeU ((DQ)0;X). Sine �\Q = ;, it is easy to hek that given X, eU ((DQ)0;X) has aunique model of the signature 0:Q (onsider the ompletion of eU ((D [DQ)0;X)).Thus it follows that there is a 1{1 orrespondene between the states of D and thestates of D [DQ.Now take the signature U = 0:� [1:� as a splitting set of (D[DQ)1. ThenbU ((D [DQ)1) is D1 and tU ((D [DQ)1) is (DQ)1. By Theorem 4, any model of(D [DQ)1 an be written as X [Y where X is a model of D1 and Y is a modelof eU ((DQ)1;X). Sine � \ Q = ;, it is easy to hek that given X, eU ((DQ)1;X)has a unique model of the signature 0 :Q [1 :Q (again, onsider the ompletion ofeU ((D [DQ)1;X)). Thus it follows that there is a 1{1 orrespondene between thetransitions of D and the transitions of D [DQ.11.3 Related WorkThe splitting set theorem presented in this hapter is losely related to is the splittingset theorem for default logi presented in [Turner, 1996℄. Sine a Boolean ausaltheory an be viewed as a default theory in the sense of [Reiter, 1980℄ by identifyinga ausal rule F (G with the default : GF[Giunhiglia et al., 2004, Proposition 10℄, one an also derive a splitting set theoremfor ausal logi from Turner's theorem. However, a straightforward derivation would199

require that eah body of a rule be either a formula of the signature U or thesignature � n U , whih our splitting set theorem does not require. Moreover, ourtheorem is not limited to Boolean theories.11.4 Proof of the Splitting Set TheoremLemma 4 For any ausal theory T whose signature is �, and any splitting set Ufor T , every loop L of T is either a loop of bU (T) or a loop of tU (T) over � n U .Proof Easily follows from the fat that the head dependeny graph of T has noedge from a literal of U to a literal of � n U .Lemma 5 Let T be a ausal theory whose signature is �, U a splitting set for T ,and X an interpretation of � that satis�es T .(i) For every loop L of bU (T),X j= bU (T)L i� X j= TL:(ii) For every loop L of T n bU (T) over � n U ,X j= (T n bU (T))L i� X j= TL:Proof Follows from Lemma 4.Lemma 6 Let T be a ausal theory whose signature is �, U a splitting set for T ,and X an interpretation of U . For any loop L of tU (T) over � n U ,eU (tU (T);X)L = eU (tU (T)L;X):200

Proof Clear from the de�nitions of eU and TL.Theorem 4 Let T be a ausal theory whose signature is �, and U a splitting setfor T . An interpretation of � is a model of T i� it an be written as X [Y whereX is a model of bU (T) and Y is a model of eU (tU (T);X).Proof (Left-to-right) Assume that Z is a model of T . We will show that Z = X[Yfor two sets X and Y of literals suh that X is a model of bU (T), and Y is a modelof eU (tU (T);X). Take X to be the set of literals of U that belong to Z and Y tobe the set of literals of � n U that belong to Z. It is lear that Z = X [Y . ByTheorem 3, Z j= T and Z 6j= TL for every loop L of T .First we will show that X is a model of bU (T). Sine Z j= T and the signatureof bU (T) is U , it follows that X j= bU (T):Sine Z 6j= TL for every loop L of bU (T), by Lemma 5 (i), it follows thatX 6j= bU (T)Lfor every loop L of bU (T). Therefore, by Theorem 3, X is a model of bU (T).Next we will show that Y is a model of eU (tU (T);X). Sine X [Y j= tU (T),by the de�nition of eU , Y j= eU (tU (T);X):On the other hand, sine Z 6j= TL for every loop L of T , by Lemma 5 (ii),X [Y 6j= tU(T)Lfor every loop L of tU (T) over � n U . By the de�nition of eU ,Y 6j= eU (tU (T)L;X);201

or by Lemma 6, Y 6j= eU (tU (T);X)L;for the same loops. Therefore, by Theorem 3, Y is a model of eU (tU (T);X).(Right-to-left) Assume that X is a model of bU (T) and Y is a model ofeU (tU (T);X). Then we need to show that X [Y is a model of T .It is lear that X satis�es bU (T). From Y j= eU (tU (T);X), it holds thatX [Y j= tU (T):Therefore X [Y j= bU (T) [tU (T) = T .Next we will show that X [Y 6j= TL for every loop L of T . Take any loop Lof T . By lemma 4, L is a loop of either bU (T) or a loop of tU(T) over � n U .� If L is a loop of bU (T), then by Theorem 3, X 6j= bU (T)L. By Lemma 5 (i),X 6j= TL.� If L is a loop of tU(T) over � n U , then by Theorem 3,Y 6j= eU (tU (T);X)L;and by Lemma 6, Y 6j= eU (tU (T)L;X):By the de�nition of eU , it follows thatX [Y 6j= tU(T)L;and by Lemma 5 (ii), X [Y 6j= TL:Therefore Z is a model of T by Theorem 3.202

