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Abstract

In the last two decades, modal and description logics have been applied to numerous
areas of computer science, including knowledge representation, formal verification, database
theory, distributed computing and, more recently, semantic web and ontologies. For this
reason, the problem of automated reasoning in modal and description logics has been
thoroughly investigated. In particular, many approaches have been proposed for efficiently
handling the satisfiability of the core normal modal logic Km, and of its notational variant,
the description logic ALC. Although simple in structure, Km/ALC is computationally very
hard to reason on, its satisfiability being PSpace-complete.

In this paper we start exploring the idea of performing automated reasoning tasks in
modal and description logics by encoding them into SAT, so that to be handled by state-
of-the-art SAT tools; as with most previous approaches, we begin our investigation from
the satisfiability in Km. We propose an efficient encoding, and we test it on an extensive
set of benchmarks, comparing the approach with the main state-of-the-art tools available.
Although the encoding is necessarily worst-case exponential, from our experiments we
notice that, in practice, this approach can handle most or all the problems which are at
the reach of the other approaches, with performances which are comparable with, or even
better than, those of the current state-of-the-art tools.

1. Motivations and Goals

In the last two decades, modal and description logics have provided an essential framework
for many applications in numerous areas of computer science, including artificial intelli-
gence, formal verification, database theory, distributed computing and, more recently, se-
mantic web and ontologies. For this reason, the problem of automated reasoning in modal
and description logics has been thoroughly investigated (e.g., Fitting, 1983; Ladner, 1977;
Baader & Hollunder, 1991; Halpern & Moses, 1992; Baader, Franconi, Hollunder, Nebel, &
Profitlich, 1994; Massacci, 2000). In particular, the research in modal and description logics
has followed two parallel routes until the seminal work of Schild (1991), which proved that
the core modal logic Km and the core description logic ALC are one a notational variant of
the other. Since then, analogous results have been produced for a bunch of other logics, so
that, nowadays the two research lines have mostly merged into one research flow.
Many approaches have been proposed for efficiently reasoning in modal and description

logics, starting from the problem of checking the satisfiability in the core normal modal
logic Km and in its notational variant, the description logic ALC (hereafter simply “Km”).
We classify them as follows.

c©2009 AI Access Foundation. All rights reserved.

343



Sebastiani & Vescovi

• The “classic” tableau-based approach (Fitting, 1983; Baader & Hollunder, 1991; Mas-
sacci, 2000) is based on the construction of propositional tableau branches, which are
recursively expanded on demand by generating successor nodes in a candidate Kripke
model. Kris (Baader & Hollunder, 1991; Baader et al., 1994), Crack (Franconi,
1998), LWB (Balsiger, Heuerding, & Schwendimann, 1998) were among the main
representative tools of this approach.

• The DPLL-based approach (Giunchiglia & Sebastiani, 1996, 2000) differs from the
previous one mostly in the fact that a Davis-Putnam-Logemann-Loveland (DPLL)
procedure, which treats the modal subformulas as propositions, is used instead of
the classic propositional tableaux procedure at each nesting level of the modal op-
erators. KSAT (Giunchiglia & Sebastiani, 1996), ESAT (Giunchiglia, Giunchiglia,
& Tacchella, 2002) and *SAT (Tacchella, 1999), are the representative tools of this
approach.

These two approaches merged into the “modern” tableaux-based approach, which has been
extended to work with more expressive description logics and to provide more sophisticate
reasoning functions. Among the tools employing this approach, we recall FaCT/FaCT++
and DLP (Horrocks & Patel-Schneider, 1999), and Racer (Haarslev & Moeller, 2001). 1

• In the translational approach (Hustadt & Schmidt, 1999; Areces, Gennari, Heguiabehere,
& de Rijke, 2000) the modal formula is encoded into first-order logic (FOL), and the
encoded formula can be decided efficiently by a FOL theorem prover (Areces et al.,
2000). Mspass (Hustadt, Schmidt, & Weidenbach, 1999) is the most representative
tool of this approach.

• The CSP-based approach (Brand, Gennari, & de Rijke, 2003) differs from the tableaux-
based and DPLL-based ones mostly in the fact that a CSP (Constraint Satisfaction
Problem) engine is used instead of tableaux/DPLL. KCSP is the only representative
tool of this approach.

• In the Inverse-method approach (Voronkov, 1999, 2001), a search procedure is based
on the “inverted” version of a sequent calculus (which can be seen as a modalized
version of propositional resolution). K K(Voronkov, 1999) is the only representative
tool of this approach.

• In the Automata-theoretic approach, (a symbolic representation based on BDDs –
Binary Decision Diagrams – of) a tree automaton accepting all the tree models of the
input formula is implicitly built and checked for emptiness (Pan, Sattler, & Vardi,
2002; Pan & Vardi, 2003). KBDD (Pan & Vardi, 2003) is the only representative tool
of this approach.

1. Notice that there is not an universal agreement on the terminology “tableaux-based” and “DPLL-based”.
E.g., tools like FaCT, DLP, and Racer are most often called “tableau-based”, although they use
a DPLL-like algorithm instead of propositional tableaux for handling the propositional component of
reasoning (Horrocks, 1998; Patel-Schneider, 1998; Horrocks & Patel-Schneider, 1999; Haarslev & Moeller,
2001).
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• Pan and Vardi (2003) presented also an encoding of K-satisfiability into QBF-satisfiability
(which is PSpace-complete too), combined with the use of a state-of-the-art QBF
(Quantified Boolean Formula) solver. We call this approach QBF-encoding approach.

To the best of our knowledge, the last four approaches so far are restricted to the satisfiability
in Km only, whilst the translational approach has been applied to numerous modal and
description logics (e.g. traditional modal logics like Tm and S4m, and dynamic modal
logics) and to the relational calculus.
A significant amount of benchmarks formulas have been produced for testing the effec-

tiveness of the different techniques (Halpern & Moses, 1992; Giunchiglia, Roveri, & Sebas-
tiani, 1996; Heuerding & Schwendimann, 1996; Horrocks, Patel-Schneider, & Sebastiani,
2000; Massacci, 1999; Patel-Schneider & Sebastiani, 2001, 2003).

In the last two decades we have also witnessed an impressive advance in the efficiency
of propositional satisfiability techniques (SAT), which has brought large and previously-
intractable problems at the reach of state-of-the-art SAT solvers. Most of the success of SAT
technologies is motivated by the impressive efficiency reached by current implementations
of the DPLL procedure, (Davis & Putnam, 1960; Davis, Longemann, & Loveland, 1962),
in its most-modern variants (Silva & Sakallah, 1996; Moskewicz, Madigan, Zhao, Zhang, &
Malik, 2001; Eén & Sörensson, 2004). Current implementations can handle formulas in the
order of 107 variables and clauses.
As a consequence, many hard real-world problems have been successfully solved by

encoding into SAT (including, e.g., circuit verification and synthesis, scheduling, planning,
model checking, automatic test pattern generation , cryptanalysis, gene mapping). Effective
encodings into SAT have been proposed also for the satisfiability problems in quantifier-free
FOL theories which are of interest for formal verification (Strichman, Seshia, & Bryant,
2002; Seshia, Lahiri, & Bryant, 2003; Strichman, 2002). Notably, successful SAT encodings
include also PSpace-complete problems, like planning (Kautz, McAllester, & Selman, 1996)
and model checking (Biere, Cimatti, Clarke, & Zhu, 1999).

In this paper we start exploring the idea of performing automated reasoning tasks in
modal and description logics by encoding them into SAT, so that to be handled by state-of-
the-art SAT tools; as with most previous approaches, we begin our investigation from the
satisfiability in Km.
In theory, the task may look hopeless because of worst-case complexity issues: in fact,

with few exceptions, the satisfiability problem in most modal and description logics is not in
NP, typically being PSpace-complete or even harder —PSpace-complete for Km (Ladner,
1977; Halpern & Moses, 1992)— so that the encoding is in worst-case non polynomial. 2

In practice, however, a few considerations allow for not discarding that this approach
may be competitive with the state-of-the-art approaches. First, the non-polynomial bounds
above are worst-case bounds, and formulas may have different behaviors from that of the
pathological formulas which can be found in textbooks. (E.g., notice that the exponentiality
is based on the hypothesis of unboundedness of some parameter like the modal depth;
Halpern & Moses, 1992; Halpern, 1995.) Second, some tricks in the encoding may allow
for reducing the size of the encoded formula significantly. Third, as the amount of RAM

2. We implicitly make the assumption NP �= PSpace.
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memory in current computers is in the order of the GBytes and current SAT solvers can
successfully handle huge formulas, the encoding of many modal formulas (at least of those
which are not too hard to solve also for the competitors) may be at the reach of a SAT solver.
Finally, even for PSpace-complete logics like Km, also other state-of-the-art approaches are
not guaranteed to use polynomial memory.
In this paper we show that, at least for the satisfiability Km, by exploiting some smart

optimizations in the encoding the SAT-encoding approach becomes competitive in practice
with previous approaches. To this extent, the contributions of this paper are manyfold.

• We propose a basic encoding of Km formulas into purely-propositional ones, and prove
that the encoding is satisfiability-preserving.

• We describe some optimizations of the encoding, both in form of preprocessing and
of on-the-fly simplification. These techniques allow for significant (and in some cases
dramatic) reductions in the size of the resulting Boolean formulas, and in performances
of the SAT solver thereafter.

• We perform a very extensive empirical comparison against the main state-of-the-art
tools available. We show that, despite the NP-vs.-PSpace issue, this approach can
handle most or all the problems which are at the reach of the other approaches, with
performances which are comparable with, and sometimes even better than, those
of the current state-of-the-art tools. In our perspective, this is the most surprising
contribution of the paper.

• As a byproduct of our work, we obtain an empirical evaluation of current tools forKm-
satisfiability available, which is very extensive in terms of both amount and variety of
benchmarks and of number and representativeness of the tools evaluated. We are not
aware of any other such evaluation in the recent literature.

We also stress the fact that with our approach the encoder can be interfaced with every
SAT solver in a plug-and-play manner, so that to benefit for free of every improvement in
the technology of SAT solvers which has been or will be made available.

Content. The paper is structured as follows. In Section 2 we provide the necessary
background notions on modal logics and SAT. In Section 3 we describe the basic encoding
from Km to SAT. In Section 4 we describe and discuss the main optimizations, and provide
many examples. In Section 5 we present the empirical evaluation, and discuss the results.
In Section 6 we present some related work and current research trends. In Section 7 we
conclude, and describe some possible future evolutions.

A six-page preliminary version of this paper, containing some of the basic ideas presented
here, was presented at SAT’06 conference (Sebastiani & Vescovi, 2006). For the readers’
convenience, an online appendix is provided, containing all plots of Section 5 in full size.
Moreover, in order to make the results reproducible, the encoder, the benchmarks and the
random generators with the seeds used are also available in the online appendix.
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2. Background

In this section we provide the necessary background on the modal logic Km (Section 2.1)
and on SAT and the DPLL procedure (Section 2.2).

2.1 The Modal Logic Km

We recall some basic definitions and properties of Km. Given a non-empty set of primitive
propositions A = {A1, A2, . . .}, a set of m modal operators B = {�1, . . . , �m}, and the con-
stants “True” and “False” (that we denote respectively with “�” and “⊥”) the language of
Km is the least set of formulas containing A, closed under the set of propositional connec-
tives {¬,∧,∨,→,↔} and the set of modal operators in B∪{�1, . . . , �m}. Notationally, we
use the Greek letters α, β, ϕ, ψ, ν, π to denote formulas in the language of Km (Km-formulas
hereafter). Notice that we can consider {¬,∧} together with B as the group of the prim-
itive connectives/operators, defining the remaining in the standard way, that is: “�rϕ”
for “¬�r¬ϕ”, “ϕ1 ∨ ϕ2” for “¬(¬ϕ1 ∧ ¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1 ∧ ¬ϕ2)”, “ϕ1 ↔ ϕ2”
for “¬(ϕ1 ∧ ¬ϕ2) ∧ ¬(ϕ2 ∧ ¬ϕ1)”. (Hereafter formulas like ¬¬ψ are implicitly assumed to
be simplified into ψ, so that, if ψ is ¬φ, then by “¬ψ” we mean “φ”.) Notationally, we
often write “(

∧
i li)→

∨
j lj” for the clause “

∨
j ¬li ∨

∨
j lj”, and “(

∧
i li)→ (

∧
j lj)” for the

conjunction of clauses “
∧
j(
∨
i ¬li ∨ lj)”. Further, we often write �r or �r meaning one

specific/generic modal operator, where it is assumed that r = 1, . . . , m; and we denote by
�ir the nested application of the �r operator i times: �0

rψ := ψ and �i+1
r ψ := �r�

i
rψ. We

call depth of ϕ, written depth(ϕ), the maximum number of nested modal operators in ϕ.
We call a propositional atom every primitive proposition in A, and a propositional literal
every propositional atom (positive literal) or its negation (negative literal). We call a modal
atom every formula which is either in the form �rϕ or in the form �rϕ.
In order to make our presentation more uniform, and to avoid considering the polarity

of subformulas, we adopt the traditional representation of Km-formulas (introduced, as far
as we know, by Fitting, 1983 and widely used in literature, e.g. Fitting, 1983; Massacci,
2000; Donini & Massacci, 2000) from the following table:

α α1 α2 β β1 β2 πr πr0 νr νr0
(ϕ1 ∧ ϕ2) ϕ1 ϕ2 (ϕ1 ∨ ϕ2) ϕ1 ϕ2 �rϕ1 ϕ1 �rϕ1 ϕ1

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ¬ϕ2 ¬(ϕ1 ∧ ϕ2) ¬ϕ1 ¬ϕ2 ¬�rϕ1 ¬ϕ1 ¬�rϕ1 ¬ϕ1

¬(ϕ1 → ϕ2) ϕ1 ¬ϕ2 (ϕ1 → ϕ2) ¬ϕ1 ϕ2

in which non-literal Km-formulas are grouped into four categories: α’s (conjunctive), β’s
(disjunctive), π’s (existential), ν’s (universal). Importantly, all such formulas occur in the
main formula with positive polarity only. This allows for disregarding the issue of polarity
of subformulas.
The semantic of modal logics is given by means of Kripke structures. A Kripke structure

for Km is a tuple M = 〈U ,L,R1, . . . ,Rm〉, where U is a set of states, L is a function
L : A×U �−→ {T rue, False}, and each Rr is a binary relation on the states of U . With an
abuse of notation we write “u ∈M” instead of “u ∈ U”. We call a situation any pairM, u,
M being a Kripke structure and u ∈ M. The binary relation |= between a modal formula
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ϕ and a situationM, u is defined as follows:

M, u |= �;
M, u �|= ⊥;
M, u |= Ai, Ai ∈ A ⇐⇒ L(Ai, u) = T rue;
M, u |= ¬Ai, Ai ∈ A ⇐⇒ L(Ai, u) = False;
M, u |= α ⇐⇒ M, u |= α1 and M, u |= α2;
M, u |= β ⇐⇒ M, u |= β1 or M, u |= β2;
M, u |= πr ⇐⇒ M, w |= πr0 for some w ∈ U s.t. Rr(u, w) holds inM;
M, u |= νr ⇐⇒ M, w |= νr0 for every w ∈ U s.t. Rr(u, w) holds inM.

