Copyright
by
Joohyung Lee

2005

The Dissertation Committee for Joohyung Lee

certifies that this is the approved version of the following dissertation:

Automated Reasoning about Actions

Committee:

Vladimir Lifschitz, Supervisor

Robert S. Boyer

Bruce W. Porter

Peter Stone

Hudson Turner

Automated Reasoning about Actions

by

Joohyung Lee, B.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2005

To my family

Acknowledgments

Deepest thanks from the bottom of my heart to my advisor Vladimir Lifschitz for his
continuous support and encouragement throughout this work. He has been patiently
listening to my immature thoughts and has taught me how to think. His way of
conducting research and caring others is exemplary that I will continue to strive to
emulate. Thanks also to Elena Lifschitz for valuable advice and care for my wife
and me.

I am also thankful to the other members of the committee: Robert S. Boyer,
Bruce W. Porter, Peter Stone and Hudson Turner for careful reading of the disser-
tation and useful comments on it.

I have benefited from many discussions with teachers and friends. Thanks to
all of them including Chitta Baral, Jonathan Campbell, Esra Erdem, Selim Erdogan,
Paolo Ferraris, Michael Gelfond, Yuliya Lierler, Fangzhen Lin, Marco Maratea, Wan-
wan Ren and Hudson.

I have relied on Yoonsuck Choe, Wongeun Chung, Yang-Suk Kee, Seungchan
Kim, Roberto E. Lopez-Herrejon and Jungkun Seo when I needed to make difficult
decisions, and I am grateful to them for their thoughtful advice. I am also thankful

to Guru Huchachar, Eunjin Jung, Madhusudan Kayastha, Hyunok Oh, Chun-Yen

Wang, the members of the Texas Action Group at Austin, friends from the depart-
ment of computer sciences, friends from the Korean Baptist Church of Austin, and
friends from Korea for their support and friendship.

I was partially supported by a fellowship from the Korea Foundation for
Advanced Studies, and T am thankful for it. My research was also partially supported
by NSF under Grant IIS-9732744 and Grant I11S-0412907, and the Texas Higher
Education Coordinating Board under Grant 003658-0322-2001.

I thank my God who loves me without ever stopping. I thank my parents
Soo-Ung Lee and Chun-Hee Kim, my parents-in-law Jin Gyu Park and Sun Hee
Suh, my brother Changhyung Lee and my sister-in-law Chae Yon Park for their
love and support. My deepest love goes to my wife with whom I share everything

and to our first baby who is yet in his mom’s womb.

JOOHYUNG LEE

The University of Texas at Austin

May 2005

vi

Automated Reasoning about Actions

Publication No.

Joohyung Lee, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Vladimir Lifschitz

The study of reasoning about actions is an important subarea of the theory
of commonsense reasoning. It is concerned with developing appropriate systems of
logic for describing actions and their effects on the world. In spite of the fact that this
reasoning is based on common sense and does not involve any specialized knowledge,
attempts to formalize it using classical logic encountered serious difficulties, which
have led to the emergence of a new field, nonmonotonic logics.

In particular, McCain and Turner introduced the causal logic in which the
notions of “being caused” and “being true” are distinguished. Based on their logic,
Giunchiglia and Lifschitz proposed a high level action language C, which is a formal
model of parts of natural language that are used for describing properties of actions.
The causal logic and C, along with the concept of satisfiability planning, provided us
with a widely applicable and efficient method of automated reasoning about actions,

which led to the creation of the Causal Calculator (CCALC).

vii

In this dissertation, we have identified several essential limitations of the
McCain—Turner causal logic and action language C. To overcome these limitations,
we defined an extension of the causal logic to multi-valued formulas and a new
action language C+. Language C+ can represent non-propositional fluents, defined
fluents, additive fluents, rigid constants, and defeasible causal laws. Second, we
have redesigned and reimplemented CCALC to account for these extensions, and
tested the new CCALC and the underlying theory by applying them to several new,
more difficult examples of commonsense reasoning. The input language of the new
CCALC is more elaboration tolerant than the old version. Last, we have shown how
to turn causal logic into propositional logic based on the idea of “loop formulas”

that originated from logic programming under the answer set semantics.

viii

Table

Acknowledgments
Abstract

List of Figures

Chapter 1 Introduction

Chapter 2 Background

of Contents

2.1 Problems in Formal Reasoning about Actions

2.2 Nonmonotonic Reasoning

2.3 Nonmonotonic Theories of Causality

2.4 Action Languages L Lo

2.5 Elaboration Tolerance

2.6 SAT solvers e e

Chapter 3 Logic Programs and the McCain—Turner Causal Logic

3.1 Answer Set Semantics for Normal Programs

3.2 Completion

X

vii

XV

10
11
12

14

3.3 The McCain-Turner Causal Logic
3.4 Literal Completion

3.5 The Causal Calculator (CCALC)

Chapter 4 Action Language C and the Causal Calculator
4.1 Language C e
4.1.1 Syntax oo
4.1.2 Semantics
4.1.3 States and Transitions
4.2 Examples o
4.2.1 Monkey and Bananas
422 Blocks World
4.3 Language of the Causal Calculator
4.3.1 Monkey and Bananas in the Language of CCALC

4.3.2 Blocks World in the Language of CCALC

Chapter 5 New Extensions of Earlier Work
5.1 Multi-valued Fluents
5.2 Elaborating Actions by Attributes
5.3 Defining New Fluents
54 Rigid Constants
5.5 Defeasible Causal Laws
5.6 Additive Fluents
5.7 Nondefinite Causal Theories

5.8 Extending CCALC

Chapter 6 Multi-valued Causal Logic, Action Language C+ and CCALC 2.0 60

6.1 Multi-valued Causal Logic 60
6.1.1 Multi-valued Formulas 60
6.1.2 Multi-valued Causal Logic 62
6.1.3 Multi-valued Completion 64
6.2 Action Language C+ 66
6.2.1 Syntaxof C+ 66
6.2.2 Semanticsof C+ oL oL 66
6.2.3 Statically Determined Fluents 68
6.2.4 Defeasible Causal Laws 69
6.2.5 Solving the Qualification Problem inC+ 71
6.2.6 Rigid Constants 73
6.2.7 Action Attributes. 75
6.3 Comparison with ADL 76
6.4 Eliminating Multi-valued Constants 79
6.4.1 Eliminating Multi-valued Constants from Formulas 79
6.4.2 Eliminating Multi-valued Constants from Causal Theories . . 80
6.4.3 Eliminating Multi-valued Constants from C+ 81
6.5 CCALC 2.0 e 82
6.6 Proving the Unsolvability of Planning Problems in CCALC 87
6.7 Proofs 91

Chapter 7 Representing the Zoo World in the Language of the Causal
Calculator 104

7.1 Introduction 104

x1

7.2 The Description of the Zoo World 106
7.3 More on the Language of the Causal Calculator 110
7.4 Formalization of the Zoo World 111
7.5 Testing 124
Chapter 8 Describing Additive Fluents and Actions in C+ 129
8.1 Concurrent Execution of Actionsin C+ 129
8.2 Imncrement Lawso 131
8.3 Translating Increment Laws 134
8.4 Reasoning about Moneyo 138
8.5 Reasoning about Motion o000 142
8.6 Additive Action Constants 146
8.7 Improving Plans 0oL 148
8.8 Properties of Additive Constants 152
8.9 Discussion e e 155
8.10 Proofs L 156

Chapter 9 Elaborations of the Missionaries and Cannibals Puzzle 159

9.1
9.2
9.3
9.4
9.5
9.6

9.7

Formalization of the Basic Problem 160
Two Boats 164
Four Missionaries and Four Cannibals 167
Boat Can Carry Three 167
Converting Cannibals L. 169
Walking on Water oo 170
The Bridge o 172

x11

Chapter 10 Loop Formulas for Causal Logic

10.1 Review of the Lin/Zhao Theorem
10.2 Loop Formulas for Causal Theories in Canonical Form
10.2.1 Main Theorem for Canonical Theories
10.2.2 Completion and Tight Causal Theories.
10.2.3 Turning Nondefinite Theories into Definite Theories
10.2.4 Transitive Closure
10.3 Loop Formulas for Arbitrary Causal Theories
10.4 Proofs
10.4.1 Proof of Proposition 14
10.4.2 Proof of Theorem 3

10.4.3 Proof of the Main Lemma

Chapter 11 Splitting Causal Theories

11.1 Splitting Set Theorem for Causal Logic
11.2 Proof of Proposition4
11.3 Related Work oo

11.4 Proof of the Splitting Set Theorem

Chapter 12 Conclusion

12.1 Summary of Contributions

12.2 Topics for Future Work oL

Appendix A Solutions for Elaborations of MCP found by CCALC

A.1 Solution for the Basic Problem

A.2 Solution for Two Boats

xiii

174
174
177
177
182
183
186
188
191
191
192

193

196
196
198
199

200

203

203

204

207

A.3 Solution for Four Missionaries and Four Cannibals 212

A.4 Solution for the Boat Carrying Three. 213
A41 FivePairs 213

A42 SixPairs 215

A5 Solution for Converting Cannibals 217
A.6 Solution for Walking on Water 219
A.7 Solution for the Bridge 221
Bibliography 223
Vita 233

Xiv

4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1

6.1
6.2

6.3

6.4
6.5
6.6

6.7

List of Figures

The transition system described by SD 32
The Blocks World—A planning problem 39
Monkey and Bananas in the language of CCALC—Declarations . . . 41
Monkey and Bananas in the language of CCALC—Causal laws . . . 42
Monkey and Bananas in the language of CCALC—Planning problem 43

Blocks World in the language of CCALC 46
A Blocks World planning problem 47
Formalization of Two Gears inC 58
Monkey and Bananas in the language of the new CCALC—Declarations 84

Monkey and Bananas in the language of the new CCALC—Causal laws 85

Monkey and Bananas in the language of the new CCALC—Planning

problem 86
Blocks World in the language of the new CCALC 88
A query in the Blocks World with four blocks 89
Definition of neighbor oL 90
Four missionaries and four cannibals—Unsolvable problem 92

XV

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9

8.11
8.12

8.13

10.1

10.2

A zoolandscape

A transition system L
An action description in extended C+
The transition system described by Figure 8.2
The result of translating increment laws from Figure 8.2
The description from Figure 8.2 in the language of CCALC
File buying: Buying and selling
File buying-test: Do I have enough cash?
File spacecraft: The spacecraft Integer
File spacecraft-test: How to get there?
A transition system with an additive action constant
File bw-cost: Computing the cost of aplan
File: bw-cost-test: Finding an economical solution to large.c

Trade-off between length and cost in solutions to large.c

The dependency graph of ITy,

The head dependency graphs of T, T3

XVl

145

Chapter 1

Introduction

For a long time humans have been extending their abilities via their own inventions.
Mechanical devices have been developed to fulfill part of the dream. Ever since
computers were first built, the dream has geared its way to more intelligent tasks.
Once a task was well studied to automate, the use of computers became essential.

As we learn how to build systems for doing such tasks, computers seem
to become more “intelligent.” However, there are many human abilities that still
cannot be automated using the knowledge that we have: how can we build a system
that can understand and speak a natural language as well as a human (The Natural
Language Problem), how can we build a system that can see as well as a human
(The Vision Problem), to list a few.

The ability to reason is also one of them. The intellectual mechanisms in-

volved in reasoning are not well understood, even'

in the cases when reasoning
is based on common sense and does not involve any specialized knowledge. In-

deed, everyday life is full of commonsense problems, but a human has no diffi-

'Or one might say, especially.

culty solving them. However, we have little idea how a human’s reasoning mech-
anism works, let alone how to automate it. Even a simple-minded person can
easily devise a commonsense problem that would be a considerable challenge to
researchers in this area. For instances of commonsense problems that have partic-
ularly interested researchers, one may consult the Common Sense Problem Page
(http://wwwu-formal.stanford.edu/leora/cs). A monograph by Davis [1990]
contains a survey of various topics in this area.

For instance, the following are a few instances of problems we want to solve

automatically:

e Monkey and Bananas There is a monkey in a room that contains a box
and a bunch of bananas hanging from the ceiling. The bananas are beyond
his reach, but if he climbs onto the box, he would be able to grasp it. How

can a monkey grasp the bananas?

e Missionaries and Cannibals Three missionaries and three cannibals come
to a river and find a boat that holds two. If the cannibals ever outnumber the
missionaries on either bank, the missionaries will be eaten. How shall they

cross?

e Getting to the Airport I am seated at my desk at home and my car is at

home also. How can I get to the airport [McCarthy, 1959]? 2

Many Al researchers have been trying to endow computers with intelligence
through formal logic. However, their first attempts were not successful because

theories based on classical logic were not adequate for solving commonsense prob-

2This is the oldest planning problem in the AI literature.

lems. It was a new challenge that logicians had been ignorant of, but one that Al
researchers had to confront to fulfill their dream.

One of the most fundamental difficulties was that all systems of logics known
at the time were monotonic: if a conclusion is derivable from a set of axioms, then it
is still derivable even after adding more axioms. We may use the same old derivation
which does not include additional axioms. Monotonicity is natural in usual mathe-
matics. However, it is not desirable in formalizing commonsense reasoning, where a
conclusion may no longer be derivable when we add new assumptions. For instance,
a conclusion that is based on assumptions such as “normally, the car is drivable”
may be retracted later under certain exceptional circumstances such as “there is no
gas in the car,” and then we may get a totally different conclusion. This may once
again be retracted if we are told that “the car is run by electricity, and it has enough
of it.” Still the new conclusion can be retracted once again if we are told that “it is
a toy car.” It appears that one can continue to build an arbitrarily long sequence
of exceptions to any commonsense conclusion.

Despite this fact, humans have no difficulty drawing a conclusion. In a
sense, humans’ reasoning may involve jumping to a conclusion. For instance, when
we hear that there is a car in the garage, we jump to a conclusion that the car can
be used to drive. Such a conclusion can be retracted in the presence of additional
information that defeats the assumptions on which the conclusion was based. Logics
that have this property are called nonmonotonic logics and they were proposed by
AT researchers in the early 1980’s. The formalism we propose in this dissertation is
also nonmonotonic.