Chapter 12
Conlusion

12.1 Summary of ContributionsThe main ontributions of this dissertation are as follows.� We identi�ed several essential limitations of the MCain{Turner ausal logiand ation language C in appliation to desribing ommonsense knowledgeabout ations, and proposed multi-valued ausal logi and language C+, whihoverome these limitations. Language C+, a high level notation for multi-valued ausal theories, an represent non-propositional uents, de�ned uents,rigid onstants, and defeasible ausal laws. Despite many advaned features,it has a simple and elegant formal semantis.� We redesigned and reimplemented CCal to aount for these extensions.The input language of the new CCal provides a onvenient and onisesyntax for writing ation desriptions in the de�nite fragment of C+.� We identi�ed the onept of an additive uent and proposed a method for203

desribing additive uents in C+. We extended CCal aordingly to overadditive uents, and applied it to several examples of ommonsense reasoning.� We tested expressive possibilities of C+ by formalizing ation domains of non-trivial size, muh more ompliated than \toy problems."� By formalizing MCarthy's elaborations of the Missionaries and CannibalsPuzzle, we showed that, to a ertain degree, the goal of elaboration toleraneis met by the input language of the extended CCal. Eah enhanement wasobtained from the basi formalization by simply adding more postulates.� We showed how to turn an arbitrary ausal theory, not neessarily de�nite, intoa set of formulas in propositional logi using the onept of a loop formula. Asa orollary we showed that any nonde�nite theory an be turned into a de�nitetheory. The result provides a way to extend CCal to deal with arbitraryausal theories.12.2 Topis for Future WorkThe following is a list of topis for future work that would improve upon the resultsof this dissertation.� We have not yet onsidered how to inorporate sensing ations|ations thata�et the agent's knowledge but have no e�et on the world, and we have notshown how to inorporate probabilisti reasoning in C+.� Used as a planner, CCal does not rely on domain-spei� ontrol knowledge.It has been noted that delarative ontrol knowledge sometimes drastially204

improves the performane of planners. Although CCal an solve preditionand postdition problems with inomplete information, it does not handle\onformant planning"|generating plans that are guaranteed to sueed withinomplete initial onditions.� CCal has mainly been a researh tool used to test the expressiveness ofits input language. For CCal to be used as a more pratial system, theimplementation should onsider eÆieny and optimization more seriously.� The urrent version of CCal does not operate with real numbers, and eveninteger arithmeti is implemented in a way that beomes ineÆient when largeintegers are needed. It may be possible to lift these limitations by develop-ing an interfae with searh engines other than SAT solvers, suh as thosebased on linear programming, as in [Wolfman and Weld, 1999℄, or on integerprogramming, as in [Kautz and Walser, 1999℄.� Our translation of an arbitrary ausal theory into formulas in propositionallogi (or into a de�nite theory) an be used to extend CCal to handle nondef-inite theories. We may be able to identify a useful sublass of ausal theories,whih is more general than the lass of de�nite theories but still an be om-puted eÆiently. One suh extension was proposed in [Do�ganda�g et al., 2004℄.Also there is a need to better understand how loops an be omputed.� CCal may serve as a general-purpose reasoning tool whih is far more ex-pressive than many other reasoning systems. For instane, CCal may beused to formalize the behavior of software/hardware systems, whih would al-low \deep reasoning" about their behavior. This will lead to many interesting205

appliations suh as online help systems, for whih an elaboration tolerantformalism an be useful for maintaining knowledge bases. CCal may beapplied to formalizing and testing workows, a series of tasks performed byvarious ooperative and oordinated agents to ahieve a desired goal.

206

Appendix A
Solutions for Elaborations ofMCP found by CCal

A.1 Solution for the Basi Problem| ?- loadf 'basi-test'.% loading file /v/filer3/v2q021/appsmurf/al/maros.std% loading file /v/filer3/v2q021/appsmurf/mp/basi-test% loading file /v/filer3/v2q021/appsmurf/al/additive% loading file /v/filer3/v2q021/appsmurf/al/arithmeti% loading file /v/filer3/v2q021/appsmurf/mp/basi% loading file /v/filer3/v2q021/appsmurf/mp/ommon2% loading file /v/filer3/v2q021/appsmurf/mp/ommon1% in transition mode...% 130 atoms, 246 rules, 809 lauses (92 new atoms)% Grounding time: 3.53 seonds% Completion time: 0.56 seonds% Total time: 4.09 seondsyes| ?- query 0. 207

% Shifting atoms and lauses... done. (0.02 seonds)% After shifting: 2004 atoms (inluding new atoms), 7685 lauses% Writing input lauses... done. (0.56 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 1.11 seonds (prep 0.09 seonds, searh 1.02 seonds)No solution with maxstep 10.% Shifting atoms and lauses... done. (0.03 seonds)% After shifting: 2202 atoms (inluding new atoms), 8449 lauses% Writing input lauses... done. (0.62 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 2.3 seonds (prep 0.10 seonds, searh 2.20 seonds)apaity(boat)=20: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=3 num(a,bank2)=0lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=1,howmany(a)=1)1: num(mi,bank1)=2 num(mi,bank2)=1 num(a,bank1)=2 num(a,bank2)=1lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)2: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=2 num(a,bank2)=1lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2)3: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=0 num(a,bank2)=3208

lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1)4: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=1 num(a,bank2)=2lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)5: num(mi,bank1)=1 num(mi,bank2)=2 num(a,bank1)=1 num(a,bank2)=2lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=1)6: num(mi,bank1)=2 num(mi,bank2)=1 num(a,bank1)=2 num(a,bank2)=1lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)7: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=2 num(a,bank2)=1lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1)8: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=3 num(a,bank2)=0lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2)9: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=1 num(a,bank2)=2lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)209

