
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Automated Reasoning for Attributed Graph Properties
Sven Schneider1, Leen Lambers1, Fernando Orejas2

Hasso Plattner Institut, University of Potsdam, Germany1

Dpto de L.S.I., Universitat Politècnica de Catalunya, Barcelona, Spain2

The date of receipt and acceptance will be inserted by the editor

Abstract Graphs are ubiquitous in Computer Science. More-
over, in various application fields graphs are equipped with
attributes to express additional information such as names of
entities or weights of relationships. Due to the pervasiveness
of attributed graphs it is highly important to have the means
to express properties on attributed graphs to strengthen mod-
elling capabilities and to enable analysis.

Firstly, we introduce a new logic of attributed graph prop-
erties, where the graph and attribution part are neatly sep-
arated. The graph part is equivalent to first-order logic on
graphs as introduced by Courcelle. It employs graph mor-
phisms to allow the specification of complex graph patterns.
The attribution part is added to this graph part by reverting to
the symbolic approach to graph attribution, where attributes
are represented symbolically by variables whose possible val-
ues are specified by a set of constraints making use of alge-
braic specifications.

Secondly, we extend our refutationally complete tableau
based reasoning method as well as our symbolic model gener-
ation approach for graph properties to attributed graph prop-
erties. Due to the new logic mentioned above, neatly sepa-
rating the graph and attribution part, and the categorical con-
structions employed only on a lower level we can leave the
graph part of the algorithms seemingly unchanged. For the
integration of the attribution part into the algorithms we use
an oracle, allowing for flexible adoption of different available
SMT solvers in the actual implementation.

Finally, our automated reasoning approach for attributed
graph properties is implemented in the tool AUTOGRAPH in-
tegrating in particular the SMT solver Z3 for the attribute
part of the properties. We motivate and illustrate our work
with a particular application scenario on graph database query
validation.

Key words: Attributed Graphs, Nested Graph Conditions,
Model Generation, Tableau Method, Graph Queries

1 Introduction

Graphs are ubiquitous in Computer Science. Moreover, in
various application fields graphs are equipped with attributes
to express additional information such as names of entities
or weights of relationships. Due to the pervasiveness of at-
tributed graphs it is highly important to have the means to ex-
press properties on attributed graphs to strengthen modelling
capabilities and to enable analysis. Properties on attributed
graphs specify complex patterns on the graph structure and
specify conditions on the attribute values of the graph. Ex-
amples of application areas include model-based engineering
where properties of graphical models are expressed, the for-
mal analysis and verification of systems where the states are
modeled as graphs, the formal modeling and analysis of sets
of semi-structured documents (especially if they are related
by links), or of graph queries in the graph database domain.

As a first basic contribution we introduce a novel intu-
itive, dedicated logic for formulating attributed graph prop-
erties, where the graph and attribution part are neatly sepa-
rated. The graph part uses graphs and graph morphisms as
first-class citizens. In particular, we revert for this graph part
to the logic of nested graph conditions as initially defined
by Habel and Pennemann [21]. A similar approach was in-
troduced by Rensink [43] first. The origins can be found in
the notion of graph constraints [23], introduced in the area of
graph transformation [44], in connection with the notion of
(negative) application conditions [20,14], as a form to limit
the applicability of graph transformation rules. These graph
constraints originally had a very limited expressive power,
while nested conditions have been shown [21,39] to have the
same expressive power as first-order logic (FOL) on graphs
as introduced by Courcelle [9]. For integration of the attri-
bution part with the graph part of the new logic for attributed
graph properties we revert to the so-called symbolic approach
to graph attribution [35], where the attributes are represented
symbolically by variables whose possible values are specified
by a set of constraints making use of algebraic specifications.

This is a post-peer-review, pre-copyedit version of an article published in International Journal on Software Tools
for Technology Transfer. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10009-018-0496-3.

2 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

Apart from being able to express in an elegant and for-
mal way attributed graph properties, we want to be able to
automatically reason about these properties. A first question
to be answered is if a given attributed graph property is satis-
fiable at all. We have addressed this question already in ear-
lier work for graph properties without attributes [27]. In case
an attributed graph property is satisfiable, a second question
to be answered is which attributed graphs satisfy the prop-
erty in particular. We have addressed this further question by
a symbolic model generation approach for graph properties
without attributes already in [46]. In particular, we identified
that in most application scenarios it is desirable to be able to
explore graphs satisfying the graph property or even to get a
complete and compact overview of the graphs satisfying the
graph property. More formally speaking, we designed an al-
gorithmA, which returns for a given graph property p a finite
set S of so-called symbolic models such that

– S jointly covers all graphs G satisfying the graph prop-
erty p (completeness of S),

– S does not cover any graph G violating the graph prop-
erty p (soundness of S),

– S contains no superfluous symbolic models not necessary
for completeness (compactness of S),

– S allows for each of its symbolic models the immediate
extraction of a finite graph G, satisfying the graph prop-
erty p and being minimal (minimal representable S),

– S allows for an enumeration of further finite graphs G
satisfying the graph property p (explorable S).

Such an algorithm is also desireable for attributed graphs.
The second main contribution of this paper is therefore

twofold. We extend our refutationally complete tableau based
reasoning method for graph properties [27] to the case with
attributes. Moreover, we extend our symbolic model genera-
tion approach for graph properties [46] to the case with at-
tributes. In addition, we show that it inherits all properties
mentioned above of the algorithm for the non-attributed case
also strengthening compactness. Moreover, we show that it
comes up with an extra property for S. In particular, we show
that it does not generate symbolic models with overlapping
covered attributed graphs (nonambiguity of S). For show-
ing that all other properties are inherited from the case with-
out attributes, we exploit the fact that our new logic for at-
tributed graph properties neatly separates the graph part from
the attribution part and that our algorithm relies only on a
lower level on categorical constructions specific to attributed
graphs. Consequently, we can leave the graph part of previous
algorithm seemingly unchanged. For the attribute part we as-
sume and make use of an imaginary solver, allowing for flex-
ible adoption of different available SMT solvers in the actual
algorithm implementation. In fact, our refutation procedure
and symbolic model generation algorithm for attributed graph
properties are highly integrated: since the latter is designed to
compute a complete overview of all possible models, it is at
the same time able to refute a property if the overview turns
out to be empty. Note that, in general, our symbolic model
generation algorithm might not terminate because we sup-

port FOL on graphs for the graph part already. It is designed
however (also if non-terminating) to gradually deliver better
underapproximations of the complete set of symbolic models
by returning a stream of symbolic models.

Finally, we present the implementation of our algorithm
in the tool AUTOGRAPH delegating the attribute part of the
reasoning to the SMT solver Z3 [28]. We start the paper
with presenting a concrete scenario, where our approach can
be applied. In particular, we select the graph database do-
main [3,53,2] and show that we can formally model and rea-
son about the validity of graph database queries from a promi-
nent case study in this domain on social network queries [51,
version 0.3.0].

Compared to earlier work in [46] we extended the en-
tire approach by allowing attribute constraints in graph prop-
erties, which strengthens its overall applicability. We have
moreover added the property of nonambiguity and improved
the notion of compactness. In particular, we have extended
the application scenario started in [46], where we investi-
gate the validity of graph database queries, by allowing for
attribute constraints in the queries as illustrated by the exam-
ples in Figure 3, Figure 4, Figure 5, and Figure 6. This ex-
tension, which is based on earlier work on symbolic graphs
making use of algebraic specifications from [35], requires the
usage of SMT solvers such as Z3 at various steps in our
model generation algorithm such as in Def. 19 (to attempt) to
decide satisfiability of attribute constraints. Furthermore, ex-
changing the considered category from typed graphs to typed
attributed graphs resulted in the need to inspect fundamental
properties (see Appendix B) of the underlying category (i.e.,
the category of typed attributed graphs in our case) required
for higher level constructions such as shift in Def. 17 accord-
ing to their soundness proofs such as Lem. 1.

This paper is structured as follows: In section 2 we give
an overview over related work. In section 3 we discuss graph
databases as an application domain where graph queries are
to be analyzed. In section 4 we recall the formalism of alge-
braic specifications required for attribute handling in a self
contained way and introduce the category GRAPHSSTA of
typed attributed graphs. In section 5 we introduce attributed
graph properties over typed attributed graphs together with
basic operations on them such as shift and conversion of
graph properties into conjunctive normal form. In section 6
we adapt our tableau based reasoning procedure to typed at-
tributed graphs, which has been initially developed in [27].
In section 7 we present the extension of our symbolic model
generation algorithm [46] to attributed graph properties, and,
in particular, show that it still fulfills the requirements listed
before. In section 8 we describe the implementation of the al-
gorithm in our tool AUTOGRAPH, focussing also on modifi-
cations required by extending our work to the handling of at-
tributes and attribute constraints. In section 9 we take a closer
look at our application scenario and apply our tool AUTO-
GRAPH to analyze the graph queries introduced before. We
conclude the paper in section 10 together with an overview
of future work.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 3

2 Related Work

Instead of using a dedicated logic for graph properties such
as the one introduced in section 5, graph properties may be
defined in terms of some existing logic allowing the appli-
cation of its associated reasoning methods. We structure the
related work section in three parts. We start with describing
approaches that follow the idea of using some existing logic
and continue with approaches following the idea of working
with a dedicated logic for graph properties. We conclude with
a description of the integration of attribute constraints in all
these approaches to automated reasoning on graph properties.

In particular, Courcelle presented in [9] a graph logic de-
fined in terms of first-order (or monadic second-order) logic.
In that approach, graphs are defined axiomatically using pred-
icates node(n), asserting that n is a node and edge(n1, n2)
asserting that there is an edge from n1 to n2. In [18] such
a translation-based approach for finding models of graph-
like properties is followed. OCL properties are translated into
relational logic and reasoning is then performed by KOD-
KOD, which is a SAT-based constraint solver for relational
logic. In a similar vein, in [4] reasoning for feature mod-
els is provided based on a translation into input for different
general-purpose reasoners. Analogously, in [50] the ALLOY
analyzer [50] is used to synthesize in this case large, well-
formed and realistic models for domain-specific languages.
Based on ALLOY the ALUMINUM-tool [31] computes min-
imal models, which are smaller than a provided maximum
(i.e., assuming the small world hypothesis from ALLOY), by
minimizing initially non-minimal models computed by AL-
LOY. Moreover, ALUMINUM supports the interactive explo-
ration of the model space (but is not compact as isomorphism
is only approximated). However, ALUMINUM inherits some
general problems from ALLOY: the use of a small world hy-
pothesis, the required complex manual encoding, as well as
the usage of general-purpose SMT solvers instead of domain
specific solvers such as AUTOGRAPH limits the usability of
ALUMINUM. Reasoning for domain specific modeling is ad-
dressed also in [25,24] using the FORMULA approach tak-
ing care of dispatching the reasoning to the state-of-the-art
SMT solver Z3 [28]. In [45] another translation-based ap-
proach is presented to reason with so-called partial models,
which express uncertainty about the information in the model
during model-based software development.

In principle, all the previously exemplarily presented ap-
proaches from the model-based engineering domain repre-
sent potential use cases for our automated reasoning approach
for graph-like properties. We are in particular able to auto-
matically refute graph properties as well as in case these prop-
erties are satisfiable to generate symbolic models being com-
plete (in case of termination), sound, compact, minimally rep-
resentable, and explorable in combination. We therefore be-
lieve that our approach has the potential to considerably en-
hance the type of analysis results, in comparison with the re-
sults obtained by using off-the-shelf SAT-solving technolo-
gies. Following this idea, in contrast to the translation-based
approach it is possible, e.g, to formalize a graph-like prop-

erty language such as OCL [42] by a dedicated logic for
graph properties [21] and apply corresponding dedicated au-
tomated reasoning methods as developed in [37,38,34,27].
The advantage of such a graph-dedicated approach as fol-
lowed in this paper is that graph axioms are natively encoded
in the reasoning mechanisms of the underlying algorithms
and tooling. Therefore, they can be built to be more efficient
than generic-purpose methods, as demonstrated e.g. in [37,
38,39], where such an approach outperforms some standard
provers working over encoded graph conditions. Moreover,
the translation effort for each graph property language vari-
ant (such as e.g. OCL) into a formal logic already dedicated
to the graph domain is much smaller than a translation into
some more generic logic, which in particular makes trans-
lation errors less probable. Another approach following this
idea is presented in [49] where uncertainty about a graph-
based model, which possibly occurs in partial models, may
be resolved by graph transformation steps. As most directly
related work [37,39] present a satisfiability solving algorithm
for graph properties [21]. This solver attempts to find one fi-
nite model (if possible), but does not generate a compact and
gradually complete finite set of symbolic models allowing to
inspect all possible finite models including a finite set of min-
imal ones. In contrast to [37,39] our symbolic model gener-
ation algorithm is interleaved directly with a refutationally
complete tableau based reasoning method [27], inspired by
rules of a proof system presented previously in [38], but in
that work the proof rules were not shown to be refutationally
complete.

When it comes to integrating attribute constraints in all
the previous approaches mentioned above we can observe
that most translation-based approaches usually come with at-
tribute support for the properties and the corresponding rea-
soning. This is presumably because they can rely on the un-
derlying solvers for coping with attribute constraints. All ded-
icated automated reasoning approaches up until now do not
support attributes. However, there exists one recent work [11]
integrating attribute support into static analysis techniques
for graph transformation. As in our approach it is based on
formalizing graph attribution using symbolic graphs as in-
troduced in [35,36]. In particular, the tool SYGRAV and a
framework for the analysis of symbolic graph transforma-
tion systems also makes use of the Z3 solver to handle at-
tribute constraints. SYGRAV allows the usage of nested neg-
ative application conditions, which are used to restrict rule
applications in symbolic graph transformation systems. This
approach however is not concerned with automated reasoning
for attributed graph properties.

3 Application Scenario

In this section we focus on an application scenario from the
graph database domain in which our automated reasoning ap-
proach for attributed graph properties can be applied. We re-
vert to a prominent case study in this domain concerned with
social network queries [51, version 0.3.0, p. 25]. It was devel-

4 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

graph database
query

attributed
graph property

invalid query

valid query

example graph
databases

set of sym-
bolic models

designs

formalizes

(1)

AUTOGRAPH(2)

is-empty

is-not-empty

extract and explore
concrete models

(2a)

(2b)

(2c)

gets

Figure 1: Application scenario (nonemptiness problem)

oped by the Linked Data Benchmark Council (LDBC) as a
benchmark for following up the progress in graph data man-
agement technologies.

Analogous to the relational database domain [48] queries
can be formalized and validated by subjecting them to static
analysis. As argued also in the relational domain, querying
a database should not depend on how and where the data is
stored. For relational databases the relational model [8] has
therefore been designed as an underlying theory for model-
ing databases and their queries with the mathematical notion
of a relation. A relational database consists of one (or more)
relations of arity prescribed by the given database schema. A
relational query is basically a mapping of a given database to
a relation of fixed arity. Following this idea (cf. [6] and [26])
graphs and graph properties have been used to model graph
databases and their queries. In this graph model a graph G
(possibly typed over a given type graph TG) models a graph
database instance. A graph query q for a graph database G
maps G to one (or more) patterns (or subgraphs) of a specific
form in G.

The first step in our application scenario (cf. (1) in Fig-
ure 1) is the formalization of graph queries as attributed graph
properties: we described the first four “complex read queries”
from the LDBC Social Network Benchmark case study [51,
version 0.3.0, p. 25] into the typed attributed graph proper-
ties presented in Figure 3, Figure 4, Figure 5, and Figure 6.
Note, arguments of the graph queries are translated into vari-
ables argi in their graph property counterparts. Technically,
graph properties allow for the combination (by propositional
operators such as conjunction and negation) of statements of
existence of (sub)graphs in a given host graph also allowing
more complex statements using nesting. In addition to graph
conditions such as in [21,46], we also allow for the usage of
attributes and attribute constraints.

The second step in our application scenario (cf. (2) in Fig-
ure 1) is the application of our automated reasoning approach
for graph query analysis. As described also for the relational
domain [48] many query optimization tasks rely on the fol-
lowing three types of questions to be answered (cf. (2a)–
(2c) in Figure 1): Can a query q ever deliver a nonempty re-
sult (nonemptiness problem)? Does query q1 always deliver
the same result as query q2 (equivalence problem)? Is the re-
sult of query q1 always contained in the result of query q2
(containment problem)? In particular, the first question that
can be answered automatically by our approach for a given
graph database query is if there exists a graph database for
which the query result is non-empty as illustrated in Figure 1.
In particular, our refutationally complete reasoning method
for attributed graph properties implemented in our tool Au-
toGraph returns an empty set of symbolic models iff there
exists no model for the given attributed graph property. Then
we know that the graph database query is invalid. On the
other hand, our symbolic model generation algorithm returns
a non-empty set of symbolic models iff there exist finite mod-
els for the attributed graph property. In this case, we know
that the original query is valid. In addition however we can
explore minimal example models for the property that can
be extracted immediately from each symbolic model. For our
application scenario this means that we get example graph
databases for our query that deliver non-empty results. In fact,
the symbolic models generated describe all different minimal
graph databases that can serve as witnesses for the validity of
a query because our symbolic model generation algorithm de-
livers a finite, complete, minimal representable, nonambigu-
ous and compact overview of all graph databases delivering a
non-empty result. Finally, a flexible exploration starting from
any such minimal graph database to bigger ones that are still
witnesses for the validity will be feasible by checking suit-
able candidates (constructed as supergraphs of the minimal
models using atomic graph modifications) for being still wit-
nesses for the validity of the given query.