Although significant progress has been made in the last decade, the theory

of commonsense reasoning is still far from being complete. In this dissertation, we
focus on the subarea called reasoning about actions, in which we are concerned with
the formalization and automation of reasoning about the effects of actions. By an
action we mean anything that can be executed, and then may affect the state of
the world. In fact, one can see that all three examples above involve actions. These

actions are
e walking, pushing the box, climbing onto the box, and grasping the bananas
e crossing the river
e walking and driving

respectively. Walking changes the location of the monkey; climbing onto the box
changes the status of being on the box; crossing the river affects the number of
people on each bank, etc.

The automation of commonsense reasoning about actions is the subject of
this dissertation. Our work is based on a few successes in the last decade. In par-
ticular, McCain and Turner introduced a nonmonotonic causal logic [McCain and
Turner, 1997], in which the notions of “being caused” and “being true” are distin-
guished. Based on it, Giunchiglia and Lifschitz proposed a high level action language
C, which is a formal model of parts of natural language that are used for describing
properties of actions. The causal logic and C, along with the concept of satisfiability
planning, provided a widely applicable and efficient method of automated reasoning
about actions, which led to the creation of the Causal Calculator (CCALC).

In this dissertation, we have identified several essential limitations of the

McCain—Turner causal logic and action language C. To overcome these limitations,

we defined an extension of the causal logic to multi-valued formulas and a new
action language C+. Language C+ can represent non-propositional fluents, defined
fluents, additive fluents, rigid constants, and defeasible causal laws. Second, we
have redesigned and reimplemented CCALC to account for these extensions, and
tested the new CCALC and the underlying theory by applying them to several new,
more difficult examples of commonsense reasoning. Last, we have shown how to
turn causal logic into propositional logic based on the idea of “loop formulas” that
originated from logic programming under the answer set semantics.

After reviewing earlier work on the formalization and automation of reason-
ing about actions in Chapters 2—4, we discuss the need to extend the McCain—Turner
causal logic, language C and an early version of CCALC in Chapter 5. In Chapter 6
we present an extension of the McCain—Turner causal logic called multi-valued causal
logic, a new action language C+, and the new version of CCALC that overcome the
limitations, and relate C+ to the language ADL from [Pednault, 1994]. In Chapter 7
we test expressive possibilities of C+ and CCALC by formalizing an action domain
of nontrivial size. We identify a class of fluents that we call additive and show how
C+ can be used to talk about the effects of actions on such fluents in Chapter 8. In
Chapter 9 we formalize McCarthy’s elaborations of the Missionaries and Cannibals
Puzzle in the language of the new CCALC. We show how to turn causal logic into
propositional logic using the idea of loop formulas in Chapter 10, and apply loop

formulas to the problem of splitting a causal theory in Chapter 11.

Chapter 2

Background

In his classic paper [McCarthy, 1959], McCarthy proposed to create a software
system that he called the advice taker. The system is supposed to draw relevant
conclusions from the set of premises, mainly in the form of declarative sentences, de-
scribing a domain of consideration. If the information stored in the system needs to
be changed, extended or deleted, that should be done by just updating the premises,
rather than by rewriting the system’s internal code. Moreover, heuristics should also
be introduced by declarative sentences. The airport problem mentioned in Chap-
ter 1 was the example used in the paper to explain this idea. The system is expected
to generate the plan of getting to the airport given a declarative description of the
problem.

The idea of the advice taker was new, and there were many details to be
clarified; many serious difficulties were identified later. In the course of discussion,
Bar-Hillel commented, “Dr. McCarthy’s paper belongs in the Journal of Half-Baked

Ideas.” Even now, more than 40 years later, the idea is still being baked. However,

we have seen much progress. Recently, CCALC was applied to solving the airport
problem [Lifschitz et al., 2000]. In this chapter, we present how the research in this

area has evolved.

2.1 Problems in Formal Reasoning about Actions

It seems natural to choose formal logic as a vehicle for representing commonsense
knowledge due to its precise and declarative semantics. Hayes [1977] pointed out
that a logical model theory provides accounts for the meaning of a representa-
tion or representational language and helps us compare different representations or
languages. Researchers hoped that a computer would be able to derive relevant
conclusion from properly axiomatized knowledge.

But soon serious difficulties with formal logic were recognized. Some of the
problems were due to the implausible number of axioms that were required. The
most important one is the frame problem, which was first identified in [McCarthy
and Hayes, 1969]. The problem is how to represent what remains unchanged after
executing an action. Axiomatizers have to describe not only the things that change,
but also the things that do not change; without that, one would not be able to draw
many useful conclusions. The difficulty is that, in commonsense domains, there
are too many things that do not change, and enumerating all of them would not
be feasible (it looks also non-commonsensical to have to enumerate them all). For
instance, when we describe an action of walking to the car, we also need to list all
things that do not move: the desk, the car, the airport, the house and so on.

The frame problem becomes more difficult in the presence of indirect effects

of an action. The problem of describing indirect effects of an action is called the

ramification problem [Finger, 1986]. For instance, if I drive to the airport, not only
my location and the location of the car change, but also the locations of things in

my pocket and the trunk change. Enumerating all indirect effects is also tedious.

2.2 Nonmonotonic Reasoning

It was observed that the difficulties with formal logic described above are related to
the fact that classical logic is monotonic: for any sets of premises A and B such that
A C B, if a sentence F follows from A, then F follows from B also. In other words,
every conclusion that can be derived from A is also derivable from B. This is not de-
sirable in commonsense reasoning: as discussed in the introduction, when additional
assumptions are made, some of the conclusions may need to be retracted. This was
a challenge to Al researchers, and several systems of nonmonotonic reasoning were
invented in response.

A 1980 issue of the journal of Artificial Intelligence presented three forms
of nonmonotonic reasoning: circumscription by McCarthy [1980], default logic by
Reiter [1980], and a nonmonotonic logic by McDermott and Doyle [1980]. The con-
cept of circumscription was extended in [McCarthy, 1986], and an influential modal
nonmonotonic logic called autoepistemic logic was introduced by Moore [1985].

Every system of nonmonotonic reasoning provides a method for representing
“defaults.” One particularly important default is the commonsense law of inertia,
which says that everything tends to remain as it was. Formalizing this idea was
recognized as a key to solving the frame problem.

While the earlier forms of nonmonotonic reasoning were going through re-

finements and improvements, in 1987, Hanks and McDermott challenged the re-

search community by arguing that formal logic is no good for representing com-
monsense knowledge. As an example, they presented the so-called “Yale shooting
problem” [Hanks and McDermott, 1987], where McCarthy’s revised form of circum-

scription [McCarthy, 1986] could not account for a simple fact.

There is a gun and a person (in some versions, a turkey) whose name
is Fred. If the gun is loaded, shooting it kills Fred. Now consider the
following scenario. Initially Fred was alive, and the gun was not loaded.

Next the gun is loaded, and after waiting, the gun is shot. Is Fred dead?

Intuitively, the answer should be yes. However, McCarthy’s 1986 proposal
could not justify this. It left open the possibility that the gun gets unloaded by
itself during the execution of the wait action.

The failure discouraged some AI researchers and made them abandon the
logicist approach to commonsense reasoning. But others continued to extend the
systems of logic and came up with various solutions in response to the challenge.
Some of them are [Lifschitz, 1987], [Morris, 1988], [Gelfond, 1989], [Baker, 1991]
and [Lifschitz, 1991].

Logic programming became a member of the family of nonmonotonic rea-
soning systems once the semantics of “negation as failure” was clarified. Among the
semantics, influential are the completion semantics [Clark, 1978], the well-founded
semantics [Van Gelder et al., 1991], and the stable model or the answer set seman-
tics [Gelfond and Lifschitz, 1988]. Gelfond [1987] showed how to translate logic
programs into autoepistemic logic. Solutions to the Yale Shooting problem using
logic programs are described in [Eshghi and Kowalski, 1989], [Evans, 1989], [Apt

and Bezem, 1990].

2.3 Nonmonotonic Theories of Causality

Causality has been a major subject of study by philosophers from the ancient times ,

and now it is studied in AI as well.

In the natural sciences, the distinction between a material implication (“If
A holds, then B holds”) and a causal relation (“A causes B”) is commonly disre-
garded. Such distinction, however, turned out to be quite useful in commonsense
reasoning. As a result, nonmonotonic theories based on causality received consider-
able attention.

Pearl] [1988] investigated the distinction between causal and non-causal grounds
in general default reasoning. Geffner [1990] introduced a modal operator for rep-
resenting causality. Lin [1995] introduced the predicate Caused; his proposal made
it possible to conveniently express the indirect effects of an action, as well as the
direct effects, using circumscription.

Later, McCain and Turner [1997] introduced a causal logic in which the
notions of “being caused” and “being true” are distinguished using expressions of
the form

F<a (2.1)

where F' and G are propositional formulas. Intuitively (2.1) is understood as the
assertion that F' is caused if G holds. The semantics of the causal logic is based
on “the principle of universal causation,” which says that every fact that obtains
is caused. This strong philosophical commitment is rewarded by the mathematical

simplicity in the semantics. Universal Causal Logic (UCL) [Turner, 1999] extends

! Aristotle enumerated four kinds of causes: the material, the formal, the efficient, and the
final. Rene Descartes, David Hume, Immanuel Kant, and John Stuart Mill were also among the
philosophers who studied causality.

10

the language of causal theories to a modal framework. Although the syntax of
Geffner’s theory and UCL are similar, their semantics are not, and there seems to
be no precise relationship between them. The semantics of McCain and Turner’s
causal logic is closely related to that of logic programming under the answer set
semantics.

The systems proposed by Geffner, Lin, McCain and Turner allow us to ex-
press “static causal laws”—causal dependencies between fluents. This is essential

for solving the ramification problem.

2.4 Action Languages

Action languages [Gelfond and Lifschitz, 1998] are formal models of parts of natural
language that are used for describing the effects of actions. They define “transition
systems” —directed graphs whose vertices correspond to states and whose edges are
labeled by actions. Originally, action languages were developed to represent the
properties of actions in a high level notation. Their simple but concise syntax helps
us compare them and improve our understanding of reasoning about actions.

The STRIPS language [Fikes and Nilsson, 1971] is not an action language
in the sense of [Gelfond and Lifschitz, 1998], but is closely related. Despite its
limited expressivity and semantic pitfalls [Lifschitz, 1987], STRIPS’s influence has
been significant for two reasons: the language provides a built-in solution to the
frame problem; efficient computation can be carried out by employing a resolution
theorem prover in finding a sequence of STRIPS operators that leads to a world
model in which a given goal formula is true.

Many extensions that improve the expressive power of STRIPS were pro-

11

posed. Pednault’s ADL [Pednault, 1994] extended STRIPS by allowing symbols
for non-propositional fluents and conditional effects of actions. Gelfond and Lif-
schitz [1993] introduced language A (which is essentially the propositional fragment
of ADL) and related it to logic programming. Similar results for a language that
permits the concurrent execution of actions were proved in [Baral and Gelfond,
1997], and for a language with static causal laws in [Turner, 1997]. That work,
along with the theory of nonmonotonic causal reasoning presented in [McCain and
Turner, 1997)], has led to the design of language C [Giunchiglia and Lifschitz, 1998],

which is a basis of the action language C+ that we present in this dissertation.

2.5 Elaboration Tolerance

McCarthy [1998] expressed the view that human-level AI would require what he

called elaboration tolerance:

A formalism is elaboration tolerant to the extent that it is convenient
to modify a set of facts expressed in the formalism to take into account
new phenomena or changed circumstances. Representations of infor-
mation in natural language have good elaboration tolerance when used
with human background knowledge. Human-level AI will require rep-
resentations with much more elaboration tolerance than those used by
present Al programs, because human-level Al needs to be able to take

new phenomena into account.

The simplest kind of elaboration is the addition of new formulas. Next

comes changing the values of parameters. Adding new arguments to

12

functions and predicates represents more of a change.

In the paper McCarthy illustrated the idea by defining 19 variants of the

Missionaries and Cannibals Puzzle (MCP). Here are some of his elaborations:

e The boat can carry three.

e There is an oar on each bank.

e Only one missionary and one cannibal can row.

e The biggest cannibal cannot fit in the boat with another person.

e If the biggest cannibal is isolated with the smallest missionary, the latter will

be eaten.

e Three missionaries along with a cannibal can convert him into a missionary.

e There is a bridge.

e The boat leaks and must be bailed concurrently with rowing.

e There is an island.

e There are four cannibals and four missionaries, but if the strongest of the
missionaries rows fast enough, the cannibals won’t have gotten so hungry that

they will eat the missionaries.

When humans are told about the elaborations above, they understand the
changes using their background knowledge expressed in natural language without

having to start from scratch.

13

Lifschitz [2000] showed how to formalize the ten elaborations of MCP above
in the language of CCALC. Instead of formalizing each elaboration from scratch,
he “factored out” their common part; each formalization of an elaboration does not
modify the common part, but just adds to it a few propositions that express the
change. This is the simplest kind of elaboration that McCarthy discussed. CCALC
has determined the shortest number of steps to solve each elaboration and showed

the solution.

2.6 SAT solvers

SATISFIABILITY (or SAT for short) is the problem of determining whether a
given Boolean expression in conjunctive normal form is satisfiable. This is the first
problem proven to be NP-complete [Cook, 1971].

Systems that solve instances of this problem are called SAT solvers. Many
of them are based on an algorithm due to Davis, Logemann and Loveland [1962].
Various techniques such as intelligent backtracking, learning, backjumping and a
rapid restart strategy have been used to improve the efficiency of SAT solvers. At
the time of this writing, hundreds of thousands of atoms, and millions of clauses can
be handled reasonably well in many cases.

Since various problems can be cast as propositional theories, SAT solvers
are widely applied. In “satisfiability planning” [Kautz and Selman, 1992] a plan-
ning problem is encoded as a propositional theory so that a model of the theory
corresponds to a plan—a sequence of actions—that leads to a goal state from an

initial state. The plan can be found by running a SAT solver. Blackbox 2 is a

*http://www.cs.washington.edu/homes/kautz/blackbox .