10: num(mi,bank1)=1 num(mi,bank2)=2 num(a,bank1)=1 num(a,bank2)=2lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=1,howmany(a)=1)11: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=0 num(a,bank2)=3lo(boat)=bank2yesA.2 Solution for Two Boats% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 1.05 seonds (prep 0.24 seonds, searh 0.81 seonds)apaity(boat)=2 apaity(boat1)=10: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=3 num(a,bank2)=0lo(boat)=bank1 lo(boat1)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2)ross(boat1,to=bank2,howmany(mi)=0,howmany(a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(a,bank1)=3 departing(a,bank2)=01: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=0 num(a,bank2)=3lo(boat)=bank2 lo(boat1)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1)ross(boat1,to=bank1,howmany(mi)=0,howmany(a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(a,bank1)=0 departing(a,bank2)=22: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=2 num(a,bank2)=1210

lo(boat)=bank1 lo(boat1)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)ross(boat1,to=bank2,howmany(mi)=1,howmany(a)=0) departing(mi,bank1)=3departing(mi,bank2)=0 departing(a,bank1)=0 departing(a,bank2)=03: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=2 num(a,bank2)=1lo(boat)=bank2 lo(boat1)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)ross(boat1,to=bank1,howmany(mi)=1,howmany(a)=0) departing(mi,bank1)=0departing(mi,bank2)=2 departing(a,bank1)=0 departing(a,bank2)=04: num(mi,bank1)=2 num(mi,bank2)=1 num(a,bank1)=2 num(a,bank2)=1lo(boat)=bank1 lo(boat1)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)ross(boat1,to=bank2,howmany(mi)=0,howmany(a)=1) departing(mi,bank1)=2departing(mi,bank2)=0 departing(a,bank1)=1 departing(a,bank2)=05: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=1 num(a,bank2)=2lo(boat)=bank2 lo(boat1)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1)ross(boat1,to=bank1,howmany(mi)=0,howmany(a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(a,bank1)=0 departing(a,bank2)=26: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=3 num(a,bank2)=0lo(boat)=bank1 lo(boat1)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2)ross(boat1,to=bank2,howmany(mi)=0,howmany(a)=1) departing(mi,bank1)=0departing(mi,bank2)=0 departing(a,bank1)=3 departing(a,bank2)=0211

7: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=0 num(a,bank2)=3lo(boat)=bank2 lo(boat1)=bank2A.3 Solution for Four Missionaries and Four Cannibals% Verifying that the problem is not solvable...% Verifying the given invariant...% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 326 atoms (inluding new atoms), 1186 lauses% Writing input lauses... done. (0.08 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.09 seonds (prep 0.03 seonds, searh 0.06 seonds)No solution with maxstep 1.% Verified the invariant.% Verifying that initial state satisfies the invariant...% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 44 atoms (inluding new atoms), 91 lauses% Writing input lauses... done. (0.04 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.02 seonds (prep 0.02 seonds, searh 0.00 seonds)apaity(boat)=2 212

0: num(mi,bank1)=4 num(mi,bank2)=0 num(a,bank1)=4 num(a,bank2)=0lo(boat)=bank2
% Initial state satisfies the invariant.% Verifying that every goal state does not satisfy the invariant...% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 44 atoms (inluding new atoms), 91 lauses% Writing input lauses... done. (0.04 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.02 seonds (prep 0.01 seonds, searh 0.01 seonds)No solution with maxstep 0.% Every goal state does not satisfy the invariant.% Verified that the problem is not solvable for any number of steps.A.4 Solution for the Boat Carrying ThreeA.4.1 Five Pairs% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 10.32 seonds (prep 0.25 seonds, searh 10.07 seonds)apaity(boat)=30: num(mi,bank1)=5 num(mi,bank2)=0 num(a,bank1)=5 num(a,bank2)=0213

lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=1,howmany(a)=1)1: num(mi,bank1)=4 num(mi,bank2)=1 num(a,bank1)=4 num(a,bank2)=1lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)2: num(mi,bank1)=5 num(mi,bank2)=0 num(a,bank1)=4 num(a,bank2)=1lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=3)3: num(mi,bank1)=5 num(mi,bank2)=0 num(a,bank1)=1 num(a,bank2)=4lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1)4: num(mi,bank1)=5 num(mi,bank2)=0 num(a,bank1)=2 num(a,bank2)=3lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=3,howmany(a)=0)5: num(mi,bank1)=2 num(mi,bank2)=3 num(a,bank1)=2 num(a,bank2)=3lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=1)6: num(mi,bank1)=3 num(mi,bank2)=2 num(a,bank1)=3 num(a,bank2)=2lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=3,howmany(a)=0)214