In the graph database domain, compared to the relational
domain, it is not common to have a database schema but of-
ten a conceptual model [10] is present. Such a conceptual
model is given by the UML-Class Diagram depicted (adapted
with minor corrections and completions from the LDBC So-
cial Network Benchmark) in Figure 2 for our case study. We
can integrate such conceptual models describing the struc-
ture of all graph databases to be queried into our graph model
and analysis approach by flattening the inheritance structure
of the UML-Class Diagram to obtain a type graph, by mod-
elling the multiplicity constraints as special attributed graph
properties (cf. to Figure 10c and Figure 10d for examples),
and by forbidding parallel edges of the same type by graph
properties as in Figure 10b.

Finally, with our application scenario we can also an-
swer, analogous to the nonemptiness problem, further ques-
tions when given multiple graph queries at once. Firstly, the
nonemptiness problem can be answered for a set of queries by
using a conjunction of attributed graph properties instead of
a single one. Such a set of queries is then jointly valid if they

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 5

are able to deliver non-empty answer sets on a common graph.
Secondly, we could answer the abovementioned equivalence
or containment problem for two given queries as a basis for
query optimization (analogous to query optimization in the
relational database domain [1,48]). For two graph queries q1
and q2 we can state their equivalence q1 ≡ q2 or containment
q1 ⊆ q2 using a logical equivalence or implication in a single
nested graph condition.

The analysis questions introduced in our application sce-
nario here are answered for the example graph queries of our
case study mentioned above in our evaluation in section 9 by
using our automated reasoning approach for attributed graph
properties implemented in the tool AUTOGRAPH.

4 Preliminaries

In this section we provide, in a self-contained way, funda-
mentals, which are used in the remainder of this paper. Firstly,
in subsection 4.1 we introduce algebraic specifications along
the lines of [16]. Secondly, in subsection 4.2 we introduce
symbolic typed attributed graphs based on algebraic specifi-
cations from [35,36].

4.1 Algebraic Specifications

We introduce in our notation the well-known algebraic spec-
ifications, which are used in this paper for the handling of at-
tribute values in subsection 4.2. Algebraic specifications can
be used to describe data and functional programs. Further-
more, since SMT solvers such as Z3 support the formalism
of algebraic specifications, we are able to employ them for
our purposes in subsequent sections.

A signature consists of sorts S and symbols for opera-
tions O. The elements of O are equipped with a list of input
sorts and a unique output sort. Elements of O with an empty
list of input sof sorts are called constants.

Definition 1 (Signature). Σp = (S,O, typeO : O → S+)
is a signature if S and O are finite.

To allow for the symbolic handling of attribute values (using
terms and equations later on) we equip signatures with sorted
variables distinguishable from the operations of the signature.

Definition 2 (Signature with Variables). Given a signature
Σp (as in Def. 1). Σ = (Σp, X, typeX : X → S) is a signa-
ture with variables if X ∩O = ∅.

Example 1 (Signature with Variables). We employ the well-
established notation for signatures with variables as for the
following signature, which captures boolean expressions (in
Def. 30 we provide a signature only including the built-in

operations support by AUTOGRAPH via Z3).

sorts: bool

opns: true : → bool

false : → bool

not : bool→ bool

and : bool bool→ bool

vars: b1, b2 : bool

Amongst other usages (explained later on), we specify at-
tribute values in subsection 4.2 based on (the recursively de-
fined) terms over a given signature. The terms are well-typed
in the sense that they respect the sorts declared for variables,
constants, and operations. Note, we define the terms for sub-
sets of the variables X given in the signature with variables.

Definition 3 (Terms). Given a signature with variables Σ
(as in Def. 2), s ∈ S, and X ′ ⊆ X . We define TΣ,s(X ′)
to be the smallest set s.t.

– x ∈ TΣ,s(X ′) if typeX(x) = s and x ∈ X ′,
– c ∈ TΣ,s(X ′) if c ∈ O and typeO(c) = s, and
– f(t1, . . . , tn+1)∈TΣ,s(X ′) if f ∈O, typeO(f) = s1· · ·
sn+1·s, and ti ∈ TΣ,si(X ′) (for each 1 ≤ i ≤ n+ 1).

Also, we define

– sortΣ(t) = s whenever t ∈ TΣ,s(X),
– TΣ,?(X ′) =

⋃
s∈S TΣ,s(X

′), and
– TΣ,? = TΣ,?(∅).

The last two items from the previous definition are to be un-
derstood as follows. On the one hand, terms of arbitrary type
without variables (such as and(true, false) of sort bool when
using the signature in Example 1) are collected in the set TΣ,?
and represent values. On the other hand, terms containing
variables are used to describe sets of values in a symbolic
way, e.g., the statements x > 4 and endsWith(s, “suffix”)
where x and s are variables can be expressed by using sig-
natures with variables comprising the used integer and string
operations and variables, respectively.

Variable substitutions are required for manipulation of
terms such as in instantiations, simplifications, and equiva-
lence proofs. A variable substitution determines for each vari-
able x (possibly occurring in a term t) a replacement term (of
equal type) to be inserted in t for each occurrence of the vari-
able x.

Definition 4 (Variable Substitution). Given the two signa-
tures with variables Σ1 = (Σp, X1, typeX1

) and Σ2 = (Σp,
X2, typeX2

) with common underlying signature Σp (as in
Def. 2). Each function σ : A → B where A ⊆ X1, X1 −
X2 ⊆ A (that is, σ replaces at least the variables not known
by Σ2), and B ⊆ TΣ2,?(X2) is a variable substitution, writ-
ten σ ∈ VΣ1,Σ2 , if sortΣ2(σ(x)) = sortΣ1(x) for each x ∈
A. Furthermore, the variable substitution σ is implicitly ex-
tended to a function of type TΣ1,?(X1)→ TΣ2,?(X2), which
recursively replaces all occurrences of a variable x ∈ A in a
given term by the replacement σ(x) ∈ B.

6 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

Person
creationDate : int
firstName : string
lastName : string
gender : string
birthday : int
email : string [1..∗]
speaks : string [1..∗]
browserUsed : string
locationIP : string

Forum
name : string
title : string
creationDate : int

Tag
name : string

TagClass
name : string

Post
language : string [0..1]
imageFile : string [0..1]

Comment

Message
creationDate : int
browserUsed : string
content : string [0..1]
length : int

City Country Continent

Place
name : string

Organisation
name : string

University Company

0..*1
hasModerator

0..*1..*
hasMember

joinDate : int

0..* 0..*
hasInterest

0..*

0..*
hasType

0..*

0..*
isSubclassOf

0..*0..*

knows
creationDate : int

0..*

0..*
hasTag

1 1..*
containerOf

0..*0..*
hasTag

1..* 1
isPartOf

1..* 1
isPartOf

0..*

1

isLocatedIn

0..*

1

isLocatedIn

0..*

1isLocatedIn

0..*

0..*
studyAt

classYear : int

0..*

0..*workAt
workFrom : int

0..*

0..*

likes
creationDate : int

1

0..*

hasCreator

0..*

1
replyOf

0..*

1
isLocatedIn

Figure 2: Adapted UML-Class Diagram of the LDBC Social Network Benchmark [51, version 0.3.0, p. 15]

P : Person

id = arg1

Pres : Person

id = xres
firstName = arg2

∃ ,

P : Person Pres : Person
: knows∃ , true

P : Person : Person Pres : Person
: knows : knows∨∃ , true

P : Person : Person : Person Pres : Person
: knows : knows : knows∨∃ , true

Figure 3: Graph property p3 modelling query 1 of the LDBC Social Network Benchmark [51, version 0.3.0, p. 25] searching for
persons Pres (with a given firstName-value of arg2) that are reachable by a path of knows-edges of length 1–3 from a person
P given by the id arg1 .

: Person

id = arg1

Pres : Person

id = xres1

Mres : Message

id = xres2
creationDate = x

: knows : hasCreator

le(x, arg2)

∃ , true

Figure 4: Graph property p4 modelling query 2 of the LDBC Social Network Benchmark [51, version 0.3.0, p. 25] searching
for persons Pres (known by a person given by the id arg1) and for messages Mres created by Pres before a given time arg2 .

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 7

M : Message

creationDate = x1

Pres : Person : Person

id = arg3

X : Country

name = arg4

Y : Country

name = arg5
: knows: hasCreator

le(arg1, x1) lt(x1, add(arg1 , arg2))

∃ ,

M : Message X : Country
: isLocatedIn∃ , true

M : Message Y : Country
: isLocatedIn∨∃ , true

Pres : Person : City X : Country
: isLocatedIn : isPartOf∧¬∃ , true

Pres : Person : City Y : Country
: isLocatedIn : isPartOf∧¬∃ , true

Figure 5: Graph property p5 modelling query 3 of the LDBC Social Network Benchmark [51, version 0.3.0, p. 25] searching for
persons Pres (known by a person given by the id arg3) that created at least one message M in the time interval [arg1 , arg1 +
arg2) from country X or Y (with names given by arg3 and arg4 , respectively) without being located in X or Y .

Tres : Tag

id = xres

P1 : Person : Person

id = arg1
: knows∃ ,

Tres : Tag : Post

creationDate = x1

P1 : Person
: hasTag : hasCreator

le(arg2 , x1) lt(x1, add(arg2 , arg3))

∃ , true

Tres : Tag : Post

creationDate = x1

P1 : Person
: hasTag : hasCreator

lt(x1, arg2)

∧¬∃ , true

Figure 6: Graph property p6 modelling query 4 of the LDBC Social Network Benchmark [51, version 0.3.0, p. 25] searching
for tags Tres that are attached to posts created (in the time interval [arg2 , arg2 + arg3)) by a person known by a person given
by the id arg2 such that, in addition, there are no posts created by such persons before that time interval.

An algebraic specification extends a signature with variables
by a finite set of term rewrite rules, which are called equa-
tions. The equations are of the form (`, r) where ` and r are
terms of equal sort, possibly making use of variables, and are
usally written ` = r. The equations are used to resolve on the
one hand semantic confusion between terms to be considered
equals (e.g., zero = minus(zero)). On the other hand, equa-
tions determine the semantics of an operation contained in
the signature as in functional programming languages (con-
sider the equations from Example 2). For many relevant theo-
ries these equations are applied as in functional programming
from left to right to simplify terms; in particular terms with-
out variables.

Definition 5 (Algebraic Specification). Given a signature
with variables Σ (as in Def. 2). SP = (Σ,EQ) is an (al-
gebraic) specification if

– EQ ⊆ TΣ,?(X)2,

– EQ is finite, and
– sort (`) = sort (r) for each (`, r) ∈ EQ .

The equations of the following algebraic specification can be
used to rewrite terms containing the operations and and not
into equivalent terms (defined below) without these opera-
tions (i.e., into the terms true or false).

Example 2 (Algebraic Specification). Equations of type bool
that could be added to the signature from Example 1 leading
to a reasonable algebraic specification are:

eqns: and(true, true) = true

and(false, b1) = false

and(b1, false) = false (1)
not(false) = true

not(true) = false

8 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

The equations of a specification already determine certain
terms to be equivalent but this basic equivalence is insuffi-
cient and is therefore extended to a congruence ∼= w.r.t. the
operators from the signature by allowing application of equa-
tions to subterms. As a base case, a term t1 can be rewrit-
ten into an equivalent term t2 by use of an equation (`, r)
of the specification at hand by replacing (using a variable
substitution σ fixing the variables occurring in the equation)
t1 = σ(`) by t2 = σ(r).

Definition 6 (Equivalence of Terms). Given a specification
SP (as in Def. 5). We define ∼=1 ⊆ TΣ,?(X)2 to be the least
equivalence s.t. t1 ∼=1 t2 whenever there are (`, r) ∈ EQ and
σ ∈ VΣ,Σ s.t. t1 = σ(`) and t2 = σ(r).

The congruence ∼= mentioned above is obtained by allowing
term rewritings based on ∼=1 on any level.

Definition 7 (Congruence of Terms). Given a specification
SP (as in Def. 5). We define ∼= ⊆ TΣ,?(X)2 to be the least
equivalence s.t. t1 ∼= t2 if

– t1 ∼=1 t2 or
– there is some f ∈ O with typeO(f) = s1· · ·sn+1·s,
tji ∈ TΣ,si(X) (for each 1 ≤ i ≤ n + 1 and 1 ≤
j ≤ 2) with t1i

∼= t2i (for each 1 ≤ i ≤ n + 1) and
tj = f(tj1, . . . , t

j
n+1) (for each 1 ≤ j ≤ 2).

Example 3 (Congruence of Terms). Using Equation 1 from
Example 2 we can simplify the term and(true, false) to false
by term rewriting (using either ∼=1 or ∼=).

Subsequently we implicitly assume that algebraic specifica-
tions include a propositional fragment based on the sort bool
as well as the propositional constants true (required for sat-
isfiability in Def. 8) and false (required for type graphs as
discussed in the paragraph preceding Def. 12).

We call terms of type bool (attribute) constraints and use
them in attributed graphs to specify/restrict variable values.
For these constraints we define the satisfaction as follows.

Definition 8 (Satisfaction of Constraints). For a specifica-
tion SP (as in Def. 5), a single constraint φ ∈ TΣ,bool(X) (as
in Def. 3), a set Φ ⊆ TΣ,bool(X) of constraints, and a variable
substitution σ ∈ VΣ,Σ (as in Def. 4) we define that

– σ satisfies φ, written σ |= φ, if σ(φ) ∼= true,
– φ is satisfiable by SP if ∃σ ∈ VΣ,Σ . σ |= φ,
– σ satisfies Φ, written σ |= Φ, if ∀φ ∈ Φ. σ |= φ,
– SP satisfies φ, written SP |= φ, if ∀σ ∈ VΣ,Σ . σ |= φ,
– Φ is satisfiable by SP if ∃σ ∈ VΣ,Σ .∀φ ∈ Φ. σ |= φ, and
– SP satisfies Φ, written SP |= Φ, if ∀φ ∈ Φ.SP |= φ.

SMT solvers such as Z3 are typically shipped with built-in
datatypes, operations, and equations on, e.g., booleans, inte-
gers, and strings. Thus, in practice, users of such solvers and,
hence, also users of higher level tools such as AUTOGRAPH
do not need to construct custom algebraic specifications and
custom equations when using such built-in datatypes only.

Note, users of our tool AUTOGRAPH may extend the ba-
sic algebraic specification to introduce further sorts and op-
erations (including equations) for use in constraints in at-
tributed graphs. However, while SMT solvers are often suf-
ficient for the few built-in fragments mentioned before, satis-
faction and satisfiability of constraints can not be decided for
arbitrary specifications with more complex equations. Con-
straints where the employed SMT solver is not capable of
deciding satisfiability pose problems to our model genera-
tion procedure: this handling of this problem is explicitly ad-
dressed in section 8.

4.2 Symbolic Typed Attributed Graphs

Symbolic typed attributed graphs, as introduced in [35, Def-
inition 1] together with a framework of graph transformation
on these graphs, may include vertex attributes and edge at-
tributes similarly to EGRAPHS [13]. That is, any number of
vertex attributes (edge attributes) are mapped on the one hand
to a vertex (an edge), called source, and, on the other hand,
to an assigned element, called target. However, in EGRAPHS
the target of an attribute is an element of the employed data
algebra wheras in symbolic typed attributed graphs the tar-
get is a variable of the algebraic specification. Moreover, in
symbolic typed attributed graphs a set of constraints is used
to describe the values that such a variable can take. Note, the
set of constraints may be satisfiable by more than one vari-
able substitution. A set of constraints is more expressive than
a single constaint because only a finite set of constraints can
be translated in general into a single constraint using finite
conjunction in the obvious way.

We introduce the category of symbolic typed attributed
graphs step-wise starting with plain graphs.

Definition 9 (Plain Graph). Plain graphs Gp are tuples of
the form (V,E, src : E → V, trg : E → V).

Note, to simplify notation we facilitate the usual notation for
selectors for tuples such as for plain graphs. E.g., we denote
the vertices of a plain graph Gpi by VGp

i
or simply by Vi.

In the next step plain graphs are extended by an alge-
braic specification, an attribution consisting of attribute vari-
ables, attribute vertices, and attribute edges together with the
source and target mappings similarly available in EGRAPHS,
and constraints restricting the possible values of the attribute
variables.

Definition 10 (Symbolic Attributed Graph). Given a plain
graphGp (as in Def. 9), a specification SP (as in Def. 5) with
finite set X , and an attribution A = (AX , typeAX : AX →
S,AV , srcAV : AV → V, trgAV : AV → AX ,AE , srcAE :
AE → E, trgAE : AE → AX). ThenGsa =(Gp,SP , A, Φ)
is a symbolic attributed graph if there is a signature ΣA s.t.

– X ∩AX = ∅,
– ΣA = (Σp, X ∪AX , typeX ∪ typeAX), and
– Φ ⊆ TΣA,bool(AX)

See Figure 7 for an example of symbolic attributed graph and
the simplified notation. Note, the empty graph, written ∅, is

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 9

v1

e1

v2

src

trg

av1

av2x2

x1

ae2x3
srcAEtrgAE

srcAV

trgAV

srcA
V

trgAV

v1

av1 = x1
av2 = x2

v2

e1

ae2 = x3

and(x1, not(and(x2, x3)))

Figure 7: A symbolic attributed graph G7 in two notations
(left/right). The used specification from Example 2 is not de-
picted. The single constraint Φ is depicted separately from
the graph structure at the bottom. Note, the constraint can be
satisfied by three different variable substitutions.

assumed to have either the constraint setΦ = ∅ orΦ = {true}
when this fact is to be expressed more explicitly as in Fig-
ure 12.

The subsequently introduced notion of a morphisms be-
tween symbolic attributed graphs is extended with compat-
ibility w.r.t. typing in Def. 14. As for now the morphisms
map vertices, edges, and attributes in a way compatible with
the various source and target operations (see Figure 9). Also
note, attribute variable mappings must not restrict satisfy-
ing variable substitutions, i.e., a variable substitution σ sat-
isfying the constraint of the target symbolic attributed graph
Gsa

2 must already have satisfied the constraint of the source
symbolic attributed graph Gsa

1 after application of the sym-
bolic attributed graph morphism. For example, consider the
symbolic (typed) attributed graph morphism m4 from Fig-
ure 8, where each variable substitution satisfying the con-
straint of G4 also satisfies the constraint of G2 (in this ex-
ample no variable renaming is performed by m4 as it maps
the attribution variable x from G2 to the attribution variable
x from G4).