14

planning system that converts a STRIPS formalization of a planning problem into
a propositional theory, and then finds its models using SAT solvers.

SAT solvers have many applications to areas other than reasoning about ac-
tion. For instance, they have been applied to the formal verification of hardware
systems with emphasis in Bounded Model Checking: NuSMV?2 3 is a SAT-based sym-
bolic model checker that turned out to be more efficient than BDD-based NuSMV;
GrAnDe * is a theorem prover based on SAT solvers; SAT solvers have been also
used for finding attacks to a set of well-known authentication protocols [Armando
and Compagna, 2002].

Some SAT solvers are complete, that is, they find a model if there exists
one, and answer “no” if there is none. Others sacrifice completeness in return for
efficiency. Most SAT solvers today accept the DIMACS input format. This simplifies
the efforts required to test and compare the solvers. Also systems employing SAT
solvers as their search engines have the flexibility of choosing different solvers. For
instance, one can run an incomplete solver first, and if it does not terminate after
certain time, run a complete solver. Competitions for SAT solvers are held frequently
to encourage the creation of more efficient systems.?

Carefully engineered solvers have shown significant speed-up. Chaff [Moskewicz
et al., 2001; Zhang et al., 2001] was designed from the beginning to handle large
formulas from a very specific area (mostly Bounded Model Checking) using “lazy”
data structures, and also integrated a new form of learning, taking advantage of

the overall lazy data structures used. Chaff outperforms existing SAT solvers on a

*http://nusmv.irst.itc.it/ .
*http://www.cs.miami.edu/"tptp/ATPSystems/GrAnDe/ .
5For a recent report, consult http://www.satisfiability.org/SAT04/ .

15

large set of “structured” (as opposed to random) instances. This efficiency boost is

expected to make SAT solvers more widely applicable.

16

Chapter 3

Logic Programs and the

McCain—Turner Causal Logic

The underlying nonmonotonic formalism we choose for formalizing the properties of
actions is causal logic. It is closely related to the answer set semantics (also known
as the stable model semantics) of logic programs by Gelfond and Lifschitz [1988],
which has led to a new declarative programming paradigm called answer set pro-
gramming [Lifschitz, 1999; Marek and Truszczynski, 1999; Niemel, 1999].

A special case of the answer set semantics is closely related to a simple
nonmonotonic formalism called Clark’s completion [Clark, 1978]. Completion is at-
tractive because it is defined as a transformation of logic programs to classical logic,
but it sometimes gives unintuitive results [Przymusinski, 1989, Section 4.1]. The
concept of completion was extended to causal logic by McCain and Turner [1997],
and the relationship between the semantics of causal logic and completion turned

out to be more immediate than the relationship between the answer set semantics

17

and completion. This idea has led to an efficient implementation of automated
reasoning about actions.
In this chapter we review the answer set semantics and the semantics of

causal logic, and their relationships with completion.

3.1 Answer Set Semantics for Normal Programs

We review the answer set semantics for normal programs [Gelfond and Lifschitz,
1988]. The word atom is understood here as in propositional logic.

A (normal) rule is an expression of the form

D1 Fp2a"'apﬂ’un0t pm+1)"')n0t Pn (31)

(1 < m < n) where all p; are atoms. Atom p; is called the head, and the part

D2y sPm, NOL Pm1, ..., N0t Pp

is called the body of the rule. We will often write (3.1) in the form

where B is pa,...,pm, and F' is not pp41, ..., not p,, and we will sometimes iden-
tify B with the set {p2,...,pm}. If the body is empty, then < can be dropped.

A (normal logic) program is a finite set of rules of form (3.1).!

We say that a set X of atoms satisfies the body B, F of rule (3.2) (symboli-
cally, X = B, F) if pa,...,pm € X and ppt1,...,pn € X. We say that X satisfies
a normal program IT (symbolically, X = II) if, for every rule (3.2) of that program,

p1 € X whenever X satisfies B, F.

'In the literature, programs are allowed to contain infinitely many rules, but in this dissertation,
for simplicity, we restrict attention to finite programs only.

18

Answer sets are defined by a fixpoint definition. The reduct II* of a normal

program II with respect to a set X of atoms is obtained from II by
e deleting each rule (3.2) such that X = F, and
e replacing each remaining rule (3.2) by p; + B.

A set X of atoms is an answer set of IT if X is minimal among the sets of atoms
that satisfy ITX.

For example, consider the following program II;:

p 4 not q

g notp

Consider, one by one, all sets formed from the atoms p and ¢:

e X; = (. The reduct Hfl is {p, q}, which X; does not satisfy. Consequently,

X is not an answer set of Il;.

e X, = {p}. The reduct T3 is {p}. Since X, is minimal among the sets of

atoms that satisfy the reduct, X5 is an answer set of I1;.

e X3 = {q}. Similarly to the above, the reduct II;'* is {g}. Since X3 is minimal

among the sets of atoms that satisfy H{(‘Q‘, X3 is an answer set of II;.

e X4y = {p,q}. The reduct H{X“ is @, which X4 satisfies, but it is not minimal
among the sets of atoms that satisfy the reduct. Consequently, X4 is not an

answer set of II;.

Thus we see that X5 and X3 are the only answer sets of II;.

19

3.2 Completion

Let IT be a program whose rules have the form (3.2). The completion of IT, Comp(II),

consists of the equivalences

m= \/ BAF (3.3)
p1<B,Fell

for all atoms p; that occur in II.2

For example, Comp(I1) is

p=79q
q=p,

whose models are {p}, {q}, which are the same as the answer sets of II;.

Proposition [Erdem and Lifschitz, 2003, Proposition 1] For any program Il and

any set X of atoms, if X is an answer set of Il then X is a model of Comp(II).

It is well known that the converse of this proposition does not hold. The one-
rule program p <+ p is a standard counterexample; both) and {p} are the models
of Comp(II), but only 0 is the answer set of II.

Fages [1994] showed that if a program is “tight,” then the converse of the
proposition holds as well. Erdem and Lifschitz [2003] generalized Fages’ theorem

and extended it to a more general class of programs.

3.3 The McCain—Turner Causal Logic

Like logic programs, causal theories consist of rules, but they are different in that

heads and bodies are arbitrary formulas in propositional logic. In this sense they are

2Completion defined here can easily be extended to the case where rules are allowed to have
empty heads, which is omitted here for simplicity.

20

more “propositional logic friendly” than logic programs. In this section we review
the semantics of causal logic.

A propositional signature is a set of symbols of propositional atoms. A
formula is a propositional combination of atoms as in propositional logic. An inter-
pretation of ¢ is a function that maps each element of o to the truth values.

By a (causal) rule we mean an expression of the form
F <G

(“F is caused if G holds”), where F', G are formulas in propositional logic of the
signature o. Formula F' is called the head and G is called the body of the rule.
Rules with the head L are called constraints.

A causal theory is a finite set of causal rules.

Like the semantics of a logic program, the semantics of a causal theory is
given by a fixpoint definition. Let 7" be a causal theory, and I an interpretation of
its signature. The reduct T! of T relative to I is the set of the heads of all rules
in T whose bodies are satisfied by I. We say that I is a model of T if I is the unique
model of T7.

Intuitively, 77 is the set of formulas that are caused, according to the rules
of T', under interpretation I. If this set has no models or more than one model,
then, according to the definition above, I is not considered a model of T. If 7' has
exactly one model, but that model is different from I, then I is not a model of T
either. The only case when I is a model of T is when I satisfies every formula in
the reduct, and no other interpretation does.

If a causal theory T has a model, we say that it is consistent, or satisfiable.

If every model of T satisfies a formula F' then we say that T entails F' and write

21

T =F.
As an example, take the following causal theory T} whose signature is {p, ¢}:
P <=4
g <=q (3.4)
g <— —gq.
Consider, one by one, all interpretations of that signature (we identify an

interpretation with the set of literals that are true in it):

e I1 = {p,q}. The reduct consists of the heads of the first two rules of Ti:

TII1 = {p,q}. Since I; is the unique model of Tlh, it is a model of T3.

e Iy = {-p,q}. The reduct is the same as above, and I is not a model of the

reduct. Consequently, I is not a model of T}.

e I35 = {p,—q}. The only element of the reduct is the head of the third rule

of Ty: Tll3 = {—¢q}. It has two models. Consequently, I3 is not a model of T;.

e Iy = {-p,—q}. The reduct is the same as above, so that I, is not a model

of T} either.

Thus we see that I; is the only model of T7.

Consider another example T» whose signature is again {p, ¢}:
pV—qg<=T
pVg <= T.

The reduct T4 is equal to the set of the heads of the rules in Ty regardless of the
interpretation I, so that it has two models, {p, ¢} and {-p, —~q}. Therefore, T5 has

no models.

22

T3 is the following theory of the same signature that adds one rule to T5:

pV—qg &= T
-pVqg <= T

pVg <= T.

Similarly to the previous example, T3I is equal to the set of the heads of the rules
in T3 regardless of the interpretation I. Now {—p, =¢q} is not a model of Tgl, so that
T3 has one model: {p, q}.

Theories T5 and T3 illustrate the nonmonotonicity of causal logic: we may

get a new model by adding more rules.

3.4 Literal Completion

A causal theory is called definite if the head of every rule in it is either a literal or L.
For a definite theory, we can describe its models in terms of “literal completion”
[McCain and Turner, 1997], which is similar to Clark’s completion for normal logic
programs.

Consider a definite causal theory T' of a signature o. For each literal [, the

literal completion formula for [is the formula
Il =Gyv---VG,

where G1,...,Gy, (n > 0) are the bodies of the rules of 7' with head I. The (literal)
completion of T is obtained by taking the completion formulas for every literal of o,

along with the formula —F for each constraint | <= F in T

23

For example, the completion of T; is

pP=q
ﬁpEJ_
(3.5)
a=q
—q="q,

and its only model is {p,q}, which is exactly the model found above using the
definition of causal logic.

The relationship between causal logic and completion is more immediate than
the relationship between logic programs and completion described in Proposition 1

from [Erdem and Lifschitz, 2003] (Section 3.2):

Proposition /[McCain and Turner, 1997/ The models of a definite causal theory

are precisely the models of its completion.

However, the method of completion is not applicable to nondefinite theories,
such as Ty and T3.

Here are two more examples of the use of completion. First, we will show
how to turn any set I' of formulas into a causal theory that has the same models

as I'. The rules of this theory are
e | <= for every literal [of o, and
e the constraints | <= —F for every F € I'.

The completion of this theory consists of the formulas [= [for all literals [and the

formulas ——F for all F' € I'. Clearly, the completion is equivalent to I'.

24

Second, definite theories can be used to express the “closed-world assump-
tion,” [Reiter, 1978] as follows. Take a signature 0. The assumption that the

elements of ¢ are false by default can be expressed by the rules
—a <= —a (a € 0) (3.6)

(if a is false then there is a cause for this). If, for some subset S of o, we combine (3.6)
with the rules

a<=T (a € 8),

we will get a causal theory whose only model is the interpretation I that assigns t
to the atoms in S and f to all other atoms. Indeed, the completion of this theory

consists of the formulas

a=T (a € 9),
a=1 (a€o)\S),
-a=-a (a €0),

and I is the only model of these formulas.
The proposition above shows that the satisfiability problem for definite causal

theories belongs to class NP. It is clearly NP-complete.

3.5 The Causal Calculator (CCALC)

The proposition from Section 3.4 tells us that the models of definite theories can
be computed by SAT solvers. This idea led McCain to design the Causal Calcu-
lator (CCALC) 3—an implementation of definite causal theories. Computationally,

CCALC turns a definite theory into a propositional theory by literal completion,

*http://www.cs.utexas.edu/users/tag/cc .

25

and then calls SAT solvers to find the models of the propositional theory, which, in
turn, correspond to the models of the causal theory.

The original version of CCALC was implemented in Prolog as part of Mc-
Cain’s dissertation [McCain, 1997]. The idea is similar to satisfiability planning [Kautz
and Selman, 1992] but the formalism of CCALC is much more expressive than the
STRIPS based formalisms [McCain and Turner, 1998]. An early version of CCALC
was applied to formalizing several challenge problems in the theory of common-
sense knowledge, including McCarthy’s airport example [Lifschitz et al., 2000] and
elaborations of the Missionaries and Cannibals Puzzle [Lifschitz, 2000].

We will talk about CCALC in more detail in the following chapter.

26

Chapter 4

Action Language C and the

Causal Calculator

4.1 Language C

The review of C in this section follows [Giunchiglia and Lifschitz, 1998].

4.1.1 Syntax

In C, a signature o is partitioned into two groups of symbols: fluent symbols of!
and action symbols 0. A fluent formula is a formula that does not contain action
symbols.

Consider the monkey and bananas problem described in Chapter 1. To for-

malize the problem in a declarative language, one needs to be able to describe
e the locations of the monkey, the bananas, and the box,

e whether the monkey is on the box, and

27

e whether the monkey has the bananas.

Assuming that the possible locations of the monkey, the bananas, and the

box are L, Lo, L3, a signature that would allow us to talk about the states consists

of symbols:
At(z,1) (x€{Monkey, Bananas, Boz}, l€{L1, Ly, L3}), (41)
1
HasBananas, OnBoz.
Actions in the domain can be denoted by symbols:
Walk(l), PushBoz(l), ClimbOn, ClimbOff, GraspBananas. (4.2)

There are two kinds of propositions, called “causal laws,” in C. A static law

is an expression of the form

caused F if G (4.3)

where F' and G are fluent formulas. For instance,
caused At(Bananas,l) if At(Monkey,l) N HasBananas (4.4)

is a static law. The intuitive meaning of the proposition is that the location of the
bananas is determined by the location of the monkey if it has the bananas. The
change of the location of the bananas is an indirect effect of any action that affects
the location of the monkey.

A dynamic law is an expression of the form
caused F if G after H (4.5)
where F' and G are fluent formulas and H is a formula. For instance,

caused At(Monkey,l) if T after Walk(l)

28

is a dynamic law describing the effect of an action of walking.

In both propositions (4.3) and (4.5), the formula F' is called the head. The
part if G can be dropped if G is T.