7: num(mi,bank1)=0 num(mi,bank2)=5 num(a,bank1)=3 num(a,bank2)=2lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1)8: num(mi,bank1)=0 num(mi,bank2)=5 num(a,bank1)=4 num(a,bank2)=1lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=3)9: num(mi,bank1)=0 num(mi,bank2)=5 num(a,bank1)=1 num(a,bank2)=4lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)10: num(mi,bank1)=1 num(mi,bank2)=4 num(a,bank1)=1 num(a,bank2)=4lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=1,howmany(a)=1)11: num(mi,bank1)=0 num(mi,bank2)=5 num(a,bank1)=0 num(a,bank2)=5lo(boat)=bank2A.4.2 Six Pairs% Verifying that the problem is not solvable...% Verifying the given invariant...% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 513 atoms (inluding new atoms), 2013 lauses% Writing input lauses... done. (0.20 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.215

% Solution time: 0.19 seonds (prep 0.06 seonds, searh 0.13 seonds)No solution with maxstep 1.% Verified the invariant.% Verifying that initial state satisfies the invariant...% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 62 atoms (inluding new atoms), 146 lauses% Writing input lauses... done. (0.13 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.05 seonds (prep 0.04 seonds, searh 0.01 seonds)apaity(boat)=30: num(mi,bank1)=6 num(mi,bank2)=0 num(a,bank1)=6 num(a,bank2)=0lo(boat)=bank1
% Initial state satisfies the invariant.% Verifying that every goal state does not satisfy the invariant...% Shifting atoms and lauses... done. (0.00 seonds)% After shifting: 62 atoms (inluding new atoms), 146 lauses% Writing input lauses... done. (0.12 seonds)% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.216

% Solution time: 0.04 seonds (prep 0.04 seonds, searh 0.00 seonds)No solution with maxstep 0.% Every goal state does not satisfy the invariant.% Verified that the problem is not solvable for any number of steps.A.5 Solution for Converting Cannibals% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 9.34 seonds (prep 2.24 seonds, searh 7.10 seonds)apaity(boat)=20: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=3 num(a,bank2)=0lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=2departing(a,bank2)=01: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=1 num(a,bank2)=2lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1) onvert(bank1)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=12: num(mi,bank1)=4 num(mi,bank2)=0 num(a,bank1)=1 num(a,bank2)=1lo(boat)=bank1 217

ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=03: num(mi,bank1)=2 num(mi,bank2)=2 num(a,bank1)=1 num(a,bank2)=1lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)departing(mi,bank1)=0 departing(mi,bank2)=1 departing(a,bank1)=0departing(a,bank2)=04: num(mi,bank1)=3 num(mi,bank2)=1 num(a,bank1)=1 num(a,bank2)=1lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=05: num(mi,bank1)=1 num(mi,bank2)=3 num(a,bank1)=1 num(a,bank2)=1lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)departing(mi,bank1)=0 departing(mi,bank2)=1 departing(a,bank1)=0departing(a,bank2)=06: num(mi,bank1)=2 num(mi,bank2)=2 num(a,bank1)=1 num(a,bank2)=1lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=1,howmany(a)=1)departing(mi,bank1)=1 departing(mi,bank2)=0 departing(a,bank1)=1departing(a,bank2)=07: num(mi,bank1)=1 num(mi,bank2)=3 num(a,bank1)=0 num(a,bank2)=2lo(boat)=bank2 218

ACTIONS: ross(boat,to=bank1,howmany(mi)=1,howmany(a)=0)departing(mi,bank1)=0 departing(mi,bank2)=1 departing(a,bank1)=0departing(a,bank2)=08: num(mi,bank1)=2 num(mi,bank2)=2 num(a,bank1)=0 num(a,bank2)=2lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=09: num(mi,bank1)=0 num(mi,bank2)=4 num(a,bank1)=0 num(a,bank2)=2lo(boat)=bank2A.6 Solution for Walking on Water% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 1.59 seonds (prep 0.31 seonds, searh 1.28 seonds)apaity(boat)=20: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=3 num(a,bank2)=0num(j,bank1)=1 num(j,bank2)=0 lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2,howmany(j)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=2departing(a,bank2)=0 departing(j,bank1)=0 departing(j,bank2)=01: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=1 num(a,bank2)=2num(j,bank1)=1 num(j,bank2)=0 lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1,howmany(j)=0)219

departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=1 departing(j,bank1)=0 departing(j,bank2)=02: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=2 num(a,bank2)=1num(j,bank1)=1 num(j,bank2)=0 lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2,howmany(j)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=2departing(a,bank2)=0 departing(j,bank1)=0 departing(j,bank2)=03: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=0 num(a,bank2)=3num(j,bank1)=1 num(j,bank2)=0 lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1,howmany(j)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=1 departing(j,bank1)=0 departing(j,bank2)=04: num(mi,bank1)=3 num(mi,bank2)=0 num(a,bank1)=1 num(a,bank2)=2num(j,bank1)=1 num(j,bank2)=0 lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0,howmany(j)=0)departing(mi,bank1)=2 departing(mi,bank2)=0 departing(a,bank1)=0departing(a,bank2)=0 departing(j,bank1)=0 departing(j,bank2)=05: num(mi,bank1)=1 num(mi,bank2)=2 num(a,bank1)=1 num(a,bank2)=2num(j,bank1)=1 num(j,bank2)=0 lo(boat)=bank2ACTIONS: ross(boat,to=bank1,howmany(mi)=0,howmany(a)=1,howmany(j)=0)walk(walk_to=bank2) departing(mi,bank1)=1 departing(mi,bank2)=0departing(a,bank1)=0 departing(a,bank2)=1 departing(j,bank1)=1departing(j,bank2)=06: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=2 num(a,bank2)=1num(j,bank1)=0 num(j,bank2)=1 lo(boat)=bank1220