Definition 11 (Symbolic Attributed Graph Morphism). If
Gsa

1 and Gsa
2 are symbolic attributed graphs (as in Def. 10)

with specification SP = (Σ,EQ), then f = (fV : V1→V2,
fE : E1 → E2, fAX : AX 1 → AX 2, fAV : AV1 →AV2 ,
fAE : AE1 → AE2) is a symbolic attributed graph mor-
phism of type Gsa

1 → Gsa
2 , written f : Gsa

1 → Gsa
2 , if (see

Figure 9)

– src2 ◦ fE = fV ◦ src1 ,
– trg2 ◦ fE = fV ◦ trg1 ,
– srcAV2

◦ fAV = fV ◦ srcAV1
,

– trgAV2 ◦ fAV = fAX ◦ trgAV1 ,
– srcAE2 ◦ fAE = fE ◦ srcAE1 ,
– trgAE2

◦ fAE = fAX ◦ trgAE1
,

– typeAX 2
◦ fAX = typeAX 1

, and

– for all σ ∈ VΣA2
,ΣA2

:1

σ |= Φ2 implies σ |= fAX (Φ1).

Moreover, the composition f2 ◦ f1 : Gsa
1 → Gsa

3 of symbolic
attributed graph morphisms f1 : Gsa

1 → Gsa
2 and f2 : Gsa

2 →
Gsa

3 is defined componentwise.

A symbolic attributed graph Gsa is extended to a sym-
bolic typed attributed graph G (or graph for short) when a
type graph TG is available such that a typed attributed graph
morphism from Gsa to TG can be determined, which, by
definition, has to satisfy the compatibilities discussed before.
In practice we often use the single constraint false for type
graphs to allow arbitrary values in symbolic attributed graphs
to be typed.

Definition 12 ((Symbolic Typed Attributed) Graph). For
a given symbolic attributed graph morphism τ : Gsa→TG
(as in Def. 11) we define G = (Gsa ,TG , τ : Gsa→TG) to
be a (symbolic typed attributed) graph.

We introduce grounded graphs as those symbolic typed at-
tributed graphs where the set of attribute constraints Φ can be
satisfied by a unique variable substitution, whereas for typed
attributed graphs also infinite and empty sets of such variable
substitutions are allowed.

Definition 13 (Grounded Graph). A graph is a grounded
graph, if its set of attribute constraints Φ is satisfiable by a
unique variable substitution. For a graph Gs we denote all
grounded graphs Gg obtainable from Gs by only adding fur-
ther attribute constraints to Gs by grounded(Gs).

Subsequently, we assume a fixed symbolic attributed graph
TG used as a type graph and lift symbolic attributed graph
morphisms to symbolic typed attributed graphs by requiring
that the two symbolic attributed graph morphisms used for
typing are compatible in the sense of the commutation of the
triangle in the following definition.

Definition 14 ((Symbolic Typed Attributed) Graph Mor-
phism). Given two (symbolic typed attributed) graphs G1 =
(Gsa

1 ,TG , τ1) and G2 = (Gsa
2 ,TG , τ2) (as in Def. 12) over

a common type graph TG and a symbolic attributed graph
morphism f : Gsa

1 → Gsa
2 (as in Def. 11). We define f to be

a (symbolic typed attributed graph) morphism and also to be
of type G1 → G2 if τ2 ◦ f = τ1.

Gsa
1

TG

Gsa
2

τ1

f

τ2

We are binding the definitions of graphs and morphisms from
before into the single notion of a category.

1 Firstly, the algebraic specification used is given by (ΣA2
,EQ)

where ΣA2
is the signature with variables obtained for the attribution A2

of Gsa
2 and the signature Σ from SP as in Def. 10. Secondly, fAX :

AX 1 → AX 2 is a member of VΣA1
,ΣA2

according to Def. 4.

10 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

∅ true
v0

valV = x
gt(x, 6)

v0

valV = x

v2
e

valE = z and(gt(x, 7), lt(z, 5))

v0

valV = x

v1
e

valE = y
valE = z

and(gt(x, 6), and(gt(y, 5), lt(z, 5)))

G0
G2

G4

D3

iD3

m2 m4

q2
q4

Figure 8: Five symbolic (typed) attributed graph morphisms. The type graph is given in Figure 12a. Also, D3 satisfies the graph
property ∃(m2 : G0 ↪−→ G2,∃(m4 : G2 ↪−→ G4, true)) (an extension of this graph property is given in Figure 12b) according
to Def. 16 because the required morphisms q2 and q4 can be found such that the two triangles commute (see Figure 11 for an
example with more explanations on the satisfaction of graph properties).

V1 E1

AV 1 AE1

AX 1

src1

trg1srcA
V1

srcAE
1

trgAV1 trgAE1

V2 E2

AV 2 AE2

AX 2

src2

trg2srcA
V2

srcAE
2

trgAV2 trgAE2

fAV fAE

fV fEfAX

AX1 AX2

S

typeAX2
typeAX1

fAX

Figure 9: A symbolic attributed graph morphism f (see
Def. 11) has to be compatible with the operations of the
source and target graphs.

Theorem 1 (Category GRAPHSSTA of Symbolic Typed
Attributed Graphs). We obtain the category GRAPHSSTA
by using the symbolic typed attributed graphs as defined in
Def. 12 as objects, the symbolic typed attributed graph mor-
phisms as defined in Def. 11 between them as morphisms, the
composition of symbolic typed attributed graph morphisms
also defined in Def. 11, and symbolic typed attributed graph
identity morphisms based on componentwise identities.

Proof (idea). By the well-definedness of the involved no-
tions of symbolic typed attributed graphs and symbolic typed
attributed morphisms.

In the following we denote that f : G → G′ is a mono
as f : G ↪−→ G′, an epi as f : G � G′, and an iso as
f : G ↪→→ G′ (see Lem. 11).

Note, for specifications where attribute constraint satis-
fiability is undecidable we can also not decide whether an
element is a graph morphism because, by definition, an im-
plication on attribute constraint satisfaction must be decided.
In section 8 we handle this problem explicitly for our sym-
bolic model generation procedure.

5 Properties over GRAPHSSTA

In this section we introduce graph properties over symbolic
typed attributed graphs with basic operations.

On the one hand, graph properties (for labelled graphs)
with attribute constraints without nesting have been intro-
duced in [32] and extended with operators from propositional
logic in [33]. On the other hand, graph properties (for la-
belled graphs) without attribute constraints but with nesting
have been introduced in [21]. In the following we integrate
both ideas and introduce (nested) graph properties on sym-
bolic typed attributed graphs from subsection 4.2.

Graph conditions of the simple form ∃(m : ∅ ↪−→ G, true)
state that G is to be contained as a subgraph in every model.
The expressive power of first order logic on graphs is then
obtained by allowing conjunction, negation, and nesting of
graph conditions of this form.

Definition 15 (Graph Conditions and Graph Properties).
The set CG of (graph) conditions over a graph G is induc-
tively2 defined by:

2 The empty conjunction ∧∅ is the base case of the inductive definition.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 11

– ∧S ∈ CG if S is a finite subset of CG,
– ¬c ∈ CG if c ∈ CG, and
– ∃(m : G ↪−→ G′, c) ∈ CG if c ∈ CG′ .

A (graph) property is a condition over the empty graph ∅.

Notation 1. We use further operators to ease the usage of
graph properties, introduced as abbreviations, such as

∨S := ¬ ∧ {¬c | c ∈ S},
c1 → c2 := ∨{¬c1, c2},

true := ∧∅,
false := ∨∅, and

∀(m, c) := ¬∃(m,¬c).

We also allow infix and mixfix notation for ∧ and ∨ (e.g., as
in ∧{c1, c2, c3} = c1 ∧ c2 ∧ c3).

When presenting graph conditions in figures, we abbre-
viate (for notational simplicity) existential quantifications of
the form ∃(m : G1 ↪−→ G2, c) by ∃(G′, c) when the morphism
m is clear from the context and where G′ is the least sub-
graph of G2 containing all graph elements that are fresh in
G2 w.r.t. G1 (used in, e.g., Figure 3).

Graph properties may be employed to specify a diverse
set of properties to be satisfied by concrete models. Firstly,
the graph property in Figure 10a states a simple negative pat-
tern by means of the symbolic typed attributed graphG7 from
Figure 7. Secondly, the graph properties from Figure 10b,
Figure 10d, and Figure 10c specify lower/upper bounds (i.e.,
multiplicity statements) on graph elements that are mapped to
common graph elements in the type graph. Finally, the graph
property given in Figure 10e describes an infinite sequence of
nodes by essentially formalizing the Peano axioms. The last
example also demonstrates that any step wise construction of
minimal models adding a finite number of elements can not
terminate in general.

Definition 16 (Satisfaction of Graph Conditions). A graph
condition cinp from CC is satisfied recursively by a monomor-
phism q : C ↪−→ G, written q |= cinp , as follows:

– q |= ∧S if q |= c for each c ∈ S
– q |= ¬c if not q |= c
– q |= ∃(m : C ↪−→ D, c) if some q′ : D ↪−→ G satisfies
q′ ◦m = q and q′ |= c.

C

G

D

q

m

q′

Also, a graph G satisfies a graph property p (see Def. 15),
written G |= p, if the unique mono iG : ∅ ↪−→ G satis-
fies p. Finally, JpK is the set of all graphs satisfying p and
two properties p1 and p2 are equivalent, written p1 ≡ p2, iff
Jp1K = Jp2K.

Consider Figure 11 for an example for the satisfaction of a
graph property making use of nesting, conjunction, and ex-
istential quantification where types, attributes, attribute con-
straints, and negation are left out for simplicity.

∅

v1

av1 = x1
av2 = x2

v2
e1

ae2 = x3

and(x1, not(and(x2, x3)))

m

(a) Graph property p10a = ¬∃(m, true) states that the symbolic at-
tributed graph G7 from Figure 7 (equipped with suitable vertex and
edge types not depicted for simplicity) is not a subgraph of any de-
sired model. That is, the pattern described by G7 can be understood
to be prohibited.

∅ :TV 1 :TV 2

:TE

:TE

m

(b) Graph property p10b = ¬∃(m, true) states that there are no
parallel edges of type TE between vertices of types TV 1 and TV 2,
respectively.

∅:TV :TV :TV :TV :TV
m1 m2

p10c1 = ∃(m1, true)
p10c2 = ¬∃(m2, true)

(c) Graph property p10c = p10c1 ∧ p10c2 states that (p10c1) there are
at least two vertices of type TV and that (p10c2) there are not three or
more vertices of type TV .

∅ :TV 1

:TV 2

:TV 2

:TV 2

:TE
:TE

:TE

:TV 1:TV 1

:TV 2

:TV 2

:TE

:TE

m3m1m2

p10d1 = ∀(m1, ∃(m2, true))

p10d2 = ¬∃(m3, true)

(d) Graph property p10d = p10d1 ∧ p10d2 ∧ p10b states that (p10d1) at
least two edges of type TE exit every vertex of type TV 1, and that
(p10d2) not three or more edges of type TE exit any vertex of type
TV 1, and (p10b from Figure 10b) is used to simplify the property (no
mergings of target vertices need to be considered in the property) in
contexts where preventing parallel edges is reasonable.

∅ : 1 : 1

: 1

m1 m2

m3m4

p10e1 = ∃(m1, ∀(m2, false))
p10e2 = ∀(m1, ∃(m3, true))
p10e3 = ∀(m4, false)

(e) Graph property p10e = p10e1 ∧p10e2 ∧p10e3 , with unique vertex and
edge types (not depicted for simplicity), states that (p10e1) there is at
least one vertex without predecessor vertex, (p10e2) every vertex has a
successor vertex, and (p10e3) there is no vertex with two predecessor
vertices. The infinite graph . . . is the least
model of property p10e and (an isomorphic copy of this graph) is
contained in each model of p10e.

Figure 10: Various examples of graph properties showing the
diversity of properties expressible by graph properties.

12 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

p1 = ∃(m1, p2)
p2 = p3 ∧ p4
p3 = ∃(m2, true)
p4 = ∃(m3, true)

Ghost = va vb vc

∅ v0 v1

v0 v1

v0 v1

va vb vc

va vb vc

m1 m2

m3

i

i
q1 q2

q1 q2

q3

q4

Figure 11: For the given graph property p1 with its subconditions p2, p3, and p4 we derive that the graph Ghost satisfies p1 as
follows. Step 1: Ghost satisfies p1 because the unique mono i : ∅ ↪−→ Ghost satisfies p1. Step 2: i satisfies p1 because we can
determine some q1 (mapping v0 to va and v1 to vb) such that q1 ◦ m1 = i (trivial) and q1 satisfies p2. Step 3: q1 satisfies p2
because q1 satisfies p3 and q1 satisfies p4. Step 4a: q1 satisfies p3 because we can determine some q3 (mapping v0 to va and v1
to vb) such that q2 ◦m2 = q1 and q2 satisfies true (trivial). Step 4b: q1 satisfies p4 because we can determine some q4 (mapping
v0 to va and v1 to vb) such that q4 ◦m3 = q1 and q4 satisfies true (trivial). Note, instead of choosing q1 as above in Step 1 we
could have selected q2 (mapping v0 to vb and v1 to va). However, then we would have to derive that q2 satisfies p2. This is not
possible because q2 does not satisfy p3 because there is no morphism q′3 with same type as q3 such that q′3 ◦m2 = q2 because
vertex va has no loop.

For the tableau procedure in section 6 we introduce the
construction shift as a modification of the corresponding con-
struction from [14, Construction 3.12, p. 15] where shift is
employed in the context of the analysis ofM-adhesive trans-
formation systems. The operation from [14] is adapted here
by requiring that all involved morphisms are monomorphisms
as required for conditions and for satisfaction (Def. 15 and
Def. 16).

While shift is defined homomorphically on conjunction
and negation, for existential quantification all possible over-
lappings of two positive graph patterns are constructed to
compute all situations in which both positive patterns are sat-
isfied. In the following definition this means that the condi-
tion shift(m1,∃(m2, c)) describes the occurrence of the pos-
itive pattern ∃(m2, c) in the context of the other positive pat-
tern ∃(m1, true).

Consider Figure 12 for an example of a graph property
with attribute constraints that is shifted along a monomor-
phism where overlappings are constructed and attribute con-
straints are handled suitably.

Definition 17 (Operation shift). Given a graph condition
from CC and a monomorphism m1 : C ↪−→ C1. Then, shift is
defined recursively as follows:

– shift(m1,∧S) = ∧{shift(m1, c) | c ∈ S},
– shift(m1,¬c) = ¬shift(m1, c), and
– shift(m1,∃(m2 : C ↪−→ C2, c))

= ∨{∃(m′2, shift(m′1, c)) | (m′2,m′1) ∈ F} where F
is a set of representatives for the isomorphism quotient of
{(m′2,m′1) ∈ E ′ | m′2◦m1 = m′1◦m2}where E ′ is the set
of pairs of jointly epimorphic morphisms from Def. 32.
Here (m′2,m

′
1) and (m′′2 ,m

′′
1) are isomorphic, if some

isomorphism i : K ↪→→ K ′ satisfies m′′2 = i ◦ m′2 and
m′′1 = i ◦m′1.

C∃(m2, c) .

C2c .

C1 / shift(m1,∃(m2, c))

K

m1

m2 m′2

m′1

K ′

m′′2

m′′1

i

The definition of shift is of course important for the im-
plementation. However, in proofs we only build upon the fol-
lowing lemma stating the required compatibility.

Lemma 1 (Compatibility of shift and |=). Given a graph
condition c ∈ CC , a monomorphism m : C ↪−→ C ′, and a
monomorphism m′ : C ′ ↪−→ G. Then, m′ ◦m |= c iff m′ |=
shift(m, c).

C

G

C ′

m′ ◦m

m

m′

/ shift(m, c)c .

Proof (idea). Analogous to the proof of the corresponding
earlier result [14, Lem. 3.11, p. 15] using Lem. 14.

To simplify our reasoning, our symbolic model genera-
tion algorithm operates on the subset of conditions in con-
junctive normal form (CNF).

Definition 18 (Graph Conditions in Conjunctive Normal
Form (CNF)). A graph condition is in CNF if it is a con-
junction of clauses. A clause is a disjunction of literals. A lit-
eral is a positive literal ∃(m, c) or a negative literal ¬∃(m, c)
where (in both cases) m : C ↪−→ C ′ is no isomorphism, the
attribute constraint of C ′ is satisfiable, and c is in CNF.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 13

TG

Vertex
valV : int

Edge
valE : int

false

(a) The type graph TG (used in this figure) over the specification from Def. 30.

m1 :

v0 v1
e

valE = y gt(y, 5)
∃ , true

m2 : v0

valV = x
gt(x, 6)∧ ∃ , m4 :

v0

valV = x

v2
e

valE = z and(gt(x, 7), lt(z, 5))
∃ , true

(b) A graph property p = ∃(m1 : G0 ↪−→ G1, true) ∧ ∃(m2 : G0 ↪−→ G2, ∃(m4 : G2 ↪−→ G4, true)), which is a condition over the empty
graph G0 = ∅ by definition, where all graphs are typed over the type graph TG from above.