A causal law is a static law or a dynamic law. An action description is a
finite set of causal laws. An action description is definite if the head of every causal

law of it is either a literal or L.

4.1.2 Semantics

As in [Giunchiglia and Lifschitz, 1998], the semantics of C can be defined in terms
of causal logic. An action description is mapped to a causal theory whose models
are in a 1-1 correspondence with the paths in the transition system.

More precisely, any action description can be viewed as an abbreviation for
a sequence of causal theories. For any action description D and any nonnegative
integer m, the causal theory D,, is defined as follows. The signature of D,, consists

of the pairs i:c¢ such that
e i €{0,...,m} and c is a fluent constant of D, or
e i €{0,...,m — 1} and c is an action constant of D.

If ¢ is a fluent, then 7 : ¢ means that ¢ holds at step ¢, and if ¢ is an action, then i : ¢
means that ¢ occurs between steps ¢ and 7 + 1.

In the description of the rules of D,, below, the following convention is used:
for any formula F' of the signature of D, i: F stands for the result of prefixing all

fluent symbols and action symbols in F' with ¢: . The rules of D,, are
1 F<=i:G (4.6)

29

for every static law (4.3) in D and every ¢ € {0,...,m};

i+1:F <=i+1:G N i:H (4.7)

for every dynamic law (4.5) in D and every i € {0,...,m — 1};

O:c<=0:c
(4.8)
0:—mc<=0:—c
for every fluent symbol ¢;
t:c<&<=tice
(4.9)

t:oc<=1:c
for every action symbol ¢, and every i € {0,...,m — 1}.

Rules (4.8) express that the initial values of all fluents are “exogenous”: they
can be chosen arbitrarily. Rules (4.9) express that all actions are exogenous: whether
or not an action is executed can be decided arbitrarily.

For instance, consider the following simple action description SD where there

are only one fluent symbol P and only one action symbol A:

caused P if T after A
caused P if P after P

caused —P if —P after —P.

The first line expresses that if the action A is executed, then the value of P will be
caused to be true; the next two lines express the commonsense law of inertia: in the
absence of any evidence to the contrary, the value of P after an event is assumed to

be the same as the value before the event. This is how C solves the frame problem.

30

The causal theory SD,, for action description SD consists of

1+1:P<&<i:A
t+1:P<i+1:P A i:P
1+1:mP<<=i+1:=-P A ©:—-P

for every i € {0,...,m — 1} according to (4.7);

0:P<=0:P
0:=P <= 0:—-P
according to (4.8);
itA<=1i:A
itmA<=i:-A
for every i € {0,...,m — 1} according to (4.9).
It is easy to check that the models of the completion of SD,, can be written

as m equivalences
i+1:P = i:AV i:P (0 <i<m).

SD,, has 2™*! models, each characterized by the truth values assigned to the con-
stants 0: P and ¢: A (i = 0,...,m — 1). For instance, one of the models of SD,
is
{=0:P, -0: A, —-1:P, 1: A, 2:P}. (4.10)
Intuitively, it means that P is false in the beginning, and remains false when action
A is not executed. Then the action is executed, which will make P true.
Certain abbreviations are useful. If a is an action constant and F', G are

fluent formulas, then

a causes F if G (4.11)

31

{-4) {-4

))

“

-

{4}
Figure 4.1: The transition system described by SD
stands for the dynamic law
caused F' if T after a A G.

The rule (4.11) can be used for describing a conditional effect of an action, i.e., for
expressing that executing action a causes F' to be true if G holds in the current
state. The part if G can be dropped if G is T. So the first line of SD can be
abbreviated as

A causes P.

There is also an abbreviation for the last two lines of SD:

inertial P. (4.12)

4.1.3 States and Transitions

The models of SD,, can be visualized as paths in a “transition system”—the graph
shown in Figure 4.1. The two vertices of the graph represent states; in one state,
the value of the fluent P is f, in the other it is t. The edges represent transitions
between states; the action a is executed in two transitions, and it is not executed in

the other two.

32

There is a simple 1-1 correspondence between the models of SD,, and the
paths of length m in this transition system. For instance, the model of SD; in (4.10)
corresponds to the path

(=P, ~A, -P, A,P).

Indeed, any action description describes a transition system. Consider an
action description D with a set ¢! of fluent symbols and a set % of action symbols.
The transition system represented by D is defined by Dy and D; as we will see soon.

We can represent any interpretation of the signature of D,, in the form
(0:50) U(0:eg) U(Ll:sy)U(Lieg) U---U(m:sp) (4.13)

where sg,..., s, are interpretations of of!, and eq,...,en_1 are interpretations
of g%t

A state is an interpretation s of of! such that 0:s is a model of Dy. States
are the vertices of the transition system represented by D. A transition is a triple
(s,e,s'), where s and s’ are interpretations of ¢! and e is an interpretation of ¢,
such that 0:sU0:eU1:s" is a model of D;. Transitions correspond to the edges
of the transition system: for every transition (s, e, s'), it contains an edge from s to

s' labeled e. These labels e will be called events. One can check that according to

the definitions, the graph in Figure 4.1 is indeed the transition system described by

SD.
A history is a sequence of the form
<807 €0,S51,€1,.---,8m—1,Em—1, Sm>
where each (sg, €g, $1), ($1,€1,52), "+ , (Sm_1,€m_1, Sm) 1S a transition.

33

Proposition [Giunchiglia and Lifschitz, 1998, Proposition 2] For any m > 0, an

interpretation (4.13) of the signature of D, is a model of Dy, iff
(80,€0, 81, €15+ -+, 8m—1,€m—1,5m)

s a history of D.

4.2 Examples

4.2.1 Monkey and Bananas

We illustrate the use of C by formalizing the Monkey and Bananas domain. The
signature is as given in Section 4.1.1. In the following, x ranges over Monkey,
Bananas, Box; 1, 11, I3 range over Ly, Lo, Lg.

The first postulate expresses that there exists a location for each object at

every instant:

constraint \/, At(z,!) (4.14)

The symbol \/; denotes a multiple disjunction over locations {. For a fluent for-
mula F',

constraint F

stands for the static law

caused L if —-F.

The proposition constrains the set of states: if an action description contains the
proposition, every state in the corresponding transition system must satisfy F.

The second postulate expresses that each object belongs to at most one

34

location:
caused —At(z,l;) if At(z,1) (1 #1). (4.15)

The fact that an object, when moved to another location, “disappears” from its
previous location can be treated as an indirect effect, or “ramification,” of the
moving action. This is represented by (4.15), which illustrates how C solves the
ramification problem using static laws. Note that static laws do not mention actions,
and we will soon see why the use of static laws is an attractive solution for the
ramification problem.

The next group of static laws further constrains the set of states: if the
monkey has the bananas, then the bananas are at the location where the monkey

is; if the monkey is on the box, then the monkey is at the location where the box is.

caused At(Bananas,!l) if At(Monkey,l) N HasBananas (4.16)
4.16

caused At(Monkey,!l) if At(Boz,l) N OnBoz.

The first law ensures that the change in the location of the bananas is an indirect
effect of walking if the monkey has the bananas. Walking not only affects the location
of the monkey, but also the location of the bananas if the monkey has them. The

second effect can be described by
Walk(l) causes At(Bananas,l) if HasBananas.

But this law is redundant, because in the presence of the first line of (4.16), the
change in the location of the bananas is an indirect effect of walking (and of any other
action that affects the location of the monkey). The possibility of this simplification

is what makes the postulate (4.16) attractive.

35

Similarly in view of the second law, the change in the location of the monkey
is an indirect effect of moving the box.!

The effects and the preconditions of walking are described as follows:

Walk (1) causes At(Monkey,l)
nonexecutable Walk(l) if At(Monkey, 1) (4.17)

nonexecutable Walk(l) if OnBoz.

In the last two lines

nonexecutable a if G (4.18)

is an abbreviation for (4.11) when F' is L. The proposition is used to represent a
qualification for executing action a.

Pushing the box has two effects and three preconditions:

PushBoz(l) causes At(Monkey,1)

PushBoz(l) causes At(Boz,1)

nonexecutable PushBoz(l) if At(Monkey,1)

nonexecutable PushBoz(l) if At(Monkey,l;) N At(Boz,ls) (I3 # 12)

nonexecutable PushBoz(l) if OnBoz.
(4.19)

'Of course in this domain with only one monkey, it is not possible to move the box with the
monkey on it. But if we enhance the domain to allow multiple monkeys, then this will become
possible.

36

The descriptions of the rest of actions have a similar structure:

ClimbOn causes OnBozx
nonexecutable ClimbOn if At(Monkey,l) N At(Boz,l1) (1 # 1)

nonexecutable ClimbOn if OnBoz

ClimbOff causes —OnBozx

nonexecutable ClimbOff if —OnBoz

GraspBananas causes HasBananas
nonexecutable GraspBananas if HasBananas
nonexecutable GraspBananas if At(Monkey,l) N At(Bananas,ly) (I # 11)

nonexecutable GraspBananas if —OnBoz.
(4.20)

Every fluent in this domain tends to keep its previous value. The inertia
rules are

inertial ¢ (4.21)

for every fluent symbol ¢ from (4.1).

The concurrent execution of actions can be prohibited by postulating
nonexecutable c A d (4.22)

for every pair of distinct action symbols ¢, d from (4.2).
Let us call this action description MB. The planning problem given in Chap-
ter 1 asks to find a path in the transition system described by MB that starts from

the state defined by
At(Monkey, L1), At(Bananas,Lsy), At(Bozx,Ls)

37

and leads to a goal state that satisfies

HasBananas.

4.2.2 Blocks World

In the blocks world, a state is described by a set of stacks of blocks on the table.
In the following, b, by, by range over blocks A, B, C and D; | ranges over
blocks and Table. The symbol On(b,l) denotes the fact that block b is on location
l; the symbol Mowve(b,l) denotes the action of moving block b onto location [. As in
the previous example, we begin by postulating that On is a function that maps a
block into a location:
constraint \/, On(b,1) (4.23)
caused —On(b, 1) if On(b,1) (1 #1).
In addition, we say that, in any state, two blocks cannot be on top of the

same block at the same time:
constraint —(On(b,b2) A On(by, b2)) (b # by). (4.24)
The effect of moving a block is represented by the following rule:
Move(b,l) causes On(b,l). (4.25)

The next three postulates describe the preconditions of the action: a block
can be moved only when it is clear; a block can be moved only to a position that is

clear; a block cannot be moved onto a block that is being moved also:

nonexecutable Move(b, 1) if On(by,b)
nonexecutable Move(b,by) if On(by,by) (4.26)

nonexecutable Move(b,b;) A Move(by,1).

38

Initial condition Goal

Figure 4.2: The Blocks World—A planning problem

Finally the inertia rules are
inertial On(b,!). (4.27)

Let us call this action description BW. A typical problem in this domain is
to find a sequence of moves that leads to a goal. For instance, consider the problem
in Figure 4.2: given an initial configuration shown on the left, what is the shortest
sequence of moves that turns it into the goal configuration shown on the right? This
is a planning problem that asks to find a path in the transition system described by

BW that starts from the state defined by
On(A,B), On(B, Table), On(C,D), On(D, Table),
and leads to the goal state defined by

On(A, Table), On(B,A), On(C, Table), On(D,C).

4.3 Language of the Causal Calculator

Since CCALC is an implementation of definite causal theories, it can handle definite

action descriptions in C. Indeed, all examples of C action descriptions we have seen

39

so far belong to this category.

Many commonsense reasoning problems related to C action descriptions can
be viewed as problems of generating paths in the corresponding transition systems
that satisfy certain conditions. As shown in Section 4.1.2, paths of a transition sys-
tem can be obtained by computing the models of the corresponding causal theory.
An action description is translated by CCALC first into a causal theory by a macro
expansion mechanism and then into a set of propositional formulas using the literal
completion procedure (Section 2.3). The models of the set of formulas, which cor-
respond to paths in the transition system, are found by running SAT solvers, such
as SATO [Zhang, 1997] and RELSAT [Bayardo and Schrag, 1997], in the spirit of sat-
isfiability planning [Kautz and Selman, 1992]. Below we present how the example C
action descriptions in the previous section can be represented in the input language

of CCALcC.

4.3.1 Monkey and Bananas in the Language of CCALC

A C input file for the Causal Calculator consists of declarations, propositions in C
(or, more often, schemas with metavariables whose instances are propositions in C),
queries (for instance, planning problems) and comments. Among its declarations,
a C input file usually contains a directive to include the “standard” file C.t which
contains rewrite rules for translating from C into the language of causal logic, as
well as various sorts, variables, constants, and domain independent causal laws that
have been found to be useful in formalizing action domains.

A C input file for MB (Section 4.2.1) is shown in Figure 4.3—4.4: Figure 4.3

contains declarations for symbols used; Figure 4.4 contains the corresponding causal

40

% File: ’monkey.t’

:— include ’C.t°’.

:— sorts
thing;
location.
:— variables
0 :: thing;
L, L1, L2 :: location.
:— constants
monkey, box, bananas :: thing;
11, 12, 13 :: location;
at(thing,location), onBox, hasBananas :: inertialFluent;
walk(location), pushBox(location),
climbOn, climb0ff, graspBananas :: action.

Figure 4.3: Monkey and Bananas in the language of CCALC—Declarations

laws from Section 4.2.1.

Since CCALC is written in Prolog, the syntax of input files follows the Prolog
tradition of capitalizing variables. The ranges of schematic variables declared in
the variables section in Figure 4.3 are given names thing, location in the sort
declaration section at the beginning. The extent of each sort is defined in the
first two lines of the constant declaration section. Fluent symbols are declared
inertialFluents: the identifier instructs CCALC to declare the symbols fluents,
and moreover to postulate that the fluents are inertial, i.e., implicitly added are
inertial c for each fluent symbol c¢c. This is a built-in solution in CCALC for
solving the frame problem.