“M, u |= ϕ” should be read as “M, u satisfy ϕ in Km” (alternatively, “M, u Km-satisfies
ϕ”). We say that aKm-formula ϕ is satisfiable inKm (Km-satisfiable henceforth) if and only
if there existM and u ∈M s.t. M, u |= ϕ. (When this causes no ambiguity, we sometimes
drop the prefix “Km-”.) We say that w is a successor of u through Rr iff Rr(u, w) holds in
M.
The problem of determining the Km-satisfiability of a Km-formula ϕ is decidable and

PSPACE-complete (Ladner, 1977; Halpern & Moses, 1992), even restricting the language to
a single Boolean atom (i.e., A = {A1}; Halpern, 1995); if we impose a bound on the modal
depth of the Km-formulas, the problem reduces to NP-complete (Halpern, 1995). For a
more detailed description on Km— including, e.g., axiomatic characterization, decidability
and complexity results — we refer the reader to the works of Halpern and Moses (1992),
and Halpern (1995).
A Km-formula is said to be in Negative Normal Form (NNF) if it is written in terms of

the symbols �r, �r, ∧, ∨ and propositional literals Ai, ¬Ai (i.e., if all negations occur only
before propositional atoms in A). Every Km-formula ϕ can be converted into an equivalent
one NNF (ϕ) by recursively applying the rewriting rules: ¬�rϕ=⇒�r¬ϕ, ¬�rϕ=⇒�r¬ϕ,
¬(ϕ1 ∧ ϕ2)=⇒(¬ϕ1 ∨ ¬ϕ2), ¬(ϕ1 ∨ ϕ2)=⇒(¬ϕ1 ∧ ¬ϕ2), ¬¬ϕ=⇒ϕ.
A Km-formula is said to be in Box Normal Form (BNF) (Pan et al., 2002; Pan & Vardi,

2003) if it is written in terms of the symbols �r, ¬�r, ∧, ∨, and propositional literals Ai,
¬Ai (i.e., if no diamonds are there, and all negations occur only before boxes or before
propositional atoms in A). Every Km-formula ϕ can be converted into an equivalent one
BNF (ϕ) by recursively applying the rewriting rules: �rϕ=⇒¬�r¬ϕ, ¬(ϕ1 ∧ϕ2)=⇒(¬ϕ1 ∨
¬ϕ2), ¬(ϕ1 ∨ ϕ2)=⇒(¬ϕ1 ∧ ¬ϕ2), ¬¬ϕ=⇒ϕ.

2.2 Propositional Satisfiability with the DPLL Algorithm

Most state-of-the-art SAT procedures are evolutions of the DPLL procedure (Davis &
Putnam, 1960; Davis et al., 1962). A high-level schema of a modern DPLL engine, adapted
from the one presented by Zhang and Malik (2002), is reported in Figure 1. The Boolean
formula ϕ is in CNF (Conjunctive Normal Form); the assignment μ is initially empty, and
it is updated in a stack-based manner.
In the main loop, decide next branch(ϕ, μ) chooses an unassigned literal l from ϕ

according to some heuristic criterion, and adds it to μ. (This operation is called decision,
l is called decision literal and the number of decision literals in μ after this operation is
called the decision level of l.) In the inner loop, deduce(ϕ, μ) iteratively deduces literals l
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1. SatValue DPLL (formula ϕ, assignment μ) {
2. while (1) {
3. decide next branch(ϕ, μ);
4. while (1) {
5. status = deduce(ϕ, μ);
6. if (status == sat)
7. return sat;
8. else if (status == conflict) {
9. blevel = analyze conflict(ϕ, μ);
10. if (blevel == 0) return unsat;
11. else backtrack(blevel,ϕ, μ);
12. }
13. else break;
14. }}}

Figure 1: Schema of a modern SAT solver engine based on DPLL.

deriving from the current assignment and updates ϕ and μ accordingly; this step is repeated
until either μ satisfies ϕ, or μ falsifies ϕ, or no more literals can be deduced, returning sat,
conflict and unknown respectively. (The iterative application of Boolean deduction steps in
deduce is also called Boolean Constraint Propagation, BCP.) In the first case, DPLL returns
sat. If the second case, analyze conflict(ϕ, μ) detects the subset η of μ which caused
the conflict (conflict set) and the decision level blevel to backtrack. If blevel == 0,
then a conflict exists even without branching, so that DPLL returns unsat. Otherwise,
backtrack(blevel, ϕ, μ) adds the clause ¬η to ϕ (learning) and backtracks up to blevel
(backjumping), updating ϕ and μ accordingly. In the third case, DPLL exits the inner loop,
looking for the next decision.
Notably, modern DPLL implementations implement techniques, like the two-watched-

literal scheme, which allow for extremely efficient handling of BCP (Moskewicz et al., 2001;
Zhang & Malik, 2002). Old versions of DPLL used to implement also the Pure-Literal Rule
(PLR) (Davis et al., 1962): when one proposition occurs only positively (resp. negatively) in
the formula, it can be safely assigned to true (resp. false). Modern DPLL implementations,
however, often do not implement it anymore due to its computational cost. For a much
deeper description of modern DPLL-based SAT solvers, we refer the reader to the literature
(e.g., Zhang & Malik, 2002).

3. The Basic Encoding

We borrow some notation from the Single Step Tableau (SST) framework (Massacci, 2000;
Donini & Massacci, 2000). We represent uniquely states in M as labels σ, represented as
non empty sequences of integers 1.nr11 .nr22 . ... .nrkk , s.t. the label 1 represents the root state,
and σ.nr represents the n-th Rr-successor of σ (where r ∈ {1, . . . , m}). With a little abuse
of notation, hereafter we may say “a state σ” meaning “a state labeled by σ”. We call a
labeled formula a pair 〈σ, ψ〉, such that σ is a state label and ψ is a Km-formula, and we
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call labeled subformulas of a labeled formula 〈σ, ψ〉 all the labeled formulas 〈σ, φ〉 such that
φ is a subformula of ψ.
Let A〈 , 〉 be an injective function which maps a labeled formula 〈σ, ψ〉, s.t. ψ is not

in the form ¬φ, into a Boolean variable A〈σ, ψ〉. We conventionally assume that A〈σ, �〉 is
� and A〈σ, ⊥〉 is ⊥. Let L〈σ, ψ〉 denote ¬A〈σ, φ〉 if ψ is in the form ¬φ, A〈σ, ψ〉 otherwise.
Given a Km-formula ϕ, the encoder Km2SAT builds a Boolean CNF formula as follows: 3

Km2SAT (ϕ) def= A〈1, ϕ〉 ∧Def(1, ϕ) (1)

Def(σ, �) def= � (2)

Def(σ, ⊥) def= � (3)

Def(σ, Ai)
def= � (4)

Def(σ, ¬Ai)
def= � (5)

Def(σ, α) def= (L〈σ, α〉 → (L〈σ, α1〉 ∧ L〈σ, α2〉)) ∧Def(σ, α1) ∧Def(σ, α2) (6)

Def(σ, β) def= (L〈σ, β〉 → (L〈σ, β1〉 ∨ L〈σ, β2〉)) ∧Def(σ, β1) ∧Def(σ, β2) (7)

Def(σ, πr,j) def= (L〈σ, πr,j〉 → L〈σ.j, πr,j
0 〉) ∧Def(σ.j, πr,j0 ) (8)

Def(σ, νr) def=
∧

for every

〈σ,πr,i〉

(
((L〈σ, νr〉 ∧ L〈σ, πr,i〉)→ L〈σ.i, νr

0 〉) ∧ Def(σ.i, νr0)
)

. (9)

Here by “πr,j” we mean that πr,j is the j-th distinct πr formula labeled by σ. Notice that
(6) and (7) generalize to the case of n-ary ∧ and ∨ in the obvious way: if φ is

⊗n
i=1 φi

s.t.
⊗ ∈ {∧,∨}, then Def(σ, φ) def= (L〈σ, φ〉 →

⊗n
i=1 L〈σ, φi〉) ∧

∧n
i=1 Def(σ, φi). Although

conceptually trivial, this fact has an important practical consequence: in order to encode⊗n
i=1 φi one needs adding only one Boolean variable rather than up to n−1, see Section 4.2.

Notice also that in rule (9) the literals of the type L〈σ, πr,i〉 are strictly necessary; in fact, the
SAT problem must consider and encode all the possibly occuring states, but it can be the
case, e.g., that a πr,i formula occurring in a disjunction is assigned to false for a particular
state label σ (which, in SAT, corresponds to assign L〈σ, πr,i〉 to false). In this situation all
the labeled formulas regarding the state label σ.i are useless, in particular those generated
by the expansion of the ν formulas interacting with πr,i. 4

We assume that the Km-formulas are represented as DAGs (Direct Acyclic Graphs),
so that to avoid the expansion of the same Def(σ, ψ) more than once. Then the various
Def(σ, ψ) are expanded in a breadth-first manner wrt. the tree of labels, that is, all
the possible expansions for the same (newly introduced) σ are completed before starting
the expansions for a different state label σ′, and different state label are expanded in the
order they are introduced (thus all the expansions for a given state are always handled
before those of any deeper state). Moreover, following what done by Massacci (2000), we
assume that, for each σ, the Def(σ, ψ)’s are expanded in the order: α/β, π, ν. Thus, each
Def(σ, νr) is expanded after the expansion of all Def(σ, πr,i)’s, so that Def(σ, νr) will

3. We say that the formula is in CNF because we represent clauses as implications, according to the notation
described at the beginning of Section 2.

4. Indeed, (9) is a finite conjunction. In fact the number of π-subformulas is obviously finite and Km

benefits of the finite-tree-model property (see, e.g., Pan et al., 2002; Pan & Vardi, 2003).
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generate one clause ((L〈σ, νr〉 ∧L〈σ, πr,i〉)→ L〈σ.i, νr
0 〉) and one novel definition Def(σ.i, νr0)

for each Def(σ, πr,i) expanded. 5

Intuitively, it is easy to see thatKm2SAT (ϕ) mimics the construction of an SST tableau
expansion (Massacci, 2000; Donini & Massacci, 2000). We have the following fact.

Theorem 1. A Km-formula ϕ is Km-satisfiable if and only if the corresponding Boolean
formula Km2SAT (ϕ) is satisfiable.

The complete proof of Theorem 1 can be found in Appendix A.
Notice that, due to (9), the number of variables and clauses in Km2SAT (ϕ) may grow

exponentially with depth(ϕ). This is in accordance to what was stated by Halpern and
Moses (1992).

Example 3.1 (NNF). Let ϕnnf be (�A1 ∨�(A2 ∨A3)) ∧ �¬A1 ∧ �¬A2 ∧ �¬A3. 6 It
is easy to see that ϕnnf is K1-unsatisfiable: the �-atoms impose that at least one atom Ai
is true in at least one successor of the root state, whilst the �-atoms impose that all atoms
Ai are false in all successor states of the root state. Km2SAT (ϕnnf ) is: 7

1. A〈1, ϕnnf 〉 (1)

2. ∧ ( A〈1, ϕnnf 〉 → (A〈1, �A1∨�(A2∨A3)〉 ∧A〈1, �¬A1〉 ∧A〈1, �¬A2〉 ∧A〈1, �¬A3〉) ) (6)

3. ∧ ( A〈1, �A1∨�(A2∨A3)〉 → (A〈1, �A1〉 ∨A〈1, �(A2∨A3)〉) ) (7)

4. ∧ ( A〈1, �A1〉 → A〈1.1, A1〉 ) (8)

5. ∧ ( A〈1, �(A2∨A3)〉 → A〈1.2, A2∨A3〉 ) (8)

6. ∧ ( (A〈1, �¬A1〉 ∧A〈1, �A1〉)→ ¬A〈1.1, A1〉 ) (9)

7. ∧ ( (A〈1, �¬A2〉 ∧A〈1, �A1〉)→ ¬A〈1.1, A2〉 ) (9)

8. ∧ ( (A〈1, �¬A3〉 ∧A〈1, �A1〉)→ ¬A〈1.1, A3〉 ) (9)

9. ∧ ( (A〈1, �¬A1〉 ∧A〈1, �(A2∨A3)〉)→ ¬A〈1.2, A1〉 ) (9)

10. ∧ ( (A〈1, �¬A2〉 ∧A〈1, �(A2∨A3)〉)→ ¬A〈1.2, A2〉 ) (9)

11. ∧ ( (A〈1, �¬A3〉 ∧A〈1, �(A2∨A3)〉)→ ¬A〈1.2, A3〉 ) (9)

12. ∧ ( A〈1.2, A2∨A3〉 → (A〈1.2, A2〉 ∨A〈1.2, A3〉) ) (7)

After a run of Boolean constraint propagation (BCP), 3. reduces to the implicate disjunc-
tion. If the first element A〈1, �A1〉 is assigned to true, then by BCP we have a conflict on 4.
and 6. If it is set to false, then the second element A〈1, �(A2∨A3)〉 is assigned to true, and
by BCP we have a conflict on 12. Thus Km2SAT (ϕnnf ) is unsatisfiable. �

4. Optimizations

The basic encoding of Section 3 is rather naive, and can be much improved to many extents,
in order to reduce the size of the output propositional formula, or to make it easier to solve
by DPLL, or both. We distinguish two main kinds of optimizations:

5. In practice, even if the definition of Km2SAT is recursive, the Def expansions are performed grouped by
states. More precisely, all the Def(σ.n, ψ) expansions, for any formula ψ and every defined n, are done
together (in the α/β, π, ν order above exposed) and necessarily after that all the Def(σ, ϕ) expansions
have been completed.