∅ true

G0
v0 : 1 v1 : 2

e : 0

valE = y : 1 gt(y, 5)

G1

v0 : 0

valV = x : 0
gt(x, 6)

G2

v0 : 0 1

valV = x : 0

v1 : 2
e : 0

valE = y : 1 and(gt(x, 6), gt(y, 5))

C1

v0 : 0

valV = x : 0

v2 : 3
e : 1

valE = z : 2 and(gt(x, 7), lt(z, 5))

G4

v0 : 0

valV = x : 0

v1 : 1 2 3
e : 0 1

valE = y : 1

valE = z : 2
and(gt(x, 6), and(gt(y, 5), lt(z, 5)))

D3

m1

m′1,1

m′2,1 = m3

m2

m4 m′3,3

m′4,3

(c) One of the diagrams required for computing shift(m1 : G0 ↪−→ G1, ∃(m2 : G0 ↪−→ G2, ∃(m4 : G2 ↪−→ G4, true))) showing that the
result (which is a disjunction) contains at least ∃(m1 : G0 ↪−→ G1, ∃(m′1,1 : G1 ↪−→ C4, ∃(m′3,3 : C1 ↪−→ D3, true))). Firstly, (in the
upper rectangle) C1 is constructed from G1 and G2 by some (possibly partial) overlapping and, secondly, (in the lower rectangle) D3 is
constructed from C1 and G4 by some (possibly partial) overlapping such that elements that are already in G2 are overlapped. During the
overlapping process the constraints of the result are the constraints of the two source graphs where variables are renamed according to the
variable mappings from the source graphs into the constructed overlapping. Note, the graph D3 satisfies the graph property p.
D1

v0 : 0 1

valV = x : 0 v1 : 2

v2 : 3

e0 : 0

valE = y : 1

e1 : 1

valE = z : 2

and(gt(x, 6), and(gt(y, 5), lt(z, 5)))

(d) An alternative overlapping to D3.

D2

v0 : 0 1

valV = x : 0

v1 : 2 3

e0 : 0

valE = y : 1

e1 : 1

valE = z : 2

and(gt(x, 6), and(gt(y, 5), lt(z, 5)))

(e) An alternative overlapping to D3.
D4

v0 : 0 1

valV = x : 0

v1 : 2 3
e : 0 1

valE = v : 1 2 and(gt(x, 6), and(gt(v, 5), lt(v, 5)))

(f) An alternative overlapping to D3 with unsatisfiable constraint.

C2

v0 : 0

valV = x : 0

v1 : 1 v2 : 2
e : 0

valE = y : 1 and(gt(x, 6), gt(y, 5))

(g) An alternative overlapping to C1.

Figure 12: An example of an application of the shift-operation.

14 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

For example, the condition ∧{∨{}} is in CNF and is equiva-
lent to false .

For translating conditions into equivalent conditions in
CNF we introduce the second operation [·] on conditions,
which is similar to an operation in [38,39,27].
Definition 19 (Conversion to CNF). The conversion oper-
ation [·] : CG → CG executes the following steps:

– Step 1: remove operators besides∧,∨,¬, and ∃ according
to the abbreviations from Notation 1,

– Step 2: remove any existential quantifications of isomor-
phisms (e.g., ∃(i : A ↪→→ B, ∃(m : B ↪−→ C, true)) is
replaced by ∃((m ◦ i) : A ↪−→ C, true) by moving the
isomorphism i into the literal of the next nesting level),

– Step 3: remove all unsatisfiable existential quantifications
(i.e., replace ∃(m : A ↪−→ B, c) by ∨∅ when the con-
straints of the graph B are not satisfiable),

– Step 4: move all negations inwards across ∧ and ∨, drop-
ping duplicate negations as expected, until reaching an
existential quantification, and

– Step 5: apply distributive and associative laws for ∧ and
∨ to finally enforce the required CNF structure.

In Step 3 we require the existence of an oracle that decides
these satisfiability questions in all cases. In section 8 we ex-
plain in more detail how we handle cases where SMT solvers
such as Z3 designed to implement that oracle are unable to
decide satisfiability questions on attribute constraints.

As for FOL the conversion to CNF entails the conver-
sion of subconditions of the shape (a1 ∧ b1)∨ · · · ∨ (an ∧ bn)
resulting in 2n clauses of size n. However, in our approach
the conversion of graph conditions into CNF graph condi-
tions usually has no great impact on the runtime of our over-
all algorithm because subconditions from different existential
quantifiers are not combined in the conversion, that is, we per-
form the conversion on each nesting level of the ∃-quantifier
and, hence, we obtain quite small CNF conditions. For FOL
this is different: after skolemization, which removes existen-
tial quantifiers, all subconditions are related to each other re-
sulting in huge formulas. Note, skolemization is not needed
for graph conditions according to [39, p. 100]. Also note, the
size of the graphs and the morphisms contained in the con-
dition are not relevant for the conversion in our case, which
is an important difference to the FOL scenario. However, at-
tribute constraints are checked by AUTOGRAPH for satisfia-
bility by the employed SMT solver during the conversion to
CNF. This intuitive explanation is supported by runtime ex-
aminations presented in [47] where ALLOY is applied to gen-
erate models for two graph queries. However, apparently due
to lacking support for strings and integer arithmetic, ALLOY
is not able to determine models for ALLOY-encoded versions
of the graph properties with attributes and attribute conditions
from Figure 4, Figure 5, and Figure 6.

6 Tableau Procedure

In this section we adapt the tableau-procedure for graph con-
ditions without attributes and attribute constraints from [27]

to the symbolic typed attributed graphs as introduced in sub-
section 4.2. Due to the additional attributes and attribute con-
straints underlying operations such as shift and [·] have been
adapted as explained before.

Intuitively, the tableau procedure performs, for a given
graph property, a recursive case distinction to finally return all
most-explicit cases that can not be split further. Subsequently,
in subsection 6.1, we start with an intuitive explanation on
the steps for splitting, recursive application, and termination
backed up by fundamental lemmas. Afterwards, in subsec-
tion 6.2, we present formal definitions for the construction of
(Nested) Tableaux implementing the steps explained before.

6.1 Recursive Case Distinction Principle

Step 1 (Splitting): we are translating the given graph condi-
tion c in CNF into a disjunctive normal form, i.e., into a dis-
junction of conjunctions of literals. This conversion is exe-
cuted in subsection 6.2 by construction of a tableau T where
each branch B of the tableau T corresponds to one clause of
the disjunctive normal form to be constructed.

The obtained condition ∨S is then considered composi-
tionally (assuming here and subsequently an enclosing ex-
istential quantification in the form of ∃(iC ,∨S) using the
unique mono iC : ∅ ↪−→ C). That is, we can consider each
clause of the disjunctive normal form (given by an element
of S) separately without altering the set of models of the
graph property. Hence, we may consider one branch B of the
tableau T constructed in isolation.

Lemma 2 (Sound and Complete Branching). If S is a sub-
set of CC , then J∃(iC ,∨S)K =

⋃
{J∃(iC , c)K | c ∈ S}.

Each clause ∧L now considered separately from the oth-
ers either contains a positive literal (Step 2) or only negative
literals (Step 3).

Step 2 (Recursive Application): To prepare the clause ∧L
for recursive application we are merging the elements of L
into a single positive literal by application of the shift con-
struction. Firstly, one positive literal ` is selected from L and
all other graph conditions from S = L− {`} are lifted into `
using the shift construction.

Lemma 3 (Sound and Complete Lifting). If S is a given
subset from CC , then J∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))K =
J∃(iC ,∃(m, c′ ∧ shift(m,∧S)))K.

Also note, the operation [·], which is additionally applied in
the formal tableau construction in subsection 6.2, is sound
and complete as follows.

Lemma 4 (Sound and Complete [·]).
If c is a condition from CC , then J∃(iC , c)K = J∃(iC , [c])K.

Finally, we recursively apply the presented algorithm to the
condition c of the positive literal ∃(m : C ↪−→ C ′, c) obtained.
Note, since m is no isomorphism due to the operation [·] the
graph C ′ is strictly greater than the graph C. This recursive
application is justified by the following lemma.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 15

Lemma 5 (Sound and Complete Nesting). If c is a condi-
tion in CC′ , then J∃(iC ,∃(m : C ↪−→ C ′, c))K = J∃(iC′ , c)K.

Step 3 (Termination): As a complementary case to Step 2
we consider clauses containing no positive literal. That is,
clauses containing any number of negative literals of the form
¬∃(m : C ↪−→ C ′, c). Due to the construction of the op-
eration [·] the monomorphisms m of these negative literals
are no isomorphisms and, hence, the unique monomorphism
iC : ∅ ↪−→ C already satisfies these negative literals prov-
ing that C is a model of all negative literals contained in the
clause. Also, the graph C minimally represents all models of
the considered case in the sense that it is the least graph con-
tained in all these models.

Lemma 6 (Sound and Complete Termination). Let L be a
set of negative literals ¬∃(mi, ci) from CC where each mi

is no isomorphism. Then C is the unique least element of
J∃(iC ,∧L)K in the sense of

– existence: C is an element of J∃(iC ,∧L)K
– unique least: for each graph C ′ ∈ J∃(iC ,∧L)K there ex-

ists some monomorphism m : C ↪−→ C ′

The algorithm terminates at this point with conditions of the
form J∃(iC ,∧L)K, which can not be broken down using a
case distinction as mentioned before and which are called
therefore most-explicit.

Note, the proofs of the lemmas above are contained in the
appendix.

Subsequently we formalize the presented description of
the algorithm by introducing definitions for the construction
of tableaux and, for recursive application, nested tableaux.

6.2 Recursive Construction of Tableaux

The algorithm intuitively presented before is now formalized
by means of the tableau based reasoning method as intro-
duced in [27]. Regular tableaux are used to perform the split-
ting in Step 1 from above and were directly inspired by the
construction of tableaux for plain FOL reasoning [22]. Then,
nested tableaux are used to handle the recursive application
of Step 2 from above.

Provided a condition in CNF and an empty tableau ob-
tained using the initialization rule we are using the exten-
sion rule to construct branches by selecting one literal from
each clause (note, a condition is unsatisfiable if it contains an
empty clause). Then, using the lift rule we are merging all
literals of a branch into a single positive literal provided the
branch contains at least one positive literal as a starting point.

Definition 20 (Tableaux for Graph Conditions, Open and
Closed Branches). Given a condition c in CNF over C. A
tableau T for c is a finite tree whose nodes are conditions
constructed using the rules below. A branch in a tableau T
for c is a maximal path in T . Moreover, a branch B is closed
if false is in B; otherwise, it is open. Finally, a tableau is
closed if all of its branches are closed; otherwise, it is open.

– initialization rule: a tree with a single root node true is a
tableau for c.

– extension rule: if B is a branch of a tableau for c and ∨S
is a clause in c, then if S 6= ∅ and S∩B = ∅, then append
each element of S as a child node to the leaf of B or if
S = ∅ and false /∈ B, then append false as a child node
to the leaf of B.

– lift rule: if B is a branch of a tableau for c, ` and ∃(m, c′)
are in B, `′ = ∃(m, [c′ ∧ shift(m, `)]) is not in B, then
append `′ as a child node to the leaf of B.

Semi-saturated tableaux are the desired results of the iterative
tableaux construction where no further rules may be applied.

Definition 21 (Semi-saturated (Branch of a) Tableau). Let
T be a tableau for condition c over C. A branch B of T is
semi-saturated if it is either closed or

– B is not extendable with a new node using the extension
rule and

– if E = {`1, . . . , `n} is the nonempty set of literals con-
tained in nodes added to B using the extension rule (i.e.,
not by the lift rule), then there is a positive literal ` =
∃(m, c′) in E such that the literal in the leaf node of B is
equivalent to ∃(m, c′ ∧ {shift(m, `′) | `′ ∈ (E − {`}}).
Also, we call ` the hook of B.

Finally, T is semi-saturated if all branches of T are semi-
saturated.

Note, the setE in the definition above contains all literals that
are to be integrated using the lift rule in the leaf node of B.

Following the description of the algorithm from before
we recursively construct further tableaux for the inner condi-
tions c′ of the leaf nodes ∃(m, c′) contained in the tableau at
hand. That is, the next analysis step is to construct a tableau
for condition c′. The iterative (possibly non-terminating) ex-
ecution of this procedure results in (possibly infinitely many)
tableaux where each tableau may result in the construction
of a finite number of further tableaux. This relationship be-
tween a tableau and the tableaux derived from the leaf literals
of open branches results in a so called nested tableau (see
Figure 13 for an example of a nested tableau).

Definition 22 (Nested Tableaux, Opener of Tableau, Con-
text of Tableau, Nested Branch of Nested Tableau, Semi-
saturated Nested Tableau). Given a condition c over C and
a partially ordered set (I,≤, i0) with minimal element i0. A
nested tableau NT for c is constructed using the rules below
and is, for some I ′ ⊆ I , a family3 of triples {〈Ti, j, cj〉}i∈I′
that contain a tableau Ti, an index j ∈ I ′, and a condition cj .4

– initialization rule: If Ti1 is a tableau for c, then the family
containing only 〈Ti1 , i0, true〉 for some index i1 > i0 is
a nested tableau for c and C is called context of Ti1 .

3 Formally, the family is a map that assigns one triple to each i ∈ I′.
4 Intuitively, a triple 〈Ti, j, ci〉 is either generated by the initialization

rule or is generated by the nesting rule and Ti is a tableau for a condition ci
that is the inner condition of some literal ` = ∃(m, ci) that is in a leaf node
of the parent tableau Tj that is assigned to index j in NT .

16 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

p
1
3

=
∃

(∅
↪−→

1
,tru

e
)∧

(∃
(∅
↪−→

1
2
,tru

e
)∨

(¬
∃

(∅
↪−→

1
,tru

e
))∨

(¬
∃

(∅
↪−→

1
2
,tru

e
)))

tru
e

T
0

∃
(∅
↪−→

1
,tru

e
)

∃
(∅
↪−→

1
2
,tru

e
)

¬
∃

(∅
↪−→

1
,tru

e
)

¬
∃

(∅
↪−→

1
2
,tru

e
)

∃
(∅
↪−→

1
,

[tru
e
∧
sh
ift(∅

↪−→
1
,∃

(∅
↪−→

1
2
,tru

e
))])

=
∃
(∅
↪−→

1
,

[tru
e
∧
∨
{∃

(
1
↪−→

1
2

3
,tru

e
),∃

(
1
↪−→

1
2
,tru

e
)}

])
=
∃
(∅
↪−→

1
,

∧
∨
{∃

(
1
↪−→

1
2

3
,tru

e
),∃

(
1
↪−→

1
2
,tru

e
)}

)

∃
(∅
↪−→

1
,

[tru
e
∧
sh
ift(∅

↪−→
1
,¬
∃

(∅
↪−→

1
,tru

e
))])

=
∃

(∅
↪−→

1
,

[tru
e
∧
¬
∨
{∃

(
1
↪−→

1
,tru

e
),∃

(
1
↪−→

1
2
,tru

e
)}

])
=
∃

(∅
↪−→

1
,

fa
lse

)

∃
(∅
↪−→

1
,

[tru
e
∧
sh
ift(∅

↪−→
1
,¬
∃

(∅
↪−→

1
2
,tru

e
))])

=
∃

(∅
↪−→

1
,

[tru
e
∧
¬
∨
{∃

(
1
↪−→

1
2

3
,tru

e
),∃

(
1
↪−→

1
2
,tru

e
)}

])
=
∃

(∅
↪−→

1
,

∧
{∨
{¬
∃

(
1
↪−→

1
2

3
,tru

e
)}
,∨
{¬
∃

(
1
↪−→

1
2
,tru

e
)}}

)

∧
∨
{∃

(
1
↪−→

1
2

3
,tru

e
),∃

(
1
↪−→

1
2
,tru

e
)}

tru
e

T
1

∃
(

1
↪−→

1
2
,tru

e
)
∃
(

1
↪−→

1
2

3
,tru

e
)

fa
lse

tru
e

T
2

fa
lse

∧
{∨
{¬
∃

(
1
↪−→

1
2

3
,tru

e
)}
,∨
{¬
∃

(
1
↪−→

1
2
,tru

e
)}}

tru
e

T
3

¬
∃

(
1
↪−→

1
2

3
,tru

e
)

¬
∃

(
1
↪−→

1
2
,tru

e
)

tru
e

tru
e

T
4

tru
e

tru
e

T
5

Figure
13:

N
ested

tableau
(consisting

of
tableaux

T
0 ,...,

T
5)

for
the

graph
property

p
1
3.In

the
m

iddle
branch

of
T
0

w
e

obtain
fa

lse
because

∃
(

1
↪−→

1
,tru

e
)

is
reduced

by
[·]to

tru
e

by
rem

ovalof
the

isom
orphism

.W
e

extractfrom
the

nested
branches

ending
in
T
4 ,
T
5 ,and

T
3

the
sym

bolic
m

odels
s
1
=
〈

1
2
,tru

e〉,
s
2
=
〈

1
2

3
,tru

e〉,
and

s
3
=
〈

1
,¬∃

(
2
,tru

e
)∧
¬∃

(
2

3
,tru

e
)〉,according

to
D

ef.29.H
ere

s
2

is
a

refinem
entof

s
1 ,according

to
D

ef.25,and,hence,w
ould

be
rem

oved
by

com
paction

as
explained

in
subsection

7.4.Since
s
1

and
s
3

coverdisjointsets
ofgraphs

already,disam
biguation

(as
explained

in
subsection

7.5)does
notsplitthem

up
further.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 17

– nesting rule: If NT is a nested tableau for cwith index set
I ′, 〈Tn, k, ck〉 is in NT for index n, the literal ` = ∃(mn :
An ↪−→ Aj , cn) is a leaf of Tn, ` is not the condition in any
other triple of NT , Tj is a tableau for cn, and j > n is
some index not in I ′, then assign the triple 〈Tj , n, `〉 to
NT to index j, ` is called opener of Tj , and Aj is called
context of Tj .