The propositions in Figure 4.4 are almost identical to the causal laws from

41

constraint [\/L | at(Q,L)].
caused -at(0,L1) if at(0O,L) & L\=L1.

caused at(bananas,L) if hasBananas & at(monkey,L).
caused at(monkey,L) if at(box,L) & onBox.

walk (L) causes at(monkey,L).
nonexecutable walk(L) if at(monkey,L).
nonexecutable walk(L) if onBox.

pushBox (L) causes at(monkey,L).

pushBox (L) causes at(box,L).

nonexecutable pushBox(L) if at(monkey,L).

nonexecutable pushBox(L) if at(monkey,L1) & at(box,L2) & L1\=L2.
nonexecutable pushBox(L) if onBox.

climbOn causes onBox.
nonexecutable climbOn if at(monkey,L) & at(box,L1) & L\=L1.
nonexecutable climbOn if onBox.

climb0ff causes -onBox.
nonexecutable climb0Off if onBox.

graspBananas causes hasBananas.

nonexecutable graspBananas if hasBananas.

nonexecutable graspBananas if at(monkey,L) & at(bananas,L1) & L\=L1.
nonexecutable graspBananas if -onBox.

noconcurrency.

Figure 4.4: Monkey and Bananas in the language of CCALC—Causal laws

42

% File: ’monkey-test.t’
:—- include ’monkey.t’.

:- plan
facts ::

0: at(monkey,11),
0: at(banana,12),
0: at(box,13);
goals

1..100: hasBananas.

Figure 4.5: Monkey and Bananas in the language of CCALC—Planning problem

Section 4.2.1. The ASCII representations of some symbols used in the language of

CCALC are summarized in the following chart:

>
<
U
Il
-
-

Symbol ‘ - ‘ % ‘

ASCII representation ++ | ->> | <-> | false | true

el

Every proposition in Figure 4.4 containing schematic variables is treated as
an abbreviation for the set of C propositions. In a step called “grounding,” CCALC
replaces each variable with every object in the range of the corresponding sort; some
parts of a schema turn into 0-place connectives T, L. For instance, grounding turns

L\=L1 in the schema
caused -at(0,L1) if at(0,L) & L\=L1.

into T when L and L1 are instantiated by different objects, and into L otherwise.
Figure 4.5 represents the planning problem for this domain. Symbols 0: and

1..100: are “time stamps.” 1..100: in the goal condition instructs CCALC to

43

first try to find a plan of length 1, then 2, 3, and so on until it finds a solution or
fails after trying length 100.
Given the query, CCALC finds a model of MB,, that satisfies the initial

conditions
0: At(Monkey, L), 0: At(Bananas, L), 0: At(Boz, L3) (4.28)
and the goal
m: HasBananas (4.29)

where m is the smallest number for which such a model exists. CCALC takes consec-
utively m = 1,2, ... and looks for an interpretation satisfying both the completion
of MB,, and formulas (4.28), (4.29). Such an interpretation will be first found

for m = 4. It assigns the value t to
0: Walk(L3), 1: PushBoz(Ls), 2: ClimbOn, 3: GraspBananas.
Accordingly, CCALC output is as follows:
| ?- plan O.

calling sato 3.1.2...
run time (seconds) 0.00

No plan of length 1,

calling sato 3.1.2...
run time (seconds) 0.01

No plan of length 2,

calling sato 3.1.2...

44

run time (seconds) 0.01

No plan of length 3,

calling sato 3.1.2...

run time (seconds) 0.00

0: at(bananas,12) at(box,13) at(monkey,l1)

ACTIONS: walk(13)

1: at(bananas,12) at(box,13) at(monkey,13)

ACTIONS: pushBox(12)

2: at(bananas,12) at(box,12) at(monkey,12)

ACTIONS: c¢limbOn

3: onBox at(bananas,12) at(box,12) at(monkey,12)

ACTIONS: graspBananas

4: hasBananas onBox at(bananas,12) at(box,12) at(monkey,12)

yes

4.3.2 Blocks World in the Language of CCALC

Figure 4.6 is a formalization of the Blocks World BW in the language of CCALC,

similar to Section 4.2.2.

45

% File: ’bw.t’

:— include ’C.t°.

:— sorts
location >> block.

:— variables
B,B1,B2 :: block;
L,L1 :: location.

:- constants
table :: location;
on(block,location) :: inertialFluent;
move (block,location) :: action.

constraint [\/L | on(B,L)].
caused -on(B,L1) if on(B,L) & L\=L1.

constraint BO<B1 ->> -(on(B,B2) & on(B1,B2)).
move (B,L) causes on(B,L).
nonexecutable move(B,L) if on(B1,B).

nonexecutable move(B,B1) if on(B2,B1).
nonexecutable move(B,B1) & move(B1,L).

Figure 4.6: Blocks World in the language of CCALC

46

% File ’bw-test.t’.

:— include ’bw.t’.

:— constants
a,b,c,d :: block.
:- plan
facts::
0: on(a,b), on(b,table), on(c,d), on(d,table);
goals::

1..100: on(a,table), on(b,a), on(c,table), on(d,c).

Figure 4.7: A Blocks World planning problem

The symbol >> between the names of two sorts expresses that the second is a
subsort of the first, so that every object that belongs to the second sort also belongs
to the first. @< is a fixed total order between the symbols.

Figure 4.7 represents the planning problem given at the end of Section 4.2.2.

CCALc finds a model of BW,,, that satisfies the initial conditions
0: On(A, B), 0: On(B, Table), 0: On(C, D), 0: On(D, Table), (4.30)
and the goal
m:On(A, Table), m:On(B,A), m:On(C, Table), m: On(D,C). (4.31)

where m is the smallest number for which such a model exists. CCALC takes consec-
utively m = 1,2,... and looks for an interpretation satisfying both the completion
of BW,, and formulas (4.30), (4.31). Such an interpretation will be first found
for m = 2. The interpretation assigns the value t to

0: Move(A, Table), 0: Move(C, Table), 1: Move(B, A), 1: Move(D,C).

47

Note that some actions are executed concurrently.
CCALC has determined that at least two steps are needed and displayed the

following solution:

calling sato 3.1.2...

run time (seconds) 0.01

0: on(a,b) on(b,table) on(c,d) on(d,table)

ACTIONS: move(a,table) move(c,table)

1: on(a,table) on(b,table) on(c,table) on(d,table)

ACTIONS: move(b,a) move(d,c)

2: on(a,table) on(b,a) on(c,table) on(d,c)

yes

48

Chapter 5

New Extensions of Earlier Work

In this dissertation we show how to overcome several essential limitations of the

work on causal logic, language C and CCALC.

5.1 Multi-valued Fluents

Most formalisms for representing properties of actions limit their attention to propo-
sitional fluents, and this is true for C as well. Multi-valued fluents, such as the lo-
cation of an object, or the number of missionaries on a bank, can be represented in
such formalisms by symbols with Boolean values, which requires introducing rules
that relate these symbols to each other. For instance, in Sections 4.2.1 and 4.2.2 we
described the location of an object by Boolean constants At(x,l) and On(b,l), and
had to express the existence and the uniqueness of a location by postulates (4.14),
(4.15) and (4.23). Such causal laws are needed quite often, which is inconvenient. In
this respect, C is inferior to the language ADL (see Section 2.4) which does include

symbols for multi-valued fluents.

49

In Section 6.1 we extend usual propositional logic by adopting a slightly more
general definition of an atom that allows expressions of the form ¢ =wv, where v is
an element of the “domain” of a symbol c. For instance, we may write Loc(Boz)=
Ly instead of At(Boz,Ls). We extend causal logic and C in accordance with this

extension.

5.2 Elaborating Actions by Attributes

Consider McCarthy’s elaborations of the Missionaries and Cannibals Puzzle (Sec-
tion 2.5). There is only one action, crossing, in the basic problem. We can represent
this action by a symbol such as cross(boat ,bank2,1,1) (1 missionary and 1 canni-
bal cross to Bank 2 using the boat). Some of McCarthy’s elaborations would require
that cross be given more arguments. In one of the elaborations (Elaboration 17),
it is necessary to distinguish between rowing fast and rowing slowly, which would
require an expression like cross(boat,bank2,1,1,fast). In another elaboration
(Elaboration 6), only one missionary and one cannibal can row, which would require
to denote which of the people on the boat can row.

As McCarthy [1998] noted (Section 2.5), adding arguments to functions and
predicates is what we want to avoid: if possible, we want to formalize elaborations by
adding postulates. One way to achieve this goal is to distinguish between actions and
“attributes.” Attributes are used to elaborate the execution of actions. For instance,
we may denote the action of crossing in a boat V by cross(V). On the other hand,
the destination of this action may be denoted by an attribute symbol to(V) whose
value is a location; the number of a group G on a boat V crossing may be denoted

by an attribute symbol howmany (V,G); the speed of a boat V may be denoted by an

50

attribute symbol howfast (V).

Such elaborations mentioned above will involve extending the formalism by
adding new attribute symbols, instead of adding new arguments to the existing
action symbols. This allows us to reflect elaborations by adding postulates that
describe the new effects of the action in terms of the newly introduced attributes,
rather than by modifying the existing description.

In Section 6.2.7 we show how attributes can be represented in an extension

of C.

5.3 Defining New Fluents

Attempts to define new fluents by causal laws in C often do not lead to intuitively
expected results. Suppose we add to the description BW in Section 4.2.2 new fluents
Neighbor (b, b1), meaning that “one of the blocks b and b; is on top of the other.”
One might be tempted to write the definition of Neighbor by the following causal

laws:

caused Neighbor(b,by) if On(b,b1) V On(by,b) (5.1)
5.1
caused —Neighbor (b, by) if —Neighbor (b, by).

The second line of (5.1) abbreviates the set of causal laws
=i : Neighbor (b, by) <= —i: Neighbor (b, b1).

As discussed in Section 3.4, rules like this represent, intuitively, the closed-world
assumption: by default, the fluent Neighbor(b,b;) is assumed to be false.
Let us call the extended description with (5.1), BW .

Unfortunately, the description (5.1) is not satisfactory: it does not express

51

that every state satisfies the condition
Neighbor(b,b1) = On(b,b1) V On(by,b), (5.2)
or equivalently, that the models of Dy satisfy
0 : Neighbor(b,b1) = 0: On(b,by) V On(by,b), (5.3)

as one would intuitively expect.
To see why, consider the literal completion formula of BW}' for 0: Neighbor (b, by)

and its negation:

0: Neighbor(b,by) = 0: Neighbor (b, b1) V (On(b,b1) V On(b1, b)) (5.4)
9.
0: - Neighbor (b, by) = 0: —~Neighbor (b, by).

The second equivalence is a tautology, and the implication from the left to right of

the first equivalence is also a tautology. Thus (5.4) is equivalent to
0: On(b,b1) V On(b1,b) D 0 : Neighbor(b,by),

which is weaker than (5.3).
The semantics of C needs to be corrected to avoid such anomaly. In Sec-
tion 6.2.3, we show how this can be achieved by introducing a new type of fluent

constants called “statically determined.”

5.4 Rigid Constants

Imagine that we want to enhance the description of the Blocks World by specifying
the materials that the blocks are made of, say wood or metal, or by describing the

size of the blocks. Such characteristics of blocks are not fluents because they do not

52

depend on the state of the system. We call them rigid. Rigidity can be modeled in
C using inertial fluents: if no action is assumed to affect an inertial fluent, then its
value never changes. But this treatment looks somewhat unnatural.

Modeling rigidity by fluents is also computationally inefficient. As described
in Section 6.2.2, in turning an action description into a causal theory, CCALC gen-
erates atoms i:c for fluent constants ¢ and time stamps ¢. If the value of ¢ does not
change over time, then there is no need to generate copies of these atoms. This makes
the size of the translation more compact, which brings computational efficiency. In

Section 6.2.6, we introduce rigid constants in an extension of C.

5.5 Defeasible Causal Laws

In the CCALC formalization of McCarthy’s elaborations of the Missionaries and
Cannibals Puzzle from [Lifschitz, 2000], it was necessary to make some causal laws
“defeasible.” For instance the formalization of the basic problem contains a propo-

sition saying that the boat can hold two people:

constraint capacity(boat,2). (5.5)

In one of the elaborations, it was required to change this assumption: the boat can
hold three people, instead of two. Rather than by removing the line above, the same
effect could be obtained by adding causal laws, in the spirit of elaboration tolerance.

However, since language C cannot represent defeasible causal laws, that paper
had to rely on causal logic directly to be able to make (5.5) defeasible. Moreover in
the version of CCALC used there, only a few propositions, such as constraint and

nonexecutable, could be made defeasible.

53

In Section 6.2.4, we illustrate how an enhancement of C overcomes the lim-
itations: the semantics of defeasible causal laws can be explained in terms of the
enhancement of C; any causal law can be made defeasible. Moreover CCALC pro-

vides a convenient syntax for using defeasible causal laws.

5.6 Additive Fluents

Some action languages, including C, allow us to talk about the effect of the concur-

rent execution of actions. The causal law

Walk (1) causes At(Monkey,1)

is understood in C to imply that A¢(Monkey,) holds after any event that involves
the execution of Walk(l), even if other actions are executed concurrently.
To distinguish the events involving the concurrent execution of actions aq

and ay from the events that involve a; but not as, we can write
ai N\ ap causes ...,
a1 N\ —ag causes

In some cases, unfortunately, the causes construct of C and similar languages
is not directly applicable to describing the effect of the concurrent execution of
actions. Consider, for instance, the effect of the action Buy(z, n) (customer z buys n

books) on the number of books available at a bookstore. The causal law

Buy(z,n) causes Available(k—n) if Available(k) (5.6)

is applicable in the case when no customer other than x is buying books at the same

time: k£ — n books are available after the event if there were k£ books in the store

54

before the event. But (5.6) is not acceptable if we are interested in the concurrent
execution of such actions. For instance, according to (5.6), the actions Buy(z1,3)
and Buy(x2,5) cannot be executed concurrently, although intuitively we expect the
number to be decremented by 8.