6. For K1-formulas we omit the box and diamond indexes, i.e., we write �, � for �1, �1.
7. In all examples we report at the very end of each line, i.e. after each clause, the number of the Km2SAT
encoding rule applied to generate that clause. We also drop the application of the rules (2), (3), (4)
and (5).
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Preprocessing steps, which are applied on the input modal formula before the encoding.
Among them, we have Pre-conversion into BNF (Section 4.1), Atom Normalization
(Section 4.2), Box Lifting (Section 4.3), and Controlled Box Lifting (Section 4.4).

On-the-fly simplification steps, which are applied to the Boolean formula under con-
struction. Among them, we have On-the-fly Boolean Simplification and Truth Prop-
agation Through Boolean Operators (Section 4.5) and Truth Propagation Through
Modal Operators (Section 4.6), On-the-fly Pure-Literal Reduction (Section 4.7), and
On-the-fly Boolean Constraint Propagation (Section 4.8).

We analyze these techniques in detail.

4.1 Pre-conversion into BNF

Many systems use to pre-convert the input Km-formulas into NNF (e.g., Baader et al.,
1994; Massacci, 2000). In our approach, instead, we pre-convert them into BNF (like, e.g.,
Giunchiglia & Sebastiani, 1996; Pan et al., 2002). For our approach, the advantage of the
latter representation is that, when one �rψ occurs both positively and negatively (like, e.g.,
in (�rψ ∨ ...) ∧ (¬�rψ ∨ ...) ∧ ...), then both occurrences of �rψ are labeled by the same
Boolean atom A〈σ, �rψ〉, and hence they are always assigned the same truth value by DPLL.
With NNF, instead, the negative occurrence ¬�rψ is rewritten into �r(nnf(¬ψ)), so that
two distinct Boolean atoms A〈σ, �r(nnf(ψ))〉 and A〈σ, �r(nnf(¬ψ))〉 are generated; DPLL can
assign them the same truth value, creating a hidden conflict which may require some extra
Boolean search to reveal. 8

Example 4.1 (BNF). We consider the BNF variant of the ϕnnf formula of Example 3.1,
ϕbnf = (¬�¬A1 ∨ ¬�(¬A2 ∧ ¬A3)) ∧ �¬A1 ∧ �¬A2 ∧ �¬A3. As before, it is easy to
see that ϕbnf is K1-unsatisfiable. Km2SAT (ϕbnf ) is: 9

1. A〈1, ϕbnf 〉 (1)

2. ∧ ( A〈1, ϕbnf 〉 → (A〈1, (¬�¬A1∨¬�(¬A2∧¬A3))〉 ∧A〈1, �¬A1〉 ∧A〈1, �¬A2〉 ∧A〈1, �¬A3〉)) (6)

3. ∧ ( A〈1, (¬�¬A1∨¬�(¬A2∧¬A3))〉 → (¬A〈1, �¬A1〉 ∨ ¬A〈1, �(¬A2∧¬A3)〉) ) (7)

4. ∧ ( ¬A〈1, �¬A1〉 → A〈1.1, A1〉 ) (8)

5. ∧ ( ¬A〈1, �(¬A2∧¬A3)〉 → ¬A〈1.2, (¬A2∧¬A3)〉 ) (8)

6. ∧ ( (A〈1, �¬A1〉 ∧ ¬A〈1, �¬A1〉)→ ¬A〈1.1, A1〉 ) (9)

7. ∧ ( (A〈1, �¬A2〉 ∧ ¬A〈1, �¬A1〉)→ ¬A〈1.1, A2〉 ) (9)

8. ∧ ( (A〈1, �¬A3〉 ∧ ¬A〈1, �¬A1〉)→ ¬A〈1.1, A3〉 ) (9)

9. ∧ ( (A〈1, �¬A1〉 ∧ ¬A〈1, �(¬A2∧¬A3)〉)→ ¬A〈1.2, A1〉 ) (9)

10. ∧ ( (A〈1, �¬A2〉 ∧ ¬A〈1, �(¬A2∧¬A3)〉)→ ¬A〈1.2, A2〉 ) (9)

11. ∧ ( (A〈1, �¬A3〉 ∧ ¬A〈1, �(¬A2∧¬A3)〉)→ ¬A〈1.2, A3〉 ) (9)

12. ∧ ( ¬A〈1.2, (¬A2∧¬A3)〉 → (A〈1.2, A2〉 ∨A〈1.2, A3〉) ) (7)

Unlike with the NNF formula ϕnnf in Example 3.1, Km2SAT (ϕbnf ) is found unsatisfiable
directly by BCP. In fact, the unit-propagation of A〈1, �¬A1〉 from 2. causes ¬A〈1, �¬A1〉 in

8. Notice that this consideration holds for every representation involving both boxes and diamonds; we
refer to NNF simply because it is the most popular of these representations.

9. Notice that the valid clause 6. can be dropped. See the explanation in Section 4.5.
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3. to be false, so that one of the two (unsatisfiable) branches induced by the disjunction
is cut a priori. With ϕnnf , Km2SAT does not recognize �¬A1 and �A1 to be one the
negation of the other, so that two distinct atoms A〈1, �¬A1〉 and A〈1, �A1〉 are generated.
Hence A〈1, �¬A1〉 and A〈1, �A1〉 cannot be recognized by DPLL to be one the negation of
the other, s.t. DPLL may need exploring one Boolean branch more. �

In the following we will assume the formulas are in BNF (although most of the opti-
mizations which follow work also for other representations).

4.2 Normalization of Modal Atoms

One potential source of inefficiency for DPLL-based procedures is the occurrence in the
input formula of semantically-equivalent though syntactically-different modal atoms ψ′ and
ψ′′ (e.g., �1(A1 ∨ A2) and �1(A2 ∨ A1)), which are not recognized as such by Km2SAT .
This causes the introduction of duplicated Boolean atoms A〈σ, ψ′〉 and A〈σ, ψ′′〉 and —much
worse— of duplicated subformulas Def(σ, ψ′) and Def(σ, ψ′′). This fact can have very
negative consequences, in particular when ψ′ and ψ′′ occur with negative polarity, because
this causes the creation of distinct versions of the same successor states, and the duplication
of whole parts of the output formula.

Example 4.2. Consider the Km-formula (φ1 ∨¬�1(A2 ∨A1))∧ (φ2 ∨¬�1(A1 ∨A2))∧ φ3,
s.t. φ1, φ2, φ3 are possibly-big Km-formulas. Then Km2SAT creates two distinct atoms
A〈1, ¬�1(A2∨A1)〉 and A〈1, ¬�1(A1∨A2)〉 and two distinct formulas Def(1, ¬�1(A2 ∨A1)) and
Def(1, ¬�1(A1 ∨A2)). The latter will cause the creation of two distinct states 1.1 and 1.2.
Thus, the recursive expansion of all �1-formulas occurring positively in φ1, φ2, φ3 will be
duplicated for these two states. �

In order to cope with this problem, as done by Giunchiglia and Sebastiani (1996), we
apply some normalization steps to modal atoms with the intent of rewriting as many as
possible syntactically-different but semantically-equivalent modal atoms into syntactically-
identical ones. This can be achieved by a recursive application of some simple validity-
preserving rewriting rules.

Sorting: modal atoms are internally sorted according to some criterion, so that atoms
which are identical modulo reordering are rewritten into the same atom (e.g., �i(ϕ2∨
ϕ1) and �i(ϕ1 ∨ ϕ2) are both rewritten into �i(ϕ1 ∨ ϕ2)).

Flattening: the associativity of ∧ and ∨ is exploited and combinations of ∧’s or ∨’s are
“flattened” into n-ary ∧’s or ∨’s respectively (e.g., �i(ϕ1 ∨ (ϕ2 ∨ ϕ3)) and �i((ϕ1 ∨
ϕ2) ∨ ϕ3) are both rewritten into �i(ϕ1 ∨ ϕ2 ∨ ϕ3)).

Flattening has also the advantage of reducing the number of novel atoms introduced in the
encoding, as a consequence of the fact noticed in Section 3. One possible drawback of this
technique is that it can reduce the sharing of subformulas (e.g., with �i((ϕ1 ∨ ϕ2) ∨ ϕ3)
and �i((ϕ1 ∨ϕ2)∨ϕ4), the common part is no more shared). However, we have empirically
experienced that this drawback is negligible wrt. the advantages of flattening.
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4.3 Box Lifting

As second preprocessing the Km-formula can also be rewritten by recursively applying the
Km-validity-preserving “box lifting rules”:

(�rϕ1 ∧�rϕ2) =⇒ �r(ϕ1 ∧ ϕ2), (¬�rϕ1 ∨ ¬�rϕ2) =⇒ ¬�r(ϕ1 ∧ ϕ2). (10)

This has the potential benefit of reducing the number of πr formulas, and hence the number
of labels σ.i to take into account in the expansion of the Def(σ, νr)’s (9). We call lifting
this preprocessing.

Example 4.3 (Box lifting). If we apply the rules (10) to the formula of Example 4.1,
then we have ϕbnflift = ¬�(¬A1 ∧ ¬A2 ∧ ¬A3) ∧ �(¬A1 ∧ ¬A2 ∧ ¬A3). Consequently,
Km2SAT (ϕbnflift) is:

1. A〈1, ϕbnflift〉 (1)

2. ∧ ( A〈1, ϕbnflift〉 → (¬A〈1, �(¬A1∧¬A2∧¬A3)〉 ∧A〈1, �(¬A1∧¬A2∧¬A3)〉) ) (6)

3. ∧ ( ¬A〈1, �(¬A1∧¬A2∧¬A3)〉 → ¬A〈1.1, (¬A1∧¬A2∧¬A3)〉 ) (8)

4. ∧ (( A〈1, �(¬A1∧¬A2∧¬A3)〉 ∧ ¬A〈1, �(¬A1∧¬A2∧¬A3)〉)→ A〈1.1, (¬A1∧¬A2∧¬A3)〉 ) (9)

5. ∧ ( ¬A〈1.1, (¬A1∧¬A2∧¬A3)〉 → (A〈1.1, A1〉 ∨A〈1.1, A2〉 ∨A〈1.1, A3〉) ) (7)

6. ∧ ( A〈1.1, (¬A1∧¬A2∧¬A3)〉 → (¬A〈1.1, A1〉 ∧ ¬A〈1.1, A2〉 ∧ ¬A〈1.1, A3〉) ). (6)

Km2SAT (ϕbnflift) is found unsatisfiable directly by BCP on clauses 1. and 2.. Only one
successor state (1.1) is considered. Notice that 3., 4., 5. and 6. are redundant, because 1.
and 2. alone are unsatisfiable. 10 �

4.4 Controlled Box Lifting

One potential drawback of applying the lifting rules is that, by collapsing the formula
(�rϕ1 ∧�rϕ2) into �r(ϕ1 ∧ϕ2) and (¬�rϕ1 ∨¬�rϕ2) into ¬�r(ϕ1 ∧ϕ2), the possibility of
sharing box subformulas in the DAG representation of the input Km-formula is reduced.

In order to cope with this problem we provide an alternative policy for applying box
lifting, that is, to apply the rules (10) only when neither box subformula occurring in the
implicant in (10) has multiple occurrences. We call this policy controlled box lifting.

Example 4.4 (Controlled Box Lifting). We apply Controlled Box Lifting to the formula of
Example 4.1, then we have ϕbnfclift = (¬�¬A1∨¬�(¬A2∧¬A3)) ∧ �¬A1∧�(¬A2∧¬A3)
since the rules (10) are applied among all the box subformulas except for �¬A1, which is

10. In our actual implementation, trivial cases like ϕbnflift are found to be unsatisfiable directly during the
construction of the DAG representations, so their encoding is never generated.
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shared. It follows that Km2SAT (ϕbnfclift) is:

1. A〈1, ϕbnfclift〉 (1)

2. ∧ ( A〈1, ϕbnfclift〉 → (A〈1, (¬�¬A1∨¬�(¬A2∧¬A3))〉 ∧A〈1, �¬A1〉 ∧A〈1, �(¬A2∧¬A3)〉 ) (6)

3. ∧ ( A〈1, (¬�¬A1∨¬�(¬A2∧¬A3))〉 → (¬A〈1, �¬A1〉 ∨ ¬A〈1, �(¬A2∧¬A3)〉) ) (7)

4. ∧ ( ¬A〈1, �¬A1〉 → A〈1.1, A1〉 ) (8)

5. ∧ ( ¬A〈1, �(¬A2∧¬A3)〉 → ¬A〈1.2, (¬A2∧¬A3)〉 ) (8)

6. ∧ ( (A〈1, �¬A1〉 ∧ ¬A〈1, �¬A1〉)→ ¬A〈1.1, A1〉 ) (9)

7. ∧ ( (A〈1, �(¬A2∧¬A3)〉 ∧ ¬A〈1, �¬A1〉)→ A〈1.1, (¬A2∧¬A3)〉 ) (9)

8. ∧ ( (A〈1, �¬A1〉 ∧ ¬A〈1, �(¬A2∧¬A3)〉)→ ¬A〈1.2, A1〉 ) (9)

9. ∧ ( (A〈1, �(¬A2∧¬A3)〉 ∧ ¬A〈1, �(¬A2∧¬A3)〉)→ A〈1.2, (¬A2∧¬A3)〉 ) (9)

10. ∧ ( A〈1.1, (¬A2∧¬A3)〉 → (¬A〈1.1, A2〉 ∧ ¬A〈1.1, A3〉) ) (6)

11. ∧ ( ¬A〈1.2, (¬A2∧¬A3)〉 → (A〈1.2, A2〉 ∨A〈1.2, A3〉) ) (7)

12. ∧ ( A〈1.2, (¬A2∧¬A3)〉 → (¬A〈1.2, A2〉 ∧ ¬A〈1.2, A3〉) ) (6)

Km2SAT (ϕbnfclift) is found unsatisfiable directly by BCP on clauses 1., 2. and 3.. Notice
that the unit propagation of A〈1, �¬A1〉 and A〈1, �(¬A2∧¬A3)〉 from 2. causes the implicate
disjunction in 3. to be false. �

4.5 On-the-fly Boolean Simplification and Truth Propagation

A first straightforward on-the-fly optimization is that of applying recursively the standard
rewriting rules for the Boolean simplification of the formula like, e.g.,

〈σ, ϕ〉 ∧ 〈σ, ϕ〉 =⇒ 〈σ, ϕ〉, 〈σ, ϕ〉 ∨ 〈σ, ϕ〉 =⇒ 〈σ, ϕ〉,
〈σ, ϕ1〉 ∧ 〈σ, (ϕ1 ∨ ϕ2)〉 =⇒ 〈σ, ϕ1〉, 〈σ, ϕ1〉 ∨ 〈σ, (ϕ1 ∧ ϕ2)〉 =⇒ 〈σ, ϕ1〉,
〈σ, ϕ〉 ∧ ¬〈σ, ϕ〉 =⇒ 〈σ,⊥〉, 〈σ, ϕ〉 ∨ ¬〈σ, ϕ〉 =⇒ 〈σ,�〉,
...,

and for the propagation of truth/falsehood through Boolean operators like, e.g.,

¬〈σ,⊥〉 =⇒ 〈σ,�〉, ¬〈σ,�〉 =⇒ 〈σ,⊥〉,
〈σ, ϕ〉 ∧ 〈σ,�〉 =⇒ 〈σ, ϕ〉, 〈σ, ϕ〉 ∧ 〈σ,⊥〉 =⇒ 〈σ,⊥〉,
〈σ, ϕ〉 ∨ 〈σ,�〉 =⇒ 〈σ,�〉, 〈σ, ϕ〉 ∨ 〈σ,⊥〉 =⇒ 〈σ, ϕ〉,
....