A nested branch NB of the nested tableau NT is a max-
imal sequence of branches Bi1 , . . . , Bik , Bik+1

, . . . of the
tableaux Ti1 , . . . , Tik , Tik+1

, . . . in NT starting with a branch
Bi1 in the initial tableau Ti1 of NT , such that if Bik and
Bik+1

are consecutive branches in the sequence then the leaf
of Bik is the opener of Tik+1

. NB is closed if it contains a
closed branch; otherwise, it is open. NT is closed if all its
nested branches are closed. Finally, NT is semi-saturated if
each tableau in NT is semi-saturated.

The definitions for the construction of the (nested) tableaux
above correspond closely to the ones in [46] as expected be-
cause they operate on the categorical level. This also implies
that only the operations shift and [·] occurring in the def-
initions above require additional attention (see Lem. 1 and
Lem. 4).

In addition to semi-saturation we require the notion of
a saturated nested tableaux, which requires (informally) that
all tableaux of the given nested tableau are semi-saturated and
that hooks are selected in a fair way not postponing indefi-
nitely the influence of a positive literal for detecting inconsis-
tencies leading to closed nested branches.

It has been shown in [27] that the tableau based reason-
ing method using nested tableaux for conditions c is sound
and refutationally complete. In particular, soundness means
that if we are able to construct a nested tableau where all
its branches are closed then the original condition c is unsat-
isfiable. Refutational completeness means that if a saturated
nested tableau includes an open branch, then the original con-
dition is satisfiable. In fact, each open finite or infinite branch
in such a nested tableau defines a finite or infinite model
of the property, respectively. Incompleteness can be caused
in tableaux for FOL by unfair selection of formulas (confer
[22, page 117, Figure 4] for an example where the unsatis-
fiable condition Q ∧ ¬Q is treated unfairly by never being
selected). In our case the set of conditions from which a hook
is to be selected in a fair way changes from one tableau to the
next because conditions that are not selected are lifted into
the hook resulting (possibly) in multiple different conditions.
These conditions are called the successors (cf. [27]) of the
conditions that are selected and lifted. To ensure refutational
completeness we ensure that the impact of a condition affects
the nested branch eventually by not postponing the selection
of one these successors as a hook indefinitely. Confer to [27,
p. 29] for the discussion in the original paper.

However, recall again that the usage of attributes and at-
tribute constraints in the graphs contained in the conditions
leads to situations where the employed SMT solvers can not
decide satisfiability. This has an impact on the construction of
tableaux because the operation [·], as explained before, em-

ploys SMT solvers to check satisfiability and it is applied in
the lift rule in Def. 20.

7 Symbolic Model Generation

In this section we present our symbolic model generation
algorithm A. We first formalize the requirements from the
introduction for the generated set of symbolic models, then
present our algorithm, and subsequently verify that it indeed
adheres to these formalized requirements. In particular, we
want our algorithm to extract symbolic models from all open
finite branches in a saturated nested tableau constructed for a
graph property p.

Since there are infinite saturated nested tableaux, such as
the one that would be constructed for the graph property p10e

given in Figure 10e, we have an incomplete procedure in the
sense that the gradual construction of a nested tableau for a
graph property p may not terminate. However, due to the un-
decidability of FOL on graphs, no alternative sound and com-
plete algorithm could also accomplish termination. In order
to be able to find a complete set of symbolic models without
knowing beforehand if the construction of a saturated nested
tableau terminates, we introduce the key-notions of k-semi-
saturation and k-termination to reason about nested tableaux
up to depth k, which are in some sense a prefix of a saturated
nested tableau. Note, the verification of our algorithm, in par-
ticular for completeness, is accordingly based on induction
on k. Informally, this means that by enlarging the depth k dur-
ing the construction of a saturated nested tableau, we eventu-
ally find all finite open branches and thus finite models. This
procedure will at the same time guarantee that we will be
able to extract symbolic models from finite open branches
even for the case of an infinite saturated nested tableau. For
example, we will be able to extract the graph with a sin-
gle vertex from a finite open branch of the infinite saturated
nested tableau for property p10e1 ∨ p10e.

7.1 Sets of symbolic models

The symbolic model generation algorithm A should gener-
ate for each graph property p a set of symbolic models S
satisfying all requirements described in the introduction (i.e.,
soundness, completeness, minimal representability, compact-
ness, and nonambiguity). A symbolic model in its most gen-
eral form is a graph condition over a graph C, where C is
available as an explicit component. A symbolic model then
represents a possibly empty set of graphs (as defined subse-
quently in Def. 24).

Definition 23 (Symbolic Model, Remainder). If c is a con-
dition over C according to Def. 15, then 〈C, c〉 is a symbolic
model. The condition c is called remainder of the symbolic
model.

We define the graphs that are covered by a given symbolic
model as follows.

18 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

Definition 24 (Graphs Covered by a Symbolic Model). If
〈C, c〉 is a symbolic model, then covered(〈C, c〉) is equal to
J∃(iC , c)K, i.e., the models of ∃(iC , c). For a set S of sym-
bolic models covered(S) =

⋃
{covered(s) | s ∈ S}.

Also note, each graph G that is covered by a given sym-
bolic model 〈C, c〉 subsumes the graph C by means of some
monomorphism as stated in the following lemma.

Lemma 7 (Existence of the Covering Monomorphism). If
〈C, c〉 is a symbolic model and G ∈ covered(〈C, c〉), then
there is some monomorphism m : C ↪−→ G.

For later use we also define when one symbolic model is en-
tirely subsumed by another w.r.t. the covered graphs.

Definition 25 (Refinement of Symbolic Model). Given two
symbolic models 〈C1, c1〉 and 〈C2, c2〉 s.t. J∃(iC2

, c2)K ⊆
J∃(iC1 , c1)K, then 〈C2, c2〉 is a refinement of 〈C1, c1〉, writ-
ten 〈C2, c2〉 ≤ 〈C1, c1〉. The set of all such symbolic models
〈C2, c2〉 is denoted by refined(〈C1, c1〉).

Based on these definitions, we formalize the first five re-
quirements (that is, except for explorability) from section 1
to be satisfied by the sets of symbolic models returned by al-
gorithm A.

Definition 26 (Soundness, Completeness, Minimal Repre-
sentability, Compactness, and Nonambiguity). Let S be a
set of symbolic models and let p be a graph property.

– S is sound w.r.t. p if
covered(S) ⊆ JpK,

– S is complete w.r.t. p if
covered(S) ⊇ JpK,

– S is minimally representable w.r.t. p if
for each 〈C, c〉 ∈ S: C |= p and

for each G ∈ covered(〈C, c〉)
there is a mono m : C ↪−→ G,

– S is compact if
for each 〈C, c〉 ∈ S:

covered(S) 6= covered(S − {〈C, c〉}), and
– S is nonambiguous if

for all distinct 〈C1, c1〉, 〈C2, c2〉 ∈ S:
covered(〈C1, c1〉) ∩ covered(〈C2, c2〉) = ∅.

See Table 1 for distinguishing examples for compactness and
nonambiguity when considering, for simplicity, graph part
and attribute constraints in isolation. In subsection 7.4 and
subsection 7.5 how both properties can be enforced, respec-
tively. Subsequently we discuss the generation of sets of sym-
bolic models by algorithm A.

7.2 Symbolic model generation algorithm A

We briefly describe the three main steps of the algorithm A,
which generates for a graph property p a set of symbolic mod-
els A(p) (see Figure 14 for a visualization). The algorithm
consists of three steps: the generation of symbolic models and
the (optional) compaction and disambiguation of symbolic

Symbolic model Edge-free graphs covered by si

s0 = 〈 , true〉 , , , . . .
s1 = 〈 , true〉 , , . . .
s2 = 〈 ,∧{¬∃(, true)}〉 ,
s3 = 〈 ,∧{¬∃(, true)}〉

Set of symbolic models Properties of Si
S1 = {s0, s1} not compact, ambiguous
S2 = {s0, s2} compact, ambiguous
S3 = {s0, s3} compact, nonambiguous

(a) In the upper part of the table four symbolic models are given
where we assume that the attribute constraint sets of the graphs are
empty. For a better understanding we included some of the graphs
without edges covered by the symbolic models. In the lower part of
the table three sets of symbolic models are given with varying prop-
erties w.r.t. compactness and nonambiguity. S1 and S2 are ambigu-
ous because both of their symbolic models cover the graph
and , respectively. S3 is nonambiguous because s3 forbids two
vertices while s0 requires two vertices. S1 is not compact because
each graph covered by s1 contains two vertices as required by s0. S2
is compact because, firstly, s0 covers while s2 does not and,
secondly, s2 covers while s1 does not. S3 is compact because,
firstly, s0 covers while s3 does not and, secondly, s3 covers

while s0 does not.

Symbolic model Constraint set Φi of Ci

s0 = 〈C1,∧∅〉 {ge(x, 2)}
s1 = 〈C2,∧∅〉 {ge(x, 3)}
s2 = 〈C3,∧∅〉 {le(x, 2)}
s3 = 〈C4,∧∅〉 {lt(x, 2)}

Set of symbolic models Properties of Si
S1 = {s0, s1} not compact, ambiguous
S2 = {s0, s2} compact, ambiguous
S3 = {s0, s3} compact, nonambiguous

(b) In the upper part of the table four symbolic models are given
where we assume that the graphsCi share a common graph part con-
taining an attribute-variable x but differ in their attribute constraint
sets Φi. In the lower part of the table three sets of symbolic models
are given with varying properties w.r.t. compactness and nonambi-
guity. S1 and S2 are ambiguous because both of their symbolic mod-
els allow x to be 3 and 2, respectively. S3 is nonambiguous because
s3 forbids x to be 2 or greater while s0 requires x to be at least 2. S1
is not compact because each x satisfying Φ1 is at least 2 as required
by s0. S2 is compact because, firstly, s0 allows x to be 3 while s2
does not and, secondly, s2 allows x to be 1 while s1 does not. S3 is
compact because, firstly, s0 allows x to be 3 while s3 does not and,
secondly, s3 allows x to be 1 while s0 does not.

Table 1: Two examples demonstrating compactness and non-
ambiguity of sets of symbolic models. The first example on
the top considers symbolic models with different graphs with
empty sets of attribute constraints and the second example on
the bottom considers symbolic models with identical graph
parts but differing attribute constraints. However, both exam-
ples are quite similar because the integer values occurring in
the second example correspond to the number of vertices in
the first example.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 19

models, which are discussed in detail in subsection 7.3, sub-
section 7.4, and subsection 7.5. Afterwards, in subsection 7.6,
we discuss the explorability of the obtained set of symbolic
models.

Step 1 (Generation of symbolic models in subsection 7.3).
We apply the tableau and nested tableau rules from section 4
to iteratively construct a nested tableau for the given graph
property p. Then, symbolic models are extracted from cer-
tain nested branches of this nested tableau that can not be
extended. Since the construction of the nested tableau may
not terminate due to infinite nested branches we construct the
nested tableau in breadth-first manner and extract the sym-
bolic models whenever possible. Moreover, to eliminate a
source of nontermination we select the hook in each branch
in a fair way not postponing the successors of a positive lit-
eral that was not chosen as a hook yet indefinitely [27, p. 29]
ensuring at the same time refutational completeness of our al-
gorithm. This step ensures that the resulting set of symbolic
models is sound, complete (provided termination), and mini-
mally representable. The symbolic models extracted from the
intermediately constructed nested tableau NT for growing k
is denoted SNT ,k.

Step 2 (Compaction of sets of symbolic models in subsec-
tion 7.4). We remove all symbolic models from SNT ,k re-
sulting in Scomp that do not contribute to the set of graphs
jointly covered thereby enforcing compactness. This second
step of our algorithm A preserves soundness, completeness,
and minimal representability, and additionally ensures com-
pactness.

Step 3 (Disambiguation of sets of symbolic models in sub-
section 7.5). We split the set Scomp of symbolic models ob-
tained before resulting in Sres such that the graphs that are
covered by the symbolic models from Scomp do not overlap
pairwise, thereby enforcing nonambiguity. This third step of
our algorithm A preserves soundness, completeness, mini-
mal representability, and compactness and additionally en-
sures nonambiguity.

7.3 Generation of SNT ,k

By applying a breadth-first construction we construct nested
tableaux that are for increasing k, both, k-semi-saturated (i.e.,
all branches occurring up to index k in all nested branches are
semi-saturated), and k-terminated (i.e., no nested tableau rule
can be applied to a leaf of a branch occurring up to index k in
some nested branch).

Definition 27 (k-Semi-saturated Nested Branches, k-Ter-
minated Nested Branches). Given a nested tableau NT for
condition c over C. If NB is a nested branch of length k of
NT and each branch B contained at index i ≤ k in NB is
semi-saturated, then NB is k-semi-saturated. If every nested
branch of NT of length n is min(n, k)-semi-saturated, then
NT is k-semi-saturated. If NB is a nested branch of NT of
length n and the nesting rule can not be applied to the leaf
of any branch B at index i ≤ min(n, k) in NB , then NB
is k-terminated. If every nested branch of NT of length n

is min(n, k)-terminated, then NT is k-terminated. If NB is
a nested branch of NT that is k-terminated for each k, then
NB is terminated. If NT is k-terminated for each k, then NT
is terminated.

We define the k′-remainder of a branch, which is a refinement
of the condition of that tableau, that is used by the subsequent
definition of the set of extracted symbolic models.

Definition 28 (k′-Remainder of a Branch). Given a tableau
T for a condition c over C, a monomorphism q : C ↪−→ G, a
branch B of T , and a prefix P of B of length k′ > 0. If R
contains (a) each condition contained in P unless it has been
used in P by the lift rule (being ∃(m, c′) or ` in the lift rule in
Def. 20) and (b) the clauses of c not used by the extension rule
in P (being ∨(c1, . . . , cn) in the extension rule in Def. 20),
then 〈C,∧R〉 is the k′-remainder of B.

The set of symbolic models extracted from a nested branch
NB is a set of certain k′-remainders of branches of NB . In
the example given in Figure 13 we extracted three symbolic
models from the four nested branches of the nested tableau.

Definition 29 (Symbolic Model Extracted from a Nested
Branch). If NT is a nested tableau for a condition c over C,
NB is a k-terminated and k-semi-saturated nested branch of
NT of length n ≤ k, B is the branch at index n of length
k′ in NB , B is open, B contains no positive literals, then
the k′-remainder of B is the symbolic model extracted from
NB . The set of all such extracted symbolic models from k-
terminated and k-semi-saturated nested branches of NT is
denoted SNT ,k

Based on the previously introduced definitions of soundness,
completeness, and minimal representability of sets of sym-
bolic models w.r.t. graph properties we are now ready to ver-
ify the corresponding results on the algorithm A.

Theorem 2 (Soundness). If NT is a nested tableau for a
graph property p, then SNT ,k is sound w.r.t. p.

Theorem 3 (Completeness). If NT is a finite terminated
nested tableau for a graph property p, k is the maximal length
of a nested branch in NT , then SNT ,k is complete w.r.t. p.

The algorithm A does not always terminate as can be seen
from the example in Figure 10e. However, the symbolic mod-
els extracted at any point during the breadth-first construction
of the (possibly infinite) nested tableau NT are a gradually
extended underapproximation of the set of symbolic mod-
els 〈C, c〉 with finite graphs C that can extracted from NT .
Moreover, during such a breadth-first construction the set of
openers ∃(m : G1 ↪−→ G2, c) of the branches that end nonter-
minated nested branches constitutes an overapproximation.
This overapproximation encodes a lower bound on missing
symbolic models in the sense that each symbolic model that
may be discovered by further tableau construction (and each
graph satisfying the graph property that is not covered by
some symbolic model extracted already) contains some G2

as a subgraph.

20 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

AUTO-
GRAPH

Generation
of Set of Symbolic Models

subsection 7.3

AUTO-
GRAPH

AUTO-
GRAPH

...

AUTO-
GRAPH

Lem. 8 ∪

p1

p2

pn

S1

S2

Sn

Compaction
of Set of Symbolic Models

subsection 7.4
(optional)

AUTO-
GRAPH

AUTO-
GRAPH

...

AUTO-
GRAPH

Lem. 10 ∪

p̂1

p̂2

p̂2n−1

Ŝ1

Ŝ2

Ŝ2n−1

Disambiguation
of Set of Symbolic Models

subsection 7.5
(optional)

p SNT ,k Scomp Sres

Scomp

Figure 14: The symbolic model generation algorithmA with optional components for compaction and disambiguation. In each
component the tool AUTOGRAPH is applied to 1, n, and 2n − 1 graph properties, respectively. Symbolic model generation
obtains the set SNT ,k of symbolic models from a nested tableau NT . Then, compaction (using Lem. 8) constructs n graph
properties for the n symbolic models in SNT ,k and removes symbolic models not contributing to the covered graphs resulting
in Scomp. Finally, disambiguation (using Lem. 10) constructs 2n − 1 graph properties for the n symbolic models in Scomp in
each of its iterations, which disambiguate Scomp until no further disambiguation is necessary resulting in Sres.

Furthermore, the extracted symbolic models 〈C, c〉 are
most-explicit in the sense of minimal representability because
the conditions c contained in them define additional nega-
tive conditions that are satisfied by C already. Of course, the
graph C may still have a set of attribute constraints that is
satisfiable by various variable substitutions and, therefore,
SMT solvers such as Z3 may be employed to derive ex-
amples of these variable substitutions resulting in grounded
graphs (see Def. 13) to obtain most-explicit graphs that have
a unique meaning w.r.t. the attributes as well.

Theorem 4 (Minimal Representability). If NT is a nested
tableau for a graph property p, then SNT ,k is minimally rep-
resentable w.r.t. p.

In the next subsection we explain how to modify sets of
symbolic models extracted so far to additionally enforce com-
pactness and nonambiguity.

7.4 Compaction of Sets of Symbolic Models

The finite set of symbolic models SNT ,k as obtained in the
previous section is modified in this second step as follows
to enforce compactness. This second step is intended to sim-
plify SNT ,k and, hence, it may be aborted at any point, which
may be necessary ocasionally because compaction (and dis-
ambiguation as well) are resource intensive and possibly non-
terminating.