Awailable is an example of an “additive” fluent. An additive fluent is a fluent
with numerical values such that the effect of several concurrently executed actions
on it can be computed by adding the effects of the individual actions. For example,
the gross receipts of a store are represented by an additive fluent: when several
customers pay to different cashiers simultaneously, the gross receipts will increase
by the sum of the “contributions” of the individual customers. The voltage of a
battery is an additive fluent: the increase in voltage obtained by adding several cells
to a battery can be computed by addition. In mechanics, the velocity of a particle is
an additive fluent, because the net effect of several forces on this fluent over a time
interval equals the sum of the effects of the individual forces. Additive fluents are
ubiquitous; this may be the reason why adding numbers is such a useful operation.

As noted above, the effect of the concurrent execution of actions on an addi-
tive fluent is not covered by the “built-in” treatment of the concurrent execution of
actions in C. This problem was first observed in [Lifschitz, 2000] in connection with
the elaborations of the Missionaries and Cannibals Puzzle that involve concurrent
actions. One of the postulates adopted in that paper is that if the number of mem-
bers of a group (say, missionaries) in some location (say, the left bank of the river)
equals =, and a vessel arrives with y members of the group aboard, the number
will become z + y. But this may be incorrect when several actions are executed

concurrently. If, for instance, a boat is taking y missionaries to the left bank while

55

another boat is taking z missionaries to the right bank then the number will become
x+y—z. To treat such examples correctly, we need to view the number of members
of a group in a location as an additive fluent.

In Chapter 8 we show how the new language can be used for representing
additive fluents; in Chapter 9 we apply the new version of CCALC, which can rep-
resent additive fluents and defeasible causal laws, to formalizing a few elaborations

of MCP.

5.7 Nondefinite Causal Theories

As discussed in Section 3.4, it is straightforward to embed propositional logic into
causal logic. The other direction, embedding causal logic into propositional logic, is
more difficult. Completion gives us a partial answer: if a theory is definite, it can
be turned into a propositional theory.

In Chapter 10 we show how to turn arbitrary causal theories into proposi-
tional formulas. This process includes completion as a special case. It also allows us
to turn any nondefinite theory into an equivalent definite theory. Some of the the-
orems about causal logic can be proved more easily by turning a causal theory into
an equivalent propositional theory, rather than by applying the fixpoint definition
directly. In Chapter 11 we show, for instance, how the idea can be used to prove
the theorem on “splitting” causal theories.

Nondefinite theories can be useful also in applications to representing com-
monsense knowledge. Although definite theories are widely applicable, there are
cases where nondefinite theories yield more natural formalizations. An action do-

main of this kind, due to Marc Denecker, is discussed in [McCain, 1997, Section

56

7.5]:

Imagine that there are two gears, each powered by a separate motor.
There are switches that toggle the motors on and off, and there is a
button that moves the gears so as to connect or disconnect them from
one another. The motors turn the gears in opposite (i.e., compatible)
directions. A gear is caused to turn if either its motor is on or it is

connected to a gear that is turning.

A nondefinite action description representing this example in C is shown in
Figure 5.1. The expression

default F

stands for

caused F' if F

(“There is a cause for F' if F holds”).

5.8 Extending CCALC

McCain’s CCALC accepts C as an input language, but it does not handle the ex-
tended C presented in the next chapter which overcomes the limitations discussed
here. In Section 6.5 we present the new version of CCALC that implements the
extended language.

Besides the implementation of the theoretical extensions, the new CCALC
provides more convenient features for compact representation. For instance, Mc-

Cain’s CCALC could not automatically evaluate arithmetical expressions in rules,

57

Notation: z ranges over 1, 2.

Simple fluent constants: Domains:
MotorOn(z), Turning(z), Connected Boolean
Action constants: Domains:
Toggle(z), Push Boolean

Causal Laws:

inertial MotorOn(x)
inertial Connected

Toggle(z) causes MotorOn(z) if =MotorOn(x)
Toggle(x) causes —MotorOn(x) if MotorOn(x)
Push(z) causes Connected if —Connected
Push(x) causes — Connected if Connected

caused Turning(z) if MotorOn(x)
default — Turning(z)
caused Turning(1l) = Turning(2) if Connected

Figure 5.1: Formalization of Two Gears in C

58

and relied on the “is” predicate in underlying Prolog, so that to write a causal law

such as (5.6) one had to write something like

buy(X,N) causes available(K1l) if available(K) & K1 is K-N.

Another improvement is related to grounding. Rather than blindly replacing
each schematic variable in causal laws with every object in the range of the corre-
sponding sort, the new version of CCALC allows us to limit grounding to instances
of the variables that satisfy a given test. We will see an example in Section 6.5.

Other new features of CCALC will be discussed in Section 6.5 also.

59

Chapter 6

Multi-valued Causal Logic,
Action Language C+ and

CCaLc 2.0

To overcome the difficulties discussed in the previous chapter, we have extended
the McCain-Turner causal logic, proposed a new action language C+ based on this

extension, and redesigned and reimplemented CCALC accordingly.

6.1 Multi-valued Causal Logic

6.1.1 Multi-valued Formulas

We slightly extend formulas of the usual propositional logic to be able to represent
multi-valued fluents. Differently from propositional logic, where each symbol is

mapped to either f or t, in “multi-valued” propositional logic defined in this section,

60

a symbol can be mapped to an element of a certain finite set of values.

A (multi-valued propositional) signature is a set o of symbols called con-
stants, along with a nonempty finite set Dom/(c) of symbols, disjoint from o, assigned
to each constant ¢. We call Dom(c) the domain of ¢. An atom of a signature o is
an expression of the form c¢=v (“the value of ¢ is v”) where ¢ € o and v € Dom(c).
A formula of o is a propositional combination of atoms.

For instance, the following atoms may be used to describe the location of an

agent in an apartment:
Loc = Kitchen, Loc = LivingRoom, Loc = Bathroom, Loc = Bedroom (6.1)
where Loc is a constant with the domain
{Kitchen, LivingRoom, Bathroom , Bedroom }.

An interpretation of o is a function that maps every element of o to an
element of its domain. An interpretation I satisfies an atom c=wv (symbolically,
I = e=w) if I(c) = v. For instance, the fact that the agent is in the kitchen can be
described by an interpretation satisfying the first of the atoms in (6.1), so that the
others are not satisfied.

The satisfaction relation is extended from atoms to arbitrary formulas ac-
cording to the usual truth tables for the propositional connectives.

The following definitions are standard in logic. Two formulas or sets of
formulas are equivalent to each other if they are satisfied by the same interpretations.
A model of a set I' of formulas is an interpretation that satisfies all formulas in I'.
If I’ has a model, it is said to be consistent, or satisfiable. If every model of I'

satisfies a formula F' then we say that I' entails F' and write ' |= F.

61

A Boolean constant is one whose domain is the set of truth values {f,t}. A
Boolean signature is one whose constants are Boolean. If ¢ is a Boolean constant,
we will sometimes use ¢ as shorthand for the atom c¢=t. When the syntax and
the semantics defined above are restricted to Boolean signatures and to formulas
that do not contain f, they turn into the usual syntax and semantics of classical
propositional formulas. In principle, the domain of a constant can be a singleton.

Recall that, according to the definition, an atom is an equality whose left-
hand side is a constant ¢, and whose right-hand side is an element of the domain
of ¢. An expression of the form ¢ = d, where both ¢ and d are constants, will be
understood as an abbreviation for the disjunction

\/ (c=vANd=v).
v€ Dom(c)N Dom(d)

The symbol # will be used to abbreviate the negation of an equality of either kind.

6.1.2 Multi-valued Causal Logic

By a (multi-valued) causal rule we mean an expression of the form F <= G (“F is
caused if G is true”), where F' and G are multi-valued formulas of a given signature o.
A (multi-valued) causal theory is a finite set of causal rules. From now on, we will
often drop the word “multi-valued.”

As in the Boolean case, the reduct T! of T relative to I is the set of the
heads of all rules in T" whose bodies are satisfied by I; we say that I is a model of T'
if I is the unique model of T'.

For example, take
o ={c}, Dom(c)={1,...,n}

62

for some positive integer n, and let the only rule of T" be

c=1<=c=1. (6.2)
The interpretation I defined by I(c) = 1 is a model of T'. Indeed,

T — {c—1},

so that I is the only model of T7. Furthermore, 7' has no other models. Indeed,
for any interpretation J such that J(c) # 1, T7 is empty, and I is a model of T
different from J.

It follows that causal theory (6.2) entails c=1.

Consider now what happens if we add the rule
c=2<&=T (6.3)

to this theory. The reduct of the extended theory relative to any interpretation
includes the atom ¢=2. Consequently, the interpretation assigning 2 to c is the only
possible model of the extended theory. It is easy to see that this is indeed a model.
The extended theory does not entail ¢ = 1; it entails ¢ = 2. This example
illustrates the nonmonotonicity of the logic. Intuitively, rule (6.2) expresses that 1
is “the default value” of ¢, and rule (6.3) overrides this default.
If the rule

c=2<=c=2 (6.4)

is added to (6.2) instead of (6.3), we will get a causal theory with two models. This

theory entails c=1V c=2.

63

6.1.3 Multi-valued Completion

As in the McCain-Turner causal logic, a causal theory is definite if the head of
every rule of it is an atom or L. For instance, causal theory (6.2) is definite. Causal
theory (3.4) from Section 3.3 is, strictly speaking, not definite, but it can be turned
into a definite theory by replacing —q in the head of the last rule with the equivalent

atom:

P <= q
g < q, (6.5)
g=f < —q.

The “multi-valued completion” process described below extends the literal
completion for the McCain—-Turner causal theories. It reduces the problem of finding
a model of a definite causal theory to the problem of finding a model of a set of
formulas.

Take a definite causal theory T of a signature o. We say that an atom c=v
of o is trivial if the domain of ¢ is a singleton. For each nontrivial atom A, the

completion formula for A is the formula
A=G1V--- VG,

where Gp,...,G, (n > 0) are the bodies of the rules of 7' with head A. The
(multi-valued) completion of T is obtained by taking the completion formulas for all
nontrivial atoms of o, along with the formula —F for each constraint | <= F in T

As in the McCain—Turner causal logic, the following proposition holds.

Proposition 1 The models of a definite causal theory are precisely the models of

its completion.

64

For instance, the completion of (6.2) is

c=1

c=1,

(6.6)

C="v

1 (v € Dom(c) \ {1})

if [Dom(c)| > 1. Otherwise the atom c¢=1 is trivial, and the completion is empty.
In both cases, the only model of the completion is defined by I(¢) = 1. As discussed
in Section 6.1.2, this is the only model of (6.2).

After adding rule (6.3), the completion turns into

c=1=c=1,
c=2=T,
c=v=_1 (v € Dom(e) \ {1,2}).

The only model of these formulas is defined by I(c) = 2.

The completion of (6.5) is

p=gq,
p=f=1,
(6.7)
q=4q,
q:fE -q,

which corresponds to (3.5).

The assertion of Proposition 1 would be incorrect if we did not restrict the
completion process to nontrivial atoms. Consider, for instance, the causal theory
whose signature consists of one constant ¢ with the domain {0}, and whose set of
rules is empty. If the process of completion were extended to trivial atoms then the

completion of this theory would be ¢=0 = L, which is inconsistent.

65

6.2 Action Language C+

6.2.1 Syntax of C+

Constants in C+ are divided into two groups: fluent constants and action constants.
Furthermore, the fluent constants are assumed to be partitioned into simple and
statically determined. By a fluent formula we mean a formula such that all constants
occurring in it are fluent constants. An action formula is a formula that contains at
least one action constant and no fluent constants.

A static law is an expression of the form
caused F if G (6.8)

where F' and G are fluent formulas. An action dynamic law is an expression of the
form (6.8) in which F' is an action formula and G is a formula. A fluent dynamic

law is an expression of the form
caused F if G after H (6.9)

where F' and G are fluent formulas and H is a formula, provided that F' does not
contain statically determined constants. A causal law is a static law, an action
dynamic law, or a fluent dynamic law. An action description is a finite set of causal
laws.

An action description D is definite if the head of every causal law of D is an

atom or L.

6.2.2 Semantics of C+

Just as the semantics of C is defined in terms of the McCain-Turner causal logic,

the semantics of C+ can be defined in terms of multi-valued causal logic.

66

For any action description D and any nonnegative integer m, the causal
theory D,, is defined as follows. As in C, the signature of D,, consists of the

pairs i:c such that
e i €{0,...,m} and ¢ is a fluent constant of D, or
e i€{0,...,m—1} and c is an action constant of D.

The domain of 7:c is the same as the domain of c.
The rules of D,, are

iiF <i:G (6.10)

for every static law (6.8) in D and every i € {0,...,m}, and for every action dynamic

law (6.8) in D and every ¢ € {0,...,m — 1};

i+1:F <= (i+1:G) A (i: H) (6.11)

for every fluent dynamic law (6.9) in D and every i € {0,...,m — 1};

O:c=v <= 0:c=v (6.12)

for every simple fluent constant ¢ and every v € Dom(c).

Note that the definition of D, treats simple fluent constants and statically
determined fluent constants in different ways: rules (6.12) are included only when ¢
is simple, so that the initial values of statically determined fluents are not assumed
to be exogenous (see Section 4.1.2). We will see in the next section why this is
useful.

Similarly, the assumption (4.9) that the execution of an action is exogenous

is not built into the semantics of C+, so that we need to write it explicitly if an

67

action is exogenous. We will see later in Section 6.2.4 and Section 8.3 when it is
necessary to lift the exogeneity assumption for actions.
The definitions of states, transitions, histories are the same as in C (Sec-

tion 4.1.3).
Proposition 2 For any transition (s,e,s'), s and s' are states.

We identify an interpretation I in the sense of Section 6.1.1 with the set of
atoms that are satisfied by this interpretation, that is to say, with the set of atoms
of the form ¢ = I(c¢). This convention allows us to represent any interpretation of

the signature of D,, in the form
(0:80) U(0:eg)U (1:s1) U(lreg)U---U(m:spy) (6.13)

where sg,...,Sm are interpretations of of!, and ei,...,em_1 are interpretations

of o.act

Proposition 3 For any m > 0, an interpretation (6.13) of the signature of D, is
a model of D, iff
<807 €0,S51,€1,---,8m—1,Em—1, Sm>

s a history of D.