Example 4.5. If we consider the Km-formula ϕbnflift = ¬�(¬A1 ∧ ¬A2 ∧ ¬A3) ∧
�(¬A1 ∧ ¬A2 ∧ ¬A3) of Example 4.3 and we apply the Boolean simplification rule 〈σ, ϕ〉 ∧
¬〈σ, ϕ〉 =⇒ 〈σ,⊥〉, then 〈σ, ϕbnflift〉 is simplified into 〈σ,⊥〉. �

One important subcase of on-the-fly Boolean simplification avoids the useless encoding
of incompatible πr and νr formulas. In BNF, in fact, the same subformula �rψ may occur
in the same state σ both positively and negatively (like πr = ¬�rψ and νr = �rψ). If
so, Km2SAT labels both those occurrences of �rψ with the same Boolean atom A〈σ, �rψ〉,
and produces recursively two distinct subsets of clauses in the encoding, by applying (8)
to ¬�rψ and (9) to �rψ respectively. However, the latter step (9) generates a valid clause
(A〈σ, �rψ〉 ∧ ¬A〈σ, �rψ〉) → A〈σ.i, ψ〉, so that we can avoid generating it. Consequently, if
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A〈σ.i, ψ〉 no more occurs in the formula, then Def(σ.i, ψ) should not be generated, as there
is no more need of defining 〈σ.i, ψ〉. 11

Example 4.6. If we apply this observation in the construction of the formulas of Examples
4.1 and 4.4, we have the following facts:

• In the formulaKm2SAT (ϕbnf ) of Example 4.1, clause 6. is valid and thus it is dropped.

• In the formula Km2SAT (ϕbnfclift) of Example 4.4, both valid clauses 6. and 9. are
dropped, so that 12. is not generated. �

Hereafter we assume that on-the-fly Boolean simplification is applied also in combination
with the techniques described in the next sections.

4.6 On-the-fly Truth Propagation Through Modal Operators

Truth and falsehood —which can derive by the application of the techniques in Section 4.5,
Section 4.7 and Section 4.8— may be propagated on-the-fly also though modal operators.
First, for every σ, both positive and negative instances of 〈σ, �r�〉 can be safely simplified
by applying the rewriting rule 〈σ, �r�〉 =⇒ 〈σ,�〉.
Second, we notice the following fact. When we have a positive occurrence of 〈σ,¬�r⊥〉

for some σ (we suppose wlog. that we have only that πr-formula for σ), 12 by definition of
(8) and (9) we have

Def(σ, ¬�r⊥) = (L〈σ, ¬�r⊥〉 → A〈σ.j, �〉) ∧Def(σ.j, �), (11)
Def(σ, �rψ) = ((L〈σ, �rψ〉 ∧ L〈σ, ¬�r⊥〉)→ L〈σ.j, ψ〉) ∧Def(σ.j, ψ) (12)

for some new label σ.j and for every �rψ occurring positively in σ. Def(σ, ¬�r⊥) reduces
to � because both A〈σ.j, �〉 and Def(σ.j, �) reduce to �. If at least another distinct π-
formula ¬�rϕ occurs positively in σ, however, there is no need for the σ.j label in (11) and
(12) to be a new label, and we can re-use instead the label σ.i introduced in the expansion
of Def(σ, ¬�rϕ), as follows:

Def(σ, ¬�rϕ) = (L〈σ, ¬�rϕ〉 → L〈σ.i, ¬ϕ〉) ∧Def(σ.i, ¬ϕ). (13)

Thus (11) is dropped and, for every 〈σ, �rψ〉 occurring positively, we write:

Def(σ, �rψ) = ((L〈σ, �rψ〉 ∧ L〈σ, ¬�r⊥〉)→ L〈σ.i, ψ〉) ∧Def(σ.i, ψ) (14)

instead of (12). (Notice the label σ.i introduced in (13) rather than the label σ.j of (11).)
This is motivated by the fact that Def(σ, ¬�r⊥) forces the existence of at least one

successor of σ but imposes no constraints on which formulas should hold there, so that
we can use some other already-defined successor state, if any. This fact has the important
benefit of eliminating useless successor states from the encoding.

11. Here the “if” is due to the fact that it may be the case that A〈σ.i, ψ〉 is generated anyway from the
expansion of some other subformula, like, e.g., �r(ψ ∨ φ). If this is the case, Def(σ.i, ψ) must be
generated anyway.

12. E.g., ¬�r⊥ may result from applying the steps of Section 4.1 and of Section 4.5 to ¬�r(�rA1∧�r¬A1).

356



Automated Reasoning in Modal and Description Logics via SAT Encoding

Example 4.7. Let ϕ be the BNF K-formula:

(¬A1 ∨ ¬�A2) ∧ (A1 ∨ ¬�⊥) ∧ (¬A1 ∨A3) ∧ (¬A1 ∨ ¬A3) ∧ (A1 ∨�¬A4) ∧�A4.

ϕ isK-inconsistent, because the only possible assignment is {¬A1,¬�⊥, �¬A4, �A4}, which
is K-inconsistent. Km2SAT (ϕ) is encoded as follows:

1. A〈1, ϕ〉 (1)

2. ∧ (A〈1, ϕ〉 → (A〈1, (¬A1∨¬�A2)〉 ∧A〈1, (A1∨¬�⊥)〉 ∧A〈1, (¬A1∨A3)〉∧
A〈1, (A1∨�¬A4)〉 ∧A〈1, �A4〉)) (6)

3. ∧ (A〈1, (¬A1∨¬�A2)〉 → (¬A〈1, A1〉 ∨ ¬A〈1, �A2〉)) (7)

4. ∧ (A〈1, (A1∨¬�⊥)〉 → (A〈1, A1〉 ∨ ¬A〈1, �⊥〉)) (7)

5. ∧ (A〈1, (¬A1∨A3)〉 → (¬A〈1, A1〉 ∨A〈1, A3〉)) (7)

6. ∧ (A〈1, (¬A1∨¬A3)〉 → (¬A〈1, A1〉 ∨ ¬A〈1, A3〉)) (7)

7. ∧ (A〈1, (A1∨�¬A4)〉 → (A〈1, A1〉 ∨A〈1, �¬A4〉)) (7)

8. ∧ (¬A〈1, �A2〉 → ¬A〈1.1, A2〉) (8)

9. ∧ ((A〈1, �¬A4〉 ∧ ¬A〈1, �A2〉)→ ¬A〈1.1, A4〉) (9)

10. ∧ ((A〈1, �A4〉 ∧ ¬A〈1, �A2〉)→ A〈1.1, A4〉) (9)

11. ∧ (¬A〈1, �⊥〉 → ¬A〈1.1, ⊥〉) (8)

12. ∧ ((A〈1, �¬A4〉 ∧ ¬A〈1, �⊥〉)→ ¬A〈1.1, A4〉) (9)

13. ∧ ((A〈1, �A4〉 ∧ ¬A〈1, �⊥〉)→ A〈1.1, A4〉) (9)

Clause 11. is then simplified into �. (In a practical implementation it is not even generated.)
Notice that in clauses 11., 12. and 13. it is used the label 1.1 of clauses 8., 9. and 10. rather
than a new label 1.2. Thus, only one successor label is generated.
When DPLL is run onKm2SAT (ϕ), by BCP 1. and 2. are immediately satisfied and the

implicants are removed from 3., 4., 5., 6.. Thanks to 5. and 6., A〈1, A1〉 can be assigned only
to false, which causes 3. to be satisfied and forces the assignment of the literals ¬A〈1, �⊥〉,
A〈1, �¬A4〉 by BCP on 3. and 7. and hence of ¬A〈1.1, ⊥〉, ¬A〈1.1, A4〉 and A〈1.1, A4〉 by BCP
on 12. and 13., causing a contradiction. �

It is worth noticing that (14) is strictly necessary for the correctness of the encoding
even when another π-formula occurs in σ. (E.g., in Example 4.7, without 12. and 13. the
formulaKm2SAT (ϕ) would become satisfiable because A〈1, �A2〉 could be safely be assigned
to true by DPLL, which would satisfy 8., 9. and 10..)
Hereafter we assume that this technique is applied also in combination with the tech-

niques described in Section 4.5 and in the next sections.

4.7 On-the-fly Pure-Literal Reduction

Another technique, evolved from that proposed by Pan and Vardi (2003), applies Pure-
Literal Reduction (PLR) on-the-fly during the construction of Km2SAT (ϕ). When for a
label σ all the clauses containing atoms in the form A〈σ, ψ〉 have been generated, if some of
them occurs only positively [resp. negatively], then it can be safely assigned to true [resp.
to false], and hence the clauses containing A〈σ, ψ〉 can be dropped. 13 As a consequence,

13. In our actual implementation this reduction is performed directly within an intermediate data structure,
so that these clauses are never generated.
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some other atom A〈σ, ψ′〉 can become pure, so that the process is repeated until a fixpoint
is reached.

Example 4.8. Consider the formula ϕbnf of Example 4.1. During the construction of
Km2SAT (ϕbnf ), after 1.-8. are generated, no more clause containing atoms in the form
A〈1.1, ψ〉 is to be generated. Then we notice that A〈1.1, A2〉 and A〈1.1, A3〉 occur only neg-
atively, so that they can be safely assigned to false. Therefore, 7. and 8. can be safely
dropped. Same discourse applies lately to A〈1.2, A1〉 and 9.. The resulting formula is found
inconsistent by BCP. (In fact, notice from Example 4.1 that the atoms A〈1.1, A2〉, A〈1.1, A3〉,
and A〈1.2, A1〉 play no role in the unsatisfiability of Km2SAT (ϕbnf ).) �

We remark the differences between PLR and the Pure-Literal Reduction technique pro-
posed by Pan and Vardi (2003). In KBDD (Pan et al., 2002; Pan & Vardi, 2003), the
Pure-Literal Reduction is a preprocessing step which is applied to the input modal formula,
either at global level (i.e. looking for pure-polarity primitive propositions for the whole for-
mula) or, more effectively, at different modal depths (i.e. looking for pure-polarity primitive
propositions for the subformulas at the same nesting level of modal operators).
Our technique is much more fine-grained, as PLR is applied on-the-fly with a single-state

granularity, obtaining a much stronger reduction effect.

Example 4.9. Consider again the BNF Km-formula ϕbnf discussed in Examples 4.1 and
4.8: ϕbnf = (¬�¬A1∨¬�(¬A2∧¬A3)) ∧ �¬A1 ∧ �¬A2 ∧ �¬A3. It is immediate to see
that all primitive propositions A1, A2, A3 occur at every modal depth with both polarities,
so that the technique of Pan and Vardi (2003) produces no effect on this formula. �

4.8 On-the-fly Boolean Constraint Propagation

One major problem of the basic encoding of Section 3 is that it is “purely-syntactic”, that
is, it does not consider the possible truth values of the subformulas, and the effect of their
propagation through the Boolean and modal connectives. In particular, Km2SAT applies
(8) [resp. (9)] to every π-subformula [resp. ν-subformula], regardless the fact that the truth
values which can be deterministically assigned to the labeled subformulas of 〈1, ϕ〉 may
allow for dropping some labeled π-/ν-subformulas, and thus prevent the need of encoding
them.
One solution to this problem is that of applying Boolean Constraint Propagation (BCP)

on-the-fly during the construction of Km2SAT (ϕ), starting from the fact that A〈1, ϕ〉 must
be true. If a contradiction is found, then Km2SAT (ϕ) is unsatisfiable, so that the formula is
not expanded any further, and the encoder returns the formula “⊥”. 14 When BCP allows
for dropping one implication in (6)-(9) without assigning some of its implicate literals,
namely L〈σ, ψi〉, then 〈σ, ψi〉 needs not to be defined, so that Def(σ, ψi) must not be
expanded. 15 Importantly, dropping Def(σ, πr,j) for some π-formula 〈σ, πr,j〉 prevents
generating the label σ.j (8) and all its successor labels σ.j.σ′ (corresponding to the subtree
of states rooted in σ.j), so that all the corresponding labeled subformulas are not encoded.