The following lemma supports the compaction of a set
of symbolic models S into some restriction S ′ of it by test-

ing an emptiness condition. This emptiness condition can be
expressed by refutability of a graph property.

Lemma 8 (Compaction). A subset S ′ of the set S covers the
same graphs as S iff covered(S − S ′) − covered(S ′)= ∅ iff
∨{∃(iC , c) | 〈C, c〉 ∈ S −S ′}∧¬∨{∃(iC , c) | 〈C, c〉 ∈ S ′}
is refutable.

We apply this lemma by testing for each symbolic model s in
SNT ,k whether it can be removed from SNT ,k without alter-
ing the set of covered graphs. This iteration over the symbolic
models may not terminate because the tableau procedure is
only refutationally complete, i.e., AUTOGRAPH is only guar-
anteed to terminate on unsatisfiable graph properties. The re-
sulting set Scomp of symbolic models is compact as desired.

Theorem 5 (Compactness). If NT is a nested tableau for a
graph property p, then Scomp ⊆ SNT ,k is compact.

Note, in [46] a weaker form of compactness has been en-
forced, which may be called binary compactness because it
considers only two symbolic models at once.

As a special case we consider sets of symbolic models
where the conditions contained in the symbolic models are
equivalent to true . While such sets of symbolic models (with
at least two elements) are ambiguous (e.g., the union of both
minimal models proves the ambiguity) we can enforce com-
pactness as follows.

Lemma 9 (Compactness for Symbolic Models with Trivial
Remainder). The set of symbolic models S = {〈Ci,∧∅〉 |

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 21

i ∈ I} is compact iff for all two distinct symbolic models
〈C1,∧∅〉 and 〈C2,∧∅〉 contained in S there is no monomor-
phism m : C1 ↪−→ C2.

As expected compactification using Lem. 9 is usually much
faster than compaction using Lem. 8. However, even in this
simple case we are required to find monomorphisms, which
amounts to the NP-complete subgraph isomorphism prob-
lem. Nonetheless, since the handled graphs are typed and
small (by construction we generate minimal models by op-
erating only on the graphs from the conditions rather than
operating on instance graphs) the required time for finding
the monomorphisms is usually not problematic.

Usually the symbolic model generation procedure does
not generate symbolic models with trivial remainder as re-
quired by Lem. 9. However, this lemma can be applied any-
way in application scenarios where only the minimal mod-
els and not the remainders are of interest. Hence, replacing
the remainders of the symbolic models obtained from AU-
TOGRAPH by ∧∅ implements, from this perspective, the se-
lection of these minimal models and the above lemma then
allows their compaction more efficiently than with Lem. 8
(before the replacement). The resulting compact set of sym-
bolic models is then to be understood only as an enumeration
of minimal models of the graph property from which the set
SNT ,k has been generated.

7.5 Disambiguation of Sets of Symbolic Models

Subsequently we enforce nonambiguity of the ultimately ob-
tained set Sres of symbolic models.

As a first step, we claim that a set of symbolic models is
compact whenever it is nonambiguous showing that enforc-
ing compactness can be skipped when nonambiguity is to be
enforced (see Table 1 again for examples on the relationship
between nonambiguity and compactness).

Corollary 1 (Nonambiguity implies Compactness). If NT
is a nested tableau for a graph property p and S ⊆ SNT ,k,
then S is compact it is nonambiguous.

The following lemma demonstates how a set of symbolic
models S is disambiguated by considering all combinations
of symbolic models in S. For each such combination, which
is given by a paritioning (S−S ′,S ′) for S ′ (S, we compute
the symbolic models describing the graphs covered by S−S ′
and not covered by S ′. The difference in this lemma can be
expressed similarly as in Lem. 8.

Lemma 10 (Disambiguation). Let S be some given set of
symbolic models. Then, the set covered(S) is equal to the set⋃
{
⋂
{covered(s) | s ∈ S − S ′} − covered(S ′) | S ′ (S}.

However, for computational complexity we can observe that
the number of cases, given by the subsets S ′, is exponen-
tial in the size of S. Furthermore, for each paritioning we
obtain a condition that is a conjunctions of positive and neg-
ative literals and, hence, we apply AUTOGRAPH to each of
these conditions to obtain for each set S ′ a set of equivalent

symbolic models. While the set of symbolic models gener-
ated by one of these graph properties may be ambiguous, the
sets generated for the different sets of symbolic models S ′ are
nonambiguous.

For disambiguation we recursively apply Lem. 10 to split
generated symbolic models enforcing nonambiguity of the set
Sres obtained upon termination.

As for the the generation of symbolic models explained
in the previous subsection and the compaction procedure ex-
plained above we may also abort the disambiguation pro-
cedure prematurely (e.g., once the designated resources are
used up) still obtaining a meaningful result.

Currently we are unable to prevent noncompactness or
ambiguity of the set of symbolic models generated by algo-
rithmA on the fly (for example, by preventing some kinds of
symmetries) during the computation without a similar impact
on runtime.

7.6 Exploration of Sets of Symbolic Models

We believe that the exploration of further graphs satisfying
a given property p based on the symbolic models is often
desireable. In fact, covered(Sres) can be explored accord-
ing to Def. 24 by selecting 〈C, c〉 ∈ Sres, by generating a
mono m : C ↪−→ G to a new finite candidate graph G, and
by deciding m |= c. Then, an entire automatic exploration
can proceed by selecting the symbolic models 〈C, c〉 ∈ Sres
in a round-robin manner using an enumeration of the monos
leaving C in each case. However, the exploration may also be
guided interactively restricting the considered symbolic mod-
els and monos.

For example, consider Figure 13 where a set of two sym-
bolic models is obtained by application of algorithm A to
the graph property p13. In an interactive exploration we may
want to decide whether the graph also satisfies p13.
In fact, since there is a monomorphism m : ↪−→
from the minimal model of s1 to the graph to be tested that
satisfies the remainder of s1 we derive |= p13. How-
ever, the choice of the symbolic model is also in this case
relevant because any morphism m : ↪−→ from the
minimal model of s3 to the graph to be tested does not sat-
isfy the remainder of s3 thereby not allowing the derivation
of |= p13.

An entire enumeration is often not feasible, since many
properties (e.g., true) have infinitely many models. However,
we believe that it may prove useful in many application sce-
narios to obtain a finitely representable guidance to construct
every possible finite model if needed. The set of symbolic
models represents such a guidance indeed.

As mentioned above we will take advantage of explorabil-
ity more explicitly in the future. In particular, it could be
adapted to generate large sets of graphs or large, realistic
graphs, for example, in the context of performance testing.

Moreover, in the context of coverage-based testing, the
minimal models that we derive directly from our symbolic
models are not necessarily already realistic enough to the
user. This is true in particular when using attribute constraints

22 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

as in the class diagram in Figure 2 because SMT solvers such
as Z3 are not designed to return satisfying models for at-
tribute constraints that take the intended meaning of the vari-
ables such as first name or spoken languages into account.
The user might want to enlarge the models (possibly inter-
actively) and determine whether this enlargement is consis-
tent with the specification. However, we believe that the min-
imal models of a condition, which we are able to generate,
are most likely already reasonable test input sets.

8 Implementation

In this section we introduce AUTOGRAPH by focussing in
subsection 8.1 on the external characteristics and limitations
of AUTOGRAPH (deferring a discussion on the features un-
til section 9 where we apply AUTOGRAPH to examples and
measure the performance) and in subsection 8.2 on the imple-
mentation details of the tableau construction procedure from
algorithm A presented in section 6.

8.1 Functional Properties of AUTOGRAPH

We implemented the algorithmA platform-independently us-
ing JAVA as our new tool AUTOGRAPH. The inputs and out-
puts of AUTOGRAPH (i.e., attributed graph properties, the
contained attributed graph morphisms with their attributed
graphs, the used attributed constraints with their algebraic
specifications, the used type graphs, and the generated sets
of symbolic models) are XML files satisfying a custom XSD
schema [52]. We support the different use cases from Fig-
ure 1 as follows: for an invalid query we return an empty set
of symbolic models, for a valid query we return either only
the first symbolic model generated or generate (if possible)
the entire set of symbolic models (optionally executing com-
paction or disambiguation).

For the attributes and attribute constraints AUTOGRAPH
uses Z3 via its JAVA bindings and has built-in support for
the specification in Def. 30 to allow for attributes and at-
tribute constraints over booleans, integers, and strings. Us-
ing custom algebraic specifications implementing complex
functional programs is problematic for the automated reason-
ing of AUTOGRAPH in general because Z3 will fail to de-
cide satisfiability when attribute constraints are too complex.
Many SMT solvers such as Z3 have, besides deciding sat-
isfiability, also support for generating some (or a sequence)
of models for satisfied properties. While AUTOGRAPH does
not compute certain grounded graphs, using this feature this
may be of interest in various application domains. Finally,
AUTOGRAPH uses Z3 to simplify attribute constraints and,
hence, to keep them small. This is helpful because attribute
constraints are growing in the algorithm due to the operation
shift where, intuitively, the union of two sets of attribute con-
straints is computed (actually, the variables occurring in the
sets of attribute constraints of the graphsC1 andC2 in Def. 17
are renamed according to m′1 and m′2 before computing the
union of the two resulting sets).

When converting a graph condition into CNF in Step 3
(see Def. 19) we need to check whether the set of attribute
constraints of the contained graphs are satisfiable. However,
the SMT solver may time-out without returning a definite an-
swer to such a satisfiability problem (as opposed to the oracle
assumed in section 6 and section 7) depending on the attribute
constraints. In this case we assume satisfiability by default,
which may result in the generation of symbolic models with-
out grounded graphs (a scenario that does not occur in sec-
tion 7 due to the assumption of an oracle) and, in addition, it
may be the reason for a nonterminating computation of AU-
TOGRAPH in cases where the known unsatisfiability would
have prevented further execution by removal of the consid-
ered literal (see Step 3 in Def. 19). Alternatively, we could
have assumed that sets of attribute constraints are unsatisfi-
able when the SMT solvers does not deliver a definite result.
The premature abortion of the tableau based symbolic model
generation procedure would imply that refutational complete-
ness is no longer satisfied as not all symbolic models are gen-
erated.

For the computational complexity of the symbolic model
generation algorithm we may notice that some elementary
constructions used (such as conversion to CNF using [·], ex-
istence and enumeration of monomorphisms of a given type,
and pair factorization as used in shift) have exponential worst
case execution time. However, as explained at the end of sec-
tion 5, the operation [·] has typically no noticable impact and
the problems of deciding existence and of enumeration of
monomorphisms of a given type as well as pair factorization
are applied during the execution of our algorithm, by design,
only on minimal models instead of arbitrary instance graphs.
Hence, we believe, also based on our tool-based evaluation in
section 9, that in many practical applications the runtime will
be acceptable.

For decreased overall execution times AUTOGRAPH sup-
ports the usage of multithreading for various of its build-
ing blocks: in particular for the three high-level operations
of tableau based symbolic model generation (which is con-
sidered in more detail below), compaction, and disambigua-
tion. For the symbolic model generation we consider all open
nested branches in parallel, and for compaction and disam-
biguation we check the satisfiability of the constructed graph
properties in parallel using AUTOGRAPH.

8.2 Implementation Details of AUTOGRAPH

For limiting the memory consumption during the symbolic
model generation, we discard the parts of the nested tableau
that are not required for subsequent computations as follows.
The implemented algorithm uses a queue (used to enforce the
breadth-first construction) of configurations where every con-
figuration represents the last branch of a nested branch of the
nested tableau currently constructed (the parts of the nested
tableau not given by these branches are thereby not repre-
sented in memory). The algorithm starts with a single initial
configuration, applies one construction rule (see Figure 15)

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 23

CONSTRUCTION-STEP

INPUT: (inp ,res ,neg ,q-pre ,q-post ,cm)

composed context morphism of type ∅ ↪−→ G to previous outer graph G

queue of positive literals in CG′ on post outer graph G′

queue of positive literals in CG on previous outer graph G

list of negative literals in CG on previous outer graph G

resulting positive literal of the from ∃(m : G ↪−→ G′, c) or ⊥
input condition from CG in CNF over previous outer graph G

OUTPUT: a set of elements of the shape of the input

RULE 1: REFUTE-FALSE

IF res = ∃(m,∧{∨{}})
THEN RETURN ∅

RULE 2: SELECT-HOOK-FROM-PRE-QUEUE

ELSEIF res = ⊥ AND q-pre = ` · `s
THEN RETURN {(inp, `,neg , `s, q-post , cm)}

RULE 3: NO-HOOK

ELSEIF res = ⊥ AND inp = ∧{}
THEN RETURN ∅

RULE 4: LIFT-NEGATIVE-LITERAL-INTO-BRANCHING-RESULT (requires Z3)
ELSEIF res = ∃(m, c) AND neg = ` · `s
THEN RETURN {(inp, ∃(m, [c ∧ shift(m, `)]), `s, q-pre, q-post , cm)}

RULE 5: LIFT-POSITIVE-LITERALS-FROM-PRE-QUEUE (requires Z3)
ELSEIF res = ∃(m, c) AND q-pre = ` · `s
THEN RETURN {(inp, res,neg , `s, q-post · ∃(m′, [c′]), cm) | shift(m, `) = ∨L ∧ ∃(m′, c′) ∈ L ∧ ¬iso(m′)}

∪{(inp, ∃(m, [c ∧ ∃(m′, c′)]),neg , `s, q-post , cm) | shift(m, `) = ∨L ∧ ∃(m′, c′) ∈ L ∧ iso(m′)}

RULE 6: CREATE-NESTED-TABLEAU

ELSEIF res = ∃(m, c) AND inp = ∧{}
THEN RETURN {(c,⊥,neg , q-post , λ,m ◦ cm)}

RULE 7: EXTEND-USING-FIRST-CLAUSE

ELSEIF inp = ∧S AND ∨ L ∈ S
THEN RETURN {(∧ (S − {∨L}), res,neg , q-pre · ∃(m, c), q-post , cm) | ∃(m, c) ∈ L}

∪{(∧ (S − {∨L}), res,neg · ¬∃(m, c), q-pre, q-post , cm) | ¬∃(m, c) ∈ L}

Figure 15: The construction-step that is implemented as a part of AUTOGRAPH and that is used iteratively by AUTOGRAPH to
generate symbolic models where ` is a literal, `s is a list of literals, and L is a set of literals. RULE 1 stops further generation
if the current result res is unsatisfiable by having a subcondition that is equivalent to false . RULE 2 ensures that hooks are
selected from the queue q-pre (if it is not empty) where fairness of hook selection is enforced by priorizing and ordering
the positive literals that are successors of positive literals not chosen as hooks before. RULE 3 if the queue q-pre can not
be used to select a hook and no clause remains, the nested branch is terminated and a symbolic model can be extracted by
taking 〈G,∧neg〉 where G is the codomain of cm . RULE 4 implements the lifting rule (see Def. 20) for negative literals taken
from neg . RULE 5 implements the lifting rule (see Def. 20) for positive literals taken from q-pre; if the morphism of the
resulting positive literal is an isomorphism, as forbidden for literals in CNF, we move an equivalent condition in CNF into the
current hook (also implementing the lift rule) instead of moving the literal to the queue q-post because the conversion of the
positive literal into CNF may not result in a conjunction of positive literals that could be added to the queue q-post . RULE 6
implements the nesting rule (see Def. 22). RULE 7 implements the extension rule (see Def. 20) constructing for each literal of
a certain clause a new configuration to represent the different nested branches.

24 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

inserting all results of that rule application to the queue, and
terminates once the queue of configurations is empty.

The configurations contain the information that is neces-
sary to continue the further construction of the nested tableau
(also ensuring fair selection of hooks) and to extract the sym-
bolic models whenever one is obtained.

The configurations are tuples of the form (inp, res,neg ,
q-pre, q-post , cm) where inp is a condition c overC in CNF
(the construction of the tableau starts with an initially pro-
vided condition in CNF from which clauses are removed one
after another resulting in the remaining input condition inp),
res is ⊥ when no hook has been selected or a positive lit-
eral ∃(m : C ↪−→ D, c′) into which the other literals from
the branch are lifted, neg is a list of negative literals over C
from clauses already handled (this list is emptied as soon as a
positive literal has been chosen for res), q-pre is a queue of
positive literals over C from which the first element is chosen
for the res component, q-post is a queue of positive literals:
once res is a chosen positive literal ∃(m : C ↪−→ D, c′) we
shift the elements from q-pre over m to obtain elements of
q-post , and cm is the composition of the morphisms from the
openers of the nested branch constructed so far and is used to
eventually obtain symbolic models (if they exist).

The implemented algorithm is started with the queue con-
taining, for a graph property p, the unique initial configura-
tion ([p],⊥, λ, λ, λ, id∅) where λ denotes the empty list.

The construction rules return for each single configura-
tions a finite set of such configurations and are checked in the
order given where only the first applicable rule is used. The
construction rules are explained for better readability directly
in Figure 15.

For soundness of the implemented algorithm based on the
construction rules, reconsider Def. 28 where the setR used in
the condition ∧R recovers the desired information similarly
to how it is captured in the configurations. The separation into
different elements in the configurations then allows for queue
handling and determinization.

9 Evaluation

In this section we analyze the four graph database queries,
which were formalized as graph properties in Figure 3, Fig-
ure 4, Figure 5, and Figure 6, by checking their validity and
by generating symbolic models for them by application of
AUTOGRAPH. See Figure 1 again for a visualization of the
general workflow. Note, the algorithmA implemented in AU-
TOGRAPH performs the refutability check, the satisfiability
check, and the model generation at once. Hence, the set of
symbolic models generated by AUTOGRAPH is sufficient (if
AUTOGRAPH terminates) to answer the three given questions
of whether a graph query is valid, invalid, and how graph
databases look like when the graph query can be matched.