6.2.3 Statically Determined Fluents

The problem with defined fluents discussed in Section 5.3 can be corrected by clas-
sifying these fluents as statically determined. For instance, in the extended Blocks
World domain BW?Y in Section 5.3, if fluents Neighbor(b,b;) are declared stati-
cally determined, then the extent of the Neighbor relation is defined by the equa-

tion (5.2), as desired. To see this, note that the completion formulas of BWY for

68

0: Neighbor(b,b1) and its negation are now

0: Neighbor(b,b1) =0: On(b,b1) V On(by,b
9 (b, 1) (b, b1) (b1,0) (6.14)

0: - Neighbor (b, by) = 0: —~Neighbor (b, by).

The second equivalence is a tautology, and the first equivalence is exactly (5.3).

The transition system described by BW? is isomorphic to the one described
by BW: every state of the latter can be turned into the corresponding state of the
former by assigning to Neighbor(b,b;) the truth values defined by (5.2).

The following theorem describes a general method of defining fluents in C+.

Proposition 4 Let D be an action description whose signature is o, @ a set of stat-
ically determined fluent constants such that cNQ = 0, and D¢ an action description

which consists of causal laws of the form
caused q if F
where g € Q and F is a formula of o, and the causal laws
caused —q if —q.

or all ¢ € (). Then the transition system of D U Do is isomorphic to the transition
q Y Q P

system of D.

6.2.4 Defeasible Causal Laws

Using statically determined fluents, any static law can be made defeasible. A defea-

sible static law has the form

caused F if G unless ab (6.15)

69

where ab is a statically determined fluent constant. It stands for the pair of causal

laws
caused F if G A —ab
(6.16)
default —ab
(Recall that the second law stands for caused —ab if —ab). Under exceptional
circumstances where ab is true, causal law (6.15) becomes ineffective.

For instance, a defeasible form of proposition (5.5) can be represented in the

new language by

constraint Capacity(Boat) =2 unless AbBoat.

Similarly, any action dynamic law can be made defeasible: an action dy-
namic law (6.15) where ab is a Boolean action constant stands for the pair of causal
laws (6.16).

A defeasible fluent dynamic law has the form

caused F' if G after H unless ab (6.17)

where ab is a Boolean action constant. It stands for the pair of causal laws

caused F' if G after H A —ab
(6.18)

default —ab.

Under exceptional circumstances where ab is true, causal law (6.17) becomes inef-
fective.

For instance, in the Monkey and Bananas domain,

PushBoz(l) causes At(Boz,l) unless AbBoz (6.19)

70

expresses that pushing the box normally involves changing the location of the box.
Suppose we want to enhance the description by postulating that the box is not

movable if it is too big. This can be done by adding
caused AbBoz if BigBoz. (6.20)

If the box is too big, then AbBoz is caused and this makes (6.19) ineffective. On the
other hand, intuitively, when there are no exceptions, the unless clause in (6.19)

can be disregarded. The following proposition makes the claim precise:

Proposition 5 (a) Let D be an action description, L a static causal law, and ab
a Boolean statically determined fluent. If ab does not occur in the heads of any
causal laws of D, then the transition system described by D U {L unless ab}

is ezactly the transition system described by D U{L} U {caused —ab}.

(b) Let D be an action description, L a dynamic causal law, and ab a Boolean
action constant. If ab does not occur in the heads of any causal laws of D, then
the transition system described by D U {L unless ab} is ezactly the transition

system described by D U {L} U {caused —ab after T}.

Notice that this method of making causal laws defeasible was not possible
in C: statically determined fluents were not available and action constant ab could
not be made non-exogenous due to the built-in exogeneity assumption (4.9) for all

actions.

6.2.5 Solving the Qualification Problem in C+

The qualification problem is the problem of representing properties of actions in a

way that makes new conditions for the successful performance of an action express-

71

ible by adding new propositions. This is a special case of the problem of elaboration
tolerance.

We can distinguish between two kinds of conditions for the successful per-
formance of an action [Reiter, 1991]. It may happen that the action is simply not
executable when the condition is violated. Or it may happen that some of the usual
effects of the action do not hold in the resulting state even if the action was executed.
Accordingly, we can distinguish between two parts of the qualification problem—one
deals with executability qualifications, and the other with effect qualifications.

We can further distinguish between two kinds of executability qualifications—
those stated explicitly, in terms of preconditions, and those expressed implicitly by
constraints on the states. For instance, the fact that the monkey cannot walk if it
is on the box can be expressed explicitly by adding nonexecutable proposition as
in (4.16) (Section 4.2.1); the fact that one cannot buy more books than those avail-
able in the bookstore (Section 5.6) is expressed implicitly by the assumption that
Awailable has nonnegative values. Executability qualifications can be represented in
both C and C+.

On the other hand, effect qualifications can be expressed in C+, but not in C;
the C+ solution involves the use of defeasible causal laws which C cannot represent.
As in the previous section, the fact that a very big box accounts for an exception to
the usual effect of pushing action can be represented by the combination of causal

law (6.19) that allows exceptions and causal law (6.20) that specifies an exception.

72

6.2.6 Rigid Constants

A fluent constant ¢ in the signature of an action description D is rigid (relative
to D) if, for every transition (s, e, s') in the transition system represented by D,
s'(¢) = s(c). Intuitively, rigid constants represent the fluents whose values are not
affected by any events.
The expression
rigid ¢
stands for the set of causal laws

caused L if —(c=v) after c=v

for all v € Dom(c). It is clear that c¢ is rigid relative to any action description
containing these laws.

As noted in Section 5.4, one of the reasons why rigid constants are interesting
is that, under some conditions, their presence allows us to make the causal theories
D,,, more compact, which can be computationally advantageous. Let R be a set of
fluent constants that are rigid relative to D. Denote by D the causal theory whose
constants and causal rules are obtained from the constants and causal rules of D,,
by dropping the time stamps before each constant from R. For any interpretation [
of the signature of D,,, by I® we denote the interpretation of the signature of DE
defined by the formulas

I®(c)=1(0:¢c) if c € R,
IR(ize) = I(izc) ifc¢ R.

Proposition 6 If
(i) every constant in R is statically determined, and

73

(ii) for every causal law in D that contains a constant from R in the head, all

constants occurring in this law belong to R,

then the mapping I — I® is a 1-1 correspondence between the models of Dy, and

the models of DE.

Thus dropping the time stamps in front of the rigid constants from R does
not affect the meaning of D,, if, first, R contains no simple constants, and second,
no constant from R “causally depends” on a constant that does not belong to R.

The following example shows that the assertion of Proposition 6 would be
incorrect without the first condition. Take D to be

rigid p
default p

where p is a Boolean simple fluent, and let R = {p}. Then D; is

L <= (1:p) A=(0:p)
L <= =(1:p) A (0:p)
0:p <= 0:p
l:p <= 1:p
0:=p <= 0:—p
and sz is
1L <=pA-p
1l <= —pAp
p<=rp
P = P
The interpretation {p = f} is a model of Df, but it does not have the form I# for

any model I of D;.

74

The following example shows that the assertion of Proposition 6 would be
incorrect without the second condition. Take D to be
caused p if ¢
exogenous g,
where p and ¢ are statically determined fluent constants, and let R = {p}. Then D,

is

0:p <= 0:¢q
l:p <= 1:¢
0:g <= 0:¢q
l:g <= 1:¢q
-0:qg <= —0:q
-l:qg <= —1l:q

and DFE is

p <= 0:q

p <= l:q
0:q <= 0:¢q
l:qg <= 1:¢q
—0:q <= —0:q
-1l:q <= —1l:q.

The interpretation {p = t,0:q = f,1:q = t} is a model of sz, but it does not have

the form I® for any model I of D;.

6.2.7 Action Attributes

Syntactically an attribute is a non-Boolean exogenous action constant. The domain

of every attribute of an action includes the special value None, which the attribute

75

is required to take if and only if the action is not executed. For this purpose we
postulate

caused L if T after (attr=None) =a (6.21)

for every attribute attr of action a.

An expression of the form
always F

in C+ stands for

caused L if T after F.

Thus (6.21) can be abbreviated as
always (attr = None) = a.

Note that this treatment of attributes was not possible in C, since every

action constant in C was Boolean.

6.3 Comparison with ADL

To clarify the relation of C+ to the language ADL mentioned in Section 2.4, we show
how Pednault’s idea of “update conditions” can be incorporated into the syntactic
framework of Section 6.2.1.

As a preliminary step, consider a multi-valued propositional signature o
whose constants have the same domain Dom. The elements of Dom will be called
values. The concept of a formula of a signature o can be extended as follows. A
term is a constant of o, a value, or a variable (from a fixed infinitely countable

set). An extended atom is an expression of the form ¢ = v where ¢ is a term and

76

v is a value. Extended formulas are formed from atoms using propositional con-
nectives and quantifiers, as in first-order logic. We will sometimes identify a closed
extended formula F' with the formula in the sense of Section 6.1.1 that is obtained
from F' as follows: first, eliminate from F' all quantifiers by replacing each subfor-
mula of the form VzG(z) with A, G(v), where v ranges over Dom, and each JzG(x)
with \/, G(v); second, replace all occurrences of atoms of the form v =v with T,
and all occurrences of atoms of the form v = w, where v is a value different from
w, with 1. This convention allows us, for instance, to talk about the satisfaction
relation between interpretations of o and closed extended formulas.

Consider a multi-valued signature ¢ partitioned into fluent constants of* and
action constants ¢, such that all fluent constants have the same domain, and all

action constants are Boolean. An ADL action description consists of

e a closed extended formula Precond® of signature of! for every action con-

stant a, and

e an extended formula Update?(z) of signature /!, with no free variables other

than x, for every action constant a and every fluent constant c.

An ADL action description is consistent if, for every action constant a, every fluent

constant ¢, and every pair of distinct values v and w, formula Precond® entails
—(Updatel(v) A Updateg(w)).

Let D be a consistent ADL action description, s and s’ interpretations of o,

and a an action constant. We say that s’ is the result of executing a in s according
to D if

s = Precond®

7

and, for every fluent constant c,

v if s = Updatel(v),
s'(c) =

s(c) if s = -3z Updatel(x).
Now we will define a translation from this version of ADL into C+. In the C+
counterpart of an ADL action description D, all fluent constants of D are treated

as simple. The propositions of this C+ action description are

inertial ¢
exogenous a
(6.22)

nonexecutable a if =Precond®

a causes c=v if Updatel(v)

for every fluent constant ¢, action constant a, and value v.
In the following theorem, we identify a Boolean action constant e with the

event that maps e to t and maps every other action constant to f.

Theorem 1 For any consistent ADL action description D, any interpretations s, s'

!

of oft, and any e € 0%, §' is the result of executing e in s according to D iff

transition (s, e,s') is a transition of the counterpart of D in language C+.

The version of ADL described above is significantly less expressive than C+.
ADL is mapped here into the subset of C+ that includes no statically determined
fluent constants; it has neither concurrent actions nor non-inertial fluents; there are
no static laws or action dynamic laws in it, and consequently it does not solve the

ramification problem.

78

6.4 Eliminating Multi-valued Constants

In fact, the extension of causal logic by multi-valued constants described in this
chapter is not essential in the sense that multi-valued constants can be eliminated
in favor of Boolean constants: we can replace a multi-valued constant ¢ with a family
of Boolean constants, one for each element of Dom(c). In this section we show how
this idea applies to multi-valued formulas and then extend it to multi-valued causal

theories and to C+.

6.4.1 Eliminating Multi-valued Constants from Formulas

Begin with a multi-valued propositional signature o, and a constant ¢ € 0. By o,
we denote the signature obtained from o by replacing constant ¢ with Boolean
constants ¢(v) for all v € Dom(e).

Let T be a set of formulas of signature o, and I a set of formulas of sig-
nature o.. We will say that I correctly reduces ¢ in T' (to a family of Boolean
constants) if the following holds: an interpretation of o, is a model of I" iff it
corresponds to a model of I

Let elim,. be the formula

V@)=t A N (c(v)=FfVc(v')=f). (6.23)
v v
Notice that the models of elim,. are precisely the interpretations of o. that corre-
spond to an interpretation of o.

For any formula F of o, by F. we denote the formula obtained from F' by

replacing each occurrence of an atom ¢=wv with ¢(v) =t. The elimination of ¢ from T’

is the set of formulas {F, : F € I'} U {elim.}.

79

Proposition 7 For any set I' of formulas and any constant c, the elimination of c

from T correctly reduces c in T.

6.4.2 Eliminating Multi-valued Constants from Causal Theories

Begin with a causal theory T" whose signature is o, and a constant ¢ € . We under-
stand the notation o, as in the previous section. We will say that a causal theory T"
with signature o. correctly reduces ¢ in T (to a family of Boolean constants) if the
following holds: an interpretation of o, is a model of T" iff it corresponds to a model

of T.

General Elimination Method for Causal Theories

The general elimination of ¢ from T is the causal theory with signature o, obtained
by replacing each occurrence of an atom ¢=wv in T with ¢(v) =t, and adding the

causal rule

elim, <= T. (6.24)

Proposition 8 For any causal theory T' and any constant c, the general elimination

of ¢ from T correctly reduces ¢ in T'.

A drawback of this simple elimination method is that rule (6.24) is not defi-
nite. For this reason, even in application to a definite theory, this process leads to
a theory that is not definite. Since definiteness is useful, we next introduce another

elimination method that preserves it.

80

Definite Elimination Method for Causal Theories

The definite elimination of ¢ from T is the causal theory with signature o, obtained
by replacing each occurrence of an atom ¢=wv in T with ¢(v) =t, and adding the
causal rules

c(v')=f<=c(v)=t (6.25)

for all v,v" € Dom(c) such that v # v, and also adding
L<= New)=f. (6.26)
v

Proposition 9 For any causal theory T and any constant ¢ such that (i) Dom (c)
has at least two elements, and (ii) every head in which ¢ occurs is an atom, the
definite elimination of ¢ from T correctly reduces ¢ in T.

6.4.3 Eliminating Multi-valued Constants from C+

A multi-valued constant in an action description can be replaced by a family of
Boolean constants using methods similar to those introduced for causal theories.
We will say that an action description D’ with signature o, correctly reduces

¢ in D (to a family of Boolean fluent constants) if the following holds.
e s is a state of D iff s’ is a state of D'.
e (s,e,s1) is a transition of D iff (s', €', s|) is a transition of D'.