14. For the sake of compatibility with standard SAT solvers, our actual implementation returns the formula
A1 ∧ ¬A1.

15. Here we make the same consideration as in Footnote 11: if L〈σ.j, ψ〉 is generated also from the expansion
of some other subformula, (e.g., �r(ψ ∨ φ)), then (another instance of) Def(σ.i, ψ) must be generated
anyway.
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Example 4.10. Consider Example 4.1, and suppose we apply on-the-fly BCP. During the
construction of 1., 2. and 3. inKm2SAT (ϕbnf ), the atoms A〈1, ϕbnf 〉, A〈1, (¬�¬A1∨¬�(¬A2∧¬A3))〉,
A〈1, �¬A1〉, A〈1, �¬A2〉 and A〈1, �¬A3〉 are deterministically assigned to true by BCP. This
causes the removal from 3. of the first-implied disjunct ¬A〈1, �¬A1〉, so that there is no need
to generate Def(1, ¬�¬A1), and hence label 1.1. is not defined and 4. is not generated.
While building 5., A〈1.2, (¬A2∧¬A3)〉, is unit-propagated. As label 1.1. is not defined, 6.,
7. and 8. are not generated. Then during the construction of 5., 9., 10., 11. and 12., by
applying BCP a contradiction is found, so that Km2SAT (ϕ) is ⊥.
An analogous situation happens with ϕbnflift in Example 4.3: while building 1. and 2.

a contradiction is found by BCP, s.t. Km2SAT returns ⊥ without expanding the formula
any further. Same discourse holds for ϕbnfclift in Example 4.4: while building 1., 2. and 3.
a contradiction is found by BCP, s.t. Km2SAT returns ⊥ without expanding the formula
any further. �

4.9 A Paradigmatic Example: Halpern & Moses Branching Formulas.

Among all optimizations described in this Section 4, on-the-fly BCP is by far the most
effective. In order to better understand this fact, we consider as a paradigmatic example
the branching formulas ϕKh by Halpern and Moses (1992, 1995) (also called “k branch n”
in the set of benchmark formulas proposed by Heuerding and Schwendimann, 1996) and
their unsatisfiable version (called “k branch p” in the above-mentioned benchmark suite).
Given a single modality �, an integer parameter h, and the primitive propositions

D0, . . . , Dh+1, P1, . . . , Ph, the formulas ϕKh are defined as follows:
16

ϕKh
def= D0 ∧ ¬D1 ∧

h∧
i=0

�i(depth ∧ determined ∧ branching), (15)

depth
def=

h+1∧
i=1

(Di → Di−1), (16)

determined
def=

h∧
i=1

(
Di →

(
( Pi → �(Di → Pi)) ∧
(¬Pi → �(Di → ¬Pi))

) )
, (17)

branching
def=

h−1∧
i=0

(
(Di ∧ ¬Di+1) →

(
�(Di+1 ∧ ¬Di+2 ∧ Pi+1) ∧
�(Di+1 ∧ ¬Di+2 ∧ ¬Pi+1)

) )
. (18)

A conjunction of the formulas depth, determined and branching is repeated at every
nesting level of modal operators (i.e. at every depth): depth captures the relation between
the Di’s at every level; determined states that, if Pi is true [false] in a state at depth ≥ i,
then it is true [false] in all the successor states of depth ≥ i; branching states that, for every
node at depth i, it is possible to find two successor states at depth i+ 1 such that Pi+1 is
true in one and false in the other. For each value of the parameter h, ϕKh is K-satisfiable,
and every Kripke model M that satisfies it has at least 2h+1− 1 states. In fact, ϕKh is build
in such a way to force the construction of a binary-tree Kripke model of depth h+1, each of

16. For the sake of better readability, here we adopt the description given by Halpern and Moses (1992)
without converting the formulas into BNF. This fact does not affect the discussion.
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whose leaves encodes a distinct truth assignment to the primitive propositions P1, . . . , Ph,
whilst each Di is true in all and only the states occurring at a depth ≥ i in the tree (and
thus denotes the level of nesting).
The unsatisfiable counterpart formulas proposed by Heuerding and Schwendimann (1996)

(whose negations are the valid formulas called k branch p in the previously-mentioned
benchmark suite, which are exposed in more details in Section 5.1.1) are obtained by con-
joining to (15) the formula:

�hP
h
3
�+1 (19)

(where �x� is the integer part of x) which forces the atom P
h
3
�+1 to be true in all depth-h

states of the candidate Kripke model, which is incompatible with the fact that the remaining
specifications say that it has to be false in half depth-h states. 17

These formulas are very pathological for many approaches (Giunchiglia & Sebastiani,
2000; Giunchiglia, Giunchiglia, Sebastiani, & Tacchella, 2000; Horrocks et al., 2000). In par-
ticular, before introducing on-the-fly BCP, they used to be the pet hate of our Km2SAT ap-
proach, as they caused the generation of huge Boolean formulas. In fact, due to branching
(18), ϕKh contains 2h �-formulas (i.e., π-formulas) at every depth. Therefore, the Km2SAT
encoder of Section 3 has to consider 1+ 2h+ (2h)2 + ...+ (2h)h+1 = ((2h)h+2 − 1)/(2h− 1)
distinct labels, which is about hh+1 times the number of those labeling the states which
are actually needed. (None of the optimizations of Sections 4.1-4.7 is of any help with
these formulas, because neither BNF encoding nor atom normalization causes any sharing
of subformulas, the formulas are already in lifted form, and no literal occurs pure. 18)
This pathological behavior can be mostly overcome by applying on-the-fly-BCP, because

some truth values can be deterministically assigned to some subformulas of ϕKh by on-the-
fly-BCP, which prevent encoding some or even most �/�-subformulas.
In fact, consider the branching and determined formulas occurring in ϕKh at a generic

depth d ∈ {0...h}, which determine the states at level d in the tree. As in these states
D0, ..., Dd are forced to be true and Dd+1, ..., Dh+1 are forced to be false, then all but the
d-th conjunct in branching (all conjuncts if d = h) are forced to be true and thus they
could be dropped. Therefore, only 2 �-formulas per non-leaf level could be considered
instead, causing the generation of 2h+1 − 1 labels overall. Similarly, in all states at level d
the last h−d conjuncts in determined are forced to be true and could be dropped, reducing
significantly the number of �-formulas to be considered.
It is easy to see that this is exactly what happens by applying on-the-fly-BCP. In fact,

suppose that the construction of Km2SAT (ϕKh ) has reached depth d (that is, the point
where for every state σ at level d, the Def(σ, α)’s and Def(σ, β)’s are expanded but no
Def(σ, π) and Def(σ, ν) is expanded yet). Then, BCP deterministically assigns true to the
literals L〈σ, D0〉, ..., L〈σ, Dd〉 and false to L〈σ, Dd+1〉, ..., L〈σ, Dh+1〉, which removes all but one
conjuncts in branching, so that only two Def(σ, π)’s out of 2h ones are actually expanded;
similarly, the last h − d conjuncts in determined are removed, so that the corresponding
Def(σ, ν)’s are not expanded.

17. Heuerding and Schwendimann do not explain the choice of the index “
h
3
� + 1”. We understand that

also other choices would have done the job.
18. More precisely, only one literal, ¬Dh+1, occurs pure in branching, but assigning it plays no role in

simplifying the formula.
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Figure 2: Empirical analysis of Km2SAT on Halpern & Moses formulas wrt. the depth
parameter h, for different options of the encoder. 1st row: k branch n, corre-
sponding to Km2SAT (ϕKh ), formulas (satisfiable); 2nd row: k branch p, corre-
sponding to Km2SAT (ϕKh ∧ �hP
h

3
�+1), formulas (unsatisfiable). Left: number

of Boolean variables; center: number of clauses; right: total CPU time requested
to encoding+solving (where the solving step has been performed through Rsat).
See Section 5 for more technical details.
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As far as the unsatisfiable version Km2SAT (ϕKh ∧ �hP
h
3
�+1) is concerned, when the

expansion reaches depth h, thanks to (19), L〈σ, P�h
3 �+1

〉 is generated and deterministically

assigned to true by BCP for every depth-h label σ; thanks to determined and branching,
BCP assigns all literals L〈σ, P1〉, ..., L〈σ, Ph〉 deterministically, so that L〈σ, P�h

3 �+1
〉 is assigned

to false for 50% of the depth-h labels σ. This causes a contradiction, so that the encoder
stops the expansion and returns ⊥.
Figure 2 shows the growth in size and the CPU time required to encode and solve

Km2SAT (ϕKh ) (1st row) and Km2SAT (ϕKh ∧ �hP
h
3
�+1) (2nd row) wrt. the parameter h,

for eight combinations of the following options of the encoder: with and without box-lifting,
with and without on-the-fly PLR, with and without on-the-fly BCP. (Notice the log scale
of the y axis.) In Figure 2(d) the plots of the four versions “-xxx-bcp” (with on-the-fly
BCP) coincide with the line of value 1 (i.e, one variable) and in Figure 2(e) they coincide
with an horizontal line of value 2 (i.e, two clauses), corresponding to the fact that the
1-variable/2-clause formula A1 ∧ ¬A1 is returned (see Footnote 14).
We notice a few facts. First, for both formulas, the eight plots always collapse into two

groups of overlapping plots, representing the four variants with and without on-the-fly BCP
respectively. This shows that box-lifting and on-the-fly PLR are almost irrelevant in the
encoding of these formulas, causing just little variations in the time required by the encoder
(Figures 2(c) and 2(f)); notice that enabling on-the-fly PLR alone permits to encode (but
not to solve) only one problem more wrt. the versions without both on-the-fly PLR and
BCP. Second, the four versions with on-the-fly-BCP always outperform of several orders
magnitude these without this option, in terms of both size of encoded formulas and of CPU
time required to encode and solve them. In particular, in the case of the unsatisfiable
variant (Figure 2, second row) the encoder returns the ⊥ formula, so that no actual work
is required to the SAT solver (the plot of Figure 2(f) refers only to encoding time).

5. Empirical Evaluation

In order to verify empirically the effectiveness of this approach, we have performed a very-
extensive empirical test session on about 14,000 Km/ALC formulas. We have implemented
the encoder Km2SAT in C++, with some flags corresponding to the optimizations ex-
posed in the previous section: (i) NNF/BNF, performing a pre-conversion into NNF/BNF
before the encoding; (ii) lift/ctrl.lift/nolift, performing respectively Box Lifting,
Controlled Box Lifting or no Box Lifting before the encoding; (iii) plr if on-the-fly Pure
Literal Reduction is performed and (iv) bcp if on-the-fly Boolean Constraint Propagation
is performed. The techniques introduced in Section 4.2, Section 4.5 and Section 4.6 are
hardwired in the encoder. Moreover, as pre-conversion into BNF almost always produces
smaller formulas than NNF, we have set the BNF flag as a default.
In combination with Km2SAT we have tried several SAT solvers on our encoded for-

mulas (including Zchaff 2004.11.15, Siege v4, BerkMin 5.6.1,MiniSat v1.13, SAT-
Elite v1.0, SAT-Elite GTI 2005 submission 19,MiniSat 2.0 061208 and Rsat 1.03).

19. In the preliminary evaluation of the available SAT solvers we have also tried SAT-Elite as a preprocessor
to reduce the size of the SAT formula generated by Km2SAT without the bcp option before to solve it.
However, even if the preprocessing can signinificantly reduce the size of the formula, it has turned out
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After a preliminary evaluation and further intensive experiments we have selected Rsat 1.03
(Pipatsrisawat & Darwiche, 2006), because it produced the best overall performances on
our benchmark suites (although the performance gaps wrt. other SAT tools, e.g. MiniSat
2.0, were not dramatic).
We have downloaded the available versions of the state-of-the-art tools forKm-satisfiability.

After an empirical evaluation 20 we have selected Racer 1-7-24 (Haarslev & Moeller, 2001)
and *SAT 1.3 (Tacchella, 1999) as the best representatives of the tableaux/DPLL-based
tools, Mspass v 1.0.0t.1.3 (Hustadt & Schmidt, 1999; Hustadt et al., 1999) 21 as the
best representative of the FOL-encoding approach, KBDD (unique version) (Pan et al.,
2002; Pan & Vardi, 2003) 22 as the representative of the automata-theoretic approach. No
representative of the CSP-based and of the inverse method approaches could be used. 23

Notice that all these tools but Racer are experimental tools, as far as Km2SAT which is
a prototype, and many of them (e.g. *SAT and KBDD) are no longer maintained.
Finally, as representative of the QBF-encoding approach, we have selected the K-QBF

translator (Pan & Vardi, 2003) combined with the sKizzo version 0.8.2 QBF solver
(Benedetti, 2005), which turned out to be by far 24 the best QBF solver on our bench-
marks among the freely-available QBF solvers from the QBF2006 competition (Narizzano,
Pulina, & Tacchella, 2006). (In our evaluation we have considered the tools : 2clsQ, SQBF,
preQuantor—i.e. preQuel +Quantor— Quantor 2.11, and Semprop 010604.)
All tests presented in this section have been performed on a two-processor Intel Xeon

3.0GHz computer, with 1 MByte Cache each processor, 4 GByte RAM, with Red Hat
Linux 3.0 Enterprise Server, where four processes can run in parallel. When reporting the
results for one Km2SAT +Rsat version, the CPU times reported are the sums of both

that this preprocessing is too time-expensive and that the overall time spent for preprocessing and then
solving the reduced problem is higher than that solving directly the original encoded SAT formula.

20. As we did for the selection of the SAT solver, in order to select the tools to be used in the empirical
evaluation, we have performed a preliminary evaluation on the smaller benchmark suites (i.e. the LWB
and, sometimes, the TANCS 2000 ones; see later). Importantly, from this preliminary evaluation Racer
turned out to be definitely more efficient than FaCT++, being able to solve more problems in less time.
Also, in order to meet the reviewers’ suggestions, we repeated this preliminary evaluation with the latest
versions of FaCT++ (v1.2.3, March 5th, 2009) and the same version of Racer used in this paper.
In this evaluation Racer solves ten more problems than FaCT++ on the LWB benchmark, and over
than one hundred of problems more than FaCT++ on the whole TANCS 2000 suite. Also on �m-CNF
random problems Racer outperforms FaCT++. (We include in the online appendix the plots of this
comparison between Racer and FaCT++.)

21. We have run Mspass with the options -EMLTranslation=2 -EMLFuncNary=1 -Sorts=0

-CNFOptSkolem=0 -CNFStrSkolem=0 -Select=2 -Split=-1 -DocProof=0 -PProblem=0 -PKept=0

-PGiven=0, which are suggested for Km-formulas in the Mspass README file. We have also tried
other options, but the former gave the best performances.

22. KBDD has been recompiled to be run with an increased internal memory bound of 1 GB.
23. At the moment K Kis not freely available, and we failed in the attempt of obtaining it from the authors.

KCSP is a prolog piece of software, which is difficult to compare in performances wrt. other optimized
tools on a common platform; moreover, KCSP is no more maintained since 2005, and it is not com-
petitive wrt. state-of-the-art tools (Brand, 2008). Other tools like leanK, �KE, LWB, Kris are not
competitive with the ones listed above (Horrocks et al., 2000). KSAT (Giunchiglia & Sebastiani, 1996,
2000; Giunchiglia et al., 2000) has been reimplemented into *SAT.

24. Unlike with the choice of SAT solver, the performance gaps from the best choice and the others were
very significant: e.g., in the LWB benchmark (see later), sKizzo was able to solve nearly 90 problems
more than its best QBF competitor.
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the encoding and Rsat solving times. When reporting the results for K-QBF +sKizzo,
the CPU times reported are only due to sKizzo because the time spent by the K-QBF
converter is negligible.
We anticipate that, for all formulas of all benchmark suites, all tools under test —i.e.

all the variants of Km2SAT +Rsat and all the state-of-the-art Km-satisfiability solvers—
agreed on the satisfiability/unsatisfiability result when terminating within the timeout.