ACTIONS: ross(boat,to=bank2,howmany(mi)=0,howmany(a)=2,howmany(j)=0)departing(mi,bank1)=0 departing(mi,bank2)=0 departing(a,bank1)=2departing(a,bank2)=0 departing(j,bank1)=0 departing(j,bank2)=07: num(mi,bank1)=0 num(mi,bank2)=3 num(a,bank1)=0 num(a,bank2)=3num(j,bank1)=0 num(j,bank2)=1 lo(boat)=bank2A.7 Solution for the Bridge% Calling mChaff spelt3... done.% Reading output file(s) from SAT solver... done.% Solution time: 0.7 seonds (prep 0.29 seonds, searh 0.41 seonds)apaity(boat)=20: num(mi,bank1)=5 num(mi,bank2)=0 num(a,bank1)=5 num(a,bank2)=0lo(boat)=bank1ACTIONS: useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=0,useBridge_howmany(a)=2) departing(mi,bank1)=0departing(mi,bank2)=0 departing(a,bank1)=2 departing(a,bank2)=01: num(mi,bank1)=5 num(mi,bank2)=0 num(a,bank1)=3 num(a,bank2)=2lo(boat)=bank1ACTIONS: useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=2,useBridge_howmany(a)=0) departing(mi,bank1)=2departing(mi,bank2)=0 departing(a,bank1)=0 departing(a,bank2)=02: num(mi,bank1)=3 num(mi,bank2)=2 num(a,bank1)=3 num(a,bank2)=2lo(boat)=bank1ACTIONS: ross(boat,to=bank2,howmany(mi)=2,howmany(a)=0)221

useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=1,useBridge_howmany(a)=1) departing(mi,bank1)=3 departing(mi,bank2)=0departing(a,bank1)=1 departing(a,bank2)=03: num(mi,bank1)=0 num(mi,bank2)=5 num(a,bank1)=2 num(a,bank2)=3lo(boat)=bank2ACTIONS: useBridge(useBridge_from=bank1,useBridge_to=bank2,useBridge_howmany(mi)=0,useBridge_howmany(a)=2) departing(mi,bank1)=0departing(mi,bank2)=0 departing(a,bank1)=2 departing(a,bank2)=04: num(mi,bank1)=0 num(mi,bank2)=5 num(a,bank1)=0 num(a,bank2)=5lo(boat)=bank2

222

Bibliography
[Akman et al., 2004℄ Varol Akman, Selim Erdo�gan, Joohyung Lee, Vladimir Lif-shitz, and Hudson Turner. Representing the Zoo World and the TraÆ World inthe language of the Causal Calulator. Arti�ial Intelligene, 153(1{2):105{140,2004.[Apt and Bezem, 1990℄ Krzysztof Apt and Mar Bezem. Ayli programs. In DavidWarren and Peter Szeredi, editors, Proeedings of International Conferene onLogi Programming (ICLP), pages 617{633, 1990.[Armando and Compagna, 2002℄ Alessandro Armando and Lua Compagna. Au-tomati sat-ompilation of protool inseurity via redution to planning. InPro. Joint Int'l Conferene on Formal Tehniques for Networked and DistributedSystems 2002, 2002.[Artikis et al., 2003a℄ A. Artikis, M. Sergot, and J. Pitt. An exeutable spei�a-tion of an argumentation protool. In Proeedings of Conferene on Arti�ialIntelligene and Law (ICAIL), pages 1{11. ACM Press, 2003.[Artikis et al., 2003b℄ A. Artikis, M. Sergot, and J. Pitt. Speifying eletroni so-ieties with the Causal Calulator. In F. Giunhiglia, J. Odell, and G. Weiss,223

editors, Proeedings of Workshop on Agent-Oriented Software Engineering III(AOSE), LNCS 2585. Springer, 2003.[Baker, 1991℄ Andrew Baker. Nonmonotoni reasoning in the framework of situationalulus. Arti�ial Intelligene, 49:5{23, 1991.[Baral and Gelfond, 1997℄ Chitta Baral and Mihael Gelfond. Reasoning about ef-fets of onurrent ations. Journal of Logi Programming, 31, 1997.[Bayardo and Shrag, 1997℄ Roberto Bayardo and Robert Shrag. Using CSP look-bak tehniques to solve real-world SAT instanes. In Pro. IJCAI-97, pages203{208, 1997.[Campbell and Lifshitz, 2003℄ Jonathan Campbell and Vladimir Lifshitz. Rein-foring a laim in ommonsense reasoning.1 In Working Notes of the AAAI SpringSymposium on Logial Formalizations of Commonsense Reasoning, 2003.[Chopra and Singh, 2003℄ Amit Chopra and Munindar Singh. Nonmonotoni om-mitment mahines. In Agent Communiation Languages and Conversation Poli-ies AAMAS 2003 Workshop, 2003.[Clark, 1978℄ Keith Clark. Negation as failure. In Herve Gallaire and Jak Minker,editors, Logi and Data Bases, pages 293{322. Plenum Press, New York, 1978.[Cook, 1971℄ Stephen A. Cook. The omplexity of theorem-proving proedures. InPro. Third Annual ACM Symposium on Theory of Computing, 1971.[Davis et al., 1962℄ Martin Davis, George Logemann, and Donald Loveland. A ma-1http://www.s.utexas.edu/users/vl/papers/sams.ps .224