General Elimination Method for Action Descriptions

The general elimination of a fluent or action constant ¢ from D is the action descrip-

tion with the signature o, obtained by replacing each occurrence of an atom c=wv

81

in D with ¢(v)=t, and adding the static law

caused elim. if T . (6.27)

Proposition 10 For any action description D and any constant c, the general
elimination of ¢ from D correctly reduces ¢ in D.
Definite Elimination Method for Action Descriptions

The definite elimination of a constant ¢ from D is the action description with action

act

¢t and fluent symbols af obtained by replacing each occurrence of an

symbols o

atom c=v in D with ¢(v)=t, and adding the causal laws
caused c(v')=fif c(v)=t (6.28)
for all v,v" € Dom(c) such that v # v, and also adding the causal law
caused L if /\c(v):f. (6.29)
v

Proposition 11 For any action description D and any constant ¢ such that (i)
Dom(c) has at least two elements, and (ii) any head in which ¢ occurs is an atom,

the definite elimination of ¢ from D correctly reduces ¢ in D.

6.5 CCALc 2.0

We have redesigned and reimplemented CCALC according to the extensions of the

causal logic and C+ described above. The new CCALC is available at

http: //www.cs.utexas.edu/users/tag/ccalc/ .

82

The input language of the new CCALC provides a convenient and concise syntax
for describing action descriptions in C+4. The new version of CCALC has been
successfully applied to challenging problems in the theory of commonsense knowl-
edge [Campbell and Lifschitz, 2003], [Akman et al., 2004] and to the formalization
of multi-agent computational systems [Artikis et al., 2003a; Artikis et al., 2003b;
Chopra and Singh, 2003].

Compare Figures 4.3—4.5 with Figures 6.1—6.3, a description of the monkey
and bananas domain in the language of the new CCALC.

Constant declarations are now divided into two parts: object declarations
and constant declarations. Object declarations define the extents of sorts; constant
declarations define fluent and action symbols, along with the values to which the
symbols can be mapped. The set of values is specified in parentheses, as in the
expression

inertialFluent(location).
The declaration
onBox ,hasBananas :: inertialFluent
is understood as shorthand for
onBox,hasBananas :: inertialFluent (Boolean)

Notice that we declare the actions exogenousAction to distinguish them

from non-exogenous actions. Upon reading the declaration
¢ :: exogenousAction,

CCALc adds

exogenous ¢

83

% File: ’monkey’

:— sorts
thing;
location.

:— objects
monkey,bananas,box
11,12,13

:— variables
L

:— constants
loc(thing)
onBox ,hasBananas

walk(location),
pushBox(location),
climbOn,

climb0Off,
graspBananas

:: thing;

location.

location.

inertialFluent (location) ;
inertialFluent;

: exogenousAction.

Figure 6.1: Monkey and Bananas in the language of the new CCALC—Declarations

to the action description automatically.

Since we can represent the location of an object using location-valued fluent

symbols, we do not need to write rules such as (4.14) and (4.15).

The line

pushBox (L) causes walk(L)

is the action dynamic law that stands for

caused walk(L) if pushBox(L).

84

walk(L) causes loc(monkey)=L.
nonexecutable walk(L) if loc(monkey)=L.
nonexecutable walk(L) if onBox.

pushBox (L) causes loc(box)=L.
pushBox (L) causes walk(L).
nonexecutable pushBox(L) if loc(monkey)\=loc (box).

climbOn causes onBox.
nonexecutable climbOn if loc(M)\=loc(box).
nonexecutable climbOn if onBox.

climb0ff causes -onBox.
nonexecutable climb0ff if -onBox.

graspBananas causes hasBananas.

nonexecutable graspBananas if hasBananas.

nonexecutable graspBananas if loc(monkey)\=loc(bananas) .
nonexecutable graspBananas if -onBox.

noconcurrency.

Figure 6.2: Monkey and Bananas in the language of the new CCALCc—Causal laws

85

:- query

maxstep :: 2..4;

0: loc(alice)=11,
loc(bananas)=12,
loc(box)=13;

maxstep: hasBananas(alice).

Figure 6.3: Monkey and Bananas in the language of the new CCALC—Planning
problem

Due to this law saying that pushing the box involves walking, we do not need to
repeat the description of the effects and preconditions of pushing which are also the
effects and preconditions of walking.

The expression
loc (monkey) \=1loc (box)
(Recall that \= is the ASCII representation of #) is shorthand for
-[\/L | loc(monkey)=L & loc(box)=L].

Figure 6.3 is a counterpart of Figure 4.5 in the language of the new CCALC. A
query consists of two components. One is an integer, called maxstep, that specifies
the length of the paths the query is about. It is similar to the maximum time
implicitly specified in the goal condition of Figure 4.5; its value determines how to
turn the given action description into a sequence of causal theories. The second
component is a set of formulas constraining the paths of interest.

Figure 6.4 is a description of the blocks world in the language of the new
CCArc. Function constant loc represents an operation that turns a block into a

fluent. This fluent is inertial, and its value is a location. The operation denoted

86

by move turns a block into an action—moving that block. Operation destination
gives an attribute of that action—the destination of the move. Upon processing the
declaration of an attribute attr, CCALC automatically includes (6.21).

In the last causal law of Figure 6.4, a “where” clause, containing a test,
is appended. The clause instructs CCALC to limit grounding to instances of the
schematic variables that satisfy the given test, which produces less number of
grounded instances: in all instances of the last causal law that CCALC generates, B
and B1 are different from each other.

Figure 6.5 shows a query on the domain description in Figure 6.4, a coun-
terpart for the query from Figure 4.7.

Figure 6.6 is an extension of Figure 6.4. The word sdFluent in the declara-
tion of
neighbor(block,block) stands for “statically determined fluent constant.” Recall
that ‘++’ is the ASCII representation of ‘V’ in the language of CCALC.

More features of the language of the new CCALC will be presented in Sec-

tion 7.3.

6.6 Proving the Unsolvability of Planning Problems in

CCALC

For a planning problem described by a query with its maximum number of steps
specified, CCALC can find, in principle, a plan of that length if such a plan exists; if
it determines that a plan of the given length does not exist, it answers no. However,

such queries cannot help us establish that a problem cannot be solved in any number

87

% File: ’bw’

:— sorts
location >> block.

:— objects

table :: location.
:— constants

loc(block) :: inertialFluent(location) ;

move (block) :: action;

destination(block) :: attribute(location) of move(block).
:— variables

B,B1 :: block;

L :: location.

% effect of moving a block
move (B) causes loc(B)=L if destination(B)=L.

% a block can be moved only when it is clear
nonexecutable move(B) if loc(B1)=B.

% a block can be moved only to a position that is clear
nonexecutable move (B)
if destination(B)=loc(Bl) & destination(B)\=table.

% a block can’t be moved onto a block that is being moved also
nonexecutable move(B) & move(B1l) if destination(B)=B1.

% two blocks can’t be on the same block at the same time
constraint loc(B)=loc(B1l) ->> loc(B)=table where B @< B1.

Figure 6.4: Blocks World in the language of the new CCALC

88

% File: ’bw-test’

:— include ’bw’.

:— objects
a,b,c,d :: block.
:- query
% initial condition goal
b
) a ¢ b
b b d a ¢

% __________________

maxstep :: 1..100;

0: loc(a)=b, loc(b)=table, loc(c)=d, loc(d)=table;
maxstep: loc(a)=table, loc(b)=a, loc(c)=table, loc(d)=c.

Figure 6.5: A query in the Blocks World with four blocks

89

% File: ’bw-neighbor’
:— include ’bw’.

:- constants
neighbor(block,block) :: sdFluent.

:— variables
B, B1 :: block;
L :: location.

% definition of neighbor

caused neighbor(B,B1) if loc(B)=B1 ++ loc(B1)=B.
default -neighbor(B,B1).

Figure 6.6: Definition of neighbor

of steps. For instance, every elaboration of MCP formalized in [Lifschitz, 2000] has
a solution, so that by specifying the number of steps to try, CCALC found one.
However, some other elaborations in the McCarthy’s list are not solvable. For
example, one elaboration asks whether it is possible to have a solution if there are
four missionaries and four cannibals instead of three in each group.

A well-known general method of using invariants helps us prove the unsolv-
ability of planning problems. As discussed in [McCarthy, 1998], we need to check

the following three conditions given a property I of states:
e the initial state satisfies I,
e every state that satisfies I is not a goal state,
e in every transition (s, e, s') where s satisfies I, s’ also satisfies I.
In terms of transition systems, the conditions ensure that every state that is

90

reachable from the initial state satisfies the invariant but the goal state does not,
so that it is not possible to reach a goal state from the initial state. For instance,
an invariant for the unsolvable problem mentioned above is that either the boat is
on the first bank on which there are more than 2 missionaries, or the boat is on
the second bank on which there are less than 3 missionaries. Once a property [
is selected, checking that it satisfies the three conditions above can be reduced to
the satisfiability problem. CCALC provides a convenient syntax for doing this as
shown in Figure 6.7. The line maxstep :: any instructs CCALC that this query
is about unsolvability. The next two lines describe the initial and the goal states.
An invariant is specified with invariant:.

CCALC calls a SAT solver three times to check each of these conditions (Init
is the formula specified with 0: in the query and Goal is the formula specified with

maxstep:):

(7) if Comp(Dg) U 0:Init U 0:1 is satisfiable;
(13) if Comp(Dy) U 0:I U 0:G is unsatisfiable;
(¢i7) if Comp(Dy) U 0:1 U —(1:I) is unsatisfiable.

In checking each of conditions (i7) and (¢i7), if the theory is satisfiable, then a SAT

solver returns a model, which is a counterexample to the claim.

6.7 Proofs

The proof of Proposition 4 is given in Section 11.2.

Proposition 1 The models of a definite causal theory are precisely the models of

91

% File: ’jmc3-test’

:— query
maxstep :: any;
0: num(mi,bankl)=4, num(ca,bankl)=4;
maxstep: num(mi,bank2)=4 & num(ca,bank2)=4;
invariant:
num(mi,bankl)+num(mi,bank2)=4 & num(ca,bankl)+num(ca,bank2)=4
& (loc(boat)=bankl & num(mi,bankl)>2 ++
loc(boat)=bank2 & num(mi,bank2)<3).

Figure 6.7: Four missionaries and four cannibals—Unsolvable problem
its completion.

Proof Let T be a definite causal theory. Assume that I is a model of T'. It follows
that, for every rule of the form | <= F in T, I does not satisfy F', and thus satisfies
every formula in the completion of T' that is obtained from a constraint. It remains
to show that I satisfies the completion formula for every nontrivial atom A. Consider
two cases.

Case 1: A € T!. Since T is definite and I = T!, T is a set of atoms true
in I. So I satisfies A, which is the left-hand side of the completion formula for A.
Since A € T7, there is a rule with head A whose body is true in I. Hence I also
satisfies the right-hand side of the completion formula for A.

Case 2: A ¢ T!. So there is no rule in T with head A whose body is true in I,
which shows that I does not satisfy the right-hand side of the completion formula
for A. Tt remains to show that I = A. Since T is a set of atoms whose unique
model is I, every nontrivial atom true in I belongs to 7. Since A is a nontrivial

atom that does not belong to T, we can conclude that A is false in I.

92

Proof in the other direction is similar. |1

Proposition 2 For any transition (s,e,s'), s and s' are states.

Proof Let X =0:5U0:eU1:s’ be a model of D;. We need to show that 0:s and
0:s' are models of Dy. By i:0f! we denote the set of all constants of the form i:c
where ¢ € o7!.

To show that 0 : s is a model of Dy, observe that Dg is the part of D
consisting of rules (6.10) for static laws with ¢ = 0 and rules (6.12). The reduct
D is a set of formulas over 0: of! and every formula from Di¥ with a constant
from 0:0f! belongs to DF. Since X is the unique model of D{f, we can conclude
that 0:s is the unique model of D§. But D = DJ**, so that 0:s is a model of Dj.

Next we show that 0:s’ is a model of Dy. Let T be the part of D; consisting
of rules (6.10) for static laws with ¢ = 1, rules (6.10) for action dynamic laws with
i = 0, and rules (6.11) with ¢ = 0. Let T = TX. It is straightforward to verify that T
is a set of formulas over 1:0/! and that every formula from DX with a constant from
1:0/! belongs to I'. Since X is the unique model of Df(, we can conclude that 1:s' is
the unique model of T'. Let Ty be the set of formulas over 0:0/! obtained from T by
replacing each time stamp 1: with 0:. Then 0:5s’ is the unique model of I'y. We need
to show that 0:s' is also the unique model of Dg’sl. Observe first that every formula
in Dg’sl that does not belong to I'g is an atom from 0: s’ that came to the reduct
from one of the rules (6.12) of Dy. Hence 0: s’ satisfies Dg’sl. Due to the presence
of rules (6.12) in Dy, any interpretation that satisfies Dg’sl must agree with 0:s’ on
simple fluent constants. On the other hand, the formulas in I'y that do not belong

to Dg’sl do not contain statically determined constants, because their counterparts

93

in I' came from the heads of dynamic laws. Consequently any interpretation that
satisfies Dg’sl must agree with 0: s’ on statically determined fluent constants. It

follows that 0:s’ is the unique model of Dg’sl, so that 0:s’ is a model of Dg. 1

Proposition 3 For any m > 0, an interpretation (6.13) of the signature of Dy, is
a model of D, iff

<80760;51a61a .. .,Sm,1,6m7178m>

s a history of D.

Proof We understand the notation i:of! as in the previous proof, and the meaning
of i:0% is similar.

Take a model X of D,,, represent it in the form (6.13), and take any
j€{0,...,m —1}. We need to show that 0:s; UO:e; Ul:sj;q is a model of
D;.

Let T be the subset of D,, consisting of rules (6.10) for static laws with
i = j+ 1, rules (6.10) for action dynamic laws with ¢ = j, and rules (6.11) with
i = j. Let I' =