Remark 1. Due to the big number of empirical tests performed and to the huge amount
of data plotted, and due to limitations in size, and in order to to make the plots clearly
distinguishable in the figures, we have limited the number of plots included in the following
part of the paper, considering only the most meaningful ones and those regarding the most
challenging benchmark problems faced. For the sake of the reader’s convenience, however,
full-size versions of all plots and many other plots regarding the not-exposed results (also
on the easier problems), are available in the online appendix, together with the files with
all data. When discussing the empirical evaluation we may include in our considerations
also these results.

5.1 Test Description

We have performed our empirical evaluation on three different well-known benchmarks
suites of Km/ALC problems: the LWB (Heuerding & Schwendimann, 1996), the ran-
dom �m-CNF (Horrocks et al., 2000; Patel-Schneider & Sebastiani, 2003) and the TANCS
2000 (Massacci & Donini, 2000) benchmark suites. We are not aware of any other publicly-
available benchmark suite onKm/ALC-satisfiability from the literature. These three groups
of benchmark formulas allow us to test the effectiveness of our approach on a large number
of problems of various sizes, depths, hardness and characteristics, for a total amount of
about 14,000 formulas.
In particular, these benchmark formulas allow us to fairly evaluate the different tools

both on the modal component and on the Boolean component of reasoning which are in-
trinsic in the Km-satisfiability problem, as we discuss later in Section 5.4.
In the following we describe these three benchmark suites.

5.1.1 The LWB Benchmark Suite

As a first group of benchmark formulas we used the LWB benchmark suite used in a
comparison at Tableaux’98 (Heuerding & Schwendimann, 1996). It consists of 9 classes of
parametrized formulas (each in two versions, provable “ p” or not-provable “ n” 25), for a
total amount of 378 formulas. The parameter allows for creating formulas of increasing size
and difficulty.
The benchmark methodology is to test formulas from each class, in increasing difficulty,

until one formula cannot be solved within a given timeout, 1000 seconds in our tests. 26

The result from this class is the parameter’s value of the largest (and hardest) formula that
can be solved within the time limit. The parameter ranges only from 1 to 21 so that, if a

25. Since all tools check Km-(un)satisfiability, all formulas are negated, so that the negations of the provable
formulas are checked to be unsatisfiable, whilst the negation of the other formulas are checked to be
satisfiable.

26. We also set a 1 GB file-size limit for the encoding produced by Km2SAT .
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system can solve all 21 instances of a class, the result is given as 21. For a discussion on this
benchmark suite, we refer the reader to the work of Heuerding and Schwendimann (1996)
and of Horrocks et al. (2000).

5.1.2 The Random �m-CNF Benchmark Suite

As a second group of benchmark formulas, we have selected the random �m-CNF testbed
described by Horrocks et al. (2000), and Patel-Schneider and Sebastiani (2003). This is
a generalization of the well-known random k-SAT test methods, and is the final result of
a long discussion in the communities of modal and description logics on how to to obtain
significant and flawless random benchmarks for modal/description logics (Giunchiglia &
Sebastiani, 1996; Hustadt & Schmidt, 1999; Giunchiglia et al., 2000; Horrocks et al., 2000;
Patel-Schneider & Sebastiani, 2003).
In the �m-CNF test methodology, a �m-CNF formula is randomly generated according

to the following parameters:

• the (maximum) modal depth d;

• the number of top-level clauses L;

• the number of literal per clause clauses k;

• the number of distinct propositional variables N ;

• the number of distinct box symbols m;

• the percentage p of purely-propositional literals in clauses occurring at depth < d, s.t.
each clause of length k contains on average p · k randomly-picked Boolean literals and
k − p · k randomly-generated modal literals �rψ, ¬�rψ. 27

(We refer the reader to the works of Horrocks et al., 2000, and Patel-Schneider & Sebastiani,
2003 for a more detailed description.)
A typical problem set is characterized by fixed values of d, k, N , m, and p: L is

varied in such a way as to empirically cover the “100% satisfiable / 100% unsatisfiable”
transition. In other words, many problems with the same values of d, k, N, m, and p but an
increasing number of clauses L are generated, starting from really small, typically satisfiable
problems (i.e. with a probability of generating a satisfiable problem near to one) to huge
problems, where the increasing interactions among the numerous clauses typically leads
to unsatisfiable problems (i.e. it makes the probability of generating satisfiable problems
converging to zero). Then, for each tuple of the five values in a problem set, a certain
number of �m-CNF formulas are randomly generated, and the resulting formulas are given
in the input to the procedure under test, with a maximum time bound. The fraction of
formulas which were solved within a given timeout, and the median/percentile values of
CPU times are plotted against the ratio L/N . Also, the fraction of satisfiable/unsatisfiable
formulas is plotted for a better understanding.

27. More precisely, the number of Boolean literals in a clause is 
p · k� (resp. �p · k) with probability
�p · k − p · k (resp. 1 − (�p · k − p · k)). Notice that typically the smaller is p, the harder is the
problem (Horrocks et al., 2000; Patel-Schneider & Sebastiani, 2003).
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Following the methodology proposed by Horrocks et al. (2000), and by Patel-Schneider
and Sebastiani (2003), we have fixed m = 1, k = 3 and 100 samples per point in all tests,
and we have selected two groups: an “easier” one, with d = 1, p = 0.5, N = 6, 7, 8, 9,
L/N = 10..60, and a “harder” one, with d = 2, p = 0.6, 0.5, N = 3, 4, L/N = 30..150 with
p = 0.6 and L/N = 50..140 with p = 0.5, varying the L/N ratio in steps of 5, for a total
amount of 13,200 formulas.
In each test, we imposed a timeout of 500 seconds per sample 28 and we calculated the

number of samples which were solved within the timeout, and the 50%th and 90%th per-
centiles of CPU time. 29 In order to correlate the performances with the (un)satisfiability of
the sample formulas, in the background of each plot we also plot the satisfiable/unsatisfiable
ratio.

5.1.3 The TANCS 2000 Benchmark Suite

Finally, as a third group of benchmark formulas, we used the MODAL PSPACE division
benchmark suite used in the comparison at TANCS 2000 (Massacci & Donini, 2000). It
contains both satisfiable and unsatisfiable formulas, with scalable hardness. In this bench-
mark suite, which we call TANCS 2000, the formulas are constructed by translating QBF
formulas intoK using three translation schemas, namely the Schmidt-Schauss-Smolka trans-
lation (240 problems with many different depths, from 19 to 112), the Ladner translation
(240 problems, again with depths in the same range 19 – 112), and the Halpern translation
(56 problems of depth among: 20, 28, 40, 56, 80 or 112) (Massacci & Donini, 2000). As
done by Massacci and Donini, we call these classes easy, medium and hard respectively.
All formulas from each class are tested within a timeout of 1000 seconds. 30 For each

class, we report the number of solved formulas (X axis) and the total (cumulative) CPU
time spent for solving these formulas (Y axes). For each class the results are plotted sorting
the solved problems from the easiest one to the hardest one.

5.2 An Empirical Comparison of the Different Variants of Km2SAT

We have first evaluated the various variants of the encoding in combination with Rsat. In
order to avoid considering too many combinations of the flags, we have considered the BNF
format, and we have grouped plr and bcp into one parameter plr-bcp, restricting thus
our investigation to 6 combinations: BNF, lift/ctrl.lift/nolift, and plr-bcp on/off.
(We recall that the techniques introduced in Section 4.2, Section 4.5 and Section 4.6 are
hardwired in the encoder.) Here we expose and analyze the results wrt. the three different
suites of benchmark problems.

28. With also a 512 MB file-size limit for the encoding produced by Km2SAT .
29. Due to the lack of space and for the sake of clarity we won’t include in the paper the 90%th percentiles

plots. Further, for the same reasons, we’ll skip to report the plots regarding some of the easiest class of
the benchmark suite (e.g. those with d = 1 and lower values of N). All of these plots, however, can be
found in the online appendix.

30. We also set a 1 GB file-size limit for the encoding produced by Km2SAT .
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5.2.1 Results on the LWB Benchmark Suite

The results on the LWB benchmark suite are summarized in Table 1 and Figure 3.
Table 1(a) reports in the left block the indexes of the hardest formulas encoded within

the file-size limit and, in the right block, those of the hardest formulas solved within the
timeout by Rsat; Table 1(b) reports the numbers of variables and clauses of Km2SAT (ϕ),
referring to the hardest formulas solved within the timeout by Rsat (i.e., those reported
in the right block of Table 1(a)). For instance, the BNF-ctrl.lift-plr-bcp encoding of
k dum n(21) contains 11·106 variables and 14·106 clauses; it is the hardest k dum n problem
solved by Rsat with BNF-ctrl.lift-plr-bcp and it is the first which is not solved with
BNF-ctrl.lift.
Looking at the numbers of cases solved in Table 1(a), we notice that the introduction of

the on-the-fly Pure Literal Reduction and Boolean Constraint Propagation optimizations
is really effective and produces a consistent performance enhancement (the effect of these
optimizations is eye-catching in the branching formulas k branch * – see Section 4.9 – and
in the k path * formulas). We also notice that lift sometimes introduces some slight
further improvement.
The view of Tables 1(a) and 1(b) hides the actual CPU times required to encode and

solve the problems. Small gaps in the numbers of Table 1(a) may correspond to big gaps in
CPU time. In order to analyze also this aspect, in Figure 3 we plotted the total cumulative
amount of CPU time spent by all the variants of Km2SAT +Rsat to solve all the problems
of the LWB benchmark, sorted by hardness. For this plot, we also considered three more
options —BNF, lift/ctrl.lift/nolift, with plr on and bcp off— so that to evaluate
also the effect of plr and bcp separately. We notice that the plots are clearly clustered
into three groups of increasing performance: BNF-*, BNF-*-plr, and BNF-*-plr-bcp., “*”
representing the three options lift/ctrl.lift/nolift. This highlights the fact that on
this suite on-the-fly Pure Literal Reduction significantly improves the performances, that
on-the-fly Boolean Constraint Propagation introduces drastic improvements, and that the
variations due to Box Lifting are minor wrt. the other two optimizations.
Overall, the configuration BNF-lift-plr-bcp turns out to be the best performer on this

suite, with a tiny advantage wrt. BNF-ctrl.lift-plr-bcp.

5.2.2 Results on the Random �m-CNF Benchmark Suite

The results on the random �m-CNF benchmark suite are reported in Figures 4 and 5.
In Figure 4 we report the 50%-percentile CPU times required to encode and solve the

formulas by the different Km2SAT +Rsat variants for the hardest benchmarks problems.
We don’t report the percentage of solved problems since it is always 100%, i.e. Km2SAT
+Rsat terminates within the timeout for every problem in the benchmark suite.
The tests with depth d = 1 (see the results on the hardest problems of the class in the

first row of Figure 4) are simply too easy for Km2SAT +Rsat (but not for its competitors,
see Section 5.3) which solved every sample formula in less than 1 second. Although the
tests exposed in the second and third row of Figure 4 are more challenging, they are all
solved within the timeout as well. We have noticed also that the results are rather regular,
since there are no big gaps between 50%- and 90%-percentile values.
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Km2SAT , encoded Km2SAT + Rsat, solved
plr-bcp plr-bcp

lifting no yes ctrl no yes ctrl no yes ctrl no yes ctrl

k branch n 4 4 4 18 18 18 4 4 4 17 17 17
k branch p 4 4 4 18 18 18 4 4 4 18 18 18
k d4 n 8 8 8 8 9 8 8 8 8 8 8 8
k d4 p 14 14 14 14 14 14 14 14 14 14 14 14
k dum n 20 20 20 21 21 21 20 20 20 21 21 21
k dum p 19 19 19 21 21 21 18 18 18 21 21 21
k grz n 21 21 21 21 21 21 21 21 21 21 21 21
k grz p 21 21 21 21 21 21 21 21 21 21 21 21
k lin n 21 21 21 21 21 21 21 21 21 21 21 21
k lin p 21 21 21 21 21 21 21 21 21 21 21 21
k path n 7 7 7 14 15 14 7 7 7 13 14 13
k path p 8 8 8 15 16 15 8 8 8 15 16 15
k ph n 21 21 21 21 21 21 21 21 21 21 21 21
k ph p 21 21 21 21 21 21 10 11 10 10 10 11
k poly n 21 21 21 21 21 21 21 21 21 21 21 21
k poly p 21 21 21 21 21 21 21 21 21 21 21 21
k t4p n 6 6 6 6 6 6 5 6 5 6 6 6
k t4p p 11 11 11 11 11 11 10 10 10 11 11 11

(a) Indexes of the hardest problems encoded (left)
and of the hardest problems solved (right).

number of variables (·103) number of clauses (·103)
plr-bcp plr-bcp

lifting no yes ctrl no yes ctrl no yes ctrl no yes ctrl

k branch n 1000 1000 1000 20000 20000 20000 1000 1000 1000 23000 23000 23000
k branch p 1000 1000 1000 0 0 0 1000 1000 1000 0 0 0
k d4 n 12000 6000 12000 10000 26000 10000 17000 9000 17000 16000 43000 16000
k d4 p 19000 18000 19000 0 0 0 28000 25000 28000 0 0 0
k dum n 19000 19000 19000 11000 11000 11000 23000 23000 23000 14000 14000 14000
k dum p 11000 11000 11000 20000 19000 20000 14000 13000 14000 26000 25000 26000
k grz n 10 10 10 5 5 5 10 10 10 6 6 6
k grz p 8 8 8 0.2 0.1 0.2 8 8 8 0.3 0.2 0.2
k lin n 30 30 20 20 10 20 50 50 20 30 30 30
k lin p 0 0 0 0 0 0 0 0 0 0 0 0
k path n 11000 12000 11000 10000 7000 10000 13000 14000 13000 14000 9000 13000
k path p 11000 12000 11000 26000 16000 26000 13000 14000 13000 35000 20000 35000
k ph n 50 300 50 50 300 50 50 300 50 50 600 50
k ph p 3 13 3 3 8 4 3 14 3 3 14 5
k poly n 200 20 20 200 20 20 200 20 20 200 20 20
k poly p 200 20 20 200 20 20 200 20 20 200 20 20
k t4p n 4000 21000 4000 17000 14000 17000 4000 22000 4000 20000 17000 20000
k t4p p 12000 10000 12000 20000 18000 20000 12000 11000 12000 24000 21000 24000

(b) # of variables and # of clauses of the hardest problems solved.
Note: Here “0” means that the formula is simplified into ⊥ by Km2SAT .

Table 1: Comparison of the variants of Km2SAT +Rsat on the LWB benchmarks.
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Figure 3: Comparison of different variants of Km2SAT +Rsat on the LWB problems.
X axis: number of solved problems; Y axis: total CPU time spent (sorting
problems from the easiest to the hardest).