hine program for theorem proving. Communiations of the ACM, 5(7):394{397,1962.[Davis, 1990℄ Ernest Davis. Representations of Commonsense Knowledge. MorganKaufmann, 1990.[Do�ganda�g et al., 2004℄ Semra Do�ganda�g, Paolo Ferraris, and Vladimir Lifshitz.Almost de�nite ausal theories.2 In Pro. 7th Int'l Conferene on Logi Program-ming and Nonmonotoni Reasoning, pages 74{86, 2004.[Erdem and Lifshitz, 2003℄ Esra Erdem and Vladimir Lifshitz. Tight logi pro-grams. Theory and Pratie of Logi Programming, 3:499{518, 2003.[Eshghi and Kowalski, 1989℄ Kave Eshghi and Robert Kowalski. Abdution om-pared with negation as failure. In Giorgio Levi and Maurizio Martelli, editors,Proeedings of International Conferene on Logi Programming (ICLP), pages234{255, 1989.[Evans, 1989℄ Chris Evans. Negation-as-failure as an approah to the Hanks andMDermott problem. In Pro. Seond Int'l Symp. on Arti�ial Intelligene, 1989.[Fages, 1994℄ Fran�ois Fages. Consisteny of Clark's ompletion and existene ofstable models. Journal of Methods of Logi in Computer Siene, 1:51{60, 1994.[Fikes and Nilsson, 1971℄ Rihard Fikes and Nils Nilsson. STRIPS: A new approahto the appliation of theorem proving to problem solving. Arti�ial Intelligene,2(3{4):189{208, 1971.2http://www.s.utexas.edu/users/vl/papers/adt.ps .225

[Finger, 1986℄ Je�rey Finger. Exploiting Constraints in Design Synthesis. PhDthesis, Stanford University, 1986. PhD thesis.[Ge�ner, 1990℄ Hetor Ge�ner. Causal theories for nonmonotoni reasoning. InPro. AAAI-90, pages 524{530. AAAI Press, 1990.[Gelfond and Lifshitz, 1988℄ Mihael Gelfond and Vladimir Lifshitz. The stablemodel semantis for logi programming. In Robert Kowalski and Kenneth Bowen,editors, Proeedings of International Logi Programming Conferene and Sympo-sium, pages 1070{1080, 1988.[Gelfond and Lifshitz, 1993℄ Mihael Gelfond and Vladimir Lifshitz. Representingation and hange by logi programs. Journal of Logi Programming, 17:301{322,1993.[Gelfond and Lifshitz, 1998℄ Mihael Gelfond and Vladimir Lifshitz. Ation lan-guages.3 Eletroni Transations on AI, 3:195{210, 1998.[Gelfond, 1987℄ Mihael Gelfond. On strati�ed autoepistemi theories. InPro. AAAI-87, pages 207{211, 1987.[Gelfond, 1989℄ Mihael Gelfond. Autoepistemi logi and formalization of ommon-sense reasoning. In Mihael Reinfrank, Johan de Kleer, Matthew Ginsberg, andErik Sandewall, editors, Non-Monotoni Reasoning: 2nd Int'l Workshop (LetureNotes in Arti�ial Intelligene 346), pages 176{186. Springer-Verlag, 1989.[Giunhiglia and Lifshitz, 1998℄ Enrio Giunhiglia and Vladimir Lifshitz. An a-3http://www.ep.liu.se/ea/is/1998/016/ .226

tion language based on ausal explanation: Preliminary report. In Pro. AAAI-98,pages 623{630. AAAI Press, 1998.[Giunhiglia et al., 2004℄ Enrio Giunhiglia, Joohyung Lee, Vladimir Lifshitz,Norman MCain, and Hudson Turner. Nonmonotoni ausal theories. Arti�ialIntelligene, 153(1{2):49{104, 2004.[Hanks and MDermott, 1987℄ Steve Hanks and Drew MDermott. Nonmonotonilogi and temporal projetion. Arti�ial Intelligene, 33(3):379{412, 1987.[Hayes, 1977℄ Patrik Hayes. In defene of logi. In Pro. IJCAI-77, 1977.[Kautz and Selman, 1992℄ Henry Kautz and Bart Selman. Planning as satis�ability.In Proeedings of European Conferene on Arti�ial Intelligene (ECAI), pages359{363, 1992.[Kautz and Selman, 1996℄ Henry Kautz and Bart Selman. Pushing the envelope:planning, propositional logi and stohasti searh. In Pro. AAAI-96, pages1194{1201, 1996.[Kautz and Walser, 1999℄ Henry Kautz and Joahim Walser. State-spae planningby integer optimization. In Pro. AAAI-99, pages 526{533, 1999.[Koehler, 1998℄ Jana Koehler. Planning under resoure onstraints. In Pro. ECAI-98, pages 489{493, 1998.[Lee and Lifshitz, 2003℄ Joohyung Lee and Vladimir Lifshitz. Loop formulas fordisjuntive logi programs. In Pro. ICLP-03, pages 451{465, 2003.
227