As a first step of our evaluation we have applied AUTO-
GRAPH to the four graph properties and all binary combina-
tions of them measuring the number of symbolic models gen-

Graph Property Symbolic Model Generation

number 1 Thread 4 Threads

p3 3 7ms 5ms
p4 1 3ms 1ms
p5 2 165ms 90ms
p6 1 104ms 103ms

p3 ∧ p4 96 1089ms 789ms
p3 ∧ p5 136 9802ms 6596ms
p3 ∧ p6 68 7270ms 5231ms
p4 ∧ p5 294 17 365ms 13 439ms
p4 ∧ p6 147 24 769ms 14 652ms
p5 ∧ p6 378 97 043ms 50 290ms
p3v ∧ pwf 99 99ms 99ms

Table 2: Analysis results for the four graph database queries
formalized in Figure 3, Figure 4, Figure 5, and Figure 6. The
durations in the last two columns is the average over five runs.
The specification of the used machine is as follows 256GB
DDR4, 2× E5-2643 Xeon @ 3.4GHz× 6 cores× 2 threads.

erated as well as the duration of the generation where com-
paction and disambiguation have not been performed.

From the results presented in Table 2 we can draw the
conclusion that all four queries are valid queries, i.e., for each
of the four queries at least one graph database exists that
matches the query. Also, for the binary combinations we de-
rive that the queries do not exclude each other, that is, there
are for each case graph databases that simultaneously match
both queries. The four graph properties do not use a deep
nested structure, which results in a narrow nested tableau in
the beginning of the computation. This leads to the situations
that some threads have not available leaf to work on in the be-
ginning. Still, we can already observe a reasonable speed up
when using multiple threads for the given graph properties.

As a second step we can inspect the symbolic models gen-
erated. They are depicted in Figure 16 where their remainders
have been omitted for readability.

10 Conclusion and Outlook

We presented an automated reasoning approach for attributed
graph properties. It includes both a refutationally complete
tableau based reasoning method and a symbolic model gen-
eration procedure. The attributed graph properties are equiv-
alent to FOL on graphs for the graph part. Our algorithms
assume the existence of an oracle for solving attribute con-
straints in the properties. It allows for flexible adoption of
different available SMT solvers in the actual implementation.
Attribute reasoning is neatly separated from graph reasoning
by a dedicated logic for attributed graph properties separating
both parts.

Our refutation procedure and symbolic model generation
algorithm are highly integrated. Since the latter is designed
to compute a complete overview of all possible models, it

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 25

P : Person

id = arg1

Pres : Person

id = xres
firstName = arg2

: knows

P : Person

id = arg1

: Person Pres : Person

id = xres
firstName = arg2

: knows : knows

P : Person

id = arg1

: Person : Person Pres : Person

id = xres
firstName = arg2

: knows : knows : knows

(a) The three minimal models generated for graph property p3 from Figure 3.

: Person

id = arg1

Pres : Person

id = xres1

Mres : Message

id = xres2
creationDate = x

: knows : hasCreator

le(x, arg2)

(b) The unique minimal models generated for graph property p4 from Figure 4.

M : Message

creationDate = x1

Pres : Person : Person

id = arg3

X : Country

name = arg4

Y : Country

name = arg5
: knows: hasCreator

le(arg1, x1) lt(x1, add(arg1 , arg2))

: isLocatedIn

M : Message

creationDate = x1

Pres : Person : Person

id = arg3

X : Country

name = arg4

Y : Country

name = arg5
: knows: hasCreator

le(arg1, x1) lt(x1, add(arg1 , arg2))

: isLocatedIn

(c) The two minimal models generated for graph property p5 from Figure 5.

Tres : Tag

id = xres

: Post

creationDate = x1

P1 : Person : Person

id = arg1
: knows: hasTag : hasCreator

le(arg2 , x1) lt(x1, add(arg2 , arg3))

(d) The unique minimal model generated for graph property p6 from Figure 6.

Person
creationDate = p1
firstName = p2
lastName = p3
gender = p4
birthday = p5
email = p6
speaks = p7
browserUsed = p8
locationIP = p9

Forum
name = f1
title = f2
creationDate = f3

Post
creationDate = po1
browserUsed = po2
length = po3

City
name = z1

Country
name = z2

Continent
name = z3

hasModerator

hasMember
joinDate = x1

containerOf

isPartOf isPartOfisLocatedIn

hasCreator

isLocatedIn

(e) A minimal model generated by AUTOGRAPH when requiring at least one vertex of type Forum and the satisfaction of all multiplicity
constraints stated in the class diagram given in Figure 2. These multiplicity constraints have been formalized by graph properties along the
lines of Figure 10c and Figure 10d.

Figure 16: Minimal models generated by AUTOGRAPH for the graph properties from Figure 3, Figure 4, Figure 5, and Figure 6.

26 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

is at the same time able to refute a property if the overview
turns out to be empty. Our symbolic model generation algo-
rithm is innovative in the sense that it is designed to gener-
ate a finite set of symbolic models that is sound, complete
(upon termination), compact, nonambiguous, minimally rep-
resentable, and flexibly explorable. Moreover, the algorithm
is parallelizable because every employed thread can work on
one leaf of the nested tableau to be constructed. The approach
is implemented in our tool, called AUTOGRAPH.

As future work we will attempt to determine descriptions
of subsets of graph properties for which termination of AU-
TOGRAPH is guaranteed. Moreover, we aim at applying, eval-
uating, and optimizing our approach further w.r.t. other appli-
cation scenarios such as test generation for the graph database
domain [7], but also to other domains such as model-driven
engineering, where our approach can be used, e.g., to gener-
ate test models for model transformations [5,19,30]. We also
aim at generalizing our approach to more expressive graph
properties able to encode, e.g., path-related properties [41,
40,29]. We moreover aim at supporting graph properties to
state temporal properties on graphs where nodes and edges
are equipped with attributes specifying their lifespan. Finally,
the work on exploration of extracted symbolic models as well
as reducing their number during tableau construction is an
ongoing task. In particular, we are working on algorithms for
the generation of a subset of the complete set of symbolic
models that is suitably diverse. These extensions are valuable
when the complete set of symbolic models is too large or its
generation requires too many resources.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foun-
dations of Databases: The Logical Level. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1995.

2. Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan,
Juan L. Reutter, and Domagoj Vrgoc. Foundations of modern
graph query languages. CoRR, abs/1610.06264, 2016.

3. Renzo Angles and Claudio Gutierrez. Survey of Graph
Database Models. ACM Comput. Surv., 40(1):1:1–1:39, Febru-
ary 2008.

4. Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof
Czarnecki, and Andrzej Wasowski. Clafer: unifying class and
feature modeling. Software and System Modeling, 15(3):811–
845, 2016.

5. Benoit Baudry. Testing model transformations: A case for test
generation from input domain models. In Model Driven Engi-
neering for Distributed Real-time Embedded Systems. Hermes,
2009.

6. Thomas Beyhl, Dominique Blouin, Holger Giese, and Leen
Lambers. On the operationalization of graph queries with gen-
eralized discrimination networks. In Echahed and Minas [12],
pages 170–186.

7. Raquel Blanco and Javier Tuya. A test model for graph database
applications: an mda-based approach. In Tanja E. J. Vos, Sigrid
Eldh, and Wishnu Prasetya, editors, Proceedings of the 6th In-
ternational Workshop on Automating Test Case Design, Selec-

tion and Evaluation, A-TEST 2015, Bergamo, Italy, August 30-
31, 2015, pages 8–15. ACM, 2015.

8. E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13(6):377–387, June 1970.

9. Bruno Courcelle. The expression of graph properties and graph
transformations in monadic second-order logic. In Rozenberg
[44], pages 313–400.

10. Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Uml-
tographdb: Mapping conceptual schemas to graph databases.
In Isabelle Comyn-Wattiau, Katsumi Tanaka, Il-Yeol Song,
Shuichiro Yamamoto, and Motoshi Saeki, editors, Conceptual
Modeling - 35th International Conference, volume 9974 of Lec-
ture Notes in Computer Science, pages 430–444, 2016.

11. Frederik Deckwerth. Static Verification Techniques for At-
tributed Graph Transformations. PhD thesis, Darmstadt Uni-
versity of Technology, Germany, 2017.

12. Rachid Echahed and Mark Minas, editors. Graph Transforma-
tion - 9th International Conference, ICGT 2016, in Memory of
Hartmut Ehrig, Held as Part of STAF 2016, Vienna, Austria,
July 5-6, 2016, Proceedings, volume 9761 of Lecture Notes in
Computer Science. Springer, 2016.

13. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of algebraic graph transformation.
Springer-Verlag, 2006.

14. Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers,
and Fernando Orejas.M-adhesive transformation systems with
nested application conditions. part 1: parallelism, concurrency
and amalgamation. Mathematical Structures in Computer Sci-
ence, 24(4), 2014.

15. Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and
Gabriele Taentzer, editors. Graph Transformations, 4th Inter-
national Conference, ICGT 2008, Leicester, United Kingdom,
September 7-13, 2008. Proceedings, volume 5214 of Lecture
Notes in Computer Science. Springer, 2008.

16. Hartmut Ehrig and Bernd Mahr. Fundamentals of Alge-
braic Specification 1: Equations und Initial Semantics, vol-
ume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer, 1985.

17. Holger Giese and Barbara König, editors. Graph Transforma-
tion - 7th International Conference, ICGT 2014, Held as Part of
STAF 2014, York, UK, July 22-24, 2014. Proceedings, volume
8571 of Lecture Notes in Computer Science. Springer, 2014.

18. Martin Gogolla and Frank Hilken. Model validation and ver-
ification options in a contemporary UML and OCL analysis
tool. In Andreas Oberweis and Ralf H. Reussner, editors, Mod-
ellierung 2016, 2.-4. März 2016, Karlsruhe, volume 254 of LNI,
pages 205–220. GI, 2016.

19. Carlos A. González and Jordi Cabot. Test data generation for
model transformations combining partition and constraint anal-
ysis. In Davide Di Ruscio and Dániel Varró, editors, Theory
and Practice of Model Transformations - 7th International Con-
ference, ICMT 2014, Held as Part of STAF 2014, York, UK,
July 21-22, 2014. Proceedings, volume 8568 of Lecture Notes
in Computer Science, pages 25–41. Springer, 2014.

20. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph
grammars with negative application conditions. Fundam. In-
form., 26(3/4):287–313, 1996.

21. Annegret Habel and Karl-Heinz Pennemann. Correctness of
high-level transformation systems relative to nested conditions.
Mathematical Structures in Computer Science, 19(2):245–296,
2009.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 27

22. Reiner Hähnle. Tableaux and related methods. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Auto-
mated Reasoning (in 2 volumes), pages 100–178. Elsevier and
MIT Press, 2001.

23. Reiko Heckel and Annika Wagner. Ensuring consistency of
conditional graph rewriting - a constructive approach. Electr.
Notes Theor. Comput. Sci., 2:118–126, 1995.

24. Ethan K. Jackson, Tihamer Levendovszky, and Daniel Balasub-
ramanian. Reasoning about metamodeling with formal spec-
ifications and automatic proofs. In Jon Whittle, Tony Clark,
and Thomas Kühne, editors, Model Driven Engineering Lan-
guages and Systems, 14th International Conference, MODELS
2011, Wellington, New Zealand, October 16-21, 2011. Proceed-
ings, volume 6981 of Lecture Notes in Computer Science, pages
653–667. Springer, 2011.

25. Ethan K. Jackson and Janos Sztipanovits. Constructive tech-
niques for meta- and model-level reasoning. In Gregor En-
gels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors,
Model Driven Engineering Languages and Systems, 10th Inter-
national Conference, MoDELS 2007, Nashville, USA, Septem-
ber 30 - October 5, 2007, Proceedings, volume 4735 of Lecture
Notes in Computer Science, pages 405–419. Springer, 2007.

26. Christian Krause, Daniel Johannsen, Radwan Deeb, Kai-Uwe
Sattler, David Knacker, and Anton Niadzelka. An sql-based
query language and engine for graph pattern matching. In Echa-
hed and Minas [12], pages 153–169.

27. Leen Lambers and Fernando Orejas. Tableau-based reasoning
for graph properties. In Giese and König [17], pages 17–32.

28. Microsoft Corporation. Z3. https://github.com/
Z3Prover/z3. Accessed: 2017-09-19.

29. Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel
Jackson. Alloy*: A general-purpose higher-order relational
constraint solver. In Antonia Bertolino, Gerardo Canfora, and
Sebastian G. Elbaum, editors, 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1, pages 609–619. IEEE Com-
puter Society, 2015.

30. Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle
Soria. Uniform random generation of huge metamodel in-
stances. In Richard F. Paige, Alan Hartman, and Arend Rensink,
editors, Model Driven Architecture - Foundations and Ap-
plications, 5th European Conference, ECMDA-FA 2009, En-
schede, The Netherlands, June 23-26, 2009. Proceedings, vol-
ume 5562 of Lecture Notes in Computer Science, pages 130–
145. Springer, 2009.

31. Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler,
and Shriram Krishnamurthi. Aluminum: principled scenario ex-
ploration through minimality. In David Notkin, Betty H. C.
Cheng, and Klaus Pohl, editors, 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA,
May 18-26, 2013, pages 232–241. IEEE Computer Society,
2013.

32. Fernando Orejas. Attributed graph constraints. In Ehrig et al.
[15], pages 274–288.

33. Fernando Orejas, Hartmut Ehrig, and Ulrike Prange. A logic
of graph constraints. In José Luiz Fiadeiro and Paola Inver-
ardi, editors, Fundamental Approaches to Software Engineer-
ing, 11th International Conference, FASE 2008, Held as Part
of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4961 of Lecture Notes in Computer
Science, pages 179–198. Springer, 2008.

34. Fernando Orejas, Hartmut Ehrig, and Ulrike Prange. Reasoning
with graph constraints. Formal Asp. Comput., 22(3-4):385–422,
2010.

35. Fernando Orejas and Leen Lambers. Symbolic attributed
graphs for attributed graph transformation. ECEASST, 30,
2010.

36. Fernando Orejas and Leen Lambers. Lazy graph transforma-
tion. Fundam. Inform., 118(1-2):65–96, 2012.

37. Karl-Heinz Pennemann. An algorithm for approximating the
satisfiability problem of high-level conditions. Electr. Notes
Theor. Comput. Sci., 213(1):75–94, 2008.

38. Karl-Heinz Pennemann. Resolution-like theorem proving for
high-level conditions. In Ehrig et al. [15], pages 289–304.

39. Karl-Heinz Pennemann. Development of Correct Graph Trans-
formation Systems, PhD Thesis. Dept. Informatik, Univ. Old-
enburg, 2009.

40. Christopher M. Poskitt and Detlef Plump. Verifying monadic
second-order properties of graph programs. In Giese and König
[17], pages 33–48.

41. Hendrik Radke. Hr* graph conditions between counting
monadic second-order and second-order graph formulas. ECE-
ASST, 61, 2013.

42. Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret
Habel, and Gabriele Taentzer. Translating essential OCL in-
variants to nested graph constraints focusing on set operations.
In Francesco Parisi-Presicce and Bernhard Westfechtel, editors,
Graph Transformation - 8th International Conference, ICGT
2015, Held as Part of STAF 2015, L’Aquila, Italy, July 21-23,
2015. Proceedings, volume 9151 of Lecture Notes in Computer
Science, pages 155–170. Springer, 2015.

43. Arend Rensink. Representing first-order logic using graphs. In
Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and
Grzegorz Rozenberg, editors, Graph Transformations, Second
International Conference, ICGT 2004, Rome, Italy, September
28 - October 2, 2004, Proceedings, volume 3256 of Lecture
Notes in Computer Science, pages 319–335. Springer, 2004.

44. Grzegorz Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 1: Founda-
tions. World Scientific, 1997.

45. Rick Salay and Marsha Chechik. A generalized formal frame-
work for partial modeling. In Alexander Egyed and Ina Schae-
fer, editors, Fundamental Approaches to Software Engineering
- 18th International Conference, FASE 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings, volume 9033 of Lecture Notes in Computer Science, pages
133–148. Springer, 2015.

46. Sven Schneider, Leen Lambers, and Fernando Orejas. Symbolic
model generation for graph properties. In Marieke Huisman and
Julia Rubin, editors, Fundamental Approaches to Software En-
gineering - 20th International Conference, FASE 2017, Held as
Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10202 of Lecture Notes in Computer Sci-
ence, pages 226–243. Springer, 2017.

47. Sven Schneider, Leen Lambers, and Fernando Orejas. Sym-
bolic Model Generation for Graph Properties (Extended Ver-
sion). Number 115 in Technische Berichte des Hasso-Plattner-
Instituts für Softwaresystemtechnik an der Universität Potsdam.
Universitätsverlag Potsdam, Hasso Plattner Institute (Germany,
Potsdam), 1 edition, 2 2017.

48. Nicole Schweikardt, Thomas Schwentick, and Luc Segoufin.
Algorithms and theory of computation handbook. chapter

28 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

Database Theory: Query Languages, pages 19, 1–34. Chapman
& Hall/CRC, 2010.

49. Oszkár Semeráth and Dániel Varró. Graph constraint evaluation
over partial models by constraint rewriting. In Esther Guerra
and Mark van den Brand, editors, Theory and Practice of Model
Transformation - 10th International Conference, ICMT 2017,
Held as Part of STAF 2017, Marburg, Germany, July 17-18,
2017, Proceedings, volume 10374 of Lecture Notes in Com-
puter Science, pages 138–154. Springer, 2017.

50. Oszkár Semeráth, András Vörös, and Dániel Varró. Itera-
tive and incremental model generation by logic solvers. In
Perdita Stevens and Andrzej Wasowski, editors, Fundamental
Approaches to Software Engineering - 19th International Con-
ference, FASE 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings, volume
9633 of Lecture Notes in Computer Science, pages 87–103.
Springer, 2016.