In general, we do not have relevant performance gaps between the various configurations
on this benchmark suite; it seems that in the majority of cases ctrl.lift slightly beats
nolift and nolift slightly beats lift. These gaps are even more relevant if we consider
the size of the formulas generated (Figure 5). We believe that this may be due to the fact
that random �m-CNF formulas may contain lots of shared subformulas �rψ, so that lifting
may cause a reduction of such sharing (see Section 3). Further, plr-bcp does not seem to
introduce relevant improvements here. We believe that this is due to the fact that these
random formulas produce pure and unit literals with very low or even zero probability.
Overall, the configuration BNF-nolift turns out to be the best performer on this suite,

with a slight advantage wrt. BNF-ctrl.lift-plr-bcp.
Finally, from some plots of Figure 4 we notice that for Km2SAT +Rsat the problems

tend to be harder within the satisfiability/unsatisfiability transition area. (This fact holds
especially for Racer and *SAT, see Section 5.3.) This seems to confirm the fact that the
easy-hard-easy pattern of random k-SAT extends also to �m-CNF, as already observed in
literature (Giunchiglia & Sebastiani, 1996, 2000; Giunchiglia et al., 2000; Horrocks et al.,
2000; Patel-Schneider & Sebastiani, 2003).
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Figure 4: Comparison among different variants of Km2SAT +Rsat on random problems.
X axis: #clauses/N . Y axis: median (50th percentile) CPU time, 100 sam-
ples/point. 1st row: d = 1, p = 0.5, N = 8, 9; 2nd row: d = 2, p = 0.6, N = 3, 4;
3rd row: d = 2, p = 0.5, N = 3, 4. Background: % of satisfiable instances.
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Figure 5: Comparison among different variants of Km2SAT on random problems. X axis:
#clauses/N . Y axis: 1st column: #variables in the SAT encoding (90th per-
centiles), 100 samples/point; 2nd column: #clauses in the SAT encoding (90th
percentiles), 100 samples/point. 1st row: d = 1, p = 0.5, N = 9; 2nd row: d = 2,
p = 0.6, N = 4; 3rd row: d = 2, p = 0.5, N = 4.

371



Sebastiani & Vescovi

5.2.3 Results on the TANCS 2000 Benchmark Suite

The comparison among the Km2SAT variants on the TANCS 2000 benchmark is presented
in Figures 6 and 7, where different BNF variants of Km2SAT are compared both enabling
or disabling lift/ctrl.lif and plr-bcp.
In Figure 6, from top-left to bottom, we present the cumulative CPU times spent by

Km2SAT +Rsat on the easy, medium and hard categories respectively (the corresponding
plots reporting the non-cumulative CPU times are included in the online appendix). In
Figure 7 we present the plots of the number of variables and clauses of the formulas solved
for the more challenging cases of the medium and hard problems. 31 We notice that there
are only slight differences among the different variants of Km2SAT ; BNF with lift is the
best option which allows for solving more problems in the hard class and requiring less CPU
time.
We remark that, despite the expected exponential growth of the encoded formulas wrt.

the modal depth, in this benchmark Km2SAT +Rsat allows for encoding and solving
problems of modal depth greater than 100 for the easy class and greater than 50 for the
medium and hard classes, producing and solving SAT-encoded formulas with more than 107

variables and 1.4 · 107 clauses.

5.3 An Empirical Comparison wrt. the Other Approaches

We proceed with the comparison of our approach wrt. the current state-of-the-art evalu-
ating Km2SAT +Rsat against the other Km-satisfiability solvers listed above. In more
details, we chose to compare the performance of the other solvers against both the best
“local” Km2SAT +Rsat variant for the single benchmark suite and the best “global”
Km2SAT +Rsat variant among all the benchmark suites, which we have identified in
BNF-ctrl.lift-plr-bcp.

5.3.1 Comparison on the LWB Benchmark Suite

The results on the LWB benchmark suite are summarized numerically and graphically in
Table 2. From Table 2(a) we notice a few facts: Racer and *SAT are the best performers
(confirming the analysis done by Horrocks et al., 2000) with a significant gap wrt. the others;
then, K-QBF +sKizzo solves a few more problems than Km2SAT +Rsat; then follows
KBDD which outperforms Mspass, which is the worst performer. In detail, Km2SAT
+Rsat is (one of) the worst performer(s) on k d4 * and k t4 *, the fourth best performer
on k path n, the third best performer on k path p and k branch p, and it is (one of) the
best performer(s) on k branch n, k dum *, k grz *, k lin *, k ph * and k poly *; it is the
absolute best performer on k branch n and k ph p.
In Table 2(b) we give a graphical representation of this comparison, plotting the number

of solved problems by each approach against the total cumulative amount of CPU time
spent. We notice that, even if Km2SAT +Rsat solves a few problems less than K-QBF
+sKizzo, Km2SAT +Rsat is mostly faster than K-QBF +sKizzo.

31. The same plots for the easy problems are included in the online appendix.
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Figure 6: Comparison among different variants of Km2SAT +Rsat on TANCS 2000 prob-
lems. X axis: number of solved problems. Y axis: total cumulative CPU time
spent. 1st (top-left) to 3th (bottom) plot: easy, medium, hard problems. (Prob-
lems are sorted from the easiest to the hardest).
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other tools Km2SAT + Rsat
K-QBF BNF-plr-bcp

test + sKizzo KBDD Mspass Racer *SAT -ctrl.lift -lift

k branch n 4 8 10 15 14 17 17
k branch p 16 8 10 21 21 18 18
k d4 n 8 21 21 21 21 8 8
k d4 p 21 21 21 21 21 14 14
k dum n 21 21 21 21 21 21 21
k dum p 21 21 21 21 21 21 21
k grz n 19 21 21 21 21 21 21
k grz p 21 21 21 21 21 21 21
k lin n 20 21 21 21 21 21 21
k lin p 21 21 3 21 21 21 21
k path n 9 21 4 21 21 13 14
k path p 13 17 5 21 21 15 16
k ph n 21 4 12 21 13 21 21
k ph p 10 4 8 9 9 11 10
k poly n 21 8 7 21 21 21 21
k poly p 21 8 7 21 21 21 21
k t4p n 21 21 12 21 21 6 6
k t4p p 21 21 21 21 21 11 11

(a) Indexes of the hardest problems solved.
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(b) X axis: # of problems solved; Y axis: total (cumulative) CPU time spent.

Table 2: Comparison of Km2SAT +Rsat against the other tools on the LWB benchmarks.
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Figure 8: Comparison against other approaches on random problems. X axis: #clauses/N .
Y axis: % of problems solved within the timeout, 100 samples/point. 1st row:
d = 1, p = 0.5, N = 8, 9; 2nd row: d = 2, p = 0.6, N = 3, 4; 3rd row: d = 2,
p = 0.5, N = 3, 4.
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Figure 9: Comparison against other approaches on random problems. X axis: #clauses/N .
Y axis: median (50th percentile) CPU time, 100 samples/point. 1st row: d = 1,
p = 0.5, N = 8, 9; 2nd row: d = 2, p = 0.6, N = 3, 4; 3rd row: d = 2, p = 0.5,
N = 3, 4. Background: % of satisfiable instances.
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5.3.2 Comparison on the Random �m-CNF Benchmark Suite

In the random �m-CNF benchmark suite the results are dominated by Km2SAT +Rsat.
For the hardest categories among the three groups of problems used in the evaluation, we
report in Figure 8 the number of problems solved by each tool within the timeout, and in
Figure 9 the median CPU time (i.e. the 50%th percentile).
Looking at Figure 8 we notice that Km2SAT +Rsat (in both versions) is the only tool

which always terminates within the timeout, whilst *SAT and Racer sometimes do not
terminate in the hardest problems, K-QBF +sKizzo very often does not terminate, and
Mspass and KBDD do not terminate for most values.
In Figure 9 we notice that Km2SAT +Rsat is most often the best performer (in partic-

ular with the hardest problems), followed by *SAT and Racer. (This is even much more
evident if we consider the 90%th percentile of CPU time, whose plots are included in the
online appendix.) In all these tests, K-QBF +sKizzo,Mspass and KBDD are drastically
outperformed by the others.

5.3.3 Comparison on the TANCS 2000 Benchmark Suite

The results of the TANCS 2000 benchmark are summarized in Figure 10, from the easy
category (top-left) to the hard category (bottom).
From the plots we notice that the relative performances of the tools under test vary

significantly with the category: Racer and *SAT are among the best performers in all
categories; K-QBF +sKizzo behaves well on the easy and medium categories but solves
very few problems on the hard one; KBDD behaves very well on the easy category, but solves
very few problems in the medium and hard ones. Mspass is among the worst performers
in all categories: in particular, it does not solve any problem in the hard category; finally,
Km2SAT +Rsat is the worst performer on the easy category, it outperforms all competitors
but *SAT and Racer on the medium category, and competes head-to-head with both
Racer and *SAT for the first position on the hard category: the “local-best” configuration
BNF-lift beats both competitors; the “global-best” configuration BNF-ctrl.lift-prl-bcp
solves as many problems as Racer, with one-order-magnitude CPU-time performance gap,
and two problems less than *SAT.
Notice that the classification of the benchmark problems in “easy”, “medium” and

“hard” given by Massacci and Donini (2000) is based on the translation schema used to
produce every modal problem and refers to its “reasoning component”, but it is not neces-
sarily related to other components (like, e.g., the modal depth) which affect the size of our
encoding and, hence, the efficiency of our approach. This may explain the fact, e.g., that
the “easy” problems are not so easy for our approach, and viceversa.

5.4 Discussion

As highlighted by Giunchiglia et al. (2000), and Horrocks et al. (2000), the satisfiability
problem in modal logics like Km is characterized by the alternation of two orthogonal
components of reasoning: a Boolean component, performing Boolean reasoning within each
state, and a modal component, generating the successor states of each state. The latter
must cope with the fact that the candidate models may be up to exponentially big wrt.
depth(ϕ), whilst the former must cope with the fact that there may be up to exponentially

378



Automated Reasoning in Modal and Description Logics via SAT Encoding

 0.1

 1

 10

 100

 1000

 10000

 50  100  150  200

kQBF+sKizzo
*SAT

Racer
kBDD

MSpass
BNF-lift-plr-bcp (Rsat)

BNF-ctrl.lift-plr-bcp (Rsat)
 0.1

 1

 10

 100

 1000

 10000

 1e+05

 20  40  60  80  100  120

kQBF+sKizzo
*SAT

Racer
kBDD

MSpass
BNF-lift-plr-bcp (Rsat)

BNF-ctrl.lift-plr-bcp (Rsat)

 0.1

 1

 10

 100

 1000

 10000

 5  10  15  20  25  30

kQBF+sKizzo
*SAT

Racer
kBDD

MSpass
BNF-lift-plr-bcp (Rsat)

BNF-ctrl.lift-plr-bcp (Rsat)

Figure 10: Comparison against other approaches on TANCS 2000 problems. X axis: num-
ber of solved problems. Y axis: total cumulative CPU time spent. 1st (top-left)
to 3th (bottom) plot: easy, medium, hard problems. (Problems are sorted from
the easiest to the hardest).
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many candidate (sub)models to explore. In the Km2SAT +DPLL approach the encoder
has to handle the whole modal component (rules (8) and (9)), whilst the handling of the
whole Boolean component is delegated to an external SAT solver.
From the results displayed in Section 5.3 we notice that the relative performances of

the Km2SAT +DPLL approach wrt. other state-of-the-art tools range from cases where
Km2SAT +Rsat is much less efficient than other state-of-the-art approaches (e.g., the k d4
and k t4p formulas) up to formulas where it is much more efficient (e.g., the k ph p or the
�m-CNF formulas with d = 1). In the middle stands a large majority of formulas in which
the approach competes well against the other state-of-the art tools; in particular, Km2SAT
+Rsat competes very well or even outperforms the other approaches based on translations
into different formalisms (the translational approach, the automata-theoretic approach and
the QBF-encoding approach).
A simple explanation of the former fact could be that the Km2SAT +DPLL approach

loses on problems with high modal depth, or where the modal component of reasoning
dominates (like, e.g., the k d4 and k t4p formulas), and wins on problems where the Boolean
component of reasoning dominates (like, e.g., the k ph n or the �m-CNF formulas with
d = 1), and it is competitive for formulas in which both components are relevant.
We notice, however, that Km2SAT +Rsat wins in the hard category of TANCS 2000

benchmarks, with modal depths greater than 50, and on k branch n, where the search
is dominated by the modal component. 32 In fact, we recall that reducing the Boolean
component of reasoning may produce a reduction also of the modal reasoning effort, because
it may reduce the number of successor states to analyze (e.g. Sebastiani, 2007, 2007). Thus,
e.g., techniques like on-the-fly BCP, although exploiting only purely-Boolean properties,
may produce not only a drastic pruning of the Boolean search, but also a drastic reduction
in the size of the model investigated, because they cut a priori the amount of successor
states to expand.

6. Related Work and Research Trends

In the last fifteen years one main research line in description logic has focused on investigat-
ing increasingly expressive logics, with the goal of establishing the theoretical boundaries
of decidability and of allowing for more expressive power in the languages defined (Baader,
Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003). Consequently, very expressive —
though very hard— description logics have today notable application in the field of Semantic
Web. For example, the SHOIN (D) logic (which has NExpTime complexity) captures the
sub-language OWL DL of the full OWL (Web Ontology Language) language (Bechhofer,
van Harmelen, Hendler, Horrocks, McGuinness, Patel-Schneider, & Stein, 2004), that is the
recommended standard language for the semantic web proposed by the W3C consortium.
In contrast, the recent quest for tractable description logic-based languages arising from

the field of bio-medical ontologies (e.g., Spackman, Campbell, & Cote, 1997; Sioutos,
de Coronado, Haber, Hartel, Shaiu, & Wright, 2007; The Gene Ontology Consortium, 2000;

32. The k branch n formulas are very hard from the perspective of modal reasoning, because they require
finding one modelM with 2d+1−1 states (Halpern & Moses, 1992), but no Boolean reasoning within each
state is really required (Giunchiglia et al., 2000; Horrocks et al., 2000): e.g., *SAT solves k branch n(d)

with 2d+1−1 calls to its embedded DPLL engine, one for each state ofM, each call solved by BCP only.
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Rector & Horrocks, 1997) has stimulated the opening of another research line on tractable
description logics (also called lightweight description logics), which are suitable for reasoning
on these very big bio-medical ontologies. In particular, Baader et al. (2005, 2006, 2007, 2008)
have spent a considerable effort in the attempt of defining a small but maximal subset of
logical constructors, expressive enough to cover the needs of these practical applications,
but whose inference problems must remain tractable. For example, simple and tractable
description logics like EL, EL+ and EL++ (Baader et al., 2005) are expressive enough to
describe several important bio-medical ontologies such as SNoMed (Spackman et al., 1997),
NCI (Sioutos et al., 2007), the Gene Ontology (The Gene Ontology Consortium, 2000) and
the majority of Galen (Rector & Horrocks, 1997).