[Lee, 2004℄ Joohyung Lee. Nonde�nite vs. de�nite ausal theories. In Pro. 7th Int'lConferene on Logi Programming and Nonmonotoni Reasoning, pages 141{153,2004.[Lee, 2005℄ Joohyung Lee. A model-theoreti ounterpart of loop formulas. InPro. IJCAI, 2005. To appear.[Lifshitz and Razborov, 2004℄ Vladimir Lifshitz and Alexander Razborov. Whyare there so many loop formulas? ACM Transations on Computational Logi,2004. To appear.[Lifshitz and Turner, 1994℄ Vladimir Lifshitz and Hudson Turner. Splitting a logiprogram. In Pasal Van Hentenryk, editor, Proeedings of International Confer-ene on Logi Programming (ICLP), pages 23{37, 1994.[Lifshitz et al., 2000℄ Vladimir Lifshitz, Norman MCain, Emilio Remolina, andArmando Tahella. Getting to the airport: The oldest planning problem in AI.In Jak Minker, editor, Logi-Based Arti�ial Intelligene, pages 147{165. Kluwer,2000.[Lifshitz, 1987℄ Vladimir Lifshitz. Formal theories of ation (preliminary report).In Pro. IJCAI-87, pages 966{972, 1987.[Lifshitz, 1991℄ Vladimir Lifshitz. Towards a metatheory of ation. In JamesAllen, Rihard Fikes, and Erik Sandewall, editors, Pro. Seond Int'l Conf. onPriniples of Knowledge Representation and Reasoning, pages 376{386, 1991.[Lifshitz, 1999℄ Vladimir Lifshitz. Ation languages, answer sets and planning.228

In The Logi Programming Paradigm: a 25-Year Perspetive, pages 357{373.Springer Verlag, 1999.[Lifshitz, 2000℄ Vladimir Lifshitz. Missionaries and annibals in the Causal Cal-ulator. In Priniples of Knowledge Representation and Reasoning: Pro. SeventhInt'l Conf., pages 85{96, 2000.[Lin and Zhao, 2004℄ Fangzhen Lin and Yuting Zhao. ASSAT: Computing answersets of a logi program by SAT solvers. Arti�ial Intelligene, 157:115{137, 2004.[Lin, 1995℄ Fangzhen Lin. Embraing ausality in speifying the indiret e�ets ofations. In Pro. IJCAI-95, pages 1985{1991, 1995.[Marek and Truszzy�nski, 1999℄ Vitor Marek and Miros law Truszzy�nski. Stablemodels and an alternative logi programming paradigm. In The Logi Program-ming Paradigm: a 25-Year Perspetive, pages 375{398. Springer Verlag, 1999.[MCain and Turner, 1997℄ Norman MCain and Hudson Turner. Causal theoriesof ation and hange. In Pro. AAAI-97, pages 460{465, 1997.[MCain and Turner, 1998℄ Norman MCain and Hudson Turner. Satis�abilityplanning with ausal theories. In Anthony Cohn, Lenhart Shubert, and StuartShapiro, editors, Pro. Sixth Int'l Conf. on Priniples of Knowledge Representa-tion and Reasoning, pages 212{223, 1998.[MCain, 1997℄ Norman MCain. Causality in Commonsense Reasoning about A-tions.4 PhD thesis, University of Texas at Austin, 1997.4ftp://ftp.s.utexas.edu/pub/tehreports/tr97-25.ps.Z .229

[MCarthy and Hayes, 1969℄ John MCarthy and Patrik Hayes. Some philosoph-ial problems from the standpoint of arti�ial intelligene. In B. Meltzer andD. Mihie, editors, Mahine Intelligene, volume 4, pages 463{502. EdinburghUniversity Press, Edinburgh, 1969.[MCarthy, 1959℄ John MCarthy. Programs with ommon sense. In Pro. Ted-dington Conf. on the Mehanization of Thought Proesses, pages 75{91, London,1959. Her Majesty's Stationery OÆe.[MCarthy, 1980℄ John MCarthy. Cirumsription|a form of non-monotoni rea-soning. Arti�ial Intelligene, 13:27{39,171{172, 1980. Reprodued in [MCarthy,1990℄.[MCarthy, 1986℄ John MCarthy. Appliations of irumsription to formalizingommon sense knowledge. Arti�ial Intelligene, 26(3):89{116, 1986. Reproduedin [MCarthy, 1990℄.[MCarthy, 1990℄ John MCarthy. Formalizing Common Sense: Papers by JohnMCarthy. Ablex, Norwood, NJ, 1990.[MCarthy, 1998℄ John MCarthy. Elaboration tolerane.5 In progress, 1998.[MDermott and Doyle, 1980℄ Drew MDermott and Jon Doyle. Nonmonotonilogi I. Arti�ial Intelligene, 13:41{72, 1980.[Moore, 1985℄ Robert Moore. Semantial onsiderations on nonmonotoni logi.Arti�ial Intelligene, 25(1):75{94, 1985.5http://www-formal.stanford.edu/jm/elaboration.html .230