51. The Linked Data Benchmark Council (LDBC). Social network
benchmark. https://github.com/ldbc/ldbc_snb_
docs. Accessed: 2017-08-21.

52. The World Wide Web Consortium (W3C). W3c xml schema
definition language (xsd) 1.1 part 1: Structures, 2012.

53. Peter T. Wood. Query languages for graph databases. SIGMOD
Record, 41(1):50–60, 2012.

A Some Details on AUTOGRAPH

Definition 30 (Z3 Signature).

sorts: bool, int, string

opns: true : → bool

false : → bool

not : bool→ bool

and : bool bool→ bool

or : bool bool→ bool

xor : bool bool→ bool

implies : bool bool→ bool

eqbool : bool bool→ bool

ifthenelsebool : bool bool bool→ bool

zero : → int

succ : int→ int

pred : int→ int

minus : int→ int

add : int int→ int

sub : int int→ int

mul : int int→ int

mod : int int→ int

rem : int int→ int

power : int int→ int

eqint : int int→ bool

gt : int int→ bool

lt : int int→ bool

ge : int int→ bool

le : int int→ bool

ifthenelseint : bool int int→ int

empty : → string

concat : string string→ string

length : string→ int

contains : string string→ bool

indexOf : string string int→ int

replace : string string string→ string

prefixOf : string string→ bool

suffixOf : string string→ bool

at : string int→ string

extract : string int int→ string

eqstring : string string→ bool

ifthenelsestring : bool string string→ string

Furthermore, we assume sufficient operations for construct-
ing values of string as terms such as a, . . . , z, 0, . . . , 9,−,
SPACE : → string.

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 29

B Categorical Preliminaries and Properties of
GRAPHSSTA

Lemma 11 (GRAPHSSTA: Characterization of the Mono-
morphisms, Epimorphisms, and Isomorphisms). A graph
morphism f : G → G′ from the category GRAPHSSTA is
a mono(morphism) (epi(morphism)) (iso(morphism)), if each
of its components is injective (surjective) (bijective), respec-
tively. And, for isomorphisms we additionally require that the
reversed implication from Def. 11 holds as well, i.e., for all
σ ∈ VΣA2

,ΣA2
: σ |= fAX (Φ1) implies σ |= Φ2.

Proof (idea). Due to the componentwise characterization.

Definition 31 (E-M-Factorization). Given a category, a set
E of epimorphisms, and a set M of monomorphisms. The
category has E-M-Factorizations, if

– (existence) for each f : A→ C there are (e : A� K) ∈
E and (m : K ↪−→ C) ∈M s.t. m ◦ e = f and

– (uniqueness) for (e′ : A � K ′) ∈ E and (m′ : K ′ ↪−→
C) ∈ M with m′ ◦ e′ = f there is i : K ↪→→ K ′ with
i ◦ e = e′ and m′ ◦ i = m.

Definition 32 (Jointly Epimorphic Morphisms [13, Defi-
nition A.16, p. 334]). Two morphisms e1 : A1 → B and
e2 : A2 → B of a category are Jointly Epimorphic, if any two
morphisms g, h : B → C are equal whenever g ◦ ei = h ◦ ei
(for each 1 ≤ i ≤ 2).

Pair Factorization (cf. [13, Definition 5.25, p. 122]) has
the intuition that any two morphisms f1 and f2 with common
codomain C coincide (in the sense of mapping to the same
elements) on a well-defined subgraph K of C. That K does
not include further elements (on which the two morphisms
do not coincide) is expressed by stating that the morphisms
e1 and e2 are jointly epimorphic and the coincidence is ex-
pressed by stating that m is a monomorphism together with
the commutation.

Definition 33 (E ′-M-Pair Factorization). For a given cate-
gory, a set E ′ of pairs (f1, f2) of jointly epi morphisms, and
a set M of monomorphisms. The category has E ′-M-Pair
Factorizations, if for each two morphisms f1 : A1 → C and
f2 : A2 → C there are (e1 : A1 → K, e2 : A2 → K) ∈ E ′
and (m : K ↪−→ C) ∈M s.t.m◦ei = fi (for each 1 ≤ i ≤ 2).

Definition 34 (Binary Coproduct). A category has binary
coproducts, if for every Ai (with 1 ≤ i ≤ 2) there are fi :
Ai → C (for each 1 ≤ i ≤ 2) s.t. (the following universal
property holds) for all gi : Ai → X there is h : C → X with
h ◦ fi = gi (for each 1 ≤ i ≤ 2).

Lemma 12 (GRAPHSSTA has Binary Coproducts).

Proof (idea). The binary coproduct C with morphisms f1
and f2 from Def. 34 is constructed componentwise using the
disjoint union, as usual.

For the category GRAPHSSTA we use as E the set of all
epimorphisms, as M the set of all monomorphisms, and as
E ′ the set of all pairs of jointly epimorphic morphisms.

Lemma 13 (GRAPHSSTA has E-M-Factorization).

Proof (idea). The morphisms e andm, required according to
Def. 31, are constructed componentwise for a morphism f .

Lemma 14 (GRAPHSSTA has E ′-M-Pair Factorization).

Proof (idea). Analogously to [13, Remark 5.26, p. 122] we
construct the E ′-M-Pair Factorizations using E-M-Factor-
izations (based on Lem. 13) and binary coproducts (based on
Lem. 12).

C Proofs

Proof (of Lem. 2). Part1 (⊆).

G ∈ J∃(iC ,∨S)K
=⇒iG |= ∃(iC ,∨S)

for some q : C ↪−→ G

=⇒q |= ∨S

for some c ∈ S

=⇒q |= c

=⇒q ◦ iC |= ∃(iC , c)
=⇒iG |= ∃(iC , c)
=⇒G ∈ J∃(iC , c)K

=⇒G ∈
⋃
{J∃(iC , c)K | c ∈ S}

Part2 (⊇).

G ∈
⋃
{J∃(iC , c)K | c ∈ S}

for some c ∈ S

=⇒G ∈ J∃(iC , c)K
=⇒iG |= ∃(iC , c)

for some q : C ↪−→ G

=⇒q |= c

=⇒q |= ∨S
=⇒q ◦ iC |= ∃(iC ,∨S)
=⇒iG |= ∃(iC ,∨S)
=⇒G ∈ J∃(iC ,∨S)K

Proof (of Lem. 5). Part1 (⊆).

G ∈ J∃(iC1 ,∃(m : C1 ↪−→ C2, c))K
=⇒iG |= ∃(iC1 ,∃(m : C1 ↪−→ C2, c))

30 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

for some q1 : C1 ↪−→ G

=⇒q1 |= ∃(m : C1 ↪−→ C2, c)

for some q2 : C2 ↪−→ G

=⇒q2 |= c and q1 = q2 ◦m
=⇒q2 ◦ iC2

|= ∃(iC2
, c)

=⇒iG |= ∃(iC2
, c)

=⇒G ∈ J∃(iC2
, c)K

Part2 (⊇).

G ∈ J∃(iC2
, c)K

=⇒iG |= ∃(iC2
, c)

for some q2 : C2 ↪−→ G

=⇒q2 |= c

=⇒q2 ◦m |= ∃(m : C1 ↪−→ C2, c)

=⇒q2 ◦m ◦ iC1
|= ∃(iC1

,∃(m : C1 ↪−→ C2, c))

=⇒iG |= ∃(iC1
,∃(m : C1 ↪−→ C2, c))

=⇒G ∈ J∃(iC1
,∃(m : C1 ↪−→ C2, c))K

Proof (of Lem. 6). Part1 (C is an element).

C ∈ J∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})K
⇐=iC |= ∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})

for idC : C ↪−→ C

⇐=idC |= ∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)}

for each 1 ≤ i ≤ n simultaneously

⇐=idC |= ¬∃(mi, ci)

⇐=idC 6|= ∃(mi, ci)

there is no qi : Ci ↪−→ G such that qi |= ci and qi ◦mi = q

⇐=mi is no isomorphism

Part2 (unique least element).

C ′ ∈ J∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})K
=⇒iC′ |= J∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})K

for some q : C ↪−→ C ′

=⇒q |= ∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)}
=⇒C ⊆ C ′

Proof (of Lem. 3). Part1 (⊆).

G ∈ J∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))K
=⇒iG |= ∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))

for some q1 : C ↪−→ G

=⇒q1 |= (∧S) ∧ ∃(m : C ↪−→ C ′, c′)

=⇒q1 |= ∧S and q1 |= ∃(m : C ↪−→ C ′, c′)

for some q2 : C ′ ↪−→ G

=⇒q2 |= c′ and q1 = q2 ◦m

also

q1 |= ∧S
=⇒q2 ◦m |= ∧S
=⇒q2 |= shift(m,∧S)
=⇒q2 |= c′ ∧ shift(m,∧S)
=⇒q2 ◦m |= ∃(m, c′ ∧ shift(m,∧S))
=⇒q2 ◦m ◦ iC |= ∃(iC ,∃(m, c′ ∧ shift(m,∧S)))
=⇒iG |= ∃(iC ,∃(m, c′ ∧ shift(m,∧S)))
=⇒G ∈ J∃(iC ,∃(m, c′ ∧ shift(m,∧S)))K

Part2 (⊇).

G ∈ J∃(iC ,∃(m, c′ ∧ shift(m,∧S)))K
=⇒iG |= ∃(iC ,∃(m, c′ ∧ shift(m,∧S)))

for some q1 : C ↪−→ G

=⇒q1 |= ∃(m, c′ ∧ shift(m,∧S))

for some q2 : C ′ ↪−→ G

=⇒q2 |= c′ ∧ shift(m,∧S) and q1 = q2 ◦m
=⇒q2 |= c′ and q2 |= shift(m,∧S)
=⇒q2 ◦m |= ∃(m, c′)

also

=⇒q2 |= shift(m,∧S)
=⇒q2 ◦m |= (∧S)
=⇒q2 ◦m |= (∧S) ∧ ∃(m : C ↪−→ C ′, c′)

=⇒q2 ◦m ◦ iC |= ∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))

=⇒iG |= ∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))

=⇒G ∈ J∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))K

Proof (of Lem. 8). Part1.1 (if).

covered(S) = covered(S ′)
=⇒covered(S) ⊆ covered(S ′)

because covered(S − S ′) ⊆ covered(S)

=⇒covered(S − S ′) ⊆ covered(S ′)
=⇒covered(S − S ′)− covered(S ′) = ∅

Part1.2 (only if).

covered(S − S ′)− covered(S ′) = ∅
=⇒covered(S − S ′) ⊆ covered(S ′)

because covered(S)− covered(S ′) ⊆ covered(S − S ′)

=⇒covered(S)− covered(S ′) ⊆ covered(S ′)
=⇒(covered(S)− covered(S ′))− covered(S ′) = ∅
=⇒covered(S)− covered(S ′) = ∅
=⇒covered(S) ⊆ covered(S ′)

Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties 31

because S ′ ⊆ S implies covered(S ′) ⊆ covered(S)

=⇒covered(S) = covered(S ′)

Part2.

∨ {∃(iC , c) | 〈C, c〉 ∈ S − S ′}
∧ ¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′} is refutable

⇐⇒J∨{∃(iC , c) | 〈C, c〉 ∈ S − S ′}
∧ ¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′}K = ∅

⇐⇒J∨{∃(iC , c) | 〈C, c〉 ∈ S − S ′}K
∩ J¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′}K = ∅

⇐⇒covered(S − S ′)
∩ ({G | G is a graph} − covered(S ′)) = ∅

⇐⇒covered(S − S ′)− covered(S ′) = ∅

Proof (of Lem. 9).

– Part1 (if). Fix some 〈C,∧∅〉 ∈ S .
Assume for the contradiction covered(S) = covered(S−
{〈C,∧∅〉}).
Hence, for each G ∈ covered(〈C,∧∅〉) there is some
other 〈C ′,∧∅〉 ∈ S s.t. G ∈ covered(〈C,∧∅〉).
Note that C ∈ covered(〈C ′,∧∅〉). Hence, we are able to
pick some 〈C ′,∧∅〉 s.t. C ∈ covered(〈C ′,∧∅〉).
Hence, there is a monomorphism m : C ′ ↪−→ C.
This is a contradiction.

– Part2 (only if). Fix distinct 〈C,∧∅〉 ∈ S and 〈C ′,∧∅〉 ∈
S.
Assume for the contradiction that m : C ′ ↪−→ C is a
monomorphism.
Hence covered(〈C,∧∅〉) ⊆ covered(〈C ′,∧∅〉).
Hence covered(S) = covered(S − {〈C,∧∅〉}).
Hence S is not compact.
This is a contradiction.

Proof (of Corollary 1). Let S be nonambiguous, (sound,)
complete, minimally representable.
We show that S is compact.
Fix some 〈C, c〉 ∈ S.
We show that covered(S) 6= covered(S − {〈C, c〉}).

– We show that C ∈ covered(S).
From minimally representability we have that C |= p.
From completeness we that C ∈ covered(S).

– We show that C /∈ covered(S − {〈C, c〉).
Assume for the contradiction that 〈C ′, c′〉 ∈ S − {〈C, c〉
such that C ∈ covered(〈C ′, c′〉).
Then, covered(〈C ′, c′〉) ∩ covered(〈C, c〉) 6= ∅ contra-
dicts nonambiguity because 〈C ′, c′〉 6= 〈C, c〉.

Lemma 15 (Satisfaction is a Congruence). Let c1 and c2
be conditions from CC such that {q | q |= c1} = {q | q |=
c2}. Then all following items are satisfied.

– {q | q |= ∧(S ∪ {c1})} = {q | q |= ∧(S ∪ {c2})} for all
finite S ⊆ CC .

– {q | q |= ¬c1} = {q | q |= ¬c2}.

– {q | q |= ∃(m : C ′ ↪−→ C, c1)} = {q | q |= ∃(m : C ′ ↪−→
C, c2)} for every m : C ′ ↪−→ C.

Proof (of Lem. 15). Fix c1, c2 ∈ CC .
Assume (A) that {q | q |= c1} = {q | q |= c2}. In each case
we show only one direction wlog.

– Fix some S ⊆ CC that is finite.
Fix some q : C ↪−→ G such that q |= ∧(S ∪ {c1}).
Hence, q |= ∧S and q |= c1.
From (A) we have that q |= c2.
Hence, q |= ∧(S ∪ {c2}).

– Fix some q : C ↪−→ G such that q |= ¬c1.
Hence, not q |= c1.
From (A) we have that not q |= c2.
Hence, q |= ¬c2.

– Fix some m : C ′ ↪−→ C.
Fix some q′ : C ′ ↪−→ G such that q′ |= ∃(m : C ′ ↪−→
C, c1).
Hence, there is some q : C ↪−→ G such that q |= c1 and
q ◦m = q′.
From (A) we have that q |= c2.
Hence, q′ |= ∃(m : C ′ ↪−→ C, c2).

Proof (of Lem. 4). The construction steps of [·] replace sub-
terms.
By structural induction relying on Lem. 15 it is sufficient to
consider how one condition c1 is replaced by another condi-
tion c2 over same graph in the sense of {q | q |= c1} = {q |
q |= c2}.
We verify for all five steps of the operation [·] that the prop-
erty is rephrased equivalently.

– Step 1: The unfolding of abbrevations is sound by default.
– Step 2: We assume that ∃(i : A ↪→→ B, c1) has been re-

placed by c2.
We perform an induction on c1.

– Case: c1 = ¬c′1 and, hence, c2 = ∃(i : A ↪→→ B,¬c′2)
for some c′2
As induction hypothesis we assume that {q | q |=
c′1} = {q | q |= c′2}. We have to show {q | q |= ∃(i :
A ↪→→ B,¬c′1)} = {q | q |= ∃(i : A ↪→→ B,¬c′2)},
which is the direct consequence from Lem. 15.

– Case: c1=∧{c0,1, . . . , cn,1} and, hence, c2=∧{c0,2,
. . . , cn,2} for some c0,2, . . . , cn,2
As induction hypothesis we assume that {q | q |=
ci,1} = {q | q |= ci,2} (for 0 ≤ i ≤ n) We have to
show {q | q |= ∃(i : A ↪→→ B,∧{c0,1, . . . , cn,1})} =
{q | q |= ∃(i : A ↪→→ B,∧{c0,2, . . . , cn,2})}, which
is the direct consequence from Lem. 15.

– Case: c1 = ∃(m : B ↪−→ B′, c′1) and, hence, c2 =
∃(m ◦ i, c′1)
We have to show {q | q |= ∃(i : A ↪→→ B, ∃(m :
B ↪−→ B′, c′1))} = {q | q |= ∃(m ◦ i, c′1)}, which
holds directly application of Def. 16.

– Step 3: We show that {q | q |= ∃(m : A ↪−→ B, c)} = {q |
q |= ∨∅} if {q | q |= ∃(m : A ↪−→ B, c)} is empty. This is
trivially the case because {q | q |= ∨∅} is also empty.

32 Schneider, Lambers, Orejas: Automated Reasoning for Attributed Graph Properties

– Step 4: The mentioned replacement rules
¬(∧S) ·= ∨{¬c | c ∈ S},
¬(∨S) ·= ∧{¬c | c ∈ S}, and
¬¬c ·= c
are obvisouly sound in the sense of:
{q | q |= lhs} = {q | q |= rhs}.

– Step 5: The mentioned replacement rules
∧(S ∪ {∧S′}) ·= ∧(S ∪ S′),
∨(S ∪ {∨S′}) ·= ∨(S ∪ S′),
∧(S ∪ {∨S′}) ·= ∨{∧(S ∪ {c}) | c ∈ S′}, and
∨(S ∪ {∧S′}) ·= ∧{∨(S ∪ {c}) | c ∈ S′}
are obvisouly sound in the sense of:
{q | q |= lhs} = {q | q |= rhs}.