Reasoning on these ontologies represents not only an important application of lightweight
description logics, but also a challenge due to the required efficiency and the huge dimen-
sions of the ontologies. In this perspective, it is important to face efficiently not only the
basic reasoning services (e.g., satisfiability, subsumption, queries) on logics like EL, EL+ and
EL++, but also more sophisticated reasoning problems like e.g., axiom pinpointing (Baader
et al., 2007; Baader & Peñaloza, 2008) and logical difference between terminologies (Konev,
Walther, & Wolter, 2008).

7. Conclusions and Future Work

In this paper we have explored the idea of encoding Km/ALC-satisfiability into SAT, so
that to be handled by state-of-the-art SAT tools. We have showed that, despite the intrinsic
risk of blowup in the size of the encoded formulas, the performances of this approach are
comparable with those of current state-of-the-art tools on a rather extensive variety of
empirical tests. Furthermore, we remark that our approach allows for directly benefitting
“for free” from current and future enhancements in SAT solver technology.

We see many possible directions to explore in order to enhance and extend our approach.
An important open research line is to explore the feasibility of SAT encodings for other and
more expressive modal and description logics (e.g., whilst for logics like Tm the extension
should be straightforward, logics like S4m, or more elaborated description logics than ALC,
should be challenging) and for more complex form of reasoning (e.g., including TBoxes and
ABoxes).

Our current investigation, however, focuses on the lightweight logics of Baader et al.
(2005). We have investigated (and we are currently enhancing) an encoding of the main
reasoning services in EL and EL+ into Horn-SAT, which allows for reasoning efficiently
on the (often huge) bio-medical ontologies mentioned in Section 6, and for handling the
more sophisticated inference problems mentioned there (e.g., we currently handle axiom
pinpointing), by exploiting some of the advanced functionalities which can be implemented
on top of a modern SAT solver (Sebastiani & Vescovi, 2009).
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Appendix A. The Proof of Correctness & Completeness

A.1 Some Further Notation

Let ψ be a Km-formula. We denote by ψ the representation of ¬ψ in the current formalism:
in NNF, �rψ

def= �rψ, �rψ
def= �rψ, ψ1 ∧ ψ2

def= ψ1 ∨ ψ2, ψ1 ∨ ψ2
def= ψ1 ∧ ψ2, Ai

def= ¬Ai,
¬Ai

def= Ai; in BNF, ¬�rψ
def= �rψ, �rψ

def= ¬�rψ, ψ1 ∧ ψ2
def= ψ1 ∨ ψ2, ψ1 ∨ ψ2

def= ψ1 ∧ ψ2,
Ai

def= ¬Ai, ¬Ai
def= Ai.

We represent a truth assignment μ as a set of literals, with the intended meaning that a
positive literal Ai (resp. negative literal ¬Ai) in μ means that Ai is assigned to true (resp.
false). We say that μ assigns a literal l if either l ∈ μ or ¬l ∈ μ. We say that a literal l
occurs in a Boolean formula φ iff the atom of l occurs in φ.
Let M denote a Kripke model, and let σ be the label of a generic state uσ inM. We

label (and denote) by “1” the root state of M. By “〈σ : ψ〉 ∈ M” we mean that uσ ∈ M
andM, uσ |= ψ. Thus, for every σ s.t. uσ ∈M, either 〈σ : ψ〉 ∈ M or 〈σ : ψ〉 ∈ M.
For convenience, instead of (9) sometimes we use the equivalent definition:

Def(σ, νr) def= (L〈σ, νr〉 →
∧

for every

〈σ,πr,i〉

(L〈σ, πr,i〉 → L〈σ.i, νr
0 〉)) ∧

∧
for every

〈σ,πr,i〉

Def(σ.i, νr0). (20)

Notice that each Def(σ, ψ) in (6), (7), (8), (20) is written in the general form

(L〈σ, ψ〉 → Φ〈σ,ψ〉) ∧
∧
〈σ′,ψ′〉

Def(σ′, ψ′). (21)

We call definition implication for Def(σ, ψ) the expressions “(L〈σ, ψ〉 → Φ〈σ,ψ〉)”.

A.2 Soundness and Completeness of Km2SAT

Let ϕ be a Km-formula. We prove the following theorem, which states the soundness and
completeness of Km2SAT .

Theorem 1. A Km-formula ϕ is Km-satisfiable if and only if the corresponding Km2SAT (ϕ)
is satisfiable.

Proof. It is a direct consequence of the following Lemmas 2 and 3.

Lemma 2. Given a Km-formula ϕ, if Km2SAT (ϕ) is satisfiable, then there exists a Kripke
model M s.t. M, 1 |= ϕ.

Proof. Let μ be a total truth assignment satisfying Km2SAT (ϕ). We build from μ a Kripke
modelM = 〈U ,L,R1, . . . ,Rm〉 as follows:

U def= {σ : A〈σ, ψ〉 occurs in Km2SAT (ϕ) for some ψ} (22)

L(σ, Ai)
def=

{
T rue if L〈σ, Ai〉 ∈ μ

False if ¬L〈σ, Ai〉 ∈ μ
(23)

Rr def= {〈σ, σ.i〉 : L〈σ, πr,i〉 ∈ μ}. (24)
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We show by induction on the structure of ϕ that, for every 〈σ, ψ〉 s.t. L〈σ, ψ〉 occurs on
Km2SAT (ϕ),

〈σ : ψ〉 ∈ M if L〈σ, ψ〉 ∈ μ. (25)

Base

ψ = Ai or ψ = ¬Ai. Then (25) follows trivially from (23).

Step

ψ = α. Let L〈σ, α〉 ∈ μ.

As μ satisfies (6), L〈σ, αi〉 ∈ μ for every i ∈ {1, 2}.
By inductive hypothesis, 〈σ : αi〉 ∈ M for every i ∈ {1, 2}.
Then, by definition, 〈σ : α〉 ∈ M.

Thus, 〈σ : α〉 ∈ M if L〈σ, α〉 ∈ μ.

ψ = β. Let L〈σ, β〉 ∈ μ.

As μ satisfies (7), L〈σ, βi〉 ∈ μ for some i ∈ {1, 2}.
By inductive hypothesis, 〈σ : βi〉 ∈ M for some i ∈ {1, 2}.
Then, by definition, 〈σ : β〉 ∈ M.

Thus, 〈σ : β〉 ∈ M if L〈σ, β〉 ∈ μ.

ψ = πr,j. Let L〈σ, πr,j〉 ∈ μ.

As μ satisfies (8), L〈σ.j, πr,j
0 〉 ∈ μ.

By inductive hypothesis, 〈σ.j : πr,j0 〉 ∈ M.

Then, by definition and by (24), 〈σ : πr,j〉 ∈ M.

Thus, 〈σ : πr,j〉 ∈ M if L〈σ, πr,j〉 ∈ μ.

ψ = νr. Let L〈σ, νr〉 ∈ μ.

As μ satisfies (9), for every 〈σ, πr,i〉 s.t. L〈σ, πr,i〉 ∈ μ, we have that L〈σ.i, νr
0〉 ∈ μ.

By inductive hypothesis, we have that 〈σ : πr,i〉 ∈ M and 〈σ.i : νr0〉 ∈ M.

Then, by definition and by (24), 〈σ : νr〉 ∈ M.

Thus, 〈σ : νr〉 ∈ M if L〈σ, νr〉 ∈ μ.

If μ |= Km2SAT (ϕ), then A〈1, ϕ〉 ∈ μ. Thus, by (25), 〈1 : ϕ〉 ∈ M, i.e.,M, 1 |= ϕ.
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Lemma 3. Given a Km-formula ϕ, if there exists a Kripke model M s.t. M, 1 |= ϕ, then
Km2SAT (ϕ) is satisfiable.

Proof. Let M be a Kripke model s.t. M, 1 |= ϕ. We build fromM a truth assignment μ
for Km2SAT (ϕ) recursively as follows: 33

μ
def= μM ∪ μM (26)

μM
def= {L〈σ, ψ〉 ∈ Km2SAT (ϕ) : 〈σ, ψ〉 ∈ M} (27)

∪ {¬L〈σ, ψ〉 ∈ Km2SAT (ϕ) : 〈σ, ψ〉 ∈ M}
μM

def= μπν ∪ μαβ ∪ μA (28)

μπν
def= {¬L〈σ, πr,i〉 ∈ Km2SAT (ϕ) : σ �∈ M} (29)
∪ {L〈σ, νr〉 ∈ Km2SAT (ϕ) : σ �∈ M}

μαβ
def= {¬L〈σ, α〉∈Km2SAT (ϕ) : σ �∈M and ¬L〈σ, αi〉∈μM for some i∈{1, 2}} (30)
∪ {¬L〈σ, β〉∈Km2SAT (ϕ) : σ �∈M and ¬L〈σ, βi〉∈μM for every i∈{1, 2}}.

where μA is a consistent truth assignment for the literals L〈σ, Ai〉 s.t. Ai ∈ A and σ �∈ M.

By construction, for every L〈σ, ψ〉 in Km2SAT (ϕ), μ assigns L〈σ, ψ〉 to true iff it assigns
L〈σ, ψ〉 to false and vice versa, so that μ is a consistent truth assignment.

First, we show that μM satisfies the definition implications of all Def(σ, ψ)’s and
Def(σ, ψ)’ s.t. σ ∈M. Let σ ∈M. We distinguish four cases.

ψ = α. Thus ψ = β s.t. β1 = α1 and β2 = α2.

– If 〈σ : α〉 ∈ M (and hence 〈σ : β〉 �∈ M), then for both i’s 〈σ : αi〉 ∈ M and
〈σ : βi〉 �∈ M. Thus, by (27), {L〈σ, α1〉, L〈σ, α2〉,¬L〈σ, β〉} ⊆ μM, so that μM
satisfies the definition implications of both Def(σ, α) and Def(σ, β).

– If 〈σ : α〉 �∈ M (and hence 〈σ, β〉 ∈ M), then for some i 〈σ : αi〉 �∈ M and
〈σ : βi〉 ∈ M. Thus, by (27), {¬L〈σ, α〉, L〈σ, βi〉} ⊆ μM, so that μM satisfies the
definition implications of both Def(σ, α) and Def(σ, β).

ψ = β. Like in the previous case, inverting ψ and ψ.

ψ = πr,j. Thus ψ = νr s.t. νr0 = πr,j0 .

– If 〈σ : πr,j〉 ∈ M (and hence 〈σ : νr〉 �∈ M), then 〈σ.j : πr,j0 〉 ∈ M. Thus, by (27),
{L〈σ.j, πr,j

0 〉,¬L〈σ, νr〉} ⊆ μM, so that μM satisfies the definition implications of

both Def(σ, πr,j) and Def(σ, νr).

33. We assume that μM, μπν and μαβ are generated in order, so that μαβ is generated recursively starting
from μπν . Intuitively, μM assigns the literals L〈σ, ψ〉 s.t. σ ∈ M in such a way to mimic M; μM assigns
the other literals in such a way to mimic the fact that no state outside those in M is generated (i.e., all
L〈σ, π〉’s are assigned false and the L〈σ, ν〉’s, L〈σ, α〉’s, L〈σ, β〉’s are assigned consequently).
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– If 〈σ : πr,j〉 �∈ M (and hence 〈σ : νr〉 ∈ M), then by (27) ¬L〈σ, πr,j〉 ∈ μM, so
that μM satisfies the definition implications of Def(σ, πr,j).
As far as Def(σ, νr) is concerned, we partition the clauses in (9):

((L〈σ, νr〉 ∧ L〈σ, πr,i〉)→ L〈σ.i, νr
0〉) (31)

into two subsets. The first is the set of clauses (31) for which 〈σ : πr,i〉 ∈ M. As
〈σ : νr〉 ∈ M, we have that 〈σ.i : νr0〉 ∈ M. Thus, by (27), L〈σ.i, νr

0〉 ∈ μM, so that
μM satisfies (31). The second is the set of clauses (31) for which 〈σ : πr,i〉 �∈ M.
By (27) we have that ¬L〈σ, πr,i〉 ∈ μM, so that μM satisfies (31). Thus, μM
satisfies the definition implications also of Def(σ, νr).

ψ = νr. Like in the previous case, inverting ψ and ψ.

Notice that, if σ �∈ M, then σ.i �∈ M for every i. Thus, for every Def(σ, ψ) s.t. σ �∈ M, all
atoms in the implication definition of Def(σ, ψ) are not assigned by μM.

Second, we show by induction on the recursive structure of μM that μM satisfies the
definition implications of all Def(σ, ψ)’s and Def(σ, ψ)’s s.t. σ �∈ M. Let σ �∈ M.
As a base step, by (29), μπν satisfies the definition implications of all Def(σ, πr,i)’s and

Def(σ, νr)’s because it assigns false to all L〈σ, πr,i〉’s. Indeed, μA assigns every literal of
the type L〈σ, Ai〉 s.t Ai ∈ A and σ �∈ M (notice that all the Def(σ, Ai)’s definitions are
trivially satisfied and don’t contain any definition implications).
As inductive step, we show on the inductive structure of μαβ that μαβ satisfies the

definition implications of all Def(σ, α)’s and Def(σ, β)’s
Let ψ

def= α and ψ = β s.t. βi = αi (or vice versa). Then we have that:

• if both L〈σ, αi〉’s (respectively at least one L〈σ, βi〉) are assigned true by μM, then
the definition implications of Def(σ, α) (respectively Def(σ, β)) is already trivially
satisfied;

• if at least one L〈σ, αi〉 (respectively both L〈σ, βi〉’s) is assigned false by μM, then by
(30) L〈σ, α〉 (respectively L〈σ, β〉) is assigned false by μαβ, which satisfies the definition
implication of Def(σ, α) (respectively Def(σ, β)).

Thus μM satisfies the definition implications of all the Def(σ, ψ)’s and Def(σ, ψ)’s s.t.
σ �∈ M.

On the whole, μ |= Def(σ, ψ) for every Def(σ, ψ). By construction, μM |= A〈1, ϕ〉
since 〈1 : ϕ〉 ∈ M. Therefore μ |= Km2SAT (ϕ).
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