[Morris, 1988℄ Paul Morris. The anomalous extension problem in default reasoning.Arti�ial Intelligene, 35(3):383{399, 1988.[Moskewiz et al., 2001℄ Matthew W. Moskewiz, Conor F. Madigan, Ying Zhao,Lintao Zhang, and Sharad Malik. Cha�: Engineering an eÆient SAT solver. InPro. DAC-01, 2001.[Niemel�a, 1999℄ Ilkka Niemel�a. Logi programs with stable model semantis as aonstraint programming paradigm. Annals of Mathematis and Arti�ial Intelli-gene, 25:241{273, 1999.[Pearl, 1988℄ Judea Pearl. Causality. Cambridge University Press, 1988.[Pednault, 1994℄ Edwin Pednault. ADL and the state-transition model of ation.Journal of Logi and Computation, 4:467{512, 1994.[Przymusinski, 1989℄ Teodor Przymusinski. On the delarative and proedural se-mantis of logi programs. Journal of Automated Reasoning, 5:167{205, 1989.[Reiter, 1978℄ Raymond Reiter. On losed world data bases. In Herve Gallaire andJak Minker, editors, Logi and Data Bases, pages 119{140. Plenum Press, NewYork, 1978.[Reiter, 1980℄ Raymond Reiter. A logi for default reasoning. Arti�ial Intelligene,13:81{132, 1980.[Reiter, 1991℄ Raymond Reiter. The frame problem in the situation alulus: a sim-ple solution (sometimes) and a ompleteness result for goal regression. In VladimirLifshitz, editor, Arti�ial Intelligene and Mathematial Theory of Computation:Papers in Honor of John MCarthy, pages 359{380. Aademi Press, 1991.231

[Turner, 1996℄ Hudson Turner. Splitting a default theory. In Pro. AAAI-96, pages645{651, 1996.[Turner, 1997℄ Hudson Turner. Representing ations in logi programs and defaulttheories: a situation alulus approah. Journal of Logi Programming, 31:245{298, 1997.[Turner, 1999℄ Hudson Turner. A logi of universal ausation. Arti�ial Intelligene,113:87{123, 1999.[Van Gelder et al., 1991℄ Allen Van Gelder, Kenneth Ross, and John Shlipf. Thewell-founded semantis for general logi programs. Journal of ACM, 38(3):620{650, 1991.[Wolfman and Weld, 1999℄ Steven Wolfman and Daniel Weld. The LPSAT engineand its appliation to resoure planning. In Pro. IJCAI-99, pages 310{316, 1999.[Zhang et al., 2001℄ Lintao Zhang, Conor F. Madigan, Matthew W. Moskewiz, andSharad Malik. EÆient onit driven learning in boolean satis�ability solver. InPro. ICCAD-01, pages 279{285, 2001.[Zhang, 1997℄ Hantao Zhang. An eÆient propositional prover. In Pro. CADE-97,1997.

232

Vita
Joohyung Lee was born in TaeGu, Korea in 1972, the �rst son of Soo-Ung Lee andChun-Hee Kim. In 1992 he entered Seoul National University, where he reeiveda B.S. degree in omputer engineering. In 1998 he ame to the United States forgraduate studies in omputer siene at the University of Texas at Austin. He wasmarried to Jee Hyun Park in 2002, and they expet the �rst baby in June 2005.He has published the following papers:1. Joohyung Lee and Vladimir Lifshitz. Desribing Additive Fluents in AtionLanguage C+. In Pro. Eighteenth International Joint Conferene on Arti�-ial Intelligene (IJCAI-03), pages 1079{1084, 2003.2. Joohyung Lee and Vladimir Lifshitz. Loop Formulas for Disjuntive LogiPrograms. In Pro. Nineteenth International Conferene on Logi Program-ming (ICLP-03), pages 451{465, 2003.3. Enrio Giunhiglia, Joohyung Lee, Vladimir Lifshitz, Norman MCain andHudson Turner. Nonmonotoni Causal Theories. Arti�ial Intelligene, 153:49{104, 2004.4. Varol Akman, Selim T. Erdo�gan, Joohyung Lee, Vladimir Lifshitz and Hud-233

son Turner. Representing the Zoo World and the TraÆ World in the Languageof the Causal Calulator. Arti�ial Intelligene, 153:105{140, 2004.5. Joohyung Lee. Nonde�nite vs. De�nite Causal Theories. In Pro. Seventh In-ternational Conferene on Logi Programming and Non-Monotoni Reasoning(LPNMR-04), pages 141{153, 2004.6. Joohyung Lee and Fangzhen Lin. Loop Formulas for Cirumsription. InPro. Nineteenth National Conferene on Arti�ial Intelligene (AAAI-04),pages 281{286, 2004.7. Joohyung Lee. A Model-Theoreti Counterpart of Loop Formulas. In Pro.Nineteenth International Joint Conferene on Arti�ial Intelligene (IJCAI-05), 2005, to appear.
Permanent Address: BoonDang-Gu JungJa-Dong WooSung #406-1101SungNam-Si, KyungKi-Do, South Korea, 463{752This dissertation was typeset with LATEX 2"by the author.

